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Abstract
In recent years, generative machine learning algorithms have been successful in designing innovative drug-like molecules. 
SMILES is a sequence-like language used in most effective drug design models. Due to data’s sequential structure, models 
such as recurrent neural networks and transformers can design pharmacological compounds with optimized efficacy. Large 
language models have advanced recently, but their implications on drug design have not yet been explored. Although one 
study successfully pre-trained a large chemistry model (LCM), its application to specific tasks in drug discovery is unknown. 
In this study, the drug design task is modeled as a causal language modeling problem. Thus, the procedure of reward mod-
eling, supervised fine-tuning, and proximal policy optimization was used to transfer the LCM to drug design, similar to 
Open AI’s ChatGPT and InstructGPT procedures. By combining the SMILES sequence with chemical descriptors, the novel 
efficacy evaluation model exceeded its performance compared to previous studies. After proximal policy optimization, the 
drug design model generated molecules with 99.2% having efficacy  pIC50 > 7 towards the amyloid precursor protein, with 
100% of the generated molecules being valid and novel. This demonstrated the applicability of LCMs in drug discovery, 
with benefits including less data consumption while fine-tuning. The applicability of LCMs to drug discovery opens the 
door for larger studies involving reinforcement-learning with human feedback, where chemists provide feedback to LCMs 
and generate higher-quality molecules. LCMs’ ability to design similar molecules from datasets paves the way for more 
accessible, non-patented alternatives to drug molecules.

Keywords Large language model · GPT · Large chemistry model · De novo drug design · Reinforcement learning · Efficacy 
optimization

Drug discovery is one of the most time-consuming and 
costly aspects of developing a drug. It is estimated to take 
about 10–15 years, with a cost of $1.395 billion per drug 
discovered and approved [1]. Scientists have attributed the 
vastness of the chemical space (estimated to have ~1060 cur-
rently synthesizable molecules) as one of the main chal-
lenges in discovering drugs. In simpler terms, it is impos-
sible to enumerate all possible synthesizable molecules to 
perform virtual screening for drug efficacy. Machine learn-
ing (ML) has emerged as one of the most promising tools in 
drug discovery and can speed up this process. Specifically, 
scientists have used large datasets of known (drug or drug-
like) molecules to train generative machine learning models 

for designing drug-like molecules with certain desired prop-
erties from scratch, or in other words, to perform de novo 
drug design [2, 3].

There are multiple ways to store these models in a way 
that a machine can understand, one of which is the simplified 
molecular-input line-entry system (SMILES). In SMILES, 
bonds and other geometric information are stored using 
symbols such as “=” [4]. One can think of it as a chemical 
language that is used to store the molecule’s structure and 
its constituents without losing information.

With representation systems that can denote mole-
cules and their structures using concise, one-dimensional 
sequences, scientists have used ML models such as trans-
former models and recurrent neural networks (RNNs), which 
are models commonly used for language processing, for 
chemistry [3, 5, 6]. This makes these sequence processing 
models a state-of-the-art approach in de novo drug design. 
Approaches that uses long short-term memory (LSTM) 
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neural networks and generative adversarial networks (GANs) 
tended to yield low validity in drug design (i.e., many of the 
designed molecules are chemically invalid or contain syn-
tax errors) [3, 6, 7]. However, the recent success of large 
language models (LLMs) and their implications for drug 
discovery are unexplored. Although there are studies like 
Regression Transformers [8] and ChemGPT [9] that have 
successfully adapted large generative pretrained transform-
ers (GPTs) into general LCMs, their roles in drug design 
are still unexplored. Specifically, one reserach [9] examined 
model scaling behavior in the context of molecule mode-
ling: the study created ChemGPT, which has successfully 
transformed large language models into pretrained large 
chemistry models, generating valid SELFIES molecules 
[9]. Their study concluded that the neural scaling (the trend 
of drastic increases in model performance as model size 
increases over several orders of magnitude) phenomenon 
from NLP also transfers or appears in the field of molecule 
modeling [9], potentially implicating further breakthroughs. 
Since ChemGPT was not further trained for specific chemi-
cal tasks, the effect of neural scaling in drug design or other 
specific chemical applications are unknown. In the present 
study, a LLM (now a LCM) is adapted (trained) to drug 
design for molecules with high drug efficacy for the first 
time. For case study, the LCM is used to target the amyloid 
beta precursor protein, a known drug target for Alzheimer’s 
disease [10, 11]. APP is a drug target in treating AD, as 
successful inhibition of APP from accumulating amyloid-β 
peptide could prevent the pathogenesis of AD [10, 11].

The approach used here can easily be adapted to other tar-
get proteins. The proposed drug design model can be more 
data efficient, since LLMs are “few-shot” learners [12]. In 

other words, the LCM can adapt to specific drug designing 
tasks with less training data once it is trained for drug design 
for the first time.

For the first time, the present study uses a drug efficacy 
evaluation deep learning model that processes both chemi-
cal property descriptors and (sequence-denoted) chemical 
structure by using both recurrent neural networks and dense 
feed-forward layers. The sequential representations used are 
SMILES and self-referencing embedded strings (SELFIES). 
Deep learning refers to the family of artificial neural network 
models that have multiple layers, which includes traditional 
feed-forward networks and recurrent neural networks. My 
study uses this in silico method for evaluating drug efficacy 
towards the drug target, amyloid-precursor protein (APP). 
This efficacy evaluation model is later used with my drug 
design model in a feedback loop for optimizing properties 
such as drug efficacy via a reinforcement learning optimi-
zation technique known as proximal policy optimization 
(PPO).

Methods

Method overview

The method is organized into three parts: Part 1 addresses 
Objective 1, Part 2 addresses Objective 2, and so forth 
(Fig. 1). As stated in the objectives of this study, one of the 
main goals was to transfer LLM into LCM and adapt LCM 
for drug design. To achieve Objective 1 in evaluating drug 
efficacy, I employed the reward modeling step, in which a 
novel quantitative structure–activity relationship (QSAR) 

Fig. 1  Method overview. The steps are listed in chronological order 
and in which they appear in the paper. The black arrows denote the 
level of specificity, and the white arrows denote the chronological 
order. The first part is to train an evaluation model that estimates the 

drug efficacy given the structure of the molecule. The second part is 
to train the drug design GPT model to learn how to generate similar 
drug-like molecules. The third step is to optimize for desired proper-
ties such as drug efficacy
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efficacy evaluation model structure was used. To further 
finetune my drug design model in generating similar drug-
like molecules, I used the supervised finetuning (SFT) step. 
Finally, to use my efficacy evaluation model to optimize my 
drug design model for designing higher efficacy molecules 
(also known as developmental candidates), I employed a 
transformer reinforcement learning (TRL) step by using the 
proximal policy optimization (PPO) algorithm. The three-
step training approach used here is similar to a popular Open 
AI training approach for training LLMs for ChatGPT. This 
investigates whether the natural language processing (NLP) 
training and finetuning schema can transfer for designing 
effective drug molecules.

For drug design and efficacy optimization, the drug target 
protein selected is APP, a target that has therapeutic effects 
in treating Alzheimer’s [10, 11]. However, the same meth-
odology can be applied to transfer LCM for targeting a dif-
ferent protein using a different dataset.

QSAR evaluation model using LSTMs

To address Objective 1 and to better model drug efficacy 
towards APP, I devised a novel LSTM QSAR evaluation 
model design. My evaluation model takes both the structural 
information denoted in sequence and the chemical proper-
ties of the molecule denoted via numerical descriptors. To 
investigate the explainability of my evaluation model, I used 
the Exmol library for the first time for efficacy evaluation for 
aiding ML drug design.

Data preprocessing

I selected the publicly available APP dataset from Bind-
ingDB [13] as the training and evaluation sets. It contains 
experimental data on ligand–protein interactions (with bind-
ing affinity measured, and drug efficacy measured in IC50). 
For easier processing and better performance of the model, 
I converted IC50 values to pIC50 values. IC50 measures 
how much concentration of the drug is needed to have a 
50% effect on the biological and biochemical function of the 
receptor protein. pIC50 can be calculated by using the equa-
tion, pIC50 = −log10

[
IC50

]
 , which is a better approach due to 

easier interpretability and easier processing (not having to 
deal with extremely small and large floating-point numbers). 
The higher the pIC50 value, the higher the drug efficacy.

To ensure the uniqueness of the SMILES of the ligands 
and to avoid discrepancies between the drug efficacy of the 
same ligand in the data, I used the arithmetic mean of a 
molecule’s multiple recorded  pIC50 values, as now each mol-
ecule corresponds to one drug efficacy value only. Since 
most of the measurements in the dataset are in  pIC50 (con-
verted from  IC50), I filtered and used the experimental data 

measured in  pIC50, leaving 1032 unique experimentally 
tested ligands in total, some of which are patented mole-
cules. I later split the dataset into 80% for training and 20% 
for evaluation.

Alternative sequential representations

To investigate the most suitable sequential representation 
of molecules for my efficacy evaluation model, I trained 
evaluation models using SMILES and SELFIES. There 
are many different ways to encode SMILES into tensors to 
feed them into the neural network QSAR model. The most 
common and straightforward approach is to use a custom 
Pytorch embedding layer, and map each character of the 
sequence into an unique integer. The embedding layer is a 
neural network layer whose goal is to help learn the semantic 
relationships between tokens. Semantic relationships can be, 
for instance, that “(” are always paired with “)”, and “c” is 
the same as “C” but part of an aromatic ring. To map each 
character to integer, thus turning the whole sequence into a 
tensor, I modified and used the vocabulary list from Abbasi’s 
study [3], which contains an almost complete list of valid 
characters in SMILES. Alternatively, instead of SMILES 
representation, one can also use SELFIES, which requires no 
additional data preprocessing since it is already in tokenized 
format. Thus, although SMILES can be sometimes more 
concise, SELFIES can be more “machine-friendly,” which 
is why I compared QSAR evaluation models trained using 
SMILES representation and those trained using SELFIES 
representation.

To select the best way to process sequential information 
for my evaluation model, I used the DeepChem’s Mol2Vec 
embedding system [14]. Mol2Vec [14] is a pretrained 
embedding layer network on PubChem database’s mol-
ecules [15]; it is the analog of the Word2Vec embedding 
network—a commonly used pretrained embedding system 
from NLP. I tested these 3 different embedding techniques 
and selected the more suitable, best performing representa-
tion and embedding system for the final efficacy evaluation 
model.

Feature engineering and QSAR evaluation model 
designing

I designed the QSAR efficacy evaluation model, which is 
novel since it takes in both sequential representation and 
numerical chemical descriptors of molecules calculated 
from RDKit [16] to achieve better performance compared 
to previous models (shown in Fig. 2). RDKit Tools is a 
python library that has helper functions such as to calcu-
late chemical descriptors or to parse and validate SMILES. 
The numerical chemical descriptors from RDKit were cal-
culated and used as features, in addition to the sequential 
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representation input feature (in SMILES or SELFIES). 
These chemical descriptors are numbers representing the 
molecule’s chemical properties, such as the polar surface 
area, etc. Numerical descriptors have shown to be useful 
for QSAR, even outperforming one-hot-encoded structure 
representation when non-sequential processing models 
are used such as support vector regression and random 
forest [17]. I filtered out the non-numerical descriptors 
from RDKit and used DeepChem’s RDKit descriptors for 
QSAR. I normalized the descriptors via scikit-learn scaler 
(normalizer) since different RDKit descriptors span in dif-
ferent scales. Features with drastically different scales can 
be hard to learn for neural networks.

To train my evaluation model, I searched for the optimal 
hyperparameters via grid search. The tuned, final hyperpa-
rameters for the LSTM (evaluation) model used a learning 
rate of 0.001 and a dropout of 0.3 to prevent overfitting. The 
embedding layer supports 701 different SELFIES encoded 
tokens. The learning rate controls how much the model 
changes when making a mistake, and the dropout prevents 
overfitting by training only a certain percentage of randomly 
picked neurons at a time. The loss function is defined as the 

mean squared error (MSE) loss, a common loss metric for 
regression.

I trained the evaluation model with a batch size of 16. 
The model itself takes in two inputs, the first one being a 
sequence of token IDs where each id is an integer denoting 
a token, the second input being a feature vector of numerical, 
RDKit generated chemical descriptors of the molecule. In 
my evaluation model (Fig. 2), each layer consists of 256 neu-
rons. Inside the model, the first, sequential input is passed 
into the embedding layer, and the second, numerical, input 
is passed into a dense layer directly. Then, the output of the 
embedding layer is passed into two layers of LSTM, and the 
output of the two LSTM layers are concatenated with the 
output of the first dense layer, into one final feature vector, 
which is fed into a dense, feed-forward layer, whose output is 
finally fed into one neuron in the next layer and the predicted 
value is outputted from this neuron (Fig. 2). The number of 
dense layers processing the chemical descriptors were tuned, 
and the hyperparameters were tuned. The activation func-
tion used for the layers was the rectified linear unit (ReLU).

To train and compare my QSAR evaluation model that 
uses Mol2Vec embedding system [14] and my model that 
uses SMILES representation, I used the same model struc-
ture, except only 82 tokens (excluding default ones such as 
the end of sequence token) were used for the embedding 
layer for the evaluation model that uses pure SMILES. Dur-
ing training, I used the Adam optimizer with betas. They 
were used to average the gradient of previous n batches, 
which has been shown helpful for models’ lost functions to 
cross through saddle points and local minimas. To decrease 
the learning rate when the model was converging (and 
when the validation metrics were not improving), I used 
the Reduce Learning Rate on Plateau scheduler, making the 
training more stable. I trained the evaluation model for 100 
epochs, and I selected the best performing model as the final 
efficacy evaluation model.

QSAR performance evaluation

To better measure the performance of my evaluation model 
in addition to the loss metric, I used the concordance corre-
lation coefficient (CCC) as it is a better metric for both bias 
and variance (i.e., for both “accuracy” and “precision”). To 
explore how efficiently my evaluation model uses its data 
compared to previous models, I conducted another experi-
ment with the same procedure except the training sets used 
have size [825, 700, 500, 400, 250, 100]. Since the dataset 
only had 1032 unique SMILES, the maximum size used 
was 825 molecules for training (using a 80–20 train-test 
data split). I shuffled the dataset and split into training and 
evaluation once; I used a portion of the training set to train 
the evaluation model. The evaluation set stayed unchanged 
during the experiment. Splitting only once throughout this 

Fig. 2  QSAR evaluation model: multi-feature LSTM architecture. 
The QSAR architecture takes in two different representations of a 
molecule: in sequential representation using SELFIES, and in chemi-
cal descriptors generated by RDKit. The two inputs go through dif-
ferent neural network layers, then the output of the layers are concat-
enated and go through one final layer to produce the predicted  pIC50 
value. For the embedding layer, a custom embedding layer and Deep-
Chem embedding layers were tested
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experiment reduces the effect of randomness on performance 
since each time the trained model is evaluated on the same 
set of molecules.

Model explainability

To open and take “sneak peeks” into the black box of this 
LSTM neural network in order to provide explainability to 
my evaluation model, I used the Exmol python library. It is 
hard to interpret neural networks since they are black boxes. 
Unlike decision tree-based models, which are self-explan-
atory with its branch denoting a specific condition of some 
feature, a neural network has so many parameters, weights, 
and biases that it is impossible for any human to investi-
gate why and what patterns and strategies did the evaluation 
model learned; this is known as the black box phenomenon: 
input and output can be observed, but not anything that hap-
pens in between. Exmol is a python library that uses differ-
ent chemical descriptors and surrogate models to explain a 
chemistry related regression or classification model [18]. 
This is a relatively new tool as the library is released in 
late 2022. This is the first time it is used for aiding ML 
de novo drug design by making drug efficacy evaluation 
model interpretable. I used the default Exmol descriptors, 
and the results were automatically graphed by the library. A 
natural language explanation can also be generated, which 
explains what is happening behind the evaluation model 
[18]. Furthermore, I compared the Exmol descriptors with 
findings from previous studies on drug efficacy and activity 
to determine the credibility of using Exmol. If the result 
proves credible, then Exmol serves as a convincing way of 
interpreting QSAR neural networks. If credible, explainabil-
ity of QSAR efficacy evaluation models can provide invalu-
able information for human chemists on what makes a ligand 
effective towards the drug target.

LCMs for adapting to drug discovery

In my study, I treat the problem of drug design as a causal 
language modeling (CLM) problem, like many other GPT 
models in NLP. In CLM, during training, the model tries to 
predict the next word in the sequence in some dataset, and 
then in generation, it generates new sequences word-by-word 
and token-by-token.

To perform causal language modeling for supervised fine-
tuning, in addition to using Pytorch, I used the Hugging Face 
transformers library and the Hugging Face transformer rein-
forcement learning (TRL) library. Hugging Face is a website 
and a community that has public, open-source repositories 
of large language models, such as Meta’s Llama2 [19], and 
Falcon LLM [20]. This addresses Objective 2, to train my 
drug design model to design similar drug-like molecules, 

adapting the model to drug design from general chemical 
tasks.

The Hugging Face transformers library provides many 
helper functions needed to train one’s own transformer. 
The transformer reinforcement learning (TRL) library has 
functions and classes that allow customized reinforcement 
learning training. I used TRL since it can easily interact with 
Hugging Face causal language models and contains state-of-
the-art reinforcement learning algorithms that are commonly 
used in the field of natural language processing.

Supervised finetuning of LCM

The base transformer model used was the GPT-Neo lan-
guage model [21], pretrained by the study on ChemGPT [9] 
using 10 million molecules from PubChem [15] to generate 
general molecules. To adapt the LCM to the APP dataset, 
I devised this supervised finetuning step to train the LCM.

Data preparation

To perform supervised finetuning, I used the same Bind-
ingDB dataset [13] from the QSAR training. I used the same 
dataset cleaning technique, and the dataset was also mapped 
from tokenized SELFIES into numerical token identifiers 
(token IDs) using a modified version based on ChemGPT’s 
auto tokenizer from Hugging Face library. The tokenizer 
was updated to support all of the tokens used in the data-
set, and thus the embedding layer of my drug design model 
was resized. These new tokens include chirality informa-
tion, such as the “[C@Hexpl]” and “[C@@expl]” SELFIES 
encoded tokens. Similar to the procedures for QSAR, I split 
the dataset into 80% for training and 20% for evaluation.

After the tokenizer was prepared and the training dataset 
was tokenized, to investigate whether chunking (one NLP 
data processing technique) helps LCM performance, I com-
pared LCMs that were tuned with and without this chunk-
ing preprocessing. Chunking refers to merging and split-
ting multiple input sequences together to convert all input 
sequences into chunks having the same length. Each chunk 
is an incomplete sequence, with tokens representing the start 
and the end of an individual sequence respectively. In other 
words, after chunking, many of the chunk sequences will 
not contain both the start token and the end token unless the 
chunk contains a complete sequence. This is done because 
transformers have a limited context window (can focus and 
process a certain amount of words at a time), and it is more 
efficient for the transformer model to utilize the full win-
dow during training. However, natural language modeling 
models are usually trained via documents and encyclo-
pedia articles that are far longer than the context window 
length. In contrast, for drug design, all of the ligands from 
the dataset have a length less than 200 when represented in 
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SELFIES encoded tokens; all are smaller than the window 
length. Thus, I trained the drug design model with and with-
out this technique and compared the loss values to evaluate 
whether the chunking technique affected the performance, 
or if chunking caused the drug design model to incorrectly 
assume relationships between the independent short SELF-
IES sequences. I chose the better performing supervised-
trained drug design model for Part 3 of the method.

Supervised training

Finally, after data preparation, I used the supervised fine-
tuning trainer from Hugging Face to configure and train the 
drug design LCM. The trainer automatically batched input 
(token ID) sequences and pad them into the same length 
behind the scene, thus no further data preprocessing was 
needed. I used these padding tokens to account for the fact 
that different sequences have different lengths, while the 
input tensor must be rectangular—each sequence having 
the same length. In addition, I also used the attention masks 
to tell the transformer model to ignore padding tokens. I 
used a batch size of 16, and the learning rate was set to 
7 ⋅ 10−5 . I used a weight decay of 0.01 to prevent overfitting 
and trained the drug design model for 10 epochs. I tuned 
the hyperparameters via Optuna [22], a Python Bayesian 
parameter optimizer, which was used since it is compatible 
with Hugging Face, and the Bayesian parameter optimizer 
adapts to the performance of drug design models with differ-
ent hyperparameters rather than simply enumerating through 
a grid of combinations of hyperparameters. This can be rel-
evant and important when the training process is relatively 
time consuming.

Model evaluation using cross‑entropy loss

To train the drug design LCM via supervised finetuning, I 
used the loss function, which is defined as the cross-entropy 
loss (Eq. 1):

where L represents cross-entropy loss, which takes in the 
true next token, p , as a probability distribution where the 
correct token has a 100% probability and other tokens having 
a 0% probability, and the model’s distribution (which is the 
logit) is denoted as q . I used the cross-entropy loss to define 
how close the model’s logit is from the true distribution, 
so the gradient can be computed and the model can be cor-
rected. In causal language modeling, when generating each 
token, the cross-entropy loss was used for correcting a model 
when its response deviates from the sequence or molecule it 
is trying to model. In other words, the gradient is computed 

(1)L(p, q) = −
∑

x∈vocabs

p(x)log(q(x))

and the model learns from errors it makes anytime it gener-
ates a token that differs from the token from the “correct 
answer” sequence, which is the desired next token.

To evaluate my drug design model’s performance after 
the training was complete, I repeatedly prompted my model 
with the start token for performing de novo drug design. I 
graphed and compared the distribution of drug efficacy, and 
other chemical properties of the generated molecules with 
the dataset molecules. The validity and novelty of the gener-
ated molecules were also determined. Validity is defined as 
the percentage of generated sequences that are parasable to 
represent actual molecules; novelty is defined as the percent-
age of generated sequences that do not exist in the dataset 
(both training and evaluation set). This supervised finetuning 
trained drug design model serves as the basis model for PPO 
training in the next step.

Proximal policy optimization (PPO)

The role of PPO is to incentivize my drug design model 
for designing higher efficacy molecules. To the best of my 
knowledge, no published study on machine learning aided 
drug design has used PPO.

Reinforcement learning notations

To use reinforcement learning for drug design LCM, one 
will need to define each component of the reinforcement 
learning (RL) agent. In this case, the LCM, or LLM, is the 
policy function of an agent (denoted as πθ (at|st)), where 
each action of the agent is to generate the next token, and the 
state st represents some already generated sequence (recall 
the CLM procedure). The advantage function, or A(st,at) or 
At represents how good or bad some decision at is. It can 
be described mathematically as At = Q(st,at)−V(st), where 
Q(s,a) represents the expected desiredness of performing 
some action a at some state, subtracted from V(s), the desir-
ability of this current state; thus, the whole term determines 
how much more desiredness or advantage one get by per-
forming this action. To define and incentivize for “desired, 
effective molecules” using RL, one method is to take the 
gradient with respect to the policy’s parameters that opti-
mizes the advantage function, which is one of the main ideas 
behind the proximal policy optimization algorithm.

The value head

The purpose of the value head is to make the LCM drug 
design model prefer a higher reward given by designing 
desired, effective molecules. During reinforcement learning, 
the value head is connected to the generative LCM model, 
which is an additional feed-forward neural network that 
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represents the value function. This is the part of the model 
that “communicates” with the efficacy evaluation model to 
interpret the evaluated efficacy “score”.

PPO definition for drug design & implementation 
details

To incentivize the drug design LCM to generate higher effi-
cacy molecules towards APP, I used a PPO reinforcement 
learning schema. To do so, I used the efficacy evaluation 
model trained earlier for scoring molecules, designed by the 
drug design LCM trained from Part 2. I repeated the training 
loop multiple times throughout the algorithm for multiple 
epochs.

Through reinforcement learning, the drug design 
model finds out what sequences of tokens work well 
(have high drug efficacy) and what does not. I used 
the PPO Trainer from Hugging Face for this train-
ing process, which updates the drug design model 
behind the scene when given the three parameters: 
(Q = query = input,A = generated,R = reward = drug efficacy)  .  The 
PPO algorithm was implemented in the trainer’s step func-
tion, and the training loop was designed and implemented 
by myself. The present study should be the first time that 
reinforcement learning optimization (specifically PPO) is 
applied to LCMs.

Formally, the PPO algorithm can be described as maxi-
mizing the following equation, for some hyperparameter 
epsilon denoting how much a policy is allowed to change 
each update, shown in (4):

where r�(�) = clip

(
��(at|st)
��old

(at|st)
, 1 ± �

)
.

Where ObjectivePPO represents the objective of PPO, st 
represents the expected value at some time t, and the con-
ventional notations for RL are used.

To make the training more stable, PPO limits the amount 
of changes possible per training step, minimizing the conse-
quence of an inaccurate value-head (V(s)). Since the advan-
tage term Ât depends on what a model estimates how good 
an action is at some state (or Q(s,a)), it depends on the value 
function, which is an approximation made by the value head 
of the policy network. To make the training more stable, 
one needs to limit the amount of change it can perform in a 
single update to prevent an initially inaccurate value head 
from misleading the policy network, by setting a maximum 
threshold, for instance. This technique is called “clipping.” 
KL divergence is a similar popular technique that can be 
used for limiting the amount of change compared to the old 
policy in PPO training. Simply put, KL divergence takes in 
the new and old policy distribution (the probability of taking 

(2)ObjectivePPO(𝜃) = Êt

[
r𝜋(𝜃) ⋅ Ât

]

action a for all actions) and outputs a nonzero real number—
the larger the output the larger the difference. Formally, it 
is defined as in (3):

where the P and Q distributions are the policies, and i is 
any action that the policy can take. In the drug designing 
case, each action corresponds to generating some unique 
token IDs representing some information of the designed 
molecule. The policies are the drug design LCMs.

PPO training loop

The initial PPO policy network in this case is the supervised 
finetuned drug design LCM. I employed the default KL-
divergence penalty to ensure my drug design model did not 
deviate too much away from the original supervised finetun-
ing trained model.

For training, I trained the drug design LCM for 14 epochs, 
with a learning rate set to 1.41. For this training, I used the 
same training set that was used for supervised finetuning 
from Part 2, except, some of the molecules were not used for 
generation at all and were replaced with the start token for 
generating from scratch; molecules that were used only had 
the first 2–8 tokens to guide the drug design model during 
PPO. This is a common technique in finetuning LLM when 
using PPO. The training loop (Fig. 3) created can be broken 

(3)DKL(P||Q) =
∑

i

P(i)log

[
P(i)

Q(i)

]

Fig. 3  Feedback loop of proximal policy optimization. The 
PPO training loop is summarized in the diagram. In a nutshell, 
the designed molecules of my drug design model (shown as 
“ChemGPT”) are scored by the reward (evaluation) model. Each 
score is then combined with the KL divergence for more stable 
model performance and to ensure model convergence. My initial drug 
design model served as a constraint to limit deviation of my updated 
drug design model. The combined value is used to update the drug 
design model’s parameters by taking the gradient of the objective 
(with respect to � , the parameters). Notice that the “( +)” means com-
bined since the reward model outputs a reward while the KL diver-
gence outputs a penalty (-reward). This training loop is repeated mul-
tiple times to maximize the reward received by the model
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down into three parts: action (generation), reward prediction, 
and optimization.

During generation, I set the top p value to 1.0 (or 100%), 
encouraging the generator to explore more, rather than to 
only exploit what it already knows to maximize reward. In 
other words, top p = 1.0 allows the drug design LCM to con-
sider all possible actions, with better actions having higher 
probability to be chosen. In contrast to greedy strategy (top 
k = 1), which chooses the token that it currently estimates is 
the most optimal, this top p = 1 policy does not have early 
suboptimal convergence, since one of the pitfalls of greedy 
strategy is that the locally best choice of action isn’t always 
the best choice overall. The drug design LCM generates a 
list of token IDs sequences, each representing the SELFIES 
encoded sequence of the designed molecule.

In the second step, my code from the training loop 
decoded these generated sequences of token IDs into 
SMILES sequences, which were then parsed and calculated 
using RDKit for their chemical descriptors. With the original 
generated sequences padded and the chemical descriptors 
ready, I used the trained QSAR evaluation model for esti-
mating the reward received (the efficacy) for each designed 
molecule.

Finally, my training loop passed the input, the generated 
token IDs, and the rewards into its PPO train step function 
for running the PPO algorithm for updating the policy net-
work (my drug design model). I repeated this 3-part process 
for each batch from each epoch until the PPO training was 
complete.

PPO evaluation

To evaluate the extent to which the post-PPO LCM designed 
high efficacy molecules, I graphed and compared a kernel 
density estimation distribution of drug efficacy  (pIC50) of 
generated molecules with the drug efficacy distribution of 
the dataset molecules.

Results & discussion

One of the main goals of this study was to transfer a LLM 
into a large chemistry model (LCM) and adapt LCM for 
drug design for the first time. The successful application of 
LLM (or LCM) and NLP training schemas in drug discovery 
in this study is novel, and the application of reinforcement 
learning on LCM to drug design is a strategy that had not 
been investigated in previous studies. In the present study, I 
chose APP for the case study of drug design, and the same 
LCM can be transferred to target a new protein utilizing a 
different dataset using the same methodology. This study 
used a three-step NLP strategy, which used a PPO algorithm 
with my QSAR efficacy evaluation model to optimize the 

drug efficacy of the molecules designed by my drug design 
LCM. Furthermore, this study employed an unexplored 
approach for QSAR using a combination of sequential and 
numerical chemical descriptors, which achieved a better 
performance. Then, the Exmol library was used as a way to 
interpret my QSAR efficacy evaluation model. This utiliza-
tion of Exmol library on pIC50 efficacy for ML drug design 
represents a previously unexplored approach.

The novel QSAR model outperforms 
traditional QSAR models

To better model drug efficacy for generated molecules and 
to later use it for efficacy optimization, I devised and used 
the QSAR evaluation model that takes a combination of 
sequential and chemical descriptor data for the first time. 
The performance of my evaluation model on the experi-
mental data was evaluated and compared with prior QSAR 
models (on the same dataset): the LSTM model from Abbasi 
et al.’s study [3] and the ECIF random forest model [23] 
(see Fig. 4). The result showed that the addition of chemical 
descriptors increased the model performance (concordance 
correlation coefficient (CCC) of 0.91 vs. 0.79), being 2.34 
times better in performance (by a 2.34 times smaller MSE 
loss) compared to previous study’s LSTM model.

Having a much more accurate reward (evaluation) model 
is important as it guides the generative drug design model in 
PPO training towards designing higher efficacy molecules by 
scoring. Thus, my evaluation model with SELFIES-encoded 
sequence input was chosen as the reward model. Although 
the SELFIES-based and SMILES sequence-based models 
had relatively similar performance, the SELFIES-based 
model can more easily interact with my drug design model, 
which generates molecules in SELFIES tokens. A possi-
ble explanation for this result is that with the addition of 
numerical descriptors, my evaluation model no longer needs 
to rediscover how to estimate these descriptors or patterns 
(such as the amount of hydrogen bonding) themselves using 
the sequence and can focus on other aspects of the structure 
provided by the sequence. The results demonstrates that 
Objective 1 was achieved successfully: my QSAR evalua-
tion models with combined sequence and numerical descrip-
tor input indeed achieve better performance than traditional 
structure-only QSAR models.

The increased performance in the evaluation model 
makes computational drug discovery more reliable (for APP 
in this case study). The drug discovery process is accelerated 
by this more than twofold improvement in performance, as 
a more accurate evaluation model reduces the failure rate of 
designed effective molecules and is therefore more likely to 
hold true during actual in-vitro experimental validations.
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Novel QSAR structure is data‑efficient

To explore how efficiently my QSAR evaluation model 
uses its data compared to previous models, another experi-
ment was conducted with different sizes of training sets.

A size-difference of around 150 datapoints was used to 
estimate the performance of my final evaluation model over 
each dataset since enumerating all possible dataset sizes 
can be time consuming. The result from Fig. 5 implies that 
my SELFIES-based evaluation model, using 70% less data, 

Fig. 4  Performance of QSAR efficacy evaluation model exceeds 
previous studies model performance. A–C the performance of each 
model on the testing set over three different metrics. The models 
tested are Abbasi et  al.’s LSTM model [3], the ECIF random forest 
model [23], and my models trained with three different molecule rep-
resentation formats. MSE, or mean squared error, is a metric to meas-
ure the overall difference between experimental and predicted  pIC50 
values, punishing larger differences more due to the squared terms. 
The green highlighted bars represent models from the present study, 
and the blue highlighted bars are from previous studies. D–E com-

pares the performance of the QSAR model over the entire BindingDB 
dataset (on the left) vs. the performance of the ECIF random forest 
model. (on the right). The regression line on the right is much more 
flat (which means a weaker performance) than the regression line 
on the left, which is consistent from findings of previous study that 
sequential QSAR LSTM models outperform previous QSAR models 
[3].  Ki is an alternative way of measuring efficacy, which was used 
since the ECIF model outputs  pKi values—although efficacy was 
measured in different metrics, both are from the same BindingDB 
dataset
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achieves similar performance compared to traditional LSTM 
QSAR regressors (250 dataset molecules vs. 825 molecules). 
This implies that the addition of chemical descriptors does 
indeed decrease the amount of data required for the model 
to learn through the structural relationships. This also dem-
onstrated that my evaluation model structure in the present 
study performs better even when information is more limited 
(fewer experimental data available), making it applicable in 
earlier stages of drug discovery, when the disease or the drug 
target is first discovered.

Neural network QSAR model can become 
explainable

To retrieve valuable information on what makes a mole-
cule effective, my QSAR efficacy evaluation model must 
be explainable. To attempt to explain the QSAR evaluation 
model, which is a neural network black box, the Exmol 
python library was used for efficacy for the first time: Exmol 
uses molecule descriptors and surrogate models to record 
correlation between molecule descriptor and predicted activ-
ity by querying different variants of a molecule (shown in 
Fig. 6). The results show that having a tertiary carbon hin-
ders a molecule’s efficacy towards APP, so does an alkyne 
group, too many aromatic rings, too many methyl groups, or 
largely separated nitrogen.

Previous studies had shown that having an excessive 
amount of aromatic rings (more than 3) is negatively 

correlated with the druggability and developability of a 
molecule, regardless of the target protein [24]. Similar to 
the excessive number of methyl and alkynes groups, the 
tertiary carbon and separated nitrogen descriptors are more 

Fig. 5  Novel QSAR model maintains outperformance as dataset size 
decreased. Mean squared error (MSE) values are used in the figure 
as a metric for model performance, where the lower the MSE value, 
the better the performance. The QSAR (evaluation) model designed 
in this study was trained with different sizes of datasets. The evalu-
ation dataset used remained unchanged throughout the experiment. 

The rightmost three values are ones that are smaller than the MSE 
value for a traditional LSTM QSAR model [3] trained using the same 
825 molecules dataset. The loss of the QSAR model increases as the 
training dataset size decreases; however the QSAR model still per-
formed better, until the dataset size became around 250

Fig. 6  Correlation between descriptor and efficacy by QSAR model 
demonstrates explainability. The Exmol library [18] was used in 
attempts to make the QSAR model explainable. A molecule was 
sampled from the training set and different variants of the molecule 
were produced by the Exmol and the relative increase or decrease in 
predicted efficacy was recorded. The sign of the t-value represents 
negative or positive correlation, while the magnitude represents the 
statistical significance. The yellow dotted line represent statistical sig-
nificance threshold, and the red bars represent negative correlation. 
All of the top 5 default molecule descriptors are statistically signifi-
cant
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general and no previous studies have proven or disproven 
their hindrance on APP efficacy of a molecule. One pos-
sible explanation is that these correlations only apply to 
APP only and do not generalize to protein–ligand interac-
tions overall. Future studies can investigate the potential 
of using more customized, more specific molecule descrip-
tors with Exmol for more detailed information.

Although more customized, specific molecule descrip-
tors for APP can make one retrieve more specific informa-
tion from these “sneak peeks,” the results suggest that the 
explainability of QSAR evaluation models can provide cred-
ible information for human chemists on what makes a ligand 
effective towards a drug target. This can accelerate chem-
ists’ understanding of drug targets and effective ligands. In 
addition, future study can investigate the potential in the 
information derived from this approach to serve as addi-
tional conditions or optimization goals for a drug design 
model—breaking down an abstract metric into multiple 
easier goals can potentially increase a drug design model’s 
performance. Having a better understanding of the essence 
which makes a molecule effective can be important since 
although a drug-like molecule can be potentially discarded 
in later stage, this information can be reused throughout the 
entire process: for instance, when optimizing the molecule 
at a later stage such as for lowering toxicity, chemists would 
know what are essential for the efficacy and must not change 
while what can be optimized and adjusted.

Supervised finetuning can help drug design 
LCM to model drug‑like molecules

To better model the molecules from the dataset (to be “drug-
like”) before optimizing for any properties, this study used 
supervised finetuning (SFT) for the LCM to model the mol-
ecules from the same BindingDB dataset used for reward 
modeling. Different configurations with different hyperpa-
rameters were tried, and the best model successfully learned 
to generate similar molecules and the distribution of mol-
ecules from the dataset (cross-entropy loss of 0.1253; with 
chunk preprocessing). Next, the property distribution of 168 
sampled generated molecules was calculated and compared 
with the dataset’s molecules.

A kernel density estimation (KDE) distribution graph is a 
smooth curve that estimates and interpolates the frequency 
distribution of some continuous data from a set of recorded 
data points. The KDE distribution plots (Fig. 7) suggest 
that my drug design model successfully modeled the vari-
ous property distributions of the molecules from the dataset, 
further supporting the small loss value.

Having the drug design LCM learn from the distribu-
tion of molecules in the dataset is important: ChemGPT 
is a general pretrained model that has not been tuned for 

drug-like or even organic molecules. In addition to helping 
the drug design LCM better converge in the PPO optimiza-
tion process, the fine-tuned drug design LCM serves as a 
basis model, preventing the optimizing LCM from deviat-
ing and generating invalid and not drug-like molecules. My 
drug design model’s successful convergence, as portrayed 
by the figure (Fig. 7), further proved LCM’s ability to use 
CLM to model drug-like molecules in a supervised setting, 
as shown in [9].

A potential implication of this is to use LCMs for learn-
ing or “deep-faking” patented drug molecules, which can 
be used by a future study for discovering alternative, more 
accessible, and similar drug molecules such as for aiding 
developing regions. This can be useful such as for tuberculo-
sis, where effective drugs exist but are inaccessible in many 
developing regions due to high cost.

Proximal policy optimization can optimize 
efficacy for drug design LCM

To optimize the drug design LCM in generating molecules 
with high drug efficacy and other properties (the novelty 
and  pIC50 are optimized as examples), the PPO algorithm 
was employed using the reward and SFT-trained drug design 
models. The KDE distribution of drug efficacy  (pIC50) of 
molecules after PPO was graphed and compared with the 
drug efficacy distribution of the dataset (Fig. 8). My drug 
design model’s ability to generate desired molecules is 
shown by a 15.49 times more effective mean efficacy value 
(in  IC50) in the generated set of molecules than in the dataset.

A comparison to previous ML drug design models is 
shown (Table 1). The present study’s GPT model outper-
forms existing drug design models in designing effective, 
novel, and chemically valid molecules. Samples of designed 
molecules are also shown (Fig. 9). Most of the generated 
molecules exhibit desired properties such as high drug effi-
cacy. Compared to the dataset (Fig. 8), on average the  pIC50 
value of the generated molecules is higher by 1.19, and the 
variance in  pIC50 is much less in the generated set than in 
the training set. 99.2% of the molecules had  pIC50 > 7 in 
the PPO training process. These results signify that NLP 
techniques and training schemas can also be transferred 
to the realm of molecule property optimization and drug 
design. This opens the door for other techniques, such as 
reinforcement learning from human feedback, to be used 
for LCMs. In addition, recent years have shown different 
approaches for multi-objective PPO algorithms applied to 
different fields [25, 26]; these algorithms’ implication on 
LCM can be further explored and compared to the com-
mon and straightforward “weighted sum” approach. Since 
there are many factors that need to be optimized in the drug 
development process before a drug candidate becomes an 



 Journal of Computer-Aided Molecular Design           (2024) 38:20    20  Page 12 of 15

approved drug molecule, future studies can investigate the 
addition of optimizing for low toxicity or other properties 
using similar techniques as PPO.

The fact that my drug design model can design mol-
ecules with both high efficacy and 100% novelty signifies a 
promising way of using LCMs trained with NLP techniques 
and algorithms. In addition, notice when Open AI train their 
LLMs such as Instruct GPT and Chat GPT, reinforcement 
learning from human feedback (RLHF) is often involved 
[29]. To apply this training strategy for drug design, chem-
ists can help, from rating, ranking, and prioritizing certain 
designed drug molecules, to designing better alternatives as 
examples and provide direct feedback for the model. RLHF 
is shown to be one of the best ways to incorporate human 
insights into a GPT model [30], which this strategy can 
potentially help the drug design model pick up chemists’ 
“intuitions’’ in designing drug molecules—patterns that are 
hard to quantify and hard to use quantitative metric to meas-
ure and optimize [30]. This will be the first time chemists 

can directly interact with the drug design model, “com-
municating” their experiences to the drug design model, 
increasing the model performance and potentially making 
machine designed molecules indistinguishable from human 
designed ones. However, although this proposed RLHF 
strategy of having chemists provide feedback to a large 
chemistry model to improve its performance is a promising 
one, this requires the involvement of multiple chemists, and 
the cost would be unattainable and thus infeasible for the 
present study.

Conclusion

A three-step LLM training process from Natural Language 
Processing was successfully applied in the context of drug 
design for LCM. This is an unprecedented strategy for large 
chemistry models, consisting of reward modeling, super-
vised finetuning, and proximal policy optimization (or RL 

Fig. 7  Molecule property distribution of generated is similar to dis-
tribution of dataset Molecules. 168 generated molecules’ proper-
ties were calculated and graphed. Density is proportional to the 
frequency, except the graph is normalized, thus sample size is not 
considered in the comparison. The graphs showed that most gener-

ated molecules do lie in the same approximate range as the drug can-
didates from the dataset in different molecule properties. The differ-
ence in the tails of the distributions can be attributed to the difference 
in the sample sizes: 168 vs. 1024
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optimization). To begin, in the reward modeling step, using 
publicly available experimental dataset from BindingDB 
[13] for protein-molecule interactions, and by combining 
sequential molecule representation with numerical chemical 
descriptors, this strategy modeled drug efficacy 2.34 times 
better accuracy than previous sequential and molecule fin-
gerprint or descriptor-based QSAR evaluation models. 
In addition, the Exmol was used for the efficacy evalua-
tion model for the first time and proved capable in adding 
explainability to evaluation models, especially when given 
customized, specific molecule descriptors in future studies. 
Then, in the Supervised Finetuning step, my drug design 
model successfully learned to generate molecules similar to 
those from the dataset. Finally, my evaluation model and my 
drug design model were used in the PPO optimization loop, 
where the designed molecules are analyzed by my evalua-
tion model for the drug designing LCM model to improve, 
where 99.2% of the designed molecules have high efficacy 
 (pIC50 > 7) and all are valid and novel. This approach is the 
first time it is employed on a LCM. The ability for my drug 
design model in generating molecules with high efficacy and 
novelty signifies that NLP techniques and training schemas 
can also be transferred in the realm of molecule modeling 
and drug design.

Although the GPT-Neo [21] with 19 million parameters 
was used as the base model due to limitations in computa-
tional resources in this study, the exact same methodology 
can be used for finetuning larger base models with much 
more parameters. The investigation of larger and more recent 
LLM such as LLama2-7B [19] (7 billion parameters) can be 
explored in future studies, where ChemGPT’s [9] pretraining 
procedure can be used for learning the SELFIES molecule 
representation, and the methodology in this study can be 
used for applying the LCM to drug design. Implications and 
future studies on LCM on drug design include designing 
novel developmental drug candidates satisfying multiple 
constraints and making patented drugs accessible by gen-
erating similar alternative molecules, all of which have the 
potential to transform drug discovery.

Although this study focused on a case-study in gener-
ating highly effective molecules towards the APP target 
protein, the same methodology can be applied to trans-
fer LCM for targeting a different protein using a different 
dataset, facilitating and speeding up the discovery of more 
potential drug molecules for treating different diseases. 
This LCM showed exciting potential for NLP techniques 

Fig. 8  Average Drug Efficacy  (pIC50) of Generated Molecules 
Exceeds Dataset Molecules. Two hundred and fifty-six molecules 
were sampled and their drug efficacy calculated. Density is propor-
tional to the frequency, except the graph is normalized, thus sam-
ple size is not considered in the comparison. The peak in the green 
distribution curve shows that most generated molecules have a drug 
efficacy around 8, while the blue curve, which represents the dataset 
molecules, has two smaller peaks, meaning most molecules had a 
 pIC50 efficacy value of either around 5 or around 8

Table 1  Comparising to previous drug design models

Preivous state-of-the-art drug design models (i.e., models that design 
drug-like molecules and optimizes for higher efficacy toward a cer-
tain drug target) and their metrics of molecule efficacy, validity, and 
novelty are shown. The best performance values for each metric are 
highlighted in bold. Pereira et  al. (LSTM) [27] and Abbasi et  al. 
(GAN) [3] are two state-of-the-art drug design models. Popova et al. 
(RNN) [28] has multiple configurations of the molecule design mod-
els, the efficacy maximizing model is used
*As the model from Pereira et al. (LSTM) contain bugs and cannot be 
currently run without errors, the metrics are default values reported 
from the paper, and the efficacy toward APP is unknown

Metrics Present 
study (%)

Pereira 
et al. 
(LSTM)

Abbasi et al. 
(GAN) (%)

Popova 
et al. (RNN) 
(%)

% High 
efficacy 
 (pIC50 > 7)

99.2 – 59 42.2

% Validity 100 91.8%* 62.3 42.6
% Novelty 100 91.3%* 100 100
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(and LLM in general) to be applied in drug design, an 
imperative stride towards progress in the realm of large 
scientific models and drug design.
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exist in the dataset. The molecules are sampled post PPO, with a top 
p = 1 sampling strategy
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