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Abstract
The treatment of various disorders of the central nervous system (CNS) is often impeded by the limited brain exposure of 
drugs, which is regulated by the human blood–brain barrier (BBB). The screening of lead compounds for CNS penetration is 
challenging due to the biochemical complexity of the BBB, while experimental determination of permeability is not feasible 
for all types of compounds. Here we present a novel method for rapid preclinical screening of libraries of compounds by 
utilizing advancements in computing hardware, with its foundation in transition-based counting of the flux. This method has 
been experimentally validated for in vitro permeabilities and provides atomic-level insights into transport mechanisms. Our 
approach only requires a single high-temperature simulation to rank a compound relative to a library, with a typical simula-
tion time converging within 24 to 72 h. The method offers unbiased thermodynamic and kinetic information to interpret the 
passive transport of small-molecule drugs across the BBB.

Graphical abstract

Keywords Blood–brain barrier · Brain permeability · Molecular dynamics · Kinetics · Transport properties · CNS 
penetration

Introduction

The treatment options for central nervous system (CNS) dis-
orders are hindered by the blood–brain barrier (BBB), which 
is a highly selective barrier that regulates and restricts the 
transport of molecules from circulation into the CNS [1, 2]. 
The BBB is a complex physiological structure that separates 
the CNS from the bloodstream and is composed of a spe-
cialized layer of endothelial cells that line the blood vessels 
in the brain and spinal cord. The tight junctions between 
human brain microvascular endothelial cells (hBMECs; see 
Fig. 1) effectively prevent the paracellular transport of mol-
ecules and restricts transcellular transport into the brain to 
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molecules with compatible chemical properties [3]. There-
fore the primary mode for drugs to enter the brain is by 
passive diffusion across the luminal and abluminal hBMEC 
membranes. Furthermore, successful drugs must also not 
be substrates of BBB efflux pumps or need to diffuse suf-
ficiently fast to overcome the action of efflux pumps. oth-
erwise the effective concentration is significantly reduced. 

This means that the majority of drugs do not cross the BBB, 
making it difficult to deliver drugs to the CNS to treat neu-
rodegenerative and psychiatric disorders.

The BBB plays a key physiological role in the devel-
opment and progression of several neurodegenerative [4], 
including Alzheimer's disease [5], Parkinson's disease [6], 
multiple sclerosis and brain tumors [7]. In these and other 

Fig. 1  Construct of our in silico model of the blood–brain bar-
rier for MD simulation of molecular transport across the BBB. A A 
representation of the human brain microvascular endothelial cell 
(hBMEC) membrane that forms a key element of the blood–brain 
barrier (BBB). B Composition of the in silico BBB apical hBMEC 
membrane model (N = 96 lipid molecules). C An in silico represen-

tation of the apical hBMEC membrane, showing dimensions and 
a drug crossing event. The system used has a system with a larger 
z-dimension (12 nm at equilibration), which is different (60% larger 
in z dimension than x–y dimensions) to our previous systems [26]. 
(D) Library of CNS compounds spanning a representative set of per-
meabilities  (10–7 cm/s to  10–3 cm/s)
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CNS conditions, the BBB can become "leaky" which can 
lead to the accumulation of harmful molecules in the brain 
and contribute to the progression of these disorders. Addi-
tionally, molecular transport across BBB may also play a 
role in the development of psychiatric disorders [8] such as 
anxiety and depression [9], as well as schizophrenia [9] as 
the BBB also regulates the distribution of neurotransmitters 
and neurotrophic factors, which are essential for the proper 
functioning of the brain.

Therefore, the determination of the brain exposure of 
drugs is a challenging task that represents a major obstacle 
to the development of drugs for the treatment of CNS dis-
orders. Despite the fact that there are approximately 1700 
FDA-approved drugs, the brain exposure of only around 200 
of these drugs is known [10, 11]. This lack of information 
about brain exposure makes it difficult to repurpose exist-
ing drugs for use in the treatment of CNS disorders. This 
highlights the need for new technologies that can identify 
therapeutics with the potential to cross the BBB early on in 
the drug development process [12, 13].

One of the more common screening models used for this 
purpose is Lipinski's rule of five [3], which is based on the 
idea that drugs with certain chemical properties, such as a 
low molecular weight and a neutral charge, are more likely 
to cross the BBB. Another methodology that is used is the 
QikProp program of Schrödinger, which uses the method 
of Duffy and Jorgensen [14]. This program uses a variety 
of cheminformatic methods to predict the properties of a 
drug, including its potential to cross the BBB. Generally, in 
silico models can be useful for identifying promising lead 
compounds early on in the drug development process, but 
existing solutions are limited in their ability to deliver unbi-
ased atomic-detail insights into the physical process of BBB 
penetration. Atomistic insights are important to elucidate the 
underlying mechanism behind black-box or machine learn-
ing (ML) model predictions, which can only be obtained 
with MD simulations. As an example, two molecules can 
have their permeability predicted coarsely with ML models, 
but we can only rationalize the difference by observing the 
simulation trajectories.

Experimentally, the customary method for determining 
brain exposure of pharmaceutical compounds is the tran-
swell assay, which is a widely used in vitro method [15]. In 
these assays, a BBB-mimetic confluent monolayer is used 
to mimic the tight junctions of the blood–brain barrier and 
the apparent permeability (Papp) of the drug is determined 
by measuring the amount of the molecule that crosses the 
monolayer [16, 17]. Ideally, the monolayer used in this assay 
is composed of hBMECs (i.e., primary cells which would 
form the BBB in vivo), but a variety of primary cell types 
have been utilized for transwell assays, including confluent 
monolayers of Madin–Darby Canine Kidney (MDCK) or 
Caco-2 cells [16, 17], or more recently BMECs derived from 

induced pluripotent stem cells [18]. These experiments pro-
vide a means to evaluate the rate of transport of drugs across 
the BBB from estimating the content from the sacrificed 
rat brain. The data obtained from these experiments may 
then be compared to in silico simulations of transcellular 
transport to gain insights into the mechanisms of transport 
of drugs across the BBB [19–23].

Molecular dynamics (MD) simulations are a powerful 
computational tool that can be used to investigate the free 
energy of drug permeation across the transcellular path-
way of the blood–brain barrier (BBB). MD simulations 
have been used to study a wide range of membrane types 
[19–23], including plasma and mammalian membrane mod-
els. There have been few studies that have attempted to simu-
late the endothelial membranes using accurate compositions 
[24–26], and some of these studies have revealed the com-
putational challenges in converging permeability estimates.

To overcome sampling limitations in MD simulations for 
cellular translocation, various enhanced sampling techniques 
have been developed [27, 28]. However, these methods do 
not directly provide transport rates without a reweighting of 
the resulting ensemble or inferences through an inhomoge-
neous-solubility diffusion (ISD) framework [19]. Unbiased 
all-atom MD simulations provide detailed insights into the 
molecular mechanisms of transport across the BBB without 
the need for a priori knowledge of the permeation pathway 
or constrained coordinate systems. Kinetics can be calcu-
lated from the transition-based counting (TBC) approach 
[24, 29], but this still requires simulation times in the tens 
to hundreds of microseconds per drug partition to achieve 
converged estimates at 37 °C. This is currently beyond the 
limit of realistic sampling for routine MD simulations. Other 
methodologies for permeability have only been parametrized 
for the fast regime (permeability, P >  10–5 cm/s) [23].

In previous research, we have shown that high-temper-
ature simulations can be used to estimate permeabilities at 
body temperature from direct Arrhenius fits [26] or by fit-
ting the rates based on a modified form of Kramer's theory 
of reaction rate [24]. Although these simulations are run 
at much higher than physiological temperature, we have 
demonstrated that membranes do not disintegrate, nor do 
they significantly differ, even at extremely elevated simu-
lated temperatures of 500 K (~ 226.85 °C). Furthermore, it 
has well-established in the MD simulation literature that the 
thermostat does not permit a vapour transition, and the mem-
brane stability at high temperatures has also been experi-
mentally validated [30, 31]. Both of these procedures have 
limitations, as the first procedure has errors in comparison 
to experimental measurements, and the second procedure 
requires estimation of multiple per-compound physical fit-
ting parameters (i.e., the Arrhenius pre-exponential constant 
A, the lateral diffusivity of the lipids, DL(T), and the appar-
ent transmembrane free energy apparent barrier height, G0). 
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There are currently no known rapid ways to obtain a relative 
ranking of compounds crossing the BBB that are not based 
on estimates from structure–activity relation approximations 
[1, 13, 32–34].

In this study, we propose a method for determining 
quantitative transmembrane transport based on TBC rates 
obtained from a single equilibrium MD simulation, with a 
temperature-based enhancement of sampling that can per-
form relative ranking of permeability. This method leverages 
the recent advances in atomic scale modeling and computing 
power to overcome the limitations of current methods. The 
proposed method utilizes a single MD simulation at high 
temperature for a central nervous system (CNS) compound, 
which can be converged using a single graphics processing 
unit (GPU) node within a time frame of 24 to 72 h. Our 
approach is based on a least-squares fitting procedure that 
utilizes a library of CNS compounds of clinical importance 
with permeabilities spanning a broad range of interest, 
from the slowest range  (10–7 cm/s) to fast CNS penetration 
 (10–4 cm/s). We use a sample size of N = 18 CNS compounds 
which are chosen based on their clinical relevance and that 
their permeabilities span a broad range of interest. This 
approach provides a rapid and efficient way to determine the 
transmembrane transport of CNS compounds, and it could 
be useful for identifying promising lead compounds early in 
the drug development process.

Materials and methods

Single MD simulations for a library of compounds

Key MD simulation parameters

Unbiased atomistic MD simulations were performed using 
GROMACS (www. groma cs. org) [35] with the CHARMM36 
all-atom force field for lipids [36], the CHARMM general 
force field (CGenFF) for molecular solutes and the TIP3P 
water model as solvent [37]. Electrostatic interactions were 
computed using particle-mesh-Ewald (PME) [38], and a cut-
off of 10 Å was used for non-bonded interactions. Bonds 
involving hydrogen atoms were restrained using LINCS 
[39] to permit a 2 fs time-step. Neighbor lists were updated 
every five steps.

All simulations were performed in the NPT (constant 
N, pressure and temperature) ensemble, with water, lipids, 
and drug molecules coupled separately to a heat bath with 
temperatures at, respectively, 127 °C (simulation set 1), and 
167 °C (simulation set 2). A time constant τT = 0.1 ps was 
utilized in combination with the velocity rescaling algo-
rithm [40]. In the equilibration stage, an atmospheric 
pressure of 1 bar was maintained in the simulation box 
using the Berendsen semi-isotropic pressure coupling 

[41] with compressibility  κz = κxy = 4.6 ×  10–5   bar−1. In 
the production runs we utilized the Parrinello–Rahman 
semi-isotropic pressure coupling [42] with compressibil-
ity κz = κxy = 4.6 ×  10–5  bar−1 and time constant τP = 20 ps. 
In order to capture diffusion events at sufficiently high reso-
lution, trajectories were recorded every 1 ps, such that each 
1 ms of trajectory comprises a dataset of  107 observations.

A lipid bilayer model of human brain microvascular 
endothelial cells (BMECs)

An atomic detail molecular model of the apical BMEC lipid 
bilayer was utilized as described in previous work [24], con-
sisting of a patch of 96 lipids (48 per leaflet) in an area of 
about 25  nm2. Information about the spatial lipid distribution 
within the individual leaflets was not available and was not 
incorporated in the model.

A compound library of the CNS drug space

A library of molecular solutes (N = 18; Table S1 and molec-
ular structures in Figure S1) was chosen to be sufficiently 
broad and representative of CNS drugs, spanning a range 
of permeabilities (from  10–7 to  10–3 cm/s), charge (neu-
tral, cationic, anionic, and zwitterionic), and lipophilicity 
(LogPw/oct values from − 1.8 (polar) to 5.10 (non-polar)). 
Solute transport is dependent, in part, on the choice of solute 
force field [22, 43, 44]. Force field parameters were obtained 
in a standardized fashion using the CGenFF program [45, 
46] (version 2.0) to obtain bonded and nonbonded param-
eters via the automated parameter assignment tool (Param-
chem) [47] of CGenFF. The quality of similarity assignment 
for bonded and non-bonded parameters was monitored by 
penalty scores (Table S.4). All molecules are simulated in 
their neutral form, for comparison. The list of compounds 
is given in Fig. 1.

To converge the permeability estimates, simulations of 
solute transbilayer BBB crossing are carried out at tempera-
tures greater than 25 °C (167 °C). This high-T MD meth-
odology dramatically increases the rate of solute transport 
across lipid bilayers, and is applicable to lipid membranes 
in conjunction with small-molecule solutes that do not dena-
ture at T > 25 °C.

Simulations of solute translocation

The standard simulation system is different from that 
reported in our previous work by having an increased 
amount of water content. The system contains 7031 water 
molecules, 96 lipids, and 20 solute molecules distributed 
randomly with PACKMOL [48]. Simulations at elevated 
temperatures were necessary to enable accurate determi-
nation of the translocation frequency for solutes with low 

http://www.gromacs.org
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permeability. This high-T MD methodology is applicable to 
lipid membranes in conjunction with small-molecule solutes 
that do not denature at 167 °C ≥ T > 36.8 °C[24, 26]. The 
use of non-polarizable water models, such as TIP3P, at high 
temperatures carries limitations. While high-temperature 
simulations are well established in the field of MD simula-
tion, the water models do not accurately describe the phase 
transitions associated with heating (or cooling). However, 
since we are not aiming to describe transport properties in 
water, we hold that the methodology is applicable to solute 
translocation across low dielectric media, such as a lipid 
bilayer.

Quantifying solute translocation across the lipid bilayer

There are two general approaches for calculating permeabil-
ity in simulations: Fick’s law counting-based methods (used 
in this work), and methods based on the inhomogeneous 
solubility-diffusion (ISD) equation [19]. The ISD model is 
more complex since it requires accurate determination of the 
diffusion coefficient and free energy surface at each location 
(i.e. position in the bilayer), both of which are challenging 
[49–52]. Here we use direct observation from the simula-
tions to identify individual translocation events.

The solute translocation frequency (k) across the bilayer 
is the number of translocation events per unit time. A trans-
location event is defined when a solute molecule moves from 
bulk solution on one side of the lipid bilayer, across the 
bilayer, and crosses a plane 1.0 nm beyond the bilayer on 
the opposite side. In the simulations, we define the steady 
state translocation k frequency as the average value when 
the derivative is less than a threshold value: i.e., dk/dt = [(k
(i + 1) − k(i))/∆t] < 0.004.

Free‑energy surfaces (FES) and grouping of solutes

The FES profiles were calculated by first binning the z-posi-
tions of a solute to generate a 1-dimensional probability 
distribution P(z). The free-energy, F(z), was calculated by 
Boltzmann reweighting of the probability distribution (see 
Supplementary Information for details).

Experimental values of permeability

Experimental values of permeability derived from the 2D 
transwell assay (Papp) are widely used to predict brain pen-
etration of small molecules, and the transwell assay is often 
considered the gold standard for validating simulations and 
in assessing barrier function of other in vitro models [53]. 
The most common cell lines are Madin–Darby Canine Kid-
ney (MDCK) cells [16, 17], as well as Caco-2 cells with the 
PAMPA assay [54, 55]. We have chosen solute values of the 
cell line available for the compound of interest in published 

literature, with compounds missing a reference value meas-
ured as in-house measurements (Department of Materials 
Science & Engineering, Johns Hopkins). We have opted to 
use only Papp values as a benchmark, and not rat brain per-
fusion values P3D, due to the scarcity of data and the closer 
mimetics of our simulation system with the transwell assay. 
The final reference values are produced in Table S.1.

Results

The passive BBB transport of small molecules involves 
crossing the luminal and abluminal membranes of BMECs 
in the cerebrovasculature (Fig. 1A). Previous work dem-
onstrated high similarity in transport across the apical and 
basolateral chambers, so we chose to simulate the apical 
chamber only. As long as transport within the cell (between 
the two membranes) is fast in comparison to transport across 
the membranes, then the experimentally determined unidi-
rectional diffusional permeability from the transwell assay 
is equal to half of the simulated permeability from the bidi-
rectional flux, Papp = Psim/2, where Psim is the permeability 
across a single bilayer (Fig. 1A). Here we do not include 
efflux pumps or other membrane proteins in the bilayer in 
order to focus on the effects of passive BBB translocation.

Solute transport

MD simulations were performed at 167 °C for a library of 
solutes (N = 18; Fig. 1D) in a box (~ 5 × 5 × 12 nm) con-
taining a BBB lipid bilayer model (Fig. 1B, C). Simula-
tions were performed at elevated temperatures to enable a 
sufficient number (i.e. at least 1 and on average 10 events 
in 100 ns; Figure S1) of translocation events for accurate 
assessment of the permeability. The number of transloca-
tion events per unit time, k, is related to the permeability by: 
Psim = r/2AC where r is the rate (k/NA), A is the lateral cross-
sectional area of the membrane, and C is the concentration 
of the solute. The temperature required for efficient unbiased 
sampling is constrained, in large part, by the solutes with the 
lowest permeability, which require relatively long times to 
obtain accurate values of the rate constant. For the library 
of solutes reported here, each rate constant converged to a 
steady state value within 0.2–2.0 μs (Figures S1, S2), scal-
ing at 0.1–0.2 μs per 24 h on a computing node with 4–8 
computing processing units (CPUs) and GeForce GT × 1080 
Ti GPU card.

As an example, we simulated the transport of etha-
nol (Fig. 2). Following simulation, we observe individual 
molecules crossing the bilayer over periods lasting ~ 1 ns 
(Fig. 2A). From the running time average of the number of 
crossings, a steady state in the rate constant, k, is reached 
after about 100 ns (using the plateau value from dk/dt), 
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and from the plateau region, we determine a permeability 
of 8.9 ×  100 cm/s (Fig. 2B) using the procedure outlined in 
Methods (Fig. 2C).

The permeability values for all solutes at 167 °C are sum-
marized in Table 1 (additional parameters for calculation are 
provided in Table S.5). The permeabilities Psim span more 
than two orders of magnitude from 7 ×  10–2 to 1.69 ×  101 

cm/s. As expected, these values are much higher than the 
experimentally determined values at room temperature 
obtained from transwell measurements, which are typically 
in the range from  10–7 to  10–3 cm/s [56]. The temperature 
dependence on permeability can be inferred from the values 
of Psim at 127 °C (Table 1), which are 5 to tenfold smaller 
than at 167 °C.

Fig. 2  Obtaining membrane permeability (Psim) estimates from high-
temperature MD simulations. For permeability estimates: A perform 
unbiased MD simulation of explicit atom transbilayer crossing at high 
temperature to obtain an estimate of the rate of crossing k based on 

the # of translocation events, B establish the steady state behaviour 
of the rate k (s), molar rate r (mol/s) to ensure the system has reached 
equilibrium, C calculate the permeability (cm/s)

Table 1  Kinetic parameters 
extracted from simulations of 
the library of solutes (127, 167 
°C) ordered alphabetically with 
a unique index (#)

Non-available entries due to lack of convergence are indicated as NA (–). Measurement errors are provided 
as ± 1 standard deviation (σ)

Molecule 
index (#)

Molecule k  (ns−1) 127 °C k  (ns−1 ± σ) 167 °C Psim (×  10–1 
cm/s ± σ) 127 
°C

Psim 
(×  10−1cm/s ± 
σ) 167 °C

1 Atenolol 0.010 ± 0.00 0.039 ± 0.00 0.77 ± 0.00 7.00 ± 0.36
2 Bupropion 0.010 ± 0.00 0.112 ± 0.00 0.74 ± 0.00 15.6 ± 0.56
3 Dilantin 0.025 ± 0.01 0.208 ± 0.01 1.84 ± 0.68 28.9 ± 1.39
4 Duloxetine 0.008 ± 0.00 0.032 ± 0.00 0.57 ± 0.00 4.50 ± 0.28
5 Effexor 0.016 ± 0.00 0.142 ± 0.00 1.21 ± 0.00 19.7 ± 0.28
6 Ethanol 0.410 ± 0.01 1.294 ± 0.03 30.8 ± 0.75 89.9 ± 1.81
7 Ibuprofen 0.012 ± 0.00 0.300 ± 0.01 0.90 ± 0.00 20.8 ± 0.69
8 Ketoprofen 0.028 ± 0.00 1.035 ± 0.02 2.12 ± 0.00 71.9 ± 1.39
9 Nadolol 0.016 ± 0.00 0.071 ± 0.01 1.20 ± 0.00 6.50 ± 0.91
10 Naproxen 0.022 ± 0.00 0.860 ± 0.03 1.65 ± 0.00 59.7 ± 2.08
11 Nicotine 0.335± 0.01 1.419 ± 0.02 25.1 ± 2.18 98.5 ± 1.11
12 Propanol 0.498 ± 0.01 2.425 ± 0.04 37.4 ± 0.75 168.4 ± 2.99
13 Ritalin 0.087 ± 0.00 0.654 ± 0.02 6.51 ± 0.00 45.4 ± 1.18
14 Caffeine – 0.006 ± 0.00 – 0.90 ± 0.28
15 Doxorubicin – 0.003 ± 0.00 – 0.70 ± 0.11
16 Ethosuximide – 0.087 ± 0.01 – 7.10 ± 0.41
17 Glycerol – 0.017 ± 0.01 – 1.20 ± 0.36
18 Temozolomide – 0.018 ± 0.00 – 1.30 ± 0.15
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On comparing the values of permeability from the sim-
ulations (Psim) at 167 °C with experimental values (Papp) 
recorded at ranges of at 25–37 °C (Fig. 3), with the pre-
dominant temperature being 25 °C and the following assay 
sources including Caco-2 cell lines as well as MDCK cell 
line measurements at 37 °C and red blood cell estimates 
using the PAMPA assay [57]. There is a reasonable cor-
relation (R2 = 0.59) with an offset of about 5 orders of 
magnitude.

To verify the statistical significance of the sample size 
(N = 18), we perform independent regressions in sample 
sizes of incremental N (steps of N = 3 compounds; N = 3, 6, 
9, 12, 15, 18 compounds). To remove bias, we perform com-
binatorial sampling to all possible combinations of points 
(816, 18,564, 48,620, 18,564, 816) in the dataset. The mean 
and standard deviation of the slopes of these regression lines 
were recorded and were used to assess the variability of the 
slopes. In Figure S3, we report the results of the search, 
which demonstrate that the average slope reaches a plateau 
beyond N = 12 compounds, suggesting that this method can 
be utilized for datasets above 12 compounds.

In previous work [26], we outline computationally inten-
sive ways to map the relationship between experimental 
and simulated permeabilities. We used the same library of 
compounds, with N = 18 converged at 167 °C and N = 13 
converged at lower temperature. Here, we describe a rela-
tionship between the high-temperature simulated permeabil-
ity and measured experimental permeability (N = 18 com-
pounds) using a least-squares fit from the stats.linregress 
function of Scipy (Fig. 4) [58].

This allows for a relative ranking of novel compounds 
of interest to one order of magnitude of precision (Table 2; 
167 °C; R2 of 0.59, p = 0.00021; Eq. 1; 127 °C; R2 of 0.54, 
p = 0.0042; Eq. 2). Specifically, using the fit we propose 
(Eq. 1; fit using 167 °C), one can rank a novel compound, 
‘X’, using a single simulation at 167 °C (Psim,x,167°C) to 
obtain a relative apparent permeability ranking, Papp,X,37°C 
at 37 °C.

The boundaries of the regression have been tested for a 
range of experimental permeabilities from  10–7 cm/s (doxo-
rubicin) to  10–3 cm/s (ethanol) at two temperatures.

In Table 2, we demonstrate the application of the regres-
sions to perform a relative ranking of a novel compound 
X. For a compound with a 167 °C simulated permeability 
Psim,X,167°C of 7 ×  10–2 cm/s, this yields a predicted value of 
experimental permeability, Papp,X,37°C, of 7.64 ×  10–7 cm/s, 
while for a 167 °C permeability Psim,X,167°C of 1.2 ×  10–1 
cm/s, this yields a value of Papp,X,37°C of 1.4 ×  10–6 cm/s. 
Finally, for Psim,X,167°C of 9.85 ×  100 cm/s, this yields a pre-
diction for the value of Papp,X,37°C of 1.98 ×  10–4 cm/s. The 
regression therefore spans the 4 orders of magnitude of Papp 
with significant predictive power. The error between the pre-
dicted experimental permeability (Papp,X,37°C) and the known 
in-vitro permeability Papp is less than one order of magnitude 
(0.44–0.55; Table 2). To verify the model with an external 

(1)LogPapp,X,37◦C = 1.12
[

LogPsim,X,167◦C

]

−4.82

(2)LogPapp,X,37◦C = 1.17
[

LogPsim,X,127◦C

]

−3.73

Fig. 3  Permeabilities correlation (Papp vs Psim) for N = 18 compounds. 
A At 167  °C, depicting the roughly linear distribution of Psim/Papp 
along a line that is parallel to the equivalency line by a constant. The 

value and origin of this shift are confirmed in (B) for simulations at 
127 °C and 167 °C
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dataset, we generated a test set outside the range of regres-
sion compounds (N = 4) using the same setup as depicted 
in the Methods section. In Fig. 5 we depict the results of 
applying regression (Eq. 1) to an external dataset (details in 
Table S7) of 167°C permeability. We find that the external 
test set lies within the range described by the regression, and 
thus the regression can be used to predict the experimental 
permeability for an unknown compound X from a single 
high-temperature simulation.

Discussion

Understanding the mechanisms of drug transport across the 
BBB is critical for the development of therapeutics for CNS 
disorders. The BBB effectively restricts the entry of most 
molecules from the bloodstream into the CNS, making it dif-
ficult to deliver drugs to the brain [68]. A better understand-
ing of the mechanisms of drug transport across the BBB will 
allow for the development of more effective therapeutics 
for the treatment of CNS disorders. As an example, several 
anti-amyloid antibodies (AAA) therapeutics for Alzheimer’s 
have failed to cross the BBB, thereby halting advanced stage 
clinical trials [69].

In this work, we have introduced a computational 
approach for ranking the permeability of a library of CNS 
compounds across the BBB. By simulating a library of 
interest at high temperature (T = 167 °C) and constructing a 
regression (Eq. 1) from the dataset of Psim,167°C versus Papp 
it is possible to achieve relative prediction of an arbitrary 
compound’s permeability Papp,X,37°C from a single simula-
tion (Psim,x,167°C). The method relies on efficient simulations 

at 167 °C that converge on a standard GPU typically in 
t ~ 24–72 h.

In the Results, we showed our simulated permeabilities 
for the compound library of solutes distribute with moderate 
linearity (Fig. 4), with a constant offset shift with respect 
to the experimental permeability (Papp; 37 °C). When the 
temperature is lowered, the distribution shifts closer to 
the experimental permeability. Our methodology allows 
for the qualitative ranking of a compound permeability 
(Papp,X,37°C) at physiological temperature. The error between 
the predicted permeability (Papp,X,37°C) and the known in-
vitro permeability Papp is less than one order of magnitude 
(0.44–0.55; Table 2), demonstrating an acceptable accuracy 
of our ranking approach.

In Table 3 we present the final comparison between 
experimental permeabilities reference values, to those pre-
dicted by the regression (Eq. 1) from a single high-T simula-
tion (in [26]), to those from Arrhenius extrapolation from 
multiple high-T simulations. As can be seen, the regression 
prediction shows significantly closer agreement with experi-
mental reference value compared to Arrhenius prediction. 
We had previously described how Arrhenius predictions suf-
fered from non-linear effects, which can be corrected for (as 
in the work of Wang et al. [24]). In proposing this regression 
approach, we are arguing that scarce access to computing 
time should not preclude users from performing a qualitative 
ranking that is often less than one order of magnitude from 
the experimental reference. In our previous work, we noted 
how there can be marked disagreements between experimen-
tal sources (Papp from cell lines or P3D from rat brain perfu-
sion measurements), which are notably concentrated for cer-
tain groups of molecules (one group displaying statistically 

Fig. 4  Least-squares fit of simulated permeability data and experi-
mental permeability. A Least-squares fit regression of LogPsim vs 
LogPapp with N = 13 compounds (167  °C, 127  °C) indicating the 
resulting regression y = mx + c. For 167  °C, m = 1.726, c = − 5.20, 
R2 = 0.68, p-value = 0.00054. For 127  °C, m = 1.17, c = − 3.73, 

R2 = 0.54, p-value = 0.0042. B Least-squares fit regression of LogP-
sim vs LogPapp with N = 18 compounds (167 °C) and N = 13 (127 °C), 
indicating the resulting regression y = mx + c. For 167 °C, m = 1.124, 
c =  − 4.819, R2 = 0.59, p-value = 0.00021. For 127  °C, m = 1.17, 
c =  − 3.73, R2 = 0.54, p-value = 0.0042. Log denotes Log in base 10
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significant deviations of over 1.5 orders of magnitude. This 
should serve as a caution to examine the source of experi-
mental data carefully before using as benchmark.

Although the R2 values obtained from regression are sta-
tistically significant (p = 0.0002 for T = 167 °C; p = 0.0042 
for T = 127 °C), sources of error can be ascribed to, in 
particular, the use of CGenFF force field parameters in a 
consistent way without reoptimization. Previous attempts 
at ranking permeability with a fast methodology, such as 
implicit solvent assumption [43], have found smaller perme-
ability R2 value in agreement when ranked (below 0.2), and 

described errors of up to 10 orders of magnitude between in 
silico prediction and experimental permeabilities. Our meth-
odology has a statistically significant (p value = 0.0002) R2 
value and lower error and is fast to calculate on consumer-
grade GPU cards. This work opens up the possibility for 
routine ranking of CNS candidates on a large scale.

We now proceed to discuss the inherent methodological 
limitations from the simulations and experiments. Experi-
mentally, the transwell assay is currently a very popular 
in vitro experimental method to source for permeability [53, 
70]. The main limitation in its ability to accurately determine 

Table 2  Regression prediction

For a range of simulated permeability (Psim,x,167°C) ordered by magnitude and output 37 °C relative permeability (Papp,X,37°C) based on Eqs. 1 and 
2 experimental permeability in Table S.1. Validation dataset denotes simulations not included in the regression model or anywhere else, while 
training set denotes values taken from within regression dataset.

Validation dataset: Utilizing 167 °C regression to predict Papp,X,37°C (m = 1.124; c =  − 4.891)

Papp,Exp Experimental (cm/s) Equation (1) Prediction (Papp,X,37°C) cm/s Order of magnitude error:
|LogPapp,Exp − LogPapp,X,37°C|

Sertraline 2.10 ×  10–6 1.67 ×  10–6 1.25000
Risperdal 3.00 ×  10–5 5.24 ×  10–5 0.24000
Diazepam 4.60 ×  10–5 5.27 ×  10–5 0.94000
Lacosamide 1.60 ×  10–5 1.02 ×  10–4 0.81000

Training dataset: Utilizing 167 °C regression to predict Papp,X,37°C (m = 1.124; c =  − 4.891)

Input for regression 
 Psim(167 °C) (cm/s)

Papp,Exp Experimental (cm/s) Equation (1) Prediction 
(Papp,X,37°C) cm/s

Order of magnitude error:
|LogPapp,Exp − LogPapp,X,37°C|

8.99 ×  100 Ethanol 1.10 ×  10–3 1.79 ×  10–4 0.78837
9.85 ×  100 Nicotine 1.73 ×  10–4 1.98 ×  10–4 0.05958
1.56 ×  100 Bupropion 4.75 ×  10–5 2.50 ×  10–5 0.27862
2.89 ×  100 Dilantin 2.70 ×  10–5 5.00 ×  10–5 0.26769
9.00 ×  10–2 Caffeine 2.10 ×  10–5 1.01 ×  10–6 1.31665
1.20 ×  10–1 Glycerol 9.50 ×  10–6 1.40 ×  10–6 0.83172
1.30 ×  10–1 Temozolomide 1.86 ×  10–6 1.53 ×  10–6 0.08444
7.00 ×  10–1 Atenolol 1.30 ×  10–6 1.02 ×  10–5 0.89295
7.00 ×  10–2 Doxorubicin 1.00 ×  10–7 7.64 ×  10–7 0.88289
Avg. Error: 0.55040

Training dataset: Utilizing 127 °C regression to predict  Papp,X,37°C (m = 1.277; c =  − 3.65)

Input for regression  Psim(127 °C) 
(cm/s)

Papp,Exp Experimental (cm/s) Equation (2) Prediction 
(Papp,X,37°C) cm/s

Order of magnitude error:
|LogPapp,Exp − LogPapp,X,37°C|

3.73 ×  100 Propanol 3.30 ×  10–3 8.69 ×  10–4 0.57961
3.08 ×  100 Ethanol 1.10 ×  10–3 6.94 ×  10–4 0.20028
2.51 ×  100 Nicotine 1.73 ×  10–4 5.47 ×  10–4 0.49977
2.11 ×  10–1 Ketoprofen 8.00 ×  10–5 3.02 ×  10–5 0.42368
7.40 ×  10–2 Bupropion 4.75 ×  10–5 8.85 ×  10–6 0.72969
1.83 ×  10–1 Dilantin 2.70 ×  10–5 2.55 ×  10–5 0.02430
5.72 ×  10–2 Duloxetine 1.66 ×  10–5 6.55 ×  10–6 0.40395
7.73 ×  10–2 Atenolol 1.30 ×  10–6 9.31 ×  10–6 0.85523
1.20 ×  10–1 Nadolol 1.00 ×  10–7 1.56 ×  10–5 2.19264
Avg. Error: 0.46457
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BBB permeability is to reproducibly obtain sources of 
hBMEC and other supporting cell types [71], and one solu-
tion has been to source the cells from human induced pluri-
potent stem cells (iPSCs). Our methodology has used the 
to-date best available experimental data [56, 67], but there 
are still notable differences in the epithelial cell lines utilized 
in the transwell assay (MDCK, Caco-2), which are different 
from brain endothelial cells (hBMECs). The passive perme-
ability across the cell membrane is affected by the native 
size of cells. In general, epithelial cells are much thicker that 
brain endothelial cells. Thus, the permeability coefficients 
measured in epithelial cell-derived cell lines and hBMECs 
may be inherently different.

Similarly for computational methods such as MD simula-
tions with high performance computing, there are limitations 
[19]. These reside primarily with their ability to obtain suf-
ficient sampling statistics in order to converge metrics such 
as permeability estimates. Using either the ISD framework 
or our flux-based method, convergence at 310 K remains 
highly challenging, and for flux-based methods, computa-
tionally intractable for permeabilities <  10–6 cm/s [26]. Our 
MD model does not model the paracellular pathway, only 
the transcellular pathway. Among the other challenges of 
using MD simulations of CNS penetration is reconciling 
the choice of model with the experimental setup. To date, 
no simulation attempt is known to model the paracellular 
pathway, which is the transport of drugs across the tight 

Fig. 5  Least-squares regression using external dataset (N = 4). Red: 
Least-squares fit regression of LogPsim vs LogPapp with N = 18 
compounds (167  °C) and N = 13 (127  °C), indicating the resulting 
regression y = mx + c. For 167 °C, m = 1.124, c =  − 4.819, R2 = 0.59, 
p-value = 0.00021. For 127  °C, m = 1.17, c =  − 3.73, R2 = 0.54, 
p-value = 0.0042. Green: External verification set (N = 4) not included 
in the regression set

Table 3  Comparison of room-temperature permeabilities from (i) experiment, (ii) regression prediction and (iii) Arrhenius extrapolation from 
multiple high-T simulations

IH denotes in-house measurement. The order of magnitude absolute error is between (i) and (ii)

Molecule Papp experimen-
tal (cm/s)

Papp References Equation (1) Predic-
tion (Papp,X,37°C) cm/s

Psim, 37°C (cm/s) Arrhe-
nius extrapolation from 
[26]

Order of magnitude error:
|LogPapp,Exp − LogPapp,X,37°C|

Atenolol 1.30 ×  10–6 [59] Adson (1995) 1.01 ×  10–5 9.38 ×  10–6 0.89
Bupropion 4.75 ×  10–5 [56] Summerfield (2007) 2.48 ×  10–5 1.18 ×  10–6 0.28
Dilantin 2.70 ×  10–5 [56] Summerfield (2007) 4.97 ×  10–5 2.31 ×  10–5 0.26
Duloxetine 1.66 ×  10–5 [60] Hellinger (2012) 6.17 ×  10–6 4.86 ×  10–7 0.43
Effexor 6.00 ×  10–5 [60] Hellinger (2012) 3.23 ×  10–5 9.70 ×  10–6 0.27
Ethanol 1.10 ×  10–3 [57] Brahm (1983) 1.77 ×  10–4 1.58 ×  10–1 0.79
Ibuprofen 2.70 ×  10–5 IH 3.44 ×  10–5 1.45 ×  10–6 0.10
Ketoprofen 8.00 ×  10–5 [61] Sun (2002) 1.38 ×  10–4 8.68 ×  10–5 0.24
Nadolol 3.30 ×  10–7 [62] Yamashita (2000) 9.31 ×  10–6 1.25 ×  10–5 1.45
Naproxen 3.90 ×  10–5 [63] Pade (1998) 1.12 ×  10–4 2.30 ×  10–5 0.46
Nicotine 1.78 ×  10–4 [64] Garberg (2005) 1.96 ×  10–4 2.16 ×  10–1 0.05
Propanol 3.30 ×  10–3 [57] Brahm (1983) 3.58 ×  10–4 3.06 ×  10–1 0.97
Ritalin 2.47 ×  10–5 [65] Yang (2016) 8.24 ×  10–5 2.69 ×  10–3 0.52
Caffeine 2.10 ×  10–5 IH 1.01 ×  10–6 3.27 ×  10–2 1.32
Doxorubicin 1.00 ×  10–7 [60] Hellinger (2012) 8.01 ×  10–7 4.68 ×  10–2 0.90
Ethosuximide 9.00 ×  10–6 [56] Summerfield (2007) 1.03 ×  10–5 2.40 ×  10–1 0.06
Glycerol 9.50 ×  10–6 [66] Shah (1989) 1.44 ×  10–6 2.00 ×  10–2 0.82
Temozolomide 1.86 ×  10–6 [67] Avdeef (2012) 1.56 ×  10–6 3.12 ×  10–2 0.08
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junctions of the BBB. This is partly due to the complexities 
in building a cell–cell system to represent the paracellular 
pathway. The paracellular pathway is crucial for the overall 
transport of drugs across the BBB, and further research is 
needed to accurately model this pathway.

A deep understanding of the molecular mechanisms 
underlying BBB transport is crucial for the development of 
effective therapeutics for CNS disorders. Further research is 
needed to understand how these mechanisms are affected by 
disease states, such as BBB dysfunction in neurodegenera-
tive and psychiatric disorders [4]. This will provide insights 
into how the BBB can be targeted to enhance drug delivery 
to the brain in these disorders, and how future simulation 
topologies can be developed to better capture these affects.

In addition to the scientific value of the proposed method, 
it is also important to consider the practicality, scalability 
and cost-effectiveness for routine use in drug development 
and discovery [72]. This method is easy to implement and 
is fast and cost-effective and it should be able to handle 
large sets of compounds, as is typically required in a drug 
discovery pipeline. The use of high-T methodology has a 
cost-saving component that is well documented [73], and 
the use of GPU technology is a further cost-saving measure 
that scales well. As a next step, the approach outlined here 
could be combined with a combinatorial chemistry array 
of compounds as input for unbiased presynthetic screening 
for a library of drugs for optimizing BBB penetration via 
chemical modification.

Conclusion

We describe an advance in the development of the in silico 
design and optimization of CNS drugs. By using a single 
high-temperature simulation that requires between 24 and 
72 h of user time on a conventional GPU computing node, 
our method predicts a relative ranking in CNS penetration 
for novel compounds using a dataset of simulated per-
meabilities. In the future, this technology can be applied 
to lower temperature simulations, pending suitable hard-
ware advances, and can easily be integrated into a larger 
and more efficient platform accelerating drug discovery 
(e.g., to screen a library of compounds and find candidates 
that enhance brain exposure). In particular, the current 
framework is applicable to any atomically parameterizable 
chemistry, including peptides and other biologicals, which 
are not currently covered by many in silico techniques.

By simulating a library of interest at high temperature 
and constructing a regression from the dataset of Psim,167C 
versus Papp it is possible to do relative permeability pre-
diction rankings for arbitrary compounds compared to 
a dataset of simulated permeabilities. The user needs to 

input a single simulation at high-T to perform a ranking 
of the compound at 37 °C to get a fit with a mean error 
to experiment below one (0.44–0.55) order of magnitude.

The wealth of detailed information provided by atomic-
resolution simulation trajectories can be used to identify 
lead compounds through high-throughput screening and 
pre-synthetically guide lead compound design for enhanc-
ing CNS exposure. The presented approach provides a 
rapid and efficient way to determine the transmembrane 
transport of CNS compounds and could be useful for iden-
tifying promising lead compounds early in the drug devel-
opment process.
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