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Abstract
Scaffold replacement as part of an optimization process that requires maintenance of potency, desirable biodistribution, 
metabolic stability, and considerations of synthesis at very large scale is a complex challenge. Here, we consider a set of over 
1000 time-stamped compounds, beginning with a macrocyclic natural-product lead and ending with a broad-spectrum crop 
anti-fungal. We demonstrate the application of the QuanSA 3D-QSAR method employing an active learning procedure that 
combines two types of molecular selection. The first identifies compounds predicted to be most active of those most likely 
to be well-covered by the model. The second identifies compounds predicted to be most informative based on exhibiting low 
predicted activity but showing high 3D similarity to a highly active nearest-neighbor training molecule. Beginning with just 
100 compounds, using a deterministic and automatic procedure, five rounds of 20-compound selection and model refine-
ment identifies the binding metabolic form of florylpicoxamid. We show how iterative refinement broadens the domain of 
applicability of the successive models while also enhancing predictive accuracy. We also demonstrate how a simple method 
requiring very sparse data can be used to generate relevant ideas for synthetic candidates.
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Introduction

Natural products (NPs) have been used as inspiration for 
crop protection active ingredients. However, it is often the 
case that structural features of NPs, such as macrocycles and 
multiple chiral centers, limit their use due to the expense of 
industrial-scale synthesis. Figure 1 shows the structure of 
UK-2A (left side), a natural product with excellent in vitro 
inhibition of mitochondrial electron transport (MET) com-
plex III via binding to the Q i site of cytochrome b [1]. Activ-
ity values were determined by an in vitro MET binding assay 
and expressed here as pIC

50
 . Protection of the 3-pyridinol 

with an isobuytryloxymethyl group improved in planta anti-
fungal performance, with the unprotected binding metabolite 

being readily produced. Figure 1 shows the unprotected form 
of florylpicoxamid (right side, “FPX”), whose 3-pyridinol 
protected precursor has been shown to be a highly effec-
tive crop protection fungicide [1]. FPX has two fewer chiral 
centers, no macrocycle, and is fully synthetic, not requir-
ing starting materials from fermentation processes. The 
development of FPX followed a design strategy of stepwise 
deconstruction of a macrocyclic natural product, requiring 
many hundreds of synthetic analogs along with in vitro and 
in planta assays.

Here, we investigate the degree to which an active-learn-
ing approach for activity prediction could be used to vastly 
reduce the number of synthetic analogs required in such an 
effort. Ligand activity prediction continues to be a challenge 
for computer-aided drug design, especially in the case where 
there is no suitable high-resolution experimental structure of 
the target of interest, as is the case here. An additional chal-
lenge here is the presence of flexible macrocyclic ligands. 
Over the past several years, methods for computational 
modeling of macrocyclic ligands have made significant pro-
gress [2–7]. In particular, natural-product based and semi-
synthetic macrocycles of up to roughly 21–23 total rotat-
able bonds (including both macrocyclic bonds and exocyclic 
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bonds) have been shown to be tractable, in terms of accuracy 
and speed of conformational search when utilizing multiple 
computing-cores [7]. However, larger peptidic macrocycles 
remain challenging, often requiring biophysical data (e.g. 
from NMR) to help restrain the conformational space to be 
explored [8]. Generally, the macrocycles studied here fell 
well within the tractable range of the ForceGen methodol-
ogy [7].

Machine learning approaches have seen a recent resur-
gence in their applications within the CADD field, in part 
driven by advances in deep-learning methodologies. A 
recent review highlights a number of successful applications 
as well as limitations [9], with further context provided by 
a full book treatment [10]. With respect to binding affinity 
prediction in the context of lead optimization, a critical fac-
tor is that such methods typically require thousands of data 
points in order to learn effectively, because of the need to 
develop encoded internal representations that meaningfully 
capture the important aspects required for prediction. Early-
stage lead optimization may involve just dozens of assayed 
molecules within a newly discovered chemical series, and 
even mid- to late-stage projects may be limited to hundreds 
or up to a few thousand data points. The recently introduced 
QuanSA machine-learning method (Quantitative Surface-
field Analysis) differs from the deep-learning paradigm and 
from historically widely used methods [11, 12] in ways that 
make it applicable even in early-stage lead optimization.

The central difference is that rather than applying a 
generic machine-learning approach to an input molecular 
representation divorced from a binding event, QuanSA 
builds a physically interpretable model that is analogous to 
a protein binding site. By doing so, it addresses the problem 
of ligand conformation and alignment fully automatically, 
and it moves in the direction of causal modeling, where the 
requirement for training data can be reduced. The method 
constructs a non-linear “pocket-field” that is still physical in 
nature, and which is directly related to the functional form of 
scoring functions for docking [13, 14]. QuanSA pocket-field 
models mirror key physical phenomena that are observed in 
protein-ligand interactions [15]: (1) choice of ligand poses 
is defined by the model; (2) non-additive (or even anti-
additive) effects of substituent changes on a central scaffold 

can be modeled effectively; (3) changes in ligand structures 
induce changes in predicted ligand poses; and (4) the model 
of molecular activity is dependent on the detailed shape of 
ligands. Nearly all QSAR and deep-learning methods ignore 
some or all of these aspects of protein-ligand interactions. 
Additional discussion of the theoretical contrasts between 
the QuanSA multiple-instance learning approach and other 
QSAR (3D and 2D) approaches can be found in the papers 
introducing the method [11, 12] along with the antecedent 
QMOD [16] and Compass [17–19] approaches, the latter 
of which introduced the multiple-instance machine-learning 
paradigm [20].

Figure 2 depicts the overall scheme of the study. Begin-
ning with the earliest 100 molecules and activity data 
(MET pIC

50
 ), a QuanSA model was induced, guided by a 

hypothesis of how a small set of diverse active ligands were 
mutually aligned. A set of “future” molecules that had been 
made on the way to (and including) Mol-1109 (the bind-
ing metabolite of florylpicoxamid: FPX) were then scored 
using the model. The scoring procedure predicts activity 
and bound ligand pose along with estimates of the degree to 
which each molecule is well-covered by the model. The top 
10 molecules with highest predicted activity among those 
well-covered were selected for “synthesis.” In addition, the 
top 10 molecules expected to be most informative were also 
selected. Those 20 molecules were then used, along with 
their experimental activity values, to refine the model, mov-
ing those 20 from the test set to the train set, and this process 
was repeated (see the blue arrows in Fig. 2 for the refinement 
loop). The choice of informative molecules combines two 
criteria for a given molecule: (1) it must have a highly active 
training molecule as its nearest-neighbor in its QuanSA-pre-
dicted pose; and (2) it must be predicted to have relatively 
low activity. Simply put, the informative molecules are sur-
prising: they look a lot like highly active molecules but are 
predicted to have poor activity.

In what follows, we show that the process of iterative 
model refinement drastically reduces the number of analogs 
required compared with what happened during the actual 
project. Successive models became progressively broader 
in terms of structural coverage and more accurate in their 
predictions. Separate from the activity prediction problem 

Fig. 1   The starting natural prod-
uct UK-2A is shown (left) along 
with the binding metabolic form 
of florylpicoxamid, the final 
crop protection fungicide
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is the question of how one can generate synthetic candidate 
ideas that lead in a desired direction. We show how highly 
relevant analog ideas can be automatically generated using 
only a small number of compounds and potential pendant 
groups. The computational strategy presented here should 
have broad applicability in the common case where scaf-
fold replacement is required and structure-activity data are 
limited and expensive to augment.

Software, computational protocols, and a subset of struc-
ture-activity data discussed in this paper are available to 
other researchers (see Declarations section).

Results and discussion

We report results for iterative model refinement leading from 
the natural product antifungal UK-2A to FPX, beginning 
with a systematic procedure for identifying an informative 
multiple-ligand alignment and then proceeding through mul-
tiple rounds of QuanSA model refinement using an active 
learning strategy. We also detail a method to generate non-
macrocyclic candidate compounds using very sparse data by 
combining virtual-screening-based central scaffold replace-
ment with a simple method to “staple” appropriate substitu-
ents onto the replacement scaffolds.

Initial multiple‑ligand alignment

The QuanSA methodology derives a pocket-field beginning 
from an initial mutual alignment of a set of training ligands 
[11, 12], where each ligand has multiple possible initial 
poses. When protein structure information is available, it is 
possible to make use of the experimentally determined rela-
tive poses of prior known bound ligands in order to guide 
the construction of the initial set of training poses. Here, 
no such suitable protein co-crystal structure existed. Rather 
than using crystallographic data, it is also possible to make 
use of a carefully constructed multiple ligand alignment 
to guide model-building. In cases where scaffold diversity 
exists among highly active molecules, such alignments can 
provide significant constraints on the overall ligand align-
ment problem.

Here, the initial set of active project compounds con-
tained significant diversity, both within the central macro-
cycle as well as in the pendant functionality. Figure 3 shows 
the procedure used to identify a high-quality ligand-based 
binding site hypothesis using only the data from the earliest 
set of synthesized molecules. There are two key ideas: (1) 
to identify structurally diverse active ligands from which 
to produce multiple ligands alignments; and (2) to select 
which of the alternative hypotheses of relative bound poses 
is quantitatively the best. The 30 molecules from within the 
top 1.0 log unit of experimentally determined activity among 
the training molecules were used as input to identify the four 

Fig. 2   Scheme for iterative model refinement using temporally sorted structure-activity data from lead optimization
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most 2D structurally diverse compounds (molecules 13, 89, 
2, and 64 in Fig. 3). They were selected automatically based 
on 2D dissimilarity (see the “Methods and data” section for 
details).

These molecules (to the right of UK-2A in Fig. 3) differed 
in terms of size and flexibility within the central macrocycle 
as well as the composition of the right-hand substituents. 
They were used, with the addition of UK-2A, as input to 
the the multiple-ligand alignment functionality of the eSim 
method [21], which resulted in several alternative mutual 
superimpositions. In order to assess which mutual align-
ment was most likely to reflect the true relative poses of the 
molecules, the alternative alignments were ranked based on 
their ability to separate highly active molecules from rela-
tively inactive ones within the initial 100-molecule train-
ing set. The chosen hypothesis shown in Fig. 3 was able 
to distinguish highly active (pIC

50
≥ 8.5 ) from less active 

(pIC
50

≤ 7.5 ) compounds with an ROC Area of 0.92. The 
3D joint superimposition shows the tight alignment of the 
common left-hand moiety (the “warhead”) with the variation 
in the macrocycle and right-hand elements of the molecules.

Iterative model refinement

The chosen multiple-ligand alignment from Fig. 3 was 
used to guide construction of the initial QuanSA model 

pocket-field. The method allows for incremental iterative 
refinement based on the availability of new structure-activity 
data. Figure 4 shows examples of molecules automatically 
selected by QuanSA for model refinement based on expec-
tations of high activity (left side) or based on expectations 
of being informative (right side) through multiple rounds 
of compound selection and model refinement. Intuitively, 
selection of candidate molecules based on predictions of 
high activity is an obvious strategy. In an active-learning 
paradigm, one also seeks to identify maximally informative 
molecules [22]. One representative example of each type of 
selection is shown for each of the first four rounds.

The process of scoring candidate molecules in a QuanSA 
pocket-field results in a prediction of activity and bound 
pose, along with a number of prediction quality metrics. 
The novelty metric characterizes the degree to which a can-
didate molecule is well-covered by the current set of train-
ing molecules. Candidate molecule predictions also indicate 
which training molecule was the nearest-neighbor (NN) in a 
3D molecular similarity calculation based on the predicted 
bound pose.

Here, in each round, the 200 least novel (i.e. best cov-
ered) predicted candidate molecules were identified, and, 
of this subset, the top ten with highest predicted activity 
were selected for model refinement (see left-hand exam-
ples from Fig. 4). The maximally informative set of ten for 

Fig. 3   Procedure for identifying a high-quality ligand-based binding site hypothesis
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each round captured a group of molecules that could be 
thought of as having unexpectedly low activity. Informa-
tive molecules were identified from the subset whose NN 
training molecule similarity was high (top 100 highest 
NN similarity or NN similarity ≥ 0.85) and where the NN 
training molecule’s activity was also high (pIC

50
≥ 8.5 ). 

From that subset, the ten molecules with the lowest pre-
dicted activity were selected (see right-hand examples 
from Fig. 4).

In the early rounds, the compounds predicted to be highly 
active all had a central macrocyclic scaffold that was found 
among the most highly active training compounds, as would 
be expected given the starting point of lead optimization. 
However, after three rounds of model refinement (a cumula-
tive addition of 60 molecules to the original model), a non-
macrocycle was correctly identified and chosen as a highly 
active molecule (Fig. 4, lower left).

In contrast, the compounds predicted to be maxi-
mally informative included non-macrocycles even in the 

initial round of candidate selection. These compounds were 
deemed to be information rich: the predicted activities were 
low, yet these candidate molecules had very high 3D simi-
larity to highly active train compounds. Model evolution 
through inclusion of these informative compounds broad-
ened structural coverage sufficiently that a non-macrocycle 
was predicted to be highly active by Round-03 (bottom of 
Fig. 4).

Round‑00: Initial model building and selection

QuanSA model building begins with an initialization step 
that produces training molecule alignments. Here, guided 
by the multiple-ligand alignment shown in Fig.  3, five 
alternative initial alignments were produced. Having been 
driven by the same mutual alignment hypothesis, these ini-
tial training molecule alignments differed only slightly, but 
each was used to build a separate QuanSA model. Selec-
tion from among alternative models can be done based on 

Fig. 4   Example molecules 
chosen for model refinement in 
successive rounds of QuanSA 
testing and refinement
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statistics derived from the alternative models. These include: 
(1) model parsimony, which is a quantitative measure of the 
extent to which molecules with similar activity values have 
similar predicted poses; (2) Kendall’s Tau for the full re-
fitting of training molecules into a derived pocket-field; and 
(3) the mean unsigned error (MUE) of the re-fit molecules. 
The alternative quality values are transformed into proba-
bilistic values, and their product reflects the combination of 
the different metrics. Here, the selected model exhibited a 
parsimony of 0.63, Kendall’s Tau of 0.87 (CI 0.82–0.91; p 
< 10−4 ) and MUE of 0.30 (CI 0.25–0.35).

Figure 5 shows two representative examples from Round-
00 for each selection type of candidate molecule. At left 
(salmon) are the predicted poses for two molecules among 
the ten predicted most active. As might have been expected, 
these test molecules have a macrocyclic scaffold in com-
mon with the most active training ligand. Also, the right-
hand substituents largely occupy the same space as those of 
UK-2A. Although the activity predictions for compounds 
Mol-0273 and Mol-0496 were high, these molecules fell 
within the top 13% and 3%, respectively, of experimental 
activity within the full future set of 1009.

At right (yellow) are the predicted poses of two molecules 
predicted to be among the ten most informative candidates. 
The poses of the test molecules are shown relative to the 
pose of training molecule UK-2A (green). These four exam-
ples are among the twenty molecules selected to refine the 
current training model. In contrast to the molecules chosen 
based on high predicted activity, the molecules chosen to be 
most informative in Round-00 included four non-macrocy-
cles out of the ten chosen (two examples are shown in Fig. 5 
at right). Importantly, the predicted 3D alignments compared 
with that of UK-2A (green) show the new scaffolds in tight 
congruence to the lower half of the UK-2A macrocycle. 
Also, the right-hand moieties of the informative molecules 
had significant surface overlap with those of UK-2A.

Overall, for the 10 predicted to be most active in Round-
00, the MUE was quite high (1.7 pIC

50
 units), but, interest-

ingly, these were all overpredictions. The predicted activity 
values exceeded even the maximal experimental activity of 
the most potent training molecule. This characteristic is not 
typically seen with traditional machine-learning approaches. 
With most statistical machine-learning methods and deep-
learning methods, implicit or explicit modeling of the prior 
probability of observing a particular prediction value makes 
out-of-range predictions rare. This is a strength of moving 
toward a more causal type of predictive model where, for 
example, the combination of different aspects of multiple 
active molecules into a new candidate might lead to an out-
of-range prediction. Particularly early-on in lead optimiza-
tion, synthesis of candidate molecules that push the potency 
envelope is desirable.

Rounds 01‑04: Refinement with active learning

Figure 6 shows examples of selected molecules for Round-
01 and Round-02. Those compounds predicted to be most 
active retained macrocyclic scaffolds in both rounds, but 
they showed show some additional diversity in the right-
hand hydrophobic groups, with alkyl chains aligning to the 
benzene moiety of UK-2A (see molecules Mol-0761 and 
Mol-0415). Also, the the nominal actives were more accu-
rately predicted than for Round-00. For Round-01, the MUE 
was 1.4 pIC

50
 units. For Round-02, it was 0.9 pIC

50
 units, 

nearly 50% lower than for Round-00, indicating significant 
refinement in the detailed modeling of a subset of highly 
active ligands.

Those candidates predicted to be most informative 
for rounds 01 and 02 contained a higher proportion of 
non-macrocycles that before. Round-01 had 7/10 non-
macrocyclic candidate scaffolds, and Round-02 had 9/10 

Fig. 5   Selections of active (left, predicted poses in salmon carbons) and informative molecules (right, yellow carbons) for Round-00 shown 
against the predicted pose of UK-2A
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non-macrocyclic scaffolds (see examples Fig. 6, right, yel-
low). Alternative branching topologies were seen among 
the informative candidates as well as novel pendant groups. 
The flexible thio-ether linkages in compounds Mol-0174 and 
Mol-0141 still allowed the terminal aromatic rings to overlay 
well with the corresponding functionality of UK-2A.

One of the challenges in providing computational guid-
ance for synthetic candidate prioritization is having a mean-
ingful explanatory basis for predictions. As shown in Fig. 6, 
the optimal poses that come out of the fitting process into the 
quantitative pocket-fields offer convincing correspondence 
between predictions and known SAR. This is preferable to 
black-box predictions or those that may yield some explana-
tory information but do not provide a physically meaningful 
interpretation.

Figure  7 shows examples of the selected molecules 
for rounds 03 and 04. By Round-03, when only 60 previ-
ous future molecules had been used to refine the original 
100-compound model, three non-macrocyclic scaffolds were 
among the ten predicted to be most active (two examples are 
shown: molecules Mol-0874 and Mol-0854). A non-macro-
cycle was also chosen in Round-04 among those predicted 

most active (Mol-1098, bottom left of Fig. 7). The trend of 
improvement in accuracy for the predicted most active can-
didates continued, with an MUE of 0.9 and 0.8 pIC

50
 units, 

respectively, for these two refinement rounds.
Those predicted most informative for Round-03 and 

Round-04 included 3/10 and 5/10 non-macrocycles. The 
decrease in the number of non-macrocycles in the informa-
tive set compared to Round-01 and Round-02 suggests that 
model refinement improved the predictions on non-macro-
cycles and thus these molecules would be less represented 
among those molecules that were being incorrectly predicted 
as having low activity.

Another aspect of quantitative activity prediction for this 
series was the clear importance of detailed hydrophobic 
shape on experimental activity. The ability of a compound 
to fill the presumed hydrophobic pockets of the non-war-
head (right-hand) side of the binding site was a clear activity 
requirement. Accurately modeling such phenomena depends 
not only on a molecular representation that captures ligand 
shape, but also requires that predictions of molecular pose 
be respectful of the internal conformational energetics of 
candidate molecules.

Fig. 6   Selections of active and informative molecules for Round-01 and Round-02
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Round‑05: The goal compound

As shown in Fig. 8, FPX was chosen by the model that was 
trained on the initial 100 molecules and subsequently refined 
with 100 chosen based on the active learning strategy during 
the ensuing rounds of refinement. FPX was among the 10 
predicted to be most active and the activity was accurately 
predicted with pIC

50
= 10.0 with a signed error of just + 0.4 

pIC
50

 units. The MUE of the 10 predicted to be most active 
was 0.8 pIC

50
 units, and importantly, the set included 7/10 

non-macrocycles, evidence that the model had effectively 
learned the non-macrocyclic scaffold.

For FPX, in addition to the predicted pose, a depiction of 
the quantitative interactions with the pocket-field is shown 
in Fig. 8. The large majority of interactions were of a purely 
hydrophobic type, represented by salmon-colored sticks 
whose length is proportional to the interaction magnitude. 
Notably, the two fluoro-phenyl groups of FPX, which over-
lay corresponding hydrophobic functionality of UK-2A, 
are responsible for significant interactions. In addition, the 
two chiral methyl groups, especially the one at the lower 
right, were also important. Because of the angle needed to 

adequately display the key hydrophobic interactions, the spe-
cific polar interactions made by the warhead and the amide 
linker are somewhat difficult to discern, but all of the spe-
cific polar moieties were responsible for key interactions 
as well (blue and red sticks, for hydrogen-bond donors and 
acceptors, respectively). The other example highlights both 
the variability that can be tolerated in the pendant hydro-
phobic groups and the fact that the core scaffold shifts in 
accommodating different substituents.

In this gedankenexperiment, only 100 additional future 
molecules needed to be synthesized, tested, and added to 
the model in order to correctly choose FPX as an excellent 
candidate molecule. In completing Round-05, FPX and the 
other 19 chosen candidate molecules would be synthesized 
and tested. Overall, only 120/1009 future molecules needed 
to be “made” to both identify and confirm FPX as a highly 
active candidate with just two chiral centers, no macrocyclic 
component, and favorable synthetic characteristics.

Fig. 7   Selections of active and informative molecules for Round-03 and Round-04
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Temporal model evolution

Table 1 summarizes the statistics for the rounds of model 
building, refinement, and future predictions. The training re-
fit Kendall’s Tau was consistently high (0.82–0.87) through-
out the five rounds of refinement, indicating that model fidel-
ity was maintained as new molecules were added. Likewise, 
the training re-fit MUE remained low (0.30–0.36 log units) 
throughout model refinement.

Here, the sets of future molecules were much larger than 
the training set, and they reflected substantial changes in the 
structural composition of molecules and the distribution of 
activity values compared with the training molecules. Later 
in the project, as expected, a larger proportion of synthesized 
molecules had very high activity. During successive rounds 

of scoring future molecules, Tau trended upward, increas-
ing from 0.35 to 0.46. A large proportion of molecules had 
experimental activity values of 8.5–9.5. The small data 
range coupled with the presence of assay noise limits the 
upper bound on rank-based statistics.

More striking was the decrease in MUE for predictions 
on future molecules from 1.24 to 0.70. The model became 
significantly more accurate during refinement. As the future 
MUE decreased, the FPX predicted activity improved from 
pIC

50
 = 7.3 (signed error −2.2) in Round-00 to pIC

50
 = 10.0 

(signed error +0.4) in Round-05. Model improvement was 
further reflected in the predicted rank of FPX activity which 
rose from the top 61% to the top 1%.

Figure 9 shows the plots of experimental versus predicted 
activities for the set of all future molecules for each round of 

Fig. 8   Selections of predicted 
active candidates for Round-05

Table 1   Summary of rounds of model building and testing

Kendall’s Tau values are unitless and all had p < 10−4 . Mean unsigned error (MUE) and FPX predicted activity are in units of pIC
50

 . Numbers in 
parentheses are 95% confidence intervals calculated by resampling with replacement

Round n Train Train Tau Train MUE n Future Future Tau Future MUE FPX Pred FPX rank %

00 100 0.87 (0.82–0.91) 0.30 (0.25–0.35) 1009 0.35 (0.31–0.39) 1.24 (1.18–1.30) 7.3 61
01 120 0.84 (0.79–0.89) 0.34 (0.30–0.39) 989 0.35 (0.31–0.39) 0.95 (0.90–1.00) 7.6 62
02 140 0.85 (0.79–0.90) 0.32 (0.28–0.37) 969 0.41 (0.37–0.45) 0.85 (0.81–0.90) 8.5 36
03 160 0.82 (0.77–0.86) 0.36 (0.32–0.40) 949 0.40 (0.36–0.44) 0.76 (0.73–0.80) 8.5 44
04 180 0.82 (0.78–0.86) 0.35 (0.31–0.39) 929 0.38 (0.34–0.43) 0.78 (0.74–0.82) 8.8 26
05 200 0.82 (0.78–0.86) 0.34 (0.30–0.39) 909 0.46 (0.42–0.50) 0.70 (0.66–0.74) 10.0 1
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Fig. 9   Experimental versus predicted activities for the set of all future molecules for each round of testing
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testing. The identity line indicates perfect prediction, and the 
lighter lines represent ±1.5 units of pIC

50
 (corresponding to 

±2 kcal/mol). The initial Round-00 model exhibited a strong 
lower-right triangular bias, with a significantly larger frac-
tion of underpredictions than overpredictions. This aspect 
of the model’s predictive behavior shifted rapidly with the 
ensuing two rounds of active learning. By Round-03, rela-
tively little skew was apparent. The distribution of underpre-
dictions (< −2 kcal/mol, Fig. 9, red triangles) decreased 10 
percentage points from Round-00 to Round-01 and became 
nearly as few as the overpredictions in Round-03 to Round-
05. The Round-05 FPX prediction (Exp pIC

50
 = 9.5, Pred 

pIC
50

 = 10.0) is highlighted in red.
Table 2 shows a summary of the distribution of predic-

tions on future molecules depicted in the plots of Fig. 9. 
Throughout model refinement and predictions on future 
molecules, large overpredictions were few and relatively 
constant (7% in Round-00 to 3% in Round-05). The predic-
tions within 2 kcal/mol increased from 66% in Round-00 to 
91% in Round-05, and those within 1 kcal/mol from 36% 
in Round-00 to 61% in Round-05. The dramatic decrease 
in underpredictions occurred in two steps, from Round-00 
(27%) to Round-01 (17%) and from Round-02 (14%) to 
Round-03 (8%). By Round-05, the fractions of large over- 
and under-predictions were essentially the same.

The distribution of experimental activity values for the 
future set of molecules changed relatively little over time, 
perhaps as expected given that only roughly 10% of the 
molecules were selected over the rounds of iterative refine-
ment. The minimum and maximum pIC

50
 values were 4.3 

and 10.1, respectively, throughout. The mean and standard 
deviation began with 8.5 ± 1.0 and ended with 8.4 ± 1.0 . 
However, for the training set, the distribution shifted. The 
initial minimum and maximum pIC

50
 training values were 

4.3 and 9.5, respectively, shifting to 4.3 and 9.9 at the end 
of refinement. The mean and standard deviation began with 
7.6 ± 1.3 and ended with 8.1 ± 1.2 . The distributional shifts 
in the training data during refinement reflected the success-
ful selection of numerous potent candidate molecules.

Idea generation

One difficulty in interpreting the results shown in the fore-
going is that the set of molecules from which we selected 
molecules had been made and tested as part of an active 
design process, where decisions on what to make next were 
undertaken by experts based on their knowledge of prior 
data as well as their expertise in the field. So, while the 
active learning approach was able to efficiently select from 
that set of molecules, it is not clear that such a path could be 
followed in a situation where the future space of molecules 
was open to determination.

Generative approaches for producing ideas for new com-
pounds that employ deep learning have gained some promi-
nence recently [9, 10]. We have taken a different approach, 
instead using molecular similarity to identify possible bio-
isosteric core scaffold replacements, including their suit-
ability to display the require pendant functionality for good 
activity. Figure 10 illustrates how a combination of similar-
ity-based screening and combination with desirable pendant 
groups can rapidly generate ideas. Our approach is similar 
in spirit to work by Awale, Hert et al. [23], in which the 
authors describe a 2D matched-pair approach to identifying 
sensible candidate molecules based on an analysis of large 
structure-activity databases.

Beginning with the original five-molecule multiple-
ligand alignment used to guide QuanSA model-building, the 
pendant groups were removed to produce a core-scaffold 
overlay, and the amide linking subfragment was extracted 
(Fig. 10A at right). The roughly 3,000,000 compound Enam-
ine Stock Screening collection was screened against the 
multiple-ligand core using the amide fragment as a required 
positional restraint to ensure that all hits returned would 
have appropriate chemistry for linkage to the common war-
head. Two examples of high-scoring hits from the screen 
are shown in Fig. 10B (cyan carbons) in their optimal poses 
relative to the screening target (green carbons).

For each returned pose of each nominal screening hit, 
a geometric matching procedure was employed to identify 
crossover points between the screening hit and each of the 
full parent molecules from the original multiple-ligand 

Table 2   Summary of the 
distribution of predictions on 
future molecules

Round n Train n Future % Pred w/in 1 
kcal/mol

% Pred w/in 2 
kcal/mol

% Underpre-
dictions

% Over-
predic-
tions

00 100 1009 36 66 27 7
01 120 989 50 80 17 3
02 140 969 53 83 14 3
03 160 949 55 89 8 3
04 180 929 55 88 9 3
05 200 909 61 91 6 3
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alignment. Figure 10C shows the process using the pose of 
compound Mol-0013 as the crossover target. When a com-
patible set of distances and bond vectors existed, the origi-
nal substituents of the screening hit were replaced with the 
substituents of the parent compound. Figure 10C (bottom) 
shows the two resulting merged molecules with novel struc-
tures. The arrows and corresponding thick lines show the 

specific substituent movements that were made. The initial 
crossover results in high local strain for the new bonds, and 
the final ligand pose is relaxed using positionally-restrained 
energy minimization.

Figure 10D shows the relationship of the two resulting 
generated candidate molecules. Each contains a large frac-
tion of the exact substructure (including chirality) of the 

Fig. 10   Scheme for generating synthetic ideas using a combination of eSim screening and automatic addition of desirable pendant groups
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final FPX compound, with relatively minor variations in 
the precise hydrophobic substituents at right. With a slight 
generalization of the procedure to include additional sub-
stituent variations (e.g. p-fluoro-phenyl at both positions), 
the exact structure of FPX would have been generated. The 
data required to identify the five-molecule multiple-ligand 
alignment was just the first 100 compounds from the full 
structure-activity set. The computational procedure for iden-
tifying core-scaffold hits and producing merged candidate 
molecules required less than an hour and no additional data.

The procedure just described is not intended to fully auto-
mate candidate compound generation. Rather, it is meant to 
be a source of ideas that are easy to scan rapidly. Of course, 
it is also possible to make use of the predictive QuanSA 
models to identify candidates that are quantitatively pre-
dicted to have high potency or have high information value.

Conclusions

Overall, beginning with the earliest 100 picolinamide anti-
fungal project compounds, an active-learning approach effi-
ciently guided candidate selection to the desired end product 
FPX after model refinement using just 100 synthetic ana-
logs. This project began with a relatively potent lead com-
pound in UK-2A, with design goals including a reduction 
in molecular complexity that required replacement of the 
central macrocyclic scaffold. This presents a challenge for 
predictive modeling because the molecules to be designed 
must deviate quite significantly from known chemical mat-
ter. Through the use of active learning, rapid introduction 
of novel structural features was possible. The process was 
guided by a well-defined notion of what makes a highly 
informative molecule—one that exhibits high similarity to 
a known active in their respective optimal predicted poses 
but which is (possibly anomalously) predicted to have low 
activity.

The practical significance of the restrospective analysis 
presented here is in the breadth of applicability for scaf-
fold replacement and lead optimization more broadly. The 
QuanSA method does not require a protein structure to make 
accurate predictions that are physically explainable. While 
it can make use of information from experimental determi-
nation of bound ligand structures, it can operate in a purely 
ligand-based manner where the only available data are com-
pound structures and activities. Model building can proceed 
from very limited project data, beginning with just dozens 
of molecules, not the thousands required for so-called deep-
learning methods [9, 10].

Further, model-building is not terribly computationally 
intensive. On modest workstation hardware, candidate mol-
ecules can be scored in seconds for “normal” small mol-
ecules. Small macrocycles such as those seen here required 

tens of seconds per molecule, with a majority of the time 
going to conformational search. For the work reported here, 
the fully-automated procedure took approximately two days 
on an 18-core workstation. This encompassed the entire pro-
cess beginning with 2D structures for all 1109 molecules, 
through model-building, scoring/selection/refinement, and 
the final pass from which FPX was chosen.

The lead optimization project that resulted in FPX 
required the synthesis of many hundreds of analogs in 
order to re-engineer the starting macrocyclic natural 
product. We believe that effective use of active learning 
and semi-automatic candidate generation can drastically 
shorten the design path from initial lead compound to 
final product. The central requirement for the computa-
tional methodology is that it is capable of extrapolating 
from small quantities of structure-activity data. Mod-
eling approaches that move toward constructing causal 
models for activity prediction have clear advantages over 
approaches that ignore the physical underpinnings of how 
ligands bind to and modulate the activity of biological 
targets.

Methods and data

Molecular data set

A total of 1109 compounds from a lead optimization pro-
ject formed the data set. Molecules were provided as 2D 
SDF structures with associated activities and consecutive 
compound IDs serving as relative synthesis dates for tem-
poral sorting. The project dataset contained pIC

50
 activity 

values and registration dates, beginning with UK-2A as 
compound 1 and the resultant commercial product FPX as 
compound 1109. The activity values were determined in 
an in vitro assay for the inhibition of fungal mitochondrial 
electron transport. The first 100 molecules synthesized 
were used as the initial training set for QuanSA, with the 
remaining 1009 molecules used as future “synthesizable” 
molecules.

Computational procedures

For all procedures, we employed version 5.1 of the Sur-
flex Platform (BioPharmics Division, Optibrium Limited, 
Cambridge, CB25 9GL, UK). Additional details can be 
found in the data archive associated with this paper (see 
the Declarations section).
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Ligand preparation

Standard procedures were used to protonate the molecules 
as expected at physiological pH, generate 3D structures, 
and perform conformational search, as follows:

Multiple ligand alignment

Using Surflex eSim for generating multiple ligand align-
ments [21], and specifically for the purpose of seeding ini-
tial QuanSA alignments was outlined earlier and has been 
reported previously [11], with the specific procedure used 
in this work being as follows:

QuanSA model induction, prediction, and refinement

Previous QuanSA method papers are comprehensive, and 
contain a detailed algorithmic description [11, 12]. Here, 
standard procedures were used, as follows:

The model selection procedure select command gen-
erates a model quality score that combines the following: 
(1) model parsimony (P), which is a quantitative measure 
of the extent to which molecules with similar activity val-
ues have similar predicted poses; (2) Kendall’s Tau (T) 
for the full re-fitting of training molecules into a derived 
pocket-field; and (3) the mean unsigned error (E) of the 
re-fit molecules.

Given N alternative models, each of P
1...N , T

1...N , and 
E
1...N  are transformed into corresponding probability 

scores. This is done by fitting a normal distribution to each 
of P

1...N , T
1...N , and E

1...N which then allows calculation of 
the cumulative distribution function Φ for each of P, T, 
and E. So, raw values for the metric across the N alterna-
tive models are converted to probabilities reflecting their 
likelihood of being non-random: Pp

1...N
 , Tp

1...N
 , and Ep

1...N
 . 

The probability score for model i is simply the product: 
(P

p

i
)(T

p

i
)(E

p

i
) . The highest scoring of the alternative models 

using the combined probabilistic score is selected.
New molecule scoring, selection, and model refinement 

followed these general procedures:
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Computational procedures for idea generation

The pendant groups were trimmed from the 5-molecule 
multiple ligand alignment described above, leaving only 
the aligned central scaffolds. The aligned core scaffolds 
were used as a multi-ligand target in a virtual screen of the 
Enamine database. The resulting hits were processed using 
a new procedure to automatically attach pendant groups 
from the original full ligands of the multiple-ligand align-
ment, as follows:

Note that the resulting merged molecules can be 
reviewed directly or can be subjected to conformational 
search and screened using either pure ligand similar-
ity, QuanSA model scoring, or a combination of both 
approaches.
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