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Abstract
The non-equilibrium Green’s function formalism method is used to simulate electronic transport in a quantum cascade laser. 
Calculations are performed in a real-space basis defined by the grid points. Implementation of a non-uniform mesh greatly 
improves the effectiveness of the method, allowing for realistic mapping of the device structure while keeping the numerical 
load achievable for personal computers. The results of simulations obtained employing a non-uniform mesh are shown to fit 
the experimental data much better than those using constant grid sampling.

Keywords Non-equilibrium Green’s function · Quantum cascade laser · Electronic transport · Real-space basis · Non-
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1 Introduction

The non-equilibrium Green’s function (NEGF) formalism 
is a powerful semiconductor device simulation method, 
which allows for the simultaneous consideration of carrier 
scattering and quantum coherence. However, this method 
is highly demanding, both conceptually and computation-
ally, so in order to model real devices, a few simplifications 
must be made. They must be introduced in order to keep the 
numerical load, in terms of both time and memory, at a size 
achievable by currently available computers. For example, 
existing approaches implementing NEGF to simulate quan-
tum cascade lasers (QCLs) that involve the basis being cut 
to several quantum states per QCL period [1] do not fully 
resolve for in-plane momentum [1], and all limit the analysis 
to at most three device modules [2–5]. As QCLs are purely 
unipolar devices, they all use effective-mass Hamiltonians 
limited to at most two bands [6], so the effect of band mix-
ing is also simplified. QCL NEGF simulators utilize either 
the eigenfunction-like basis [2] or the real-space basis [1]. 
The former uses several quantum states per QCL period and 

thus benefits from a relatively low numerical load, making 
this approach numerically efficient. Because of this, many 
important results, both theoretical and application-oriented, 
have been obtained with this approach [7–11]. The major 
simplification of the approach is that in reality, the basis 
is field-dependent, which is not taken into account when 
obtaining a self-consistent Schrödinger–Poisson solution. 
Using a real-space basis does not have this limitation. How-
ever, obtaining results with quantitative accuracy requires a 
very dense grid, making for a huge numerical load with this 
approach. This is a concern for both mid-infrared (mid-IR) 
devices, whose structures utilize fine layers of sub-nanom-
eter width, and THz devices, which have a high well-to-
barrier width ratio. In both cases, non-uniform sampling of 
device potential in the real space can significantly limit the 
size of the discretized Hamiltonian and make the method 
numerically efficient. Non-uniform sampling of real space 
within NEGF implementation has already been reported 
[12]. This study concerns ballistic, scattering-free transport 
in a high-electron-mobility transistor (HEMT). Our paper 
aims to implement a non-uniform mesh to study scattering 
transport in QCLs. We provide the detailed formulation for 
current density and scattering energies for the case of non-
uniform mesh discretization (Sect. 3), which can also be 
used in other device-oriented NEGF solvers. In Sect. 4, the 
results obtained for uniformly and non-uniformly sampled 
THz QCL devices are compared in order to demonstrate the 
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benefits one can gain when using smart non-uniform sam-
pling of the device potential in real space.

2  Device and model

The THz QCL selected for the simulations was described 
in [13]. This laser emits radiation at 2.4 THz frequency and 
uses an indirect phonon-photon pump scheme to achieve the 
population inversion [14]. Each module of the cascade con-
sists of four wells and four barriers, with the widths tuned to 
tenths-of-nanometer precision. The design utilizes a GaAs/
AlGaAs material system and contains layers with widths 
of 4.4/6.45/1.62/7.15/2.79 /10.455/0.6/4.965 nm, where the 
bold font indicates the barriers. The first well is delta-doped 
with Si to ns = 3.45 × 1010 cm−2 near its center. The cascade 
in the THz QCL counts several hundred identical modules 
(260 for our device). Typically, to make the simulations fea-
sible, 1–3 modules are considered, and the remainder are 
mimicked by appropriate boundary conditions. It is reason-
able to assume that any position/energy-dependent quantity 
q remains unchanged after simultaneous space-energy shift, 
i.e., q(z + L,E, k) = q(z,E − eFL, k) , where L is the size of 
the single module and F is the average electric field due to 
the external bias. Such an assumption allows one to reduce 
the size of the structure, subjected to the calculations, to 
approximately one QCL module.

Precise mapping of the QCL layers in the growth direc-
tion requires the use of a grid with mesh size Δz of no 
more than the material’s monolayer spacing. In the case 
of a uniform grid with Δz = 0.2 nm, one THz QCL module 
consists of N = 193 sites. The inclusion of several addi-
tional wells/barriers, which are necessary for the applica-
tion of periodic boundary conditions, increases the number 
of sites to N = 256 , which makes it nearly impossible to 
obtain the solution in the self-consistent Born approxima-
tion and in acceptable time. At the same time, even for 
dense mapping, accurate thickness of the layers is not pre-
served. For instance, for Δz = 0.2 nm, the layer mapping 

error is approximately 1% . For Δz = 0.6 nm, the deviations 
from original layer widths can be as much as 10% . As dis-
cussed in the Introduction, a way to avoid these limitations 
is to keep the calculations in the real space and reduce the 
basis by non-uniform sampling. Our non-uniform sampling 
strategy is as follows: First, exact positions zint of the inter-
faces are found, and sites are located symmetrically to the 
left/right of zint in half-monolayer distance. The remain-
ing space in each layer is then uniformly sampled, with 
spacing not exceeding some arbitrarily assumed maximum 
mesh size Δzmax . This strategy allows one to save many 
sites per QCL module, keeping the widths of subsequent 
layers (and thus the size of the whole device) unchanged. 
In Table 1, the number of sites for different values of the 
parameters Δzmax (non-uniform sampling) or Δz (uniform 
sampling) and the deviations of the QCL’s intersubband 
transition energies from their reference values (calculated 
for a very dense uniform grid Δz = 0.005 nm) are gath-
ered and compared. For the energy E32 = E3 − E2 , which 

Fig. 1  Density of states (DOS) at k = 0 [color maps (eVnm)−1 ] for a 
bias of 69 mV per period (F = 17.96 kV/cm). Lines show conduction 
band edge and DOS (for k = 0 ) at the energies where the local maxi-
mum is obtained (corresponding to major states in the QCL structure)

Table 1  Energy level shifts 
from reference values (column 
2) resulting from the change 
in discretization grid method 
for non-uniform and uniform 
grid cases (see Fig. 1 for level 
enumeration)

Simulations were carried out for the model without scatterings for a bias of 69 mV per period (F = 17.96 
kV/cm)

Uniform grid Δz (nm) Non-uniform grid Δzmax (nm)

0.005 0.2 0.6 0.2 1 2

r.e. Change from reference energy (r.e.) (meV)

E
21

36.570 −0.216 1.582 −0.035 0.103 0.311
E
32

9.348 −0.174 −1.758 0.006 0.091 0.412
E
43

28.197 0.696 −1.878 −0.011 0.011 0.270
E
42

37.545 0.522 −3.636 −0.005 0.102 0.683
E
31

45.918 −0.390 −0.176 −0.028 0.194 0.733
N 7684 193 65 196 53 36
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describes optical transition, the difference in the deviations 
for different grid size and sampling strategies can be huge: 
for example, for Δzmax = 1 nm (non-uniform sampling), 
the change is almost 20 times smaller than for Δz = 0.6 
nm (uniform sampling). If we further increase Δzmax to 
2 nm, the change is still four times smaller than for the 
Δz = 0.6 nm case. At the same time, the basis is almost 
twice as small as for uniform sampling. This improve-
ment is achieved despite the fact that for the non-uniform 
finite difference scheme, the truncation error is only first 
order in Δzmax ( O(Δzmax) ) as compared with second-order 
accuracy characteristic of a homogeneous grid. One must 
remember, however, that the increase in Δzmax cannot 
go to arbitrary large values: It is well known that a one-
dimensional (1D) discrete lattice has a cosine dispersion 
relation E = 2t(1 − cos(ka)) , where t ≡ ℏ2

2m∗a2
 , a is the lattice 

constant, and m∗ is the effective mass. When a increases, 
the difference between the discretized (cosine) and con-
tinuous (parabolic) dispersions becomes large even for low 
energies. For this reason, a should be kept at a value that 
maintains the analysis close to the band edge. Numerically, 
it is equivalent to the condition Emax << 4t , where Emax 
is the maximum energy involved in the simulations. For 
example, for a GaAs conductor ( m∗ = 0.067m0 ) and for 
a = 2 nm, the energy cosine bandwidth is 4t ≅ 0.57 eV. 
As can be seen in Fig. 2, a reasonable approximation can 
be obtained for energies lower than Emax ≅ 0.2 eV ≈ 1.5t . 
This limitation has been retained for the maximum grid 
size, i.e., Δzmax ≤ √

0.75ℏ2∕m∗Emax ≈ 0.2�min , where �min 
is the particle minimum wavelength. 

3  Theory

So far, all QCLs are purely unipolar n-type devices, 
so the model uses a single-band effective-mass Ham-
iltonian, which accounts for mixing with the valence 
bands through energy-dependent effective mass 
m(E, z) = m∗(z){1 + [E − Ec(z)]∕Eg(z)} , where E is the 
total energy, Ec(z) and Eg(z) are the conduction band edge and 
band gap profiles, and z is the growth direction. The in-plane 
dynamics are included by kinetic energy terms with the same 
energy-dependent effective mass. Such a choice, which is not 
ultimate, preserves the in-plane non-parabolicity, comparable 
to the results predicted by the 8-band k·p method [15]. The full 
non-interacting Hamiltonian is expressed as

where the potential energy term V(z) = Ec(z) + Vsc(z) com-
prises the conduction band edge profile Ec(z) and the elec-
tron mean field term Vsc(z) , calculated self-consistently by 
the solution of the Poisson equation. As already mentioned, 
the calculations are made in real space, so the Hamilto-
nian of Eq. (1) is discretized and the grid points (non-uni-
formly spaced on the z-axis) define its base vectors; the dis-
cretized Hamiltonian � can then be evaluated in the matrix 
form following [16]

where discretization site i has coordinate zi , sites i, j 
are at the distance |zj − zi| ≡ zi,j  , zi± = (zi±1 + zi)∕2 
are halfway between zi and zi+1 or zi−1 and zi , and 
m(E, zi±) ≡ 1

2
(m(E, zi±1) + m(E, zi)) . It stems from Eq. (2) 

that matrix � is non-Hermitian. The Dyson and Keldysh 
equations take the forms [17]

where � is the unity matrix, and � s and � s are the self-
energy and Green’s function matrices with the elements 
(i,  j) linking the discretization sites at zi and zj . The 
matrix � in Eq. (3) is a diagonal matrix with the elements 
�i,i ≡ 2∕(zi+1 − zi−1) . For the Hamiltonian of Eq. (1), all � s 
are the functions of two parameters, i.e., total energy E and 
in-plane momentum modulus k: � = �(E, k) . The scattering 
self-energies that enter the formalism must be calculated 
with care. The usual formulation uses the Dyson equation in 
the form (E� −� − ��)�� = � , and so the Green’s functions 

(1)H =
−ℏ2

2

d

dz

1

m(E, z)

d

dz
+ V(z) +

ℏ2k2

m(E, z)
,

(2)
�i,i =V(zi) +

ℏ2k2

m(E, zi)
−�i,i+1 −�i,i−1,

�i,i±1 = −
ℏ2

m(E, zi±)zi,i±1(zi+1 − zi−1)
,

(3)(E� −� − ��)�� = �,

(4)(E� −� − ��)�< =�<��,�� = (��)†,

Fig. 2  (left) One-dimensional density of states (DOS) calculated 
within the NEGF formalism for a GaAs conductor |z| ≤ 40 nm con-
nected to semi-infinite leads |z| > 40 nm (color map). In the leads and 
device, uniform sampling with Δz = 2 nm is used. (right) DOS cal-
culated at z = 0 (squares) compared with theoretical lines: (dashed) 
cosine dispersion 2∕(�ta

√
1 − (1 − E∕2t)2) , (dotted) parabolic dis-

persion (2∕�ℏ)
√
2m∗∕E , (solid) calculated from an 8-band k·p model
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have the units of energy−1 . In our case, the Green’s functions 
are per energy×length. The necessary integration over space 
must not be omitted, in order to preserve the consistency. For 
instance, for the quasi-elastic approximation of scattering 
with acoustic phonons, the formulation for the self-energy 
in [18] is expressed as

where kB is the Boltzmann constant, vs , � , D are the sound 
velocity, the density, and the deformation potential in the 
host material, and a is the grid size. In our formulation, the 
integration over the spatial coordinate cancels term a, so that 
the correct formula for this self-energy is

where ��,< are calculated from Eqs. (3) and (4). A similar, 
straightforward transformation can be applied to other self-
energies with diagonal-only entries, such as alloy disorder 
or interface roughness. For the interactions, which give non-
local self-energies, i.e., ionized impurities and polar optical 
phonons, the transformations are less intuitive. Self-energies 
for polar optical phonons should be calculated as [18]

and

where nB is the Bose–Einstein factor for energy ℏ� , 
� = e2ℏ�(�−1

∞
− �−1

0
)∕2 , and Ilo is the integral calculated as

�
�,<

i,j
= 𝛿i,j

kBTD
2

4𝜋4𝜌v2
s
a ∫ dk2�

�,<

i,j
,

(5)�
�,<

i,j
= 𝛿i,j

kBTD
2

4𝜋4𝜌v2
s
∫ dk2�

�,<

i,j
,

(6)

��
i,j
(E, k) =

𝛽

𝜋 ∫
d2q

4𝜋2
Ilo(|zi − zj|, k, q)∕�j,j

×
[
nB�

�
i,j
(E + �𝜔, q) + (nB + 1)��

i,j
(E − �𝜔, q)

+
1

2

(
�<

i,j
(E − �𝜔, q) −�<

i,j
(E + �𝜔, q)

)]
,

(7)

�<

i,j
(E, k) =

𝛽

𝜋 ∫
d2q

4𝜋2
Ilo(|zi − zj|, k, q)∕�j,j

×
[
nB�

<
i,j
(E + �𝜔, q) + (nB + 1)�<

i,j
(E − �𝜔, q)

]
,

(8)

Ilo(|z − z�|, k, q)

= ∫
�∕a

0

dqz
cos(qz(z − z�))

√
(q2

z
+ q2 + k2 + q2

0
)2 − 4k2q2)

×

(
1 −

q2
0
(q2

z
+ k2 + q2 + q2

0
)

(q2
z
+ q2 + k2 + q2

0
)2 − 4k2q2)

)
,

For the impurity scattering, the self-energies are [4]

where ND(z) is the ionized impurity concentration profile, � 
is the angle between vectors k and q, q0 is the inverse Debye 
screening length, and � is the static dielectric constant. In the 
case of non-uniform sampling, the calculation of integrals Ilo 
and Iimp is associated with a huge increase in computational 
effort and use of computer memory. However, as these inte-
grals do not change when equations are iterated, they can 
be executed only once, tabulated and stored in computer 
memory. This is one more advantage of the chosen basis.

With the NEGF method, boundary conditions are applied 
through the contact self-energies. In our approach, the con-
tact self-energy matrix ��

�
 has only two nonzero elements, 

namely, for the device’s left boundary

where �� is the Green’s function of the (uncoupled) lead 
[19], and �LD , �DL are coupling elements. The method for 
calculating the function �� , which imitates the boundary 
conditions appropriate for cascade structures, was described 
in [5, 20]. With a non-uniform grid, the coupling elements 
are calculated according to Eq. (2), i.e.,

where aL ≡ |z0 − z−1| , a0 ≡ |z1 − z0| ( z0, z−1 are the coor-
dinates of the first and second site in the lead adjacent to 
the device), and mL = m(z0) , m1 = m(z1) . The right contact 
self-energy ��

� N,N
 can be similarly calculated.

With the diagonal elements of the Green’s functions 
matrices, the spatial momentum-resolved densities of states 
(DOS) and densities of electrons (DOE) can be calculated 
as [19]

(9)

�
�,<

i,j
(E, k) =

e4

16𝜋2𝜖2 ∫ qdqIimp(zi, zj, k, q)∕�j,j

×�
�,<

i,j
(E, q),

Iimp(zi, zj, k, q) =
�

k

1

�k.k

ND(zk)

× ∫
2𝜋

0

d𝜃
e
−
√

q2
0
+k2+q2−2kqcos𝜃(�zi−zk�+�zj−zk�)

q2
0
+ k2 + q2 − 2kqcos𝜃

,

(10)��
� 1,1

= �LD�
�
�,�
�DL,

(11)
�LD =�0,1 =

ℏ2

2

2

(aL + a0)a0

2

mL + m1

,

�DL =�1,0 =
ℏ2

2

2

(a0 + z1,2)a0

2

mL + m1

,

(12)
Ni(E, k) = −

1

𝜋
Im(��

i,i
(E, k)),

ni(E, k) = −
1

2𝜋
Im(�<

i,i
(E, k)).
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The integration over � gives z-resolved DOS and DOE. The 
formulation for current density requires reformulation with 
respect to [17]. The particle current flowing between internal 
site i and i + 1 (for some E, � ) [9] is expressed as

where A is the cross-sectional area.
Optical gain can be calculated with the perturbation 

method of [7], adopted for the case of energy-dependent 
effective mass [21]. In that approach, the absorption coef-
ficient is obtained from the real part of the complex con-
ductivity, i.e., � ≅ ℜ(�(�))∕c�0

√
�r (the symbols have the 

usual meanings). The complex conductivity is obtained as 
�(�) = �J(�)∕F(�) , where �J is the current perturbation 
and F  is the external radiation field. The current perturba-
tion is calculated as

where �� is the perturbing potential, which can be cal-
culated in the Coulomb gauge as �� = −eF(�)�∕ℏ� , 
� ≡ �

−1(�� − ��) , and � is the diagonal matrix ( �i,i = zi ). 
The perturbed lesser Green’s function 𝛿�< in the first 
approximation is given by [7]

4  Results

In order to illustrate the advantages of the method that uses 
non-uniform mesh, calculations for the THz QCL were car-
ried out using uniform and non-uniform mesh. In the case 
of uniform sampling, Δz = 0.6 nm was assumed, which gave 
87 sites of the simulation model. For non-uniform sam-
pling, several values of Δzmax = 0.8, 1, 1.2 nm were tried. 
In Table 2, the current density and the maximum gain peak, 

(13)Ji =
1

�A

[
�<

i,i+1�i,i+1∕�i,i −�<
i+1,i�i+1,i∕�i+1,i+1

]
,

(14)
𝛿J(𝜔) =

e

�A ∫
dE

2𝜋
Tr{(𝛿�(𝜔)� − �𝛿�(𝜔))�−1�<(E)

+�𝛿�<(𝜔,E)},

(15)
𝛿�<

(𝜔,E) = ��
(E + �𝜔)𝛿�(𝜔)�<

(E)

+�<
(E + �𝜔)𝛿�(𝜔)��

(E).

calculated for the field F = 19.8 kV/cm, and different values 
of the parameters Δzmax are gathered and compared. As can 
be seen, the result “saturates” for Δzmax ≥ 1 nm, so the latter 
was used in the following simulations. For Δzmax = 1 nm, 
the model counts 74 sites. For the discretization in E and 
k2 spaces, the uniform grids were assumed with spacings of 
dE = dEk = ℏ2dk2∕2m∗ = 1 meV.

There were also included scattering self-energies for the 
interactions with (1) acoustic phonons in energy-averaged 
approximation [4], (2) screened, dispersionless optical pho-
nons in the full non-local approximation (all off-diagonal 
elements of self-energy included) [18], (3) alloy disorder, 
(4) interface roughness with a Gaussian correlation func-
tion with correlation length Λ = 9 nm and asperity height 
Δ = 0.19 nm [4], and (5) ionized impurities [4]. Calculations 
were performed for the temperature T = 50 K. The NEGF-
Poisson solver [5] was used to obtain the self-consistent 
solution of the Dyson, Keldysh and Poisson equations. The 
boundary conditions for the Poisson equation ensured charge 
neutrality of the single module.

The results of the simulations are presented in Figs. 3 and 
4. In Fig. 3, the current-voltage characteristics for uniform 
and non-uniform grid sampling are shown and compared 
with the experiment [13]. One can see that the characteris-
tics for non-uniform grid sampling are much closer to the 
experimental data than those for a uniform grid.

A comparison of the simulated gain for non-uniform and 
uniform grid cases is shown in Fig. 4. In both cases, the gain 
was calculated for the value of the field in which the gain 
peak reached its maximum value, i.e., 19.8 and 19.2 kV/cm 
for non-uniform and uniform sampling, respectively. For the 
non-uniform grid case, the gain peak appears at 2.67 THz 
( h� = 11 meV) and reaches a value of ≈ 60 cm−1 , which 
slightly exceeds all optical losses [13]. This frequency is 

Table 2  The current density and maximum gain peak for different 
non-uniform grids calculated for the value of the field F = 19.8 kV/
cm

�zmax (nm) Current density (kA/cm2) Max 
gain (1/
cm)

1.2 1.25 59.5
1.0 1.23 57.7
0.8 1.22 57.0

Fig. 3  Calculated I-V characteristics (filled symbols, i.e., squares for 
a non-uniform grid case, triangles for a uniform grid case) compared 
to the experiment (empty symbols) [13]
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quite close to the experimental lasing frequency value of 
2.4 THz. In the case of a uniform grid, a distinct peak of 
the gain cannot be observed. In this case, a broad gain peak 
( ≈ 40 cm−1 ) appears at 1.93 THz ( h� = 8 meV), which is 
significantly lower than the experimental laser frequency. 
Moreover, the gain does not reach losses, so lasing is not 
predicted with this model.

The theoretical multi-valley I-V characteristic calcu-
lated with our implementation of the NEGF method is not 
observed in the experiment, which qualitatively reproduces 
the simulated behavior only for the lowest and the highest 
fields. For the medium-value fields, a plateau rather than 
oscillatory behavior is observed. This discrepancy is most 
probably caused by the evolving electric field domains [22]. 
In structures like the THz QCL, such domains are very likely 
to form due to the incomplete relaxation of carrier energy 
within one module [4]. Another difference between the 
simulated and experimental I-V curves is the shift of cal-
culated resonance peaks to lower voltages. This shift can 
be attributed at least in part to the voltage drop observed at 
the Schottky-like junction between the top metal and top n + 
GaAs contact layer [22]. With respect to other simulation 
methods, it is worth mentioning that our I-V characteristic is 
in excellent agreement with the NEGF simulation performed 
with a Wannier state basis [13]. Better agreement between 
simulated and experimental I-V curves was achieved with 
the rate equation (RE) model combined with the density 
matrix (DM) method [13]. However, the gain peak achieved 
at 2.9 THz with the RE/DM method agrees substantially less 
with the experimental data than our value. To our knowl-
edge, no other simulation methods used to model QCLs (see 
Refs. [1, 23, 24] for recent reviews) have been investigated 
for this particular design.

5  Conclusion

In this paper, the technical details for simulations of quan-
tum cascade lasers in real space with a non-uniform mesh 
and non-equilibrium Green’s function method are presented. 
With this approach, accurate mapping of the structure of 
the simulated device onto its numerical model is preserved. 
The results of the simulations thus fit the experimental data 
much better than those that use constant grid sampling. In 
addition, this method allows the size of the numerical task to 
be reduced, enabling the achievement of satisfactory results 
much more quickly.
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