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Abstract
Here, we introduce the use of ANI-ML potentials as a rescoring function in the host–guest interaction in molecular docking. 
Our results show that the “docking power” of ANI potentials can compete with the current scoring functions at the same level 
of computational cost. Benchmarking studies on CASF-2016 dataset showed that ANI is ranked in the top 5 scoring functions 
among the other 34 tested. In particular, the ANI predicted interaction energies when used in conjunction with GOLD-PLP 
scoring function can boost the top ranked solution to be the closest to the x-ray structure. Rapid and accurate calculation of 
interaction energies between ligand and protein also enables screening of millions of drug candidates/docking poses. Using 
a unique protocol in which docking by GOLD-PLP, rescoring by ANI-ML potentials and extensive MD simulations along 
with end state free energy methods are combined, we have screened FDA approved drugs against the SARS-CoV-2 main 
protease  (Mpro). The top six drug molecules suggested by the consensus of these free energy methods have already been in 
clinical trials or proposed as potential drug molecules in previous theoretical and experimental studies, approving the validity 
and the power of accuracy in our screening method.
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Introduction

Designing a therapeutic molecule to treat a disease can be 
quite expensive and time consuming. Preclinical processes 
such as identification of drug targets, High Throughput 
Screening (HTS) experiments on the target, generating a 
library of hit compounds, optimizing potency of bioactive 
compounds and preceding clinical trials require tremen-
dous amount of resources. Typically, a drug can cost more 
than 2 billion US dollars and 10–15 years to be approved 
and enter the market [1–3]. Since repurposing an FDA 
approved drug is a much faster and less expensive strategy 
it has become one of the most popular approaches in recent 

drug development endeavors. Even testing all FDA approved 
drugs experimentally may not be affordable in terms of eco-
nomic burden and time. To help ease this problem, compu-
tational methods have been utilized in rational drug design.

In searching for drug candidates as potential inhibitors, 
binding mode and binding affinity are two critical questions 
that ought to be addressed. Docking methods are capable 
of screening ultra large libraries of compounds by afore-
mentioned approaches (billions of molecules) with much 
reduced cost and time. Docking methods rely on a search 
algorithm and scoring function that are physics based, 
empirical, knowledge-based and Machine Learning based 
which compromise on accuracy to increase the speed [1, 
4, 5]. Despite the great success of the docking methods, 
there is still a need for improving scoring functions so as to 
reproduce experimental results.

Machine Learning (ML) methods have just started to gain 
attention to advance the docking methodology recently simi-
lar to other computational techniques. The main objective of 
the ML techniques is to find an accurate and a fast solution 
to an existing problem by learning from previous experimen-
tal data. This is achieved by supervised, unsupervised and 
reinforcement methods [6]. Supervised methods are based 
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on training an algorithm on a set of inputs to find an out-
put while unsupervised learning algorithms find a pattern 
in data set predict results from this arrangement. On the 
other hand, reinforcement learning, the input progress in an 
environment and uses the data learned from the experience 
[1]. Recent studies have shown the outperformance of ML 
based scoring functions over classical ones, which directly 
use a known mathematical function [7–9]. ML based scoring 
functions are usually used by means of rescoring [10] due to 
the dependence on the training dataset [11, 12].

ANI-1, ANI-1x and ANI-1cxx have been trained to 
calculate DFT and CCSD(T) energies of small organic 
compounds containing C, H, O and N atoms in non-
equilibrium conformations [13–15]. The extended version, 
ANI-2x, has been shown to predict DFT energies of 
equilibrium or non-equilibrium conformations of molecules 
containing C, H, O, N, S, F and Cl atoms. It has been shown 
to reproduce the energies at the accuracy of the ωb97x/6-
31G* level with millions of times faster than the actual QM 
calculations [16].

The severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) is the cause of the coronavirus disease 
pandemic in 2019 [17]. Since the first case of COVID-
19 in 2019, more than 6.8 million deaths have been 
reported worldwide (World Health Organization. Weekly 
Epidemiological Update on COVID-19. [18]). The 
coronavirus disease 2019 (COVID-19) pandemic, caused 
by severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2), has destroyed health systems, societies, 
and economies. After the first identification of the SARS-
CoV-2 strain coming from Wuhan, several variants of 
concern (VOCs) have been identified. Clinical reports 
and epidemiological features of the infection indicate a 
relatively mild disease flow and increased human-to-human 
virus spread [19–21]. Improved COVID-19 treatment 
and prevention techniques are urgently required given the 
increasing SARS-CoV-2 infection rate and lack of efficient 
treatment options. Researchers around the world are working 
to develop treatments and vaccines to struggle the disease, 
and several drugs have been approved for emergency use by 
regulatory agencies. For now, only two SARS-CoV-2 oral 
drugs (Paxlovid and Molnupiravir) have been clinically 
approved [22, 23]. Nevertheless, the antiviral potency of 
these compounds is not adequate to deal with the pandemic. 
Paxlovid (Nirmatrelvir with Ritonavir) has been reported 
to permit the SARS-CoV-2 replication upon completion of 
5 day long oral take [24]. In addition to limited number of 
vaccines and drugs, the emergence of drug resistant variants 
of SARS-CoV-2 brings additional concerns [24, 25] about 
the use of those drugs [26]. Therefore, developing anti-viral 
oral therapeutics for COVID-19 is still highly demanded.

Similar to other viral infections, once entering the 
host cell cytoplasm, the SARS-CoV-2 viral genome is 

translated into approximately 30 proteins. At first, 16 of 
these proteins are translated as two polyproteins, and in 
order to continue infection, these polyproteins must be split 
apart into the two proteins that virally encoded proteases; 
the major viral protease known as  3CLpro (or  Mpro), and the 
protease papain-like protease  (PLpro), facilitate the cleavage 
of these polyproteins into structural and non-structural 
proteins (NSPs) [27], which play a crucial function in the 
transcription/replication during the infection. Since Mpro 
is a critical enzyme in the life cycle of the virus [28], it 
has been a validated high-profile antiviral drug target, and 
its inhibitors have been shown to have strong antiviral 
activity in cell cultures and animal models [22, 29–37]. 
Other coronavirus enzymes, like the helicase and the RNA-
dependent RNA polymerase, has potential to be target for 
the development of antiviral drugs, such efforts are currently 
limited because these enzymes don't have crystal structures 
[37, 38]

Main protease  (Mpro) is a three-domain (domains I–III) 
cysteine protease consisting of 306 amino acids. Anti-
parallel β-barrel structures takes place domain I and 
domain II (residues 8–101/residues 102–184, respectively), 
and domain III (residues 201–303) is connected to 
domain II through a long loop region (residues 185–200) 
that contains 5 α-helices arranged in one substantially 
antiparallel globular cluster [28]. The glutamine residue in 
the P1 position of the substrate is cleaved by Mpro using the 
protease Cys145-His41 dyad, where the cysteine thiol serves 
as the nucleophile in the proteolytic reaction.

Designing a therapeutic molecule from the ground up 
to treat an illness can become extremely costly and a time 
taking process. In particular, for pandemics with such high 
transmission rates like SARS-CoV-2, requires prompt 
actions for controlling the disease. Instead, drug repurposing 
strategy might offer inexpensive and faster solutions to the 
problem. Repurposed drugs that have existing clinical data 
on the effective dose, treatment duration, side effects, and 
toxicity could be rapidly translated into the treatment of 
patients.

High throughput virtual screening by means of drug 
repurposing have been used to identify safe-in-human drugs 
with potential anti–SARS-CoV-2 properties. Most of these 
studies are based on molecular docking. Although it is the 
gold standard method to find the binding mode, docking is 
a very coarse method and almost never predicts the correct 
experimental binding affinity trend among the inhibitors. 
One strategy to overcome this limitation is to use consensus 
scoring [39]. More sophisticated methods to calculate the 
potential binding free energy of inhibitor candidate to the 
protein ranges from post molecular dynamics simulations 
such as Molecular Mechanics Poisson-Boltzmann Surface 
Area (MM-PBSA) to perturbation methods such as Bennett 
acceptance ratio (BAR), the latter being much more accurate 
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yet quite costly. Although there have been numerous attempts 
that combine docking and MD based free energy methods 
in virtual screening, the number of candidates is mostly 
reduced to tens of hit compounds prior to MD simulations 
in these studies due to computational cost. Therefore, the 
top pose from docking is usually used in MD simulations 
and free energy calculations. Although different docking 
algorithms are successful in prediction of correct binding 
mode in the top three poses [40], MD simulations towards 
screening are performed only on the first pose. This limits 
the success of the binding free energy calculations (BFE) 
when the ligand is totally mis-oriented (such as flipped) 
among the top poses in docking since one cannot expect the 
MD simulations’ correcting these drastic changes no matter 
how long the simulations performed. Therefore, running 
separate MD simulations for all the top poses may become 
a necessity to correctly predict BFEs.

One-trajectory approach end-state BFE calculations are 
quite attractive since they require only one MD simulation 
for each protein−ligand (PL) complex system with less 
computational cost. Although relatively better than docking 
scores, the accuracy in end-state BFE methods is still low 
due to over-simplifications such as implicit solvent definition 
in the case of MM-P(G)BSA and molecular mechanics 
(MM) definition of the Hamiltonian of the system. On 
the other hand, several new implementations have been 
introduced to end-state methods to improve accuracy. We 
have recently implemented the use of ML based potentials 
as a post MD simulation to improve the accuracy of BFE 
calculations [41, 42]. Herein, we introduce a unique virtual 
screening protocol to overcome aforementioned drawbacks.

Here, we first investigate and unravel the capability of 
ANI potentials as a rescoring function in molecular docking. 
Our results show that the docking power of ANI potentials 
can compete with the current scoring functions at the same 
level of computational cost. We then screened a library of 
2500 clinically used drugs, either approved for human use or 
with extensive safety data in humans (phase 2 or 3 clinical 
trials), for their ability to bind SARS-CoV-2 Mpro using 
consensus docking scores of ANI/GOLD and free energies 
by MMPBSA/ANI_LIE.

Computational methods

CASF‑2016 dataset

In order to test ANI’s performance as a rescoring function, 
we have used CASF-2016 dataset, which has been created 
for benchmarking purposes in docking algorithms. The 
dataset is composed of 285 protein–ligand complexes 
and each complex has a native binding pose as well as 
maximum 100 decoy ligand binding poses, selected from 

a normal distribution of 1000 poses generated by three 
different docking software with RMSD ≤ 10 Å from the 
crystal structures [40, 43, 44]. In the study, 34 different 
docking algorithms/software were tested in terms of 
“ranking power”, “scoring power”, “docking power” and 
“screening power”. Docking power is defined as whether 
a scoring function can properly differentiate the native 
binding pose from all the decoys within the top 1,2, or 
3 scores. In addition, when the different decoys create a 
potential energy surface in the binding region, the native 
pose should correspond to the minimum energy structure. 
This has been defined as “binding funnel analysis” and 
evaluated based on Spearman’s rank correlation between 
the 10 bins of different RMSD windows and average scores 
for these bins [40]. We used the docking poses provided 
in this CASF-2016 dataset directly in assessment of the 
performance of ANI-2x. We have calculated the binding 
affinities by ligand interacting interacting with only 
residues in docking region (grid box/sphere) by saturating 
the discontinuing atoms with hydrogens using Pdbfixer 
[45].Since the ANI-2 × has been trained for molecules 
containing only H, C, O, N, S, F, and Cl atoms, the total 
the dataset reduced to 254 from the original set of 285 
proteins. In addition, we also tested the ANI’s performance 
on SARS-CoV-2 main protease inhibitors by applying our 
own docking protocol using GOLD software.

GOLD docking protocol

The inhibitors of SARS-CoV-2 main protease that are 
reported in Protein Data Bank (PDB) were retrieved 
(complex PDB IDs: 7N44, 7L10, 7L11, 7L12, 7L14, 
7M8M, 7M8P, 7M8O, 7M8N, 7M8X, 7M8Y, 7M90, 
7M8Z, 7M91) and docked to the protein structure with 
PDB ID: 7L14. Docking was performed using the GOLD 
Suite v.5.3 software by Cambridge Structure Database 
(CSD) [46]. For GOLD, the ChemPLP scoring function 
was used since it is known to give better results in 
prediction of binding mode than other scoring functions 
implemented in the software [26]. The genetic algorithm 
with a minimum of 1,000,000 and maximum 1,250,000 
iterations was used. A grid sphere of 10 Å radius was 
defined. The center of the sphere was defined by the 
reference ligand in the structure of 7L14. All rotatable 
bonds in protein were frozen while the ligand was defined 
as flexible. The bond orders, hydrogens, atom types, and 
partial charges were produced by the Hermes software’s 
edit utilities. GOLD software was constructed to produce 
25 poses for each ligand without early termination.
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ANI‑2× as rescoring

ANI scoring relies on the interaction energy between the 
receptor and the ligand similar to force field based scoring 
functions. The interaction energy is calculated by ANI-ML 
potentials rather than non-covalent coulombic and van der 
Waals interactions of conventional force field based scoring. 
The details of the calculation can be found on https:// github. 
com/ otayf uroglu/ deepQM and the related ANI_LIE work by 
Akkus et al.[41], as will be discussed in the next section. The 
main difference is to use docking pose instead of calculating 
frames from an MD simulation trajectory. Apart from the 
input pdb file with protein and ligand complex, the user is 
required to give an index file containing the index groups 
to be calculated. The index file is the one produced by 
Gromacs (i.e., listing comma separated residue numbers 
followed by the group name in the square bracket). The 
ligand and the residues in the docking region (or entire 
protein) are defined as separate groups in the index file. 
Thus, ANI scores can be readily calculated as the difference 
in energy between the index groups corresponding to 
complex and free components (protein and ligand) so that 
ΔEANI = Ecomplex − (Eprotein + Eligand) . The interaction energy 
ΔEANI is then translated to free energy using a scaling factor, 
as discussed in the next section. Using this approach, each 
pose reported on CASF-2016 dataset or generated by our 
docking with GOLD was recalculated by ANI scoring 
function.

MD simulations

A similar protocol to our previous works has been used in 
MD simulations [41, 42, 47–53]. Briefly, ligands were first 
optimized at B3LYP/6-31++G(d,p), and Merz–Kollman 
(MK) electrostatic potential (ESP) charges were computed 
at HF/6-31G* level using Gaussian 16 software. 
GAFF2 parameters and restricted electrostatic potential 
charges (RESP) were generated using the antechamber 
utility in AmberTools 22. The amber99sb-ildn force 
field was used for the protein's topology. Solvation of 
protein–ligand complexes employed the TIP3P water model 
in a dodecahedron box with 10 Å dimensions for each axis. 
System neutralization occurred at a salt concentration of 
0.15 M Na+ and Cl− ions. Energy minimization, utilizing 
the steepest descent algorithm with a Verlet cutoff scheme, 
was performed to a maximum force of 100 kJ  mol−1  nm−1. 
Electrostatic interactions were computed using the particle-
mesh Ewald (PME) method, while bonds involving hydrogen 
atoms were constrained with a harmonic potential. Prior 
to the final simulations, a 5 ns NVT-MD equilibration at 
310 K was conducted using a Langevin thermostat followed 
by 200 ps and 1 ns NPT-MD equilibrations at 1 atm using 
Berendsen and Parrinello-Rahman barostats, respectively.

Free energy calculations

The single-trajectory approach MMGBSA calculations 
were calculated using the gmx_MMPBSA [54]. The default 
parameters with the internal dielectric constant, εint = 2 for 
polar solvation terms. The SASA-only model was applied 
with parameters of γ = 0.0072 kcal/mol·Å2 and b = 0 for 
nonpolar terms.

In addition to MM-PBSA calculations, we also used 
ANI_LIE, a recent end-state binding free energy method 
introduced by Akkus et al. [41]. The details of the method 
has been discussed elsewhere [41]. Briefly, the method uses 
the linear interaction energy (LIE) approach utilizing the 
potential energies predicted by ANI-ML potentials as a 
replacement to molecular mechanics (MM) energy terms in 
LIE formalism. The free energy is calculated by:

where ⟨ΔEL−P
ANI

⟩
PLS

 is the average interaction energy between 
the protein and ligand produced by extracting the MD 
frames for energy groups of protein (P), ligand (L) and 
protein–ligand (PL).

For ANI_LIE calculations were performed using the 
simplest form neglecting the D3 term and solvation effects 
(i.e., Eq. 4 in Ref. [41]) with default � and � empirical 
parameters of 0.127 and −5.11, respectively. As reported by 
Akkus et al. [41], these parameters were optimized SARS-
CoV-2  Mpro and have been successfully used in other studies 
[42, 47, 48, 55, 56].

Results and discussion

Benchmarking with other docking software 
on CASF‑2016 dataset

In the first part, we tested the scoring produced by ANI pre-
dicted interaction energies on a standard dataset containing 
diverse protein–ligand complexes. Using ANI, we have res-
cored all the poses belonging to 254 protein–ligand com-
plexes and compared to the results of the original publication 
of CASF-2016 dataset, which reports the performance of 34 
different software/algorithm for the same poses. Figure 1 
shows the success rate of predicting the poses with less than 
2 Å in the top ranked solutions. The ANI based scoring has 
been applied when only residues in docking grid are consid-
ered as the host in the host–guest interaction, outperforming 
most of the other 30 scoring functions.

In addition, we have also compared the success rate of 
finding the exact crystal structure in the first ranked solu-
tions (Fig. 2). ANI can still outperform most of the methods 

ΔGbind = �⟨ΔEL−P
ANI

⟩
PLS

+ �

https://github.com/otayfuroglu/deepQM
https://github.com/otayfuroglu/deepQM
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finding the true crystal pose among the given decoy poses. 
It is clear that when a structure is its crystal orientation, ANI 
can distinguish it much better than most of the methods.

. In addition to docking power, Yang et al. also defined as 
“binding funnel analysis” [40], which refers to the docking 
efficiency for a scoring function. The idea is that the poses 
that are closer to the crystal structure and those that are far 

from the crystal structure create a potential energy surface 
that will look like a funnel. The poses that are closer to 
the crystal structure will be in the lower energy region of 
this funnel while the poses that are far from x-ray structure 
will lie on the higher energy regions. We have performed 
the same analysis for ANI as well as borrowing the rest of 
the methods from literature [40] for our set of 254 proteins 

Fig. 1  The success of different scoring functions on predicting the first poses as the closest structure to the crystal with RMSD less than 2.0 Å. 
ANI is ranked 8th among 34 functions

Fig. 2  The success of different scoring functions on predicting the first poses as the exact crystal structure. ANI is ranked 5th among 34 func-
tions
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each with 5 ligands and 100 poses. We have created bins 
of RMSD windows with 0–2, 0–4,.. 0–10 Å and grouped 
poses according to these bins. For each RMSD window, the 
Spearman’s correlation coefficient was calculated Fig. 3. 
The analysis show that the docking efficiency of ANI based 
scores are one of the most accurate methods, giving high 
Spearman’s correlation coefficients in the lower RMSD bins.

Assessment on SARS‑CoV‑2 with GOLD

In the second part, we assessed the performance of ANI 
scorings on a specific protein family of SARS-CoV-2 Mpro 
rather than diverse set of proteins since our focused study is 
to screen the FDA drugs against this protein. A representa-
tive structure of SARS-CoV-2 main protease, used in the 
docking was shown in Fig. 4.

Fig. 3  The Spearman correlation coefficients between RMSD and scores for each scoring function being tested. The x-axis indicates the RMSD 
bins (≤ 2, ≤ 3, etc.) Heat map ranging between 0 and 1 indicates low/high correlations

Fig. 4  The structure of the SARS-CoV-2 main protease (PDB ID:7L14) used in GOLD docking. The nearby residues around ligand by 10 Å are 
highlighted.ANI scores were calculated using ΔGANI = Ecomplex − (Eprotein + Eligand)
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In order to assess the ANI’s performance using our 
own docking protocol in GOLD for SARS-CoV-2 main 
protease-inhibitor complexes, self‐docking is a neces-
sity. Nevertheless, some of the complexes have missing 
atoms/residues. To overcome this problem, docking all 
the ligands into a representative receptor structure that is 
fully resolved (i.e. 7L14) can be a better approach. This 
would also eliminate possible errors due to using different 
receptors in comparison of the ligand affinities. However, 
the complexes available in the PDB show structural dif-
ferences and residues in the active site show side chain 
movements. Therefore, selecting only one receptor as a 
representation for all crystals has also complications to 
find correlation between docking scores and native bind-
ing pose. In order to avoid these error sources, we have 
selected the most common conformation as a representa-
tive structure (i.e. 7L14) for docking all the inhibitors. 
We have specifically selected 13 other protein-inhibitor 
complexes available in PDB that have similar scaffold in 
the binding region. The list of residues in the grid sphere 
and their RMSD values to the reference structure 7L14 
is given in Table S1. In all of these crystal structures, the 
positions of the residues in the active site is protected. 
This allows to compare the docking of the native ligands 
of these proteins to a reference protein (7L14).

The top ranked solutions in GOLD and ANI mostly agree 
and are quite successful in predicting crystal structures. For 
half of the docked ligands, the top solutions for GOLD and 
ANI is the same. In addition, the top 3 ranked solutions for 
GOLD for each of the ligands were also within the first three 
solutions of ANI.

The success rate of finding the lowest RMSD structure 
in the top ranked solution was 35.7% for GOLD and 28.6% 

for ANI. In addition, the average RMSD values of the 
first poses in GOLD and ANI were 1.48 Å and 1.43 Å, 
respectively.

When we analyzed the top 1 pose, we observed that 
ANI can find 14.3% of the poses with RMSD ≤ 1.0  Å 
while GOLD does not find any solution within this cutoff 
(Fig. 5). For RMSD ≤ 1.5 Å, these values are 57.1% and 
50.0% ≤ 1.5 Å, respectively; and 92.9% and 85.7%, respec-
tively for RMSD ≤ 2.0 Å. ANI’s success in the top 1 pose is 
almost 7% better than GOLD’s success. In general, the top 
1 score is considered in the high throughput virtual screen-
ing (HTVS) studies aiming to find the putative binders for 
more advanced computational analysis such as molecular 
dynamics (MD). Given the fact that the ANI scores are very 
effective in finding the correct binding conformation at the 
first pose, it demonstrates the capacity of the ANI based 
rescoring in virtual screening studies.

The trend between the docking scores of the best poses 
obtained with the GOLD software and the experimental 
binding energies shows that the Pearson correlation value is 
 R2 = 0.47 (Fig. 6). GOLD scores are arbitrary and the high-
est scoring values correspond to the highest binding energy 
(negatively, the lowest binding energy), so the correlation 
should be inverse. It appears that the GOLD scores are actu-
ally in good agreement with the experimental values for the 
19 compounds studied. In fact, when the D3F ligand is con-
sidered as an outlier, the success of GOLD scores reaches 
 R2 = 0.72. This ligand contains multiple nitro (-NO2) groups 
and each N = O bond is assumed double bonds (causing N 
atom to make 5 bonds) in GOLD due to the difficulty to 
define the partial atomic charges for these groups as dis-
cussed in the GOLD manual [46]. This might explain too 
low docking scores for this ligand. The ANI interaction 

Fig. 5  GOLD-PLP and ANI 
scoring on the poses generated 
by Gold docking on 14 selected 
inhibitors of SARS-CoV-2 main 
protease. ANI shows superiority 
to GOLD in the top one solution
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energy between the amino acids in the binding site and the 
ligand showed a better trend with the experimental binding 
energies. Pearson correlation coefficient was found to be 
 R2 = 0.68, outperforming the correlation of GOLD scores. 
Similarly, when the D3F ligand (red dots in the plots) is 
considered as an outlier, this coefficient increases up to 0.78.

Instead of assessing the performance of ANI and GOLD 
scores individually, we have also compared when both 
methods are combined in consensus scoring. A much higher 
trend with  R2 = 0.84 was observed to the experimental values 
when the top three poses commonly recommended for both 
GOLD and ANI are considered, clearly supporting the idea 
of combining these two different methods (GOLD + ANI) 
as consensus scoring.

Screening FDA drugs for SARS‑CoV‑2 Mpro

Our unique screening protocol is given in Fig. 7. MD simula-
tions were initiated using the top three poses obtained from 
docking. The docking of all FDA-approved drug (2500) mol-
ecules in the Zinc database was performed using GOLD. 
25 poses for each drug molecule produced by GOLD and 
rescored with ANI for an additional filtering tool. Since ANI 
can only perform calculations for C, H, O, N, S, F, and Cl 
atoms, the number of drugs that are screened decreased to 
1460. Our consensus scoring based on GOLD and ANI is 
as follows: if the top scored three poses generated by GOLD 
are also ranked in the top three scores with ANI, then these 
poses are used to MD simulation in the later stage. Other-
wise, this complex is discarded. As a result of this filtering 
process, only 771 out of the best 4380 GOLD docking poses 
for 1460 drug molecules were also among the top 3 poses 
according to ANI. All 771 poses belonging to 669 different 
drug molecules were subjected to MD simulations for 10 ns 
in the next stage (a total of 7.71 µs of simulations).

After the MD simulations, the resulting conformations 
were evaluated from several aspects to further filter possi-
ble SAR-CoV-2 main protease inhibitor candidates. Firstly, 
it was monitored how far the ligand moved away from the 
binding site during the MD simulation. If the ligand stably 
binds to the binding site, it will not move far away from 
the initial structure. We measured this by fitting the MD 
trajectory on proteins and calculating the RMSD values of 
the ligands. The cut-off for the RMSD for this stability test 
was 3.0 Å. Based on this evaluation, 467 drug molecules 
remained stable in the binding site. The second criterion 
for filtering out the ligands is protection of the number of 
H-bonds. By monitoring the number of H-bonds between the 
ligands and protein, we eliminated those structures that lose 
more than 0.5 H-bonds throughout the simulation from our 
hit list. Figure 8 shows the examples for these criteria. Thus, 
a total of 346 molecules were identified as potential candi-
dates for binding to the protein. As a final criterion in the 
classical MD simulations, the stability of the protein–ligand 
complex was assessed by means of RMSD of back bone 
atoms of the protein with a cutoff of 0.15 Å (Figure S1). This 
eliminated further drug poses, leaving over 110 complexes.

In the next step, we performed end-state free energy 
calculations on remaining 110 compounds each followed 
by three replica 10 ns long MD simulations (a total of 
2.2 µs additional MD simulations). For these selected 110 
compounds, free energies were calculated using MMGBSA 
and ANI_LIE methods (Table S2). Ideally, if a drug-pose 
interacts with  Mpro strongly, the free energy values would 
be much lower. However, if any of the BFE values of the 
replica simulations is not in the same order as with the other 
two simulations, then the value predicted is not reliable and 
should not be trusted. Therefore, we have applied another 
criterion of standard deviation among the free energies 
calculated by the replica simulations (5 kcal/mol MMGBSA 
and 1 kcal/mol ANI_LIE).
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Fig. 6  Docking scores generated by a GOLD-PLP and b ANI with respect to experimental BFEs. ANI scores were produced by scaling with 
0.127 as outlined in [41]
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In the final step, ANI_LIE and MM-GBSA were used in 
combination in a way that drug molecules with the lowest 
binding energies relative to other drugs were suggested by 
both methods were selected. When the average BFE values 
of three replica MD simulations for a drug molecule were 
below −8  kcal/mol by ANI_LIE and −30  kcal/mol by 
MM-GBSA, the drug molecule was assumed plausible 

inhibitor for the SARS-CoV-2  Mpro. The rest of the 
candidates were eliminated with the assumption that they 
would not be sufficient for inhibition. Thus, a total of 11 
drug molecules remained for which significant binding 
energy was suggested by 2 different free energy methods. 
These drug molecules are listed in Table 1.

Fig. 7  Our unique screening 
protocol involving consensus 
scoring of ANI and GOLD, 
classical MD simulations and 
consensus BFEs by end-state 
methods

FDA Approved Drugs ZINC Database
(2500)

Elimination ligands other than
(C,H,N,O,S,Cl,F)

ANI can't calculate

Selected ligands
(1500)

Score by GOLD and ANI
(37500)

10 ns MD Simulations
(771)

Generating 25 poses for each
ligand by GOLD Docking

First 3 poses selected by
ANI+GOLD

RMSD < 1.5
#H-Bond > 0.5

3 Replica
100 ns MD Simulations

(110)

Stdev (kcal/mol)
MMGBSA 5

ANI 1

94
Candidate

Average (kcal/mol)
MMGBSA -30

ANI -1
Final

11
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In all three methods, structures with the lowest binding 
energies were selected as potential drug molecules by con-
sensus. Among the top 5 drug molecules suggested by the 
common three methods with the highest binding energies, 
3 had already been proposed as potential drug molecules in 
previous theoretical and experimental studies. This confirms 
the effectiveness of the screening method used here.

Drug molecules listed here are the most plausible SARS-
CoV-2 Mpro inhibitors and it is worth performing further 
experimental analysis to reveal their potency. In our previous 
studies, we have shown that ANI_LIE values are much more 
accurate in predicting absolute binding free energies [41]. 
Therefore, Cabazitaxel, Rivaroxaban and Dapagliflozin 
might have sub-nanomolar inhibition concentrations for 
Mpro due to BFEs below − 10 kcal  mol−1.

Conclusions

In this study, we have shown the capability of using ANI 
potentials as a rescoring function in molecular docking. 
Our benchmarking studies showed that this method can 
outperform most of the conventional scoring functions. In 
particular, the prediction of the top 1 solution showed one 
of the best performances in prediction of the true binding 
mode. The method can be adopted in any docking software 
to screen the drug like molecules as potent inhibitors to pro-
teins. As a case study, we introduce our unique screening 
protocol which incorporates consensus scoring of ANI and 
GOLD, classical MD simulations and consensus BFEs by 
end-state methods.

Fig. 8  Application of elimination (red)/selection (blue) criteria to MD trajectories. Δ(RMSD) ≤ 3.0 Å for the ligand, and Δ(#H-bonds) ≥ -0.5 
between ligand and protein
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