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propensity to self-associate, called small colloidally aggre-
gating molecules (SCAMs) [5–7]. The compound assem-
blies formed by SCAMs are typically on the nanometre to 
micrometre scale, and interact non-specifically with the pro-
tein target to inhibit its function [8]. Recently for example, in 
cell-based infectivity assays for Covid-19 drug repurposing, 
17 of 41 identified candidates displayed artefactual activity 
due to colloidal aggregation [9]. These colloid aggregates 
have been shown to exert their nonspecific inhibitory effects 
by adsorbing and inactivating the enzyme molecules [10–
12]. Interestingly, the colloidal properties of small molecule 
aggregators have also demonstrated potential for exploita-
tion in the formulation field, for example acting as stable 
vehicles to store enzymes [13]; and as nanoparticle formula-
tions for targeted drug delivery [14, 15].

Therefore, identification of the self-associating prop-
erties of small molecules in solution, either as a benefit 
or a liability, is of high interest. A range of experimental 
techniques are available to identify such SCAMs – these 
include NMR [16–18], transmission electron microscopy, 

Introduction

The identification of small molecule inhibitors of a tar-
get protein from a compound library via high throughput 
screening (HTS) remains a key tool in the discovery and 
design of small molecule therapeutics [1–4]. However, HTS 
campaigns are susceptible to false positive hits, which often 
arise from organic molecules exhibiting low solubility and a 
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Abstract
Small colloidally aggregating molecules (SCAMs) can be problematic for biological assays in drug discovery campaigns. 
However, the self-associating properties of SCAMs have potential applications in drug delivery and analytical biochemis-
try. Consequently, the ability to predict the aggregation propensity of a small organic molecule is of considerable interest. 
Chemoinformatics-based filters such as ChemAGG and Aggregator Advisor offer rapid assessment but are limited by the 
assay quality and structural diversity of their training set data. Complementary to these tools, we explore here the ability 
of molecular dynamics (MD) simulations as a physics-based method capable of predicting the aggregation propensity of 
diverse chemical structures. For a set of 32 molecules, using simulations of 100 ns in explicit solvent, we find a success 
rate of 97% (one molecule misclassified) as opposed to 75% by Aggregator Advisor and 72% by ChemAGG. These short 
timescale MD simulations are representative of longer microsecond trajectories and yield an informative spectrum of 
aggregation propensities across the set of solutes, capturing the dynamic behaviour of weakly aggregating compounds. 
Implicit solvent simulations using the generalized Born model were less successful in predicting aggregation propensity. 
MD simulations were also performed to explore structure-aggregation relationships for selected molecules, identifying 
chemical modifications that reversed the predicted behaviour of a given aggregator/non-aggregator compound. While 
lower throughput than rapid cheminformatics-based SCAM filters, MD-based prediction of aggregation has potential to 
be deployed on the scale of focused subsets of moderate size, and, depending on the target application, provide guidance 
on removing or optimizing a compound’s aggregation propensity.
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fluorescence-based assays and the use of decoy proteins; 
most commonly, biochemical assays, with and without 
detergent, and dynamic light scattering (DLS) are used to 
detect aggregation [1, 5, 10, 11, 19–25], but are somewhat 
laborious and are typically reserved for the later stages of 
the drug discovery process. Computational tools to identify 
potential SCAMs have therefore been attractive prospects 
for initial screening of large compound libraries. Consider-
able effort has been invested into developing rapid in silico 
filters for this purpose: early work by Irwin et al. on the 
Aggregator Advisor tool [26], a rule-based approach using 
logP and structural similarity to known SCAMs. Since then, 
a range of other computational filters, often employing 
machine learning techniques and larger datasets, have been 
proposed, including HitDexter [27, 28], SCAM detective 
[6], BadApple [29], DeepSCAMs [7] and ChemAGG [30]. 
These tools are rapid and exhibit good accuracy – for exam-
ple, ChemAGG was able to correctly identify 80% of an 
external validation set of 5681 aggregators with a prediction 

probability of greater than 0.9 [30]. However, these empiri-
cal tools require good quality datasets for fitting the model, 
both in terms of assay accuracy, but also spanning sufficient 
chemical space as required for conducting HTS campaigns 
of large, diverse chemical libraries.

In this work, we explore the use of molecular dynam-
ics (MD) simulations as a tool to predict small molecule 
self-association [12, 31]; the approach does not rely upon 
fitting to aggregation data for a given chemical space but 
offers a more fundamental, physics-based route to predic-
tion of aggregation propensity of a small organic molecule 
in aqueous solution. While considerably more computation-
ally intensive than in silico filters such as Aggregator Advi-
sor and ChemAGG, MD simulations could have potential 
to complement these approaches, occupying a space in 
the screening cascade between rapid in silico filtering and 
more time-consuming and expensive experimental charac-
terisation. Of particular value, MD simulations additionally 
provide detailed information on the scale and dynamics of 
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aggregate formation, the molecular interactions involved 
and offer potential insight into modifying these interactions 
to tune self-associating behaviour. In earlier work [12, 31], 
we found that 100 ns MD simulations were able to distin-
guish the non-aggregating propensity of fluconazole (1, 
Fig. 1) from the strongly aggregating behaviour of micon-
azole (2, Fig. 1).

Here, we examine the ability of MD simulations to pre-
dict aggregation propensity for a larger set of molecules 

(Fig. 1). In addition to compounds 1 and 2, we select a struc-
turally diverse set of 30 molecules previously characterised 
for their aggregation behaviour [1, 19, 26, 30]. These com-
pounds are of varied hydrophobicity, with logP values rang-
ing from − 1.1 (molecule 1) to 6.1 (molecule 2), but with the 
majority in the range 3–4, an intermediate property space 
where it is often more challenging to predict aggregate 
formation [26]. After optimising the MD protocol, includ-
ing a comparison of implicit with explicit solvent models 

Fig. 1 Chemical structure of compounds 1 to 32 studied in this work
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for 1 µs at 300 K temperature with structures saved every 
20 ps [37]. Clustering analysis was performed using cpptraj 
and an in-house Python program available at https://github.
com/jkalayan/ClusterAnalysis. For each analysed simula-
tion frame, solute molecules were grouped into the same 
cluster if their heavy or hydrogen atoms lie within a given 
cutoff distance. The intermolecular interatomic distance cut-
off for forming a cluster was set to 3.0 Å and the number of 
molecules in a cluster is given by Nc. Population distribu-
tions as a function of Nc used 5000 equispaced frames over 
MD trajectories. We note that a cutoff value of 3 Å was the 
minimum to capture correctly the proximity of interacting 
solutes. A smaller cutoff was found to miss nearest neigh-
bour contacts, whereas cutoffs exceeding 5–6 Å risk includ-
ing non-interacting molecules into clusters. Potentially one 
could explore the use of multiple contacts to define direct 
intermolecular interaction; however, the selection of what 
number of contacts should be used to group molecules into 
the same cluster is not well studied and would depend on the 
shape and flexibility of the molecules involved. By selecting 
a single interaction within a cutoff to group molecules into 
clusters, we are able to apply this same qualifier to all mol-
ecules studied regardless of the molecule topology. Single 
molecule descriptors such as LogP, LogD and vsurf_A were 
calculated using MOE [39].

The above MD protocol was also used for simula-
tions of compound aggregation in implicit solvent. For 
this, an implementation of the generalized Born neck 
(GBn) model was used (igb = 7), with the mbondi3 Born 
radii set [40–44]. The GBn model utilizes a pairwise neck 
correction term to approximate the dielectric boundary of 
a molecular surface. This correction removes high dielec-
tric regions smaller than a solvent molecule, effectively 
eliminating interstitial spaces where a water molecule 
would be too large to fit. This electrostatic solvation 
term was used in conjunction with an estimate of the 
nonpolar contribution to energy and atomic forces via 
the pairwise solvent-accessible surface area (pwSASA) 
approach. In the spirit of the study by Huang et al. [45], 
we explored different surface tension values, finding a 
value of 0.01 kcal mol− 1 Å−2 gave the closest agreement 
with explicit solvent simulations. Lower surface ten-
sions led to very limited self-association across the set 
of molecules.

Results and discussion

Evaluation of MD-based screen for SCAM prediction

To predict the aggregation propensity of known SCAMs and 
non-aggregators via molecular dynamics simulation, we 

in simulations, we assess the performance of MD assess-
ment in discriminating between known aggregator and 
non-aggregator compounds, and then apply the approach to 
derivatives of selected compounds.

Materials and methods

System construction

In total, the aggregation behaviour of 32 different com-
pounds (Fig. 1) were simulated in aqueous solution via 
molecular dynamics. All molecules had been previously 
assessed experimentally for aggregation properties (for 
details of assays see Supporting Information Table S1). 
These compounds were selected based on diversity in chem-
ical structures, and some as being known problem cases for 
Aggregator Advisor (e.g. 16 and 17) and ChemAGG filters 
(e.g. 23 and 28). Force field parameters for the compounds 
were assigned using the antechamber program [32], accord-
ing to the general AMBER force field (GAFF2) [33], with 
AM1-BCC [34] partial charges. Following the approach of 
Ghattas et al. [31] and balancing system size and computa-
tional expense, 11–12 molecules of each solute compound 
were used to prepare the simulation system, corresponding 
to millimolar concentrations, well above the micromolar 
concentrations at which critical aggregation occurs. The 
molecules were embedded in an octahedral box length of 
~ 180 Å containing TIP3P water molecules and neutralised 
with counterions. 5% v/v of dimethyl sulfoxide (DMSO) 
and 50 mM of sodium chloride were added to the solvated 
systems to model experimental assay conditions (Table S2).

MD simulations

All energy minimization and MD simulations were per-
formed using the AMBER 19 package [35]. Simulations 
used a time step of 2 fs and the SHAKE [36] algorithm for 
covalent bonds involving hydrogen atoms. A non-bonded 
cutoff of 10 Å was used for short-range electrostatic and van 
der Waals interactions. The PME algorithm for octahedral 
periodic boundary conditions was used for long-range elec-
trostatic interactions [37]. The solvated systems constructed 
above were minimized and then heated in two phases using 
the Langevin thermostat with a coupling constant of 1.0 
ps− 1 [38]. The first phase was from 0 to 500 K to ensure dis-
tribution of solute molecules throughout the simulation box. 
The second phase was cooling down the system by decreas-
ing the temperature from 500 to 300 K. Each phase was 20 
ps in length under NVT conditions. Following this, an equil-
ibration phase of NPT simulation was performed at 300 K 
and 1 atm for 2 ns. Production simulations were performed 
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around 4–6 clusters initially, to no clusters (at time t = 350 
ps) to a completely self-associated system (at t = 630 ps, 
and again at t = 820 ps). However, the overall tendency 
of 6 to form fewer larger clusters is clear from the peak in 
population profile of Nc at around 3 (Fig. 2). Interestingly, 
experimentally molecule 6, while found to be a SCAM by 
detergent-based assays, was classified as ambiguous from 
its scattering behaviour via DLS [1], which may correspond 
with its simulated intermediate aggregation character. Con-
versely, molecule 23 exhibits a peak in profile at an Nc value 
of 8 (Fig. 2) which reflects its propensity towards forming a 
greater number of small clusters (Fig. 3d).

The cluster population profiles are useful in characteriz-
ing the differing degrees of predicted propensity for aggre-
gation of a set of molecules from MD simulation. However, 
for the purpose of providing a parameter with which to filter 
molecules as SCAM or non-aggregators, we attempt to clas-
sify this behaviour towards forming larger clusters using a 
suitable metric. To do this, we define fC5 as the fraction 
of trajectory in which the molecules form fewer than five 
clusters over the simulation, i.e. Nc <5. Based on fC5, we 
observe 13 of the 17 experimentally determined aggregators 
have a fC5 value close to 100% (Fig. 4).

Known aggregators 4, 6 and 11, show more intermedi-
ate values of fC5, of 36%, 70% and 50% respectively; this 
reflects their more polydisperse cluster population profiles 
(Figs. 2 and 4). All three compounds possess a combination 
of polar and non-polar functionality (Fig. 5a). Analysis of 
solute-solute interactions indicates close contacts by atoms 
across the molecular structures (Figure S2). Interestingly, 
molecule 11, haematein, has a low logP value of 1.1, lower 
by 0.6 units compared to similar-sized molecule 17; the lat-
ter is a known non-aggregator which shows very limited 
self-association during MD simulation (Fig. 2). The total 
polar surface area (TPSA) of 11 is also larger than 17, by 
26 Å2 respectively, yet it seems the greater rigidity of 11 
promotes transient stacking (Fig. 5b) which is absent in the 
more conformationally flexible 17.

From MD simulations, six molecules have fC5 values of 
less than 20%: 1, 7, 8, 16, 17 and 23. All six of these mol-
ecules are experimental non-aggregators (indicated by the 
asterisk in Fig. 4). Molecule 16 shows the highest degree 
of clustering, with a fC5 value of 16% (Fig. 4). In only one 
case out of the 23 molecule set does MD simulation pre-
dict an incorrect outcome: molecule 21 displays strongly 
aggregating behaviour, with a fC5 value of 92%, whereas 
experimentally it is classed as a non-aggregator. A repli-
cate microsecond trajectory of 21 exhibited a very similar 
level of aggregation, with a fC5 value of 89% (Figure S3). 
The good agreement between microsecond-length replicate 
trajectories is further illustrated for the weakly aggregating 

constructed a dispersed distribution of 11–12 molecules of 
a given small organic compound of interest throughout the 
aqueous solution; we then studied the degree to which spon-
taneous aggregation occurred over the ensuing trajectory. 
To calibrate our MD protocol, we studied an initial set of 
compounds, 1–23 (Fig. 1), for one microsecond in explicit 
solvent. Over the microsecond trajectory of each system, 
we identified the number of clusters formed by the solute 
molecules (Nc).

For a one microsecond simulation of fluconazole 1, the 
resulting population distribution in regard to the number 
of clusters formed, Nc, indicates that no clustering was 
observed, such that all eleven molecules remained sepa-
rated beyond the 3 Å cutoff that defines a cluster (orange, 
Fig. 2). This is in agreement with experiment and our previ-
ous simulations in water boxes of this [31] and larger size 
[12]. Conversely, for the microsecond simulation of micon-
azole 2 in solution, strongly aggregating behaviour was 
exhibited. The distribution of Nc has a value of around 1, 
indicating miconazole molecules aggregate to form mainly 
one large cluster (Fig. 2); again this is in agreement with 
experiment and previous simulations [12, 31]. These two 
compounds illustrate the limiting behaviours of a strong 
aggregator, having a small Nc which approaches 1; and a 
strong non-aggregator, where Nc approaches the number of 
solute molecules in the simulation. We note that although 
these simulations were for 11–12 solute molecules in a box 
of explicitly modelled water, we have previously performed 
larger scale simulations of 2 in aqueous solution [12]; these 
displayed very similar behaviour, such that 99 miconazole 
molecules initially distributed throughout a larger water box 
also showed significant levels of aggregation [12].

For the remaining molecules 3–23, a spectrum of aggre-
gation propensity is observed: for example, molecule 18, 
the insecticide methoxychlor, forms a persistent large aggre-
gate over the microsecond (Fig. 3a) shown by a population 
profile that is negatively exponential in shape, similar to 2. 
By contrast, molecule 8, which contains polar piperidine 
and morpholine rings, shows no propensity to self-associate 
across the course of the trajectory (Fig. 3b), reflected by a 
positively exponential Nc population profile, similar to com-
pound 1 (Fig. 2).

However, some molecules display intermediate clus-
tering. The population profiles of these molecules do not 
represent the positive or negative exponential appearance 
of molecules 1 or 2, but rather a bell-shaped Gaussian-like 
form, indicating a spectrum of aggregate sizes are popu-
lated over the course of the trajectories. Molecule 6 for 
instance has a tendency to form aggregates, with a dynamic 
equilibrium between smaller and larger clusters (Fig. 3c). 
The dynamic nature of these clusters is also evident from 
the time dependence of Nc (Figure S1) which ranges from 
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Fig. 2 Population P (%) of cluster size of molecules 1–23 over 1 µs MD simulation (black) and triplicate MD simulations of 100 ns (orange, red 
and blue). Compounds that are experimentally observed as non-aggregators were indicated by * next to the molecule label
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while in some cases there is a degree of variation between 
100 ns replicates, the trajectories capture rather well the 
aggregation profiles from 1 µs simulation of the data set. 
This is also reflected by the close agreement in fC5 value 
across 1–23, as computed from the 1 µs simulation and 
the 100 ns replicate average (black and green respectively, 
Fig. 4): the maximum deviation in fC5 estimates is only 
10%, found for intermediate aggregator molecule 6.

Besides reducing the length of MD trajectory, to fur-
ther increase computational throughput, we also explore 
the effect of using implicit generalized Born solvent model 
rather than explicitly modelled water molecules. However, 

compound 4 and largely non-aggregating molecule 16 (Fig-
ure S3).

These microsecond MD simulations successfully predict 
aggregation propensity for 96% of the molecules in this 
sample, which includes molecules such as 17 and 23 which 
are problematic for computational filters, ChemAGG [30] 
and Aggregator Advisor [26]. However, a protocol using 
microsecond simulations is somewhat compute-intensive if 
applied to a larger set of molecules. Therefore, we exam-
ined the predictive ability of 100 ns simulations of 1–23 in 
explicit solvent, performing three replicates. From the clus-
ter population profiles of these shorter simulations (Fig. 2), 

Fig. 3 Comparison of MD snapshots of (a) molecule 18 (strong aggre-
gator), (b) molecule 8 (strong non-aggregator), (c) molecule 6 (weak 
aggregator), and (d) molecule 23 (weak non-aggregator); at time slices 

of 5 ns, 50 ns, 100 ns and 1 µs of MD simulation. Molecules are dis-
tinguished by colour
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aggregation was also reflected for other molecules: for 
example, molecules 10 and 11 switched from prediction as 
aggregators via simulation in explicit water to being mis-
classified as non-aggregators; molecule 21, the only mol-
ecule misassigned by explicit solvent simulations, was 
(correctly) predicted to be a non-aggregator via implicit 
solvent. Molecule 6 was an exception, predicted as a strong 
rather than a weak aggregator in implicit solvent. Overall, 

while implicit MD simulations predicted qualitatively simi-
lar results to the 1 µs or the 100 ns simulations, there were 
significant quantitative differences for some molecules 
(Fig. 4). For example, 4 was predicted to be strongly non-
aggregating via simulation in implicit solvent, but weakly 
aggregating from explicit solvent MD, with a fC5 value of 
33% from the microsecond trajectory and 31% from the 
100 ns replica average (Fig. 4). A trend towards decreased 

Fig. 5 (a) Molecular surface 
for compounds 4, 6, 11 and 17, 
indicating polar (purple) and 
nonpolar (green) regions. (b) 
Representative aggregates from 
microsecond MD trajectories of 
4, 6 and 11

 

Fig. 4 Comparison of calculated fraction of trajectory forming fewer 
than five clusters, fC5, for compounds 1–23 over 1 μs (black) with 
average of three replicas over 100 ns MD simulation in explicit sol-
vent (green) and implicit solvent (purple). The standard deviation bar 

of calculated fC5 over 100 ns MD simulation, for both explicit and 
implicit replicas is shown in red. Compounds that are experimentally 
non-aggregators are signified by the asterisk on top of the related bar
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ChemAGG and Aggregator Advisor fail for 32; the MD pro-
tocol correctly identifies both as non-aggregators. Indeed, 
for these cases, the distribution coefficient logD appears to 
be a more suitable measure than logP, capturing the lower 
effective hydrophobicity due to ionization, with logD values 
of 2.8 and 1.3 respectively (Table S3).

We also note in our previous MD study [31] of 1 and 
2 that the higher amphiphilic moment of 2, alongside its 
greater planarity, reflected the differing aggregation behav-
iour of these two molecules. We may estimate the amphi-
philic moment using the MOE [39] descriptor vsurf_A, 
which reflects the magnitude of separation between centres 
of hydrophobic and hydrophilic character in a molecule: 
miconazole 2 has a vsurf_A value of 6.2 but fluconazole 
1 possesses a value of only 3.1. In the set of 32 molecules 
considered here, there are several known SCAMs with high 
vsurf_A values, in the range 5–6, namely 2, 12, 15, 16, 19, 
22 and 30 (Table S3). These are all correctly predicted as 
SCAMs by MD. However, Aggregator Advisor misclas-
sifies 16; and ChemAGG misassigns 2, 12 and 16 (Table 
S4). Interestingly, compounds 8 and 32 also have high 
vsurf_A values, of 6.7 and 6.3 respectively (Table S3) but 
are non-aggregators experimentally. The two in silico fil-
ters correctly predict 8 as a non-aggregator but misclassify 
32; however, MD predicts the behaviour of both 8 and 32 
correctly.

Indeed, the vsurf_A value does not seem to predict well 
aggregator from non-aggregator for 1–32 (Figure S4). 
Rather, the distribution coefficient logD provides a more 
discriminative descriptor than vsurf_A or logP, providing 

it seemed implicit solvent underestimated the propensity for 
hydrophobic self-association. This was despite using a rela-
tively large surface tension parameter of 0.01 kcal/(mol/Å2) 
in the solvent model (see Methods).

It appears therefore that MD simulations in explicit sol-
vent are required for identifying SCAMs. In a further effort 
to reduce computational overhead, rather than use triplicate 
100 ns simulations, we consider acquisition of only one 
100 ns trajectory per molecule. To evaluate this approach, 
we extend the test set by a further nine molecules, 24–32 
(Fig. 1). For the overall set of 32 molecules, the MD-based 
assessment using a single 100 ns trajectory yields a success 
rate of 97%, with only compound 21 being misclassified 
(Fig. 6). Therefore, all 22 molecules of the previous set are 
correctly classified by the single 100 ns simulation, as well 
as all nine new cases: MD simulations correctly identify 
the aggregators 25, 26, 27 and 30, which have fC5 values 
of ~ 100% (Fig. 6); and distinguish these SCAMs from the 
non-aggregators 24, 28, 29, 31 and 32, which have fC5 val-
ues of ~ 0%. Therefore, this success rate of 97% for 1–32 
compares with a success rate for the same set of 75% via 
Aggregator Advisor and 72% via ChemAGG (Table S4).

Indeed, the ChemAGG filter misassigns molecule 11 as a 
non-aggregator. However, as noted earlier, we can observe 
from MD simulation the subtle propensity of 11 to self-
assemble, such that it forms a range of aggregates of two 
to four molecules in size (Fig. 5b). By contrast, molecules 
31 and 32 are known non-aggregators despite having high 
computed logP values [39], of 4.0 and 3.6 respectively 
(Table S3). Aggregator Advisor misclassifies 31 and both 

Fig. 6 Comparison of calculated fraction of trajectory forming fewer than five clusters, fC5, over a 100 ns MD simulation in explicit solvent, for 
compounds 1–32. Experimental non-aggregators indicated by asterisk
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non-aggregating behaviour, again demonstrating the sensi-
tivity of 21 to changes in intermolecular energetics (Fig. 2). 
We compare 21d2 with the closely related methoxychlor 
(18): the former only differs from the latter in having two 
methyl rather than methoxy substituents on the phenyl 
rings. However, this modest chemical difference is sufficient 
for MD simulation to predict 21d2 as strongly aggregating 
and 18, correctly, as strongly non-aggregating. Given the 
large influence of small changes in chemical structure, the 
misclassification of 21 by MD may arise from some subtle 
imbalance in interaction strengths arising from the force 
field parameters of the solute and solvent.

As a final point, we note that while self-aggregating 
molecules can be a nuisance in medicinal chemistry hit 
identification campaigns, such behaviour may be desirable 
in generating drug delivery systems for example [15]. To 
illustrate the potentially useful role MD could play in such 
processes, using the approach taken for 21 above (Fig. 7), 
we modify the structures of our archetypal strong non-
aggregator 1 and aggregator 2: in each case, we seek to 
reverse their self-association behaviour. Given the nature 
of this computational experiment, we do not consider the 
synthetic accessibility of these modifications nor present 
experimental validation. For the case of 1, removal of the 
central hydroxyl group did not promote aggregation in MD 
simulations (1d1, Fig. 7b). However, we find that replace-
ment of the nitrogen atoms by carbon in just one of the two 
1,2,4-triazole rings in 1 to give 1d3 was sufficient to entirely 
reverse its predicted behaviour from non-aggregator (fC5 
of 0%) to aggregator (fC5 of 100%). For miconazole 2, 
replacement of all four chlorine atoms with hydroxyls led 
to a switch from aggregator (100%) to non-aggregator 2d3 
(4%, Fig. 7c). Other substitutions, for example the switch 
of only one chloro- substituent for a hydroxyl group (2d1) 
was ineffective in decreasing the self-assembling nature of 
2 (Fig. 7c).

rather good agreement with experiment and MD simulation 
(Figure S4). Indeed, simply assuming aggregation occurs for 
compounds with a logD > 3 leads to only three compounds 
in the set being misclassified: compound 11 is misassigned 
as a non-aggregator, and 21 and 23 as aggregators. Thus, 
once again, misclassification of 21 is found; we examine 
this compound further in the following section.

Structure-aggregation relationships from MD 
simulation

Here, we apply MD to assess the effect of small changes 
in chemical structure on predicted aggregation propensity. 
Firstly, to explore further the misclassification of non-
aggregator molecule 21, we conducted a limited in silico 
structure-property analysis of 21, performing comparative 
triplicate 100 ns simulations for four closely related deriva-
tives to compute their aggregation propensities. In these 
simulations, we alter the two phenyl rings of 21 to aliphatic 
rings (molecule 21d1, Fig. 7a); or replace the two hydroxyl 
groups on the phenyl rings with methyl groups (21d2). We 
also change the central part of 21, replacing the tricholo-
romethyl group with an alkenyl moiety (21d3), or with a 
hydroxyl function (21d4). Interestingly, the modification of 
the phenyl rings in 21d1 and 21d2 does not lead to a sig-
nificant change in the strongly aggregating behaviour of 21 
(Fig. 7a).

However, replacement of the trichloromethyl group with 
the alkenyl moiety in 21d3 reduces aggregation from a fC5 
of 100% to a value of 26% (Fig. 7a). Replacement of the 
trichloro group by a hydroxyl group in 21d4 leads to the 
elimination of aggregation (fC5 value of 1%). This dramatic 
switch in simulated behaviour highlights the influence of 
the largely nonpolar trichloro group on the delicate balance 
of solute-solute and solute-solvent interactions governing 
the self-assembly of 21. As observed earlier, changing from 
explicit to implicit solvent for 21 also leads to a switch to 

Fig. 7 Modification of molecules (a) 21, (b) 1 and (c) 2 and corresponding cluster population P (%) of the compounds and their molecular deriva-
tives as a function of cluster size of 100 ns MD simulations in explicit water. fC5 values are given in parentheses

 

1 3

   11  Page 10 of 13



Journal of Computer-Aided Molecular Design

Universities of Durham, Manchester and York. This project also made 
use of time granted via the UK High-End Computing Consortium for 
Biomolecular Simulation, HECBioSim (http://hecbiosim.ac.uk), sup-
ported by EPSRC (grant no. EP/L000253/1).

Author contributions RB and MG involved in conceptualisation. AN 
and SA developed methodology. AN performed investigation and for-
mal analysis. JK provided software and analysis. AN and RB wrote 
original manuscript. All authors reviewed the manuscript.

Data availability No datasets were generated or analysed during the 
current study.

Declarations

Competing interests The authors declare no competing interests.

Open Access  This article is licensed under a Creative Commons 
Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, 
as long as you give appropriate credit to the original author(s) and the 
source, provide a link to the Creative Commons licence, and indicate 
if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless 
indicated otherwise in a credit line to the material. If material is not 
included in the article’s Creative Commons licence and your intended 
use is not permitted by statutory regulation or exceeds the permitted 
use, you will need to obtain permission directly from the copyright 
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

1. Feng BY, Shelat A, Doman TN et al (2005) High-throughput 
assays for promiscuous inhibitors. Nat Chem Biol 1:146–148. 
https://doi.org/10.1038/nchembio718

2. Broach JR, Thorner J (1996) High-throughput screening for drug 
discovery. Nature 384:14–16.

3. Carnero A (2006) High throughput screening in drug discovery. 
Clin Transl Oncol 8:482–890.

4. Szymański P, Markowicz M, Mikiciuk-Olasik E (2011) Adap-
tation of high-throughput screening in drug discovery—toxi-
cological screening tests. Int J Mol Sci 13:427–452. https://doi.
org/10.3390/ijms13010427

5. Feng BY, Simeonov A, Jadhav A et al (2007) A high-throughput 
screen for aggregation-based inhibition in a large compound 
library. J Med Chem 50:2385–2390. https://doi.org/10.1021/
jm061317y

6. Alves VM, Capuzzi SJ, Braga RC et al (2020) SCAM detective: 
accurate predictor of small, colloidally aggregating molecules. 
J Chem Inf Model 60:4056–4063. https://doi.org/10.1021/acs.
jcim.0c00415

7. Lee K, Yang A, Lin Y-C et al (2021) Combating small-molecule 
aggregation with machine learning. Cell Rep Phys Sci 2:100573. 
https://doi.org/10.1016/j.xcrp.2021.100573

8. Duan D, Torosyan H, Elnatan D et al (2017) Internal structure and 
preferential protein binding of colloidal aggregates. ACS Chem 
Biol 12:282–290. https://doi.org/10.1021/acschembio.6b00791

9. Glenn IS, Hall LN, Khalid MM et al (2023) Colloidal aggrega-
tion confounds cell-based Covid-19 antiviral screens. bioRxiv 
[Preprint]. 2023 Oct 30:2023.10.27.564435. https://doi.
org/10.1101/2023.10.27.564435

Conclusions

In this work, we assessed the ability of MD simulations to 
predict the propensity of a set of small organic molecules to 
self-associate in aqueous solution. From 1 µs simulations, 
we found a range of aggregation behaviour for the com-
pounds in explicit solvent. Shorter MD simulations of 100 
ns provided quantitative agreement with these longer simu-
lations when explicit but not implicit solvent was employed. 
For the overall set of 32 molecules, using 100 ns MD simu-
lations, we obtained a success rate of 97% as opposed to 
75% using Aggregator Advisor and 72% via ChemAGG. 
The single failure case of the MD method is for a molecule 
which illustrates a particularly subtle balance between the 
solute-solute and solute-solvent interactions and may sug-
gest a need to fine-tune parameters of the potentials used. 
Interestingly, for the 32 molecules of this study, the Aggre-
gator Advisor and ChemAGG filters were outperformed by 
use of only the distribution coefficient logD, an approach 
which misclassified only three molecules.

Clearly, while the MD-based approach involves only 
relatively short trajectories, the protocol remains orders of 
magnitude slower to acquire than the rapid predictions fur-
nished by filters such as ChemAGG, Aggregator Advisor or 
logD. However, an MD approach can capture subtle emer-
gent behaviour from complex molecular structures without 
the need for comprehensive chemically diverse training 
sets of molecules. Simulations provide detailed informa-
tion on the scale and dynamics of aggregate formation, 
the types of noncovalent interactions involved and offer 
potential insight into modifying these interactions to tune 
self-associating behaviour. We note that MD simulations 
using a coarse-grained (CG) potential could offer estimates 
of aggregation propensity for condensed phase systems of 
greater size and length scale [46]. However, the sensitiv-
ity of aggregation behaviour to small changes in chemical 
structure that we have observed here, altering the balance of 
solute and solvent interactions, would provide a significant 
challenge to CG potentials. Consequently, we suggest atom-
istic simulations as a useful tool in exhaustive assessment of 
the aggregation behaviour of small sets of possible SCAMs, 
for example in optimization of their chemical structures, to 
either remove or promote aggregation propensity, as perti-
nent to the target application of the compound.

Supplementary Information The online version contains 
supplementary material available at https://doi.org/10.1007/s10822-
024-00557-1.

Acknowledgements This work made use of Computational Shared 
Facility at The University of Manchester; and the facilities of the 
N8 Centre of Excellence in Computationally Intensive Research 
(N8 CIR) provided and funded by the N8 research partnership and 
EPSRC (Grant No. EP/T022167/1). The Centre is co-ordinated by the 

1 3

Page 11 of 13    11 

http://hecbiosim.ac.uk
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/nchembio718
https://doi.org/10.3390/ijms13010427
https://doi.org/10.3390/ijms13010427
https://doi.org/10.1021/jm061317y
https://doi.org/10.1021/jm061317y
https://doi.org/10.1021/acs.jcim.0c00415
https://doi.org/10.1021/acs.jcim.0c00415
https://doi.org/10.1016/j.xcrp.2021.100573
https://doi.org/10.1021/acschembio.6b00791
https://doi.org/10.1101/2023.10.27.564435
https://doi.org/10.1101/2023.10.27.564435
https://doi.org/10.1007/s10822-024-00557-1
https://doi.org/10.1007/s10822-024-00557-1


Journal of Computer-Aided Molecular Design

hitters. ChemMedChem 13:564–571. https://doi.org/10.1002/
cmdc.201700673

28. Stork C, Chen Y, Šícho M, Kirchmair J (2019) Hit Dexter 2.0: 
machine-learning models for the prediction of frequent hitters. 
J Chem Inf Model 59:1030–1043. https://doi.org/10.1021/acs.
jcim.8b00677

29. Yang JJ, Ursu O, Lipinski CA et al (2016) Badapple: promiscuity 
patterns from noisy evidence. J Cheminformatics 8:29. https://
doi.org/10.1186/s13321-016-0137-3

30. Yang Z-Y, Yang Z-J, Dong J et al (2019) Structural analysis 
and identification of colloidal aggregators in drug discovery. 
J Chem Inf Model 59:3714–3726. https://doi.org/10.1021/acs.
jcim.9b00541

31. Ghattas MA, Bryce RA, Al Rawashdah S et al (2018) Compara-
tive molecular dynamics simulation of aggregating and non-
aggregating inhibitor solutions: understanding the molecular 
basis of promiscuity. ChemMedChem 13:500–506. https://doi.
org/10.1002/cmdc.201700654

32. Wang J, Wang W, Kollman PA, et al (2000) Antechamber: an 
accessory software package for molecular mechanical calcula-
tions. J. Am. Chem. Soc 222:U403.

33. Wang J, Wolf RM, Caldwell JW et al (2004) Development and 
testing of a general Amber force field. J Comput Chem 25:1157–
1174. https://doi.org/10.1002/jcc.20035

34. Jakalian A, Bush BL, Jack DB, et al (2000) Fast, efficient genera-
tion of high-quality atomic charges. AM1-BCC model: I. Method. 
J Comput Chem 21:132–146.

35. Case DA, Cheatham TE, Darden T et al (2005) The Amber bio-
molecular simulation programs. J Comput Chem 26:1668–1688. 
https://doi.org/10.1002/jcc.20290

36. Elber R, Ruymgaart AP, Hess B (2011) SHAKE parallelization. 
Eur Phys J Spec Top 200:211–223. https://doi.org/10.1140/epjst/
e2011-01525-9

37. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an 
Nlog(N) method for Ewald sums in large systems. J Chem Phys 
98:10089–10092. https://doi.org/10.1063/1.464397

38. Loncharich RJ, Brooks BR, Pastor RW (1992) Langevin dynam-
ics of peptides: the frictional dependence of isomerization rates 
Ofn-acetylalanyl-N-methylamide. Biopolymers 32:523–535. 
https://doi.org/10.1002/bip.360320508

39. Molecular Operating Environment (MOE), 2022.02 Chemical 
Computing Group ULC, 910-1010 Sherbrooke St. W., Montreal, 
QC H3A 2R7, Canada, 2024.

40. Case DA, Ben-Shalom IY, Brozell SR, et al (2019), AMBER 
2019. University of California, San Francisco.

41. Nguyen H, Pérez A, Bermeo S, Simmerling C (2015) Refinement 
of generalized born implicit solvation parameters for nucleic 
acids and their complexes with proteins. J Chem Theory Comput 
11:3714–3728. https://doi.org/10.1021/acs.jctc.5b00271

42. Mongan J, Simmerling C, McCammon JA et al (2007) General-
ized Born model with a simple, robust molecular volume correc-
tion. J Chem Theory Comput 3:156–169. https://doi.org/10.1021/
ct600085e

43. Nguyen H, Roe DR, Simmerling C (2013) Improved generalized 
Born solvent model parameters for protein simulations. J Chem 
Theory Comput 9:2020–2034. https://doi.org/10.1021/ct3010485

44. Genheden S, Ryde U (2015) The MM/PBSA and MM/GBSA 
methods to estimate ligand-binding affinities. Expert Opin Drug 
Discov 10:449–461. https://doi.org/10.1517/17460441.2015.103
2936

45. Huang H, Simmerling C (2018) Fast pairwise approximation of 
solvent accessible surface area for implicit solvent simulations of 
proteins on CPUs and GPUs. J Chem Theory Comput 14:5797–
5814. https://doi.org/10.1021/acs.jctc.8b00413

10. Coan KED, Maltby DA, Burlingame AL, Shoichet BK (2009) 
Promiscuous aggregate-based inhibitors promote enzyme 
unfolding. J Med Chem 52:2067–2075. https://doi.org/10.1021/
jm801605r

11. McGovern SL, Caselli E, Grigorieff N, Shoichet BK (2002) A 
common mechanism underlying promiscuous inhibitors from vir-
tual and high-throughput screening. J Med Chem 45:1712–1722. 
https://doi.org/10.1021/jm010533y

12. Ghattas MA, Al Rawashdeh S, Atatreh N, Bryce RA (2020) How 
do small molecule aggregates inhibit enzyme activity? A molecu-
lar dynamics study. J Chem Inf Model 60:3901–3909. https://doi.
org/10.1021/acs.jcim.0c00540

13. McLaughlin CK, Duan D, Ganesh AN et al (2016) Stable colloi-
dal drug aggregates catch and release active enzymes. ACS Chem 
Biol 11:992–1000. https://doi.org/10.1021/acschembio.5b00806

14. Ganesh AN, McLaughlin CK, Duan D et al (2017) A new spin 
on antibody–drug conjugates: Trastuzumab-Fulvestrant col-
loidal drug aggregates Target HER2-Positive cells. ACS Appl 
Mater Interfaces 9:12195–12202. https://doi.org/10.1021/
acsami.6b15987

15. Ganesh AN, Donders EN, Shoichet BK, Shoichet MS (2018) 
Colloidal aggregation: from screening nuisance to formula-
tion nuance. Nano Today 19:188–200. https://doi.org/10.1016/j.
nantod.2018.02.011

16. Dlim MM, Shahout FS, Khabir MK et al (2019) Revealing drug 
self-associations into nano-entities. ACS Omega 4:8919–8925. 
https://doi.org/10.1021/acsomega.9b00667

17. Ganesh AN, Aman A, Logie J et al (2019) Colloidal drug aggre-
gate stability in high serum conditions and pharmacokinetic con-
sequence. ACS Chem Biol 14:751–757. https://doi.org/10.1021/
acschembio.9b00032

18. Ayotte Y, Marando VM, Vaillancourt L et al (2019) Expos-
ing small-molecule nanoentities by a nuclear magnetic reso-
nance relaxation assay. J Med Chem 62:7885–7896. https://doi.
org/10.1021/acs.jmedchem.9b00653

19. Ryan AJ, Gray NM, Lowe PN, Chung a (2003) Effect of detergent 
on promiscuous inhibitors. J Med Chem 46:3448–3451. https://
doi.org/10.1021/jm0340896

20. Coan KED, Shoichet BK (2007) Stability and equilibria of pro-
miscuous aggregates in high protein milieus. Mol Biosyst 3:208–
213. https://doi.org/10.1039/b616314a

21. Habig M, Blechschmidt A, Dressler S et al (2009) Effi-
cient elimination of nonstoichiometric enzyme inhibitors 
from HTS hit lists. SLAS Discov 14:679–689. https://doi.
org/10.1177/1087057109336586

22. Shoichet BK (2006) Interpreting steep dose-response curves in 
early inhibitor discovery. J Med Chem 49:7274–7277. https://doi.
org/10.1021/jm061103g

23. Coan KED, Shoichet BK (2008) Stoichiometry and physical 
chemistry of promiscuous aggregate-based inhibitors. J Am 
Chem Soc 130:9606–9612. https://doi.org/10.1021/ja802977h

24. McGovern SL, Helfand BT, Feng B, Shoichet BK (2003) A spe-
cific mechanism of nonspecific inhibition. J Med Chem 46:4265–
4272. https://doi.org/10.1021/jm030266r

25. Seidler J, McGovern SL, Doman TN, et al (2003) Identifica-
tion and prediction of promiscuous aggregating inhibitors 
among known drugs. J Med Chem 46:4477–4486. https://doi.
org/10.1021/jm030191r

26. Irwin JJ, Duan D, Torosyan H et al (2015) An aggregation advi-
sor for ligand discovery. J Med Chem 58:7076–7087. https://doi.
org/10.1021/acs.jmedchem.5b01105

27. Stork C, Wagner J, Friedrich N-O et al (2018) Hit Dex-
ter: a machine-learning model for the prediction of frequent 

1 3

   11  Page 12 of 13

https://doi.org/10.1002/cmdc.201700673
https://doi.org/10.1002/cmdc.201700673
https://doi.org/10.1021/acs.jcim.8b00677
https://doi.org/10.1021/acs.jcim.8b00677
https://doi.org/10.1186/s13321-016-0137-3
https://doi.org/10.1186/s13321-016-0137-3
https://doi.org/10.1021/acs.jcim.9b00541
https://doi.org/10.1021/acs.jcim.9b00541
https://doi.org/10.1002/cmdc.201700654
https://doi.org/10.1002/cmdc.201700654
https://doi.org/10.1002/jcc.20035
https://doi.org/10.1002/jcc.20290
https://doi.org/10.1140/epjst/e2011-01525-9
https://doi.org/10.1140/epjst/e2011-01525-9
https://doi.org/10.1063/1.464397
https://doi.org/10.1002/bip.360320508
https://doi.org/10.1021/acs.jctc.5b00271
https://doi.org/10.1021/ct600085e
https://doi.org/10.1021/ct600085e
https://doi.org/10.1021/ct3010485
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1517/17460441.2015.1032936
https://doi.org/10.1021/acs.jctc.8b00413
https://doi.org/10.1021/jm801605r
https://doi.org/10.1021/jm801605r
https://doi.org/10.1021/jm010533y
https://doi.org/10.1021/acs.jcim.0c00540
https://doi.org/10.1021/acs.jcim.0c00540
https://doi.org/10.1021/acschembio.5b00806
https://doi.org/10.1021/acsami.6b15987
https://doi.org/10.1021/acsami.6b15987
https://doi.org/10.1016/j.nantod.2018.02.011
https://doi.org/10.1016/j.nantod.2018.02.011
https://doi.org/10.1021/acsomega.9b00667
https://doi.org/10.1021/acschembio.9b00032
https://doi.org/10.1021/acschembio.9b00032
https://doi.org/10.1021/acs.jmedchem.9b00653
https://doi.org/10.1021/acs.jmedchem.9b00653
https://doi.org/10.1021/jm0340896
https://doi.org/10.1021/jm0340896
https://doi.org/10.1039/b616314a
https://doi.org/10.1177/1087057109336586
https://doi.org/10.1177/1087057109336586
https://doi.org/10.1021/jm061103g
https://doi.org/10.1021/jm061103g
https://doi.org/10.1021/ja802977h
https://doi.org/10.1021/jm030266r
https://doi.org/10.1021/jm030191r
https://doi.org/10.1021/jm030191r
https://doi.org/10.1021/acs.jmedchem.5b01105
https://doi.org/10.1021/acs.jmedchem.5b01105


Journal of Computer-Aided Molecular Design

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

46. Frederix PWJM, Scott GG, Abul-Haija YM et al (2015) Explor-
ing the sequence space for (tri-)peptide self-assembly to design 
and discover new hydrogels. Nat Chem 7:30–37. https://doi.
org/10.1038/nchem.2122

1 3

Page 13 of 13    11 

https://doi.org/10.1038/nchem.2122
https://doi.org/10.1038/nchem.2122

	Molecular dynamics simulations as a guide for modulating small molecule aggregation
	Abstract
	Introduction
	Materials and methods
	System construction
	MD simulations

	Results and discussion
	Evaluation of MD-based screen for SCAM prediction
	Structure-aggregation relationships from MD simulation

	Conclusions
	References


