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Abstract
Computer-aided approaches to ligand design need to balance accuracy with speed. This is particularly true for one of the 
key parameters to be optimized during ligand development, the free energy of binding ( ΔG

bind
 ). Here, we developed simple 

models based on the Linear Interaction Energy approximation to free energy calculation for a G protein-coupled receptor, the 
serotonin receptor 2A, and critically evaluated their accuracy. Several lessons can be taken from our calculations, providing 
information on the influence of the docking software used, the conformational state of the receptor, the cocrystallized ligand, 
and its comparability to the training/test ligands.
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Introduction

The serotonin receptor 2A (5-HT2A R) is among the main 
targets for therapeutics developed for the treatment of cen-
tral nervous system disorders and it has been shown to be 
involved in the control of mood, emotion, cognition, and 
most psychiatric diseases. [1] The 5-HT2A R belongs to the 
aminergic family of the class A G protein-coupled recep-
tors (GPCRs). The serotonin (5-hydroxytryptamine; 5-HT) 
receptor family includes 14 receptor subtypes divided into 
seven major classes (5-HT1-7 ). This classification has essen-
tially remained unchanged since 1994.  [2, 3] The 5-HT 
receptors are expressed throughout the human body, [4] 
and hence, associated with a multitude of physiological 
and pathophysiological processes. [1, 5] All the members 
of the serotonin receptor family become activated by the 

neurotransmitter serotonin. They are all GPCRs, except for 
the 5-HT3 receptor, which is a ligand-gated ion channel. 
Modulation of the activity of 5-HT receptors is an attractive 
way to influence many diseases, e.g. depression, schizophre-
nia, bipolar disorders, and Alzheimer’s disease. [6] There-
fore, and with an eye towards improving binding affinity 
and subtype selectivity of ligands of the 5-HT2A R, many 
small molecules with different scaffolds have been designed. 
They can be categorized into three main classes: ergolines, 
tryptamines, and phenethylamines. [7] Members of the lat-
ter class usually show the highest selectivity for the 5-HT2 
subtype. [8, 9]

For such ligand and drug design campaigns, computa-
tional chemistry, molecular modeling, and docking calcula-
tions have become an indispensable part, accelerating the 
first step of drug development. However, the process of test-
ing candidate small molecules, obtained from docking stud-
ies or medicinal chemistry approaches, in cell-based assays 
such as competition binding assays is a bottleneck, costly in 
both consumables and time. Thus, computational methods 
that are capable of estimating the free energy of binding of 
a molecule with high accuracy are of tremendous value in 
order to weed out non-binders as early on as possible. Nev-
ertheless, an accurate calculation of the free energy of bind-
ing for docking poses with rigorous approaches that utilize 
alchemical methods, thus accounting for the intermediate 
states, is computationally very demanding and time-consum-
ing. Hence, these methods are not suitable for application in 
a high-throughput manner.
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Linear interaction energy (LIE) approaches as end-point 
methods [10], on the other hand, only take into account 
bound and unbound states of a protein-ligand complex. 
They therefore offer higher efficiency for predicting the 
free energy of binding. These semi-empirical methods are 
based on linear approximations and have proven to perform 
well for estimating the binding free energy in a comparably 
shorter amount of time, yet with acceptable accuracy. [11] 
In this method, molecular dynamics or Monte Carlo simula-
tions are used to calculate the average of the free energy of 
binding of the bound- and unbound states. In an extension of 
LIE called “linear interaction energy with continuum elec-
trostatics” (LIECE), the MD or Monte Carlo simulations are 
replaced with energy minimization and the explicit water 
with a continuum solvent model. This makes the method 
even faster and more efficient. [12] LIECE models have suc-
cessfully been used for kinases, [13] but to the best of our 
knowledge not for GPCRs.

In the present work, we have utilized four sets of ligands 
of the 5-HT2A R in order to derive LIECE models for a fast, 
yet accurate estimation of a ligand’s binding affinity. The 
data sets were chosen such that they cover known scaf-
folds of 5-HT2A R ligands and span a range of molecular 
descriptors and affinity values. In addition, to reduce poten-
tial systematic errors, we paid attention to the experimental 
assays and chose only those ligands that had been tested 
in a radioligand binding assay with the same radioligand, 
 [3H]-ketanserin in this particular case.

We strived to not just build models, but also determine 
possible reasons for their successful or unsuccessful per-
formance. In particular, we wanted to investigate whether 
there is a clear correlation with how the underlying data 
was obtained.

While all the values for the different energy terms of 
each ligand were calculated with CHARMM, [14] we used 
two docking programs, DOCK3.7 and HYBRID, with rela-
tively different algorithms for pose generation. DOCK3.7, 
as a physics-based docking method, utilizes anchor points 
inside the protein binding pocket, trying to fit the molecules 
to these points by considering the complementarity with 
a particular ligand atom. [15] HYBRID mainly relies on 
structural data of the protein and a bound ligand and biases 
each docked molecule’s pose to the binding mode of the 
cocrystallized ligand. [16]

Moreover, we investigated the effect of the receptor struc-
ture used in the docking calculations on the quality of the 
correlation between the experimental and predicted free 
energy values. To that end, we used two inactive conforma-
tions of the receptor based on PDB ID 6A93 [17], bound to 
risperidone and ketanserin, respectively, for all data sets. For 
one of the data sets, we also contrasted the docking calcula-
tions to the inactive-state models with similar calculations 
to two active-state models. One of the active-state models 

was based on PDB ID 6A93, bound to serotonin, and one 
based on PDB ID 6WHA [18]. We evaluated the resulting 
LIECE models in terms of the correlation  R2 between the 
predicted and experimental Δ G and the root-mean-square 
error (RMSE) between these values, and also analyzed a 
potential influence of receptor conformation, data set struc-
ture, and radioligand used in the assay.

We here present and discuss our results, which may serve 
as guidelines for the development of LIECE models for other 
GPCR targets.

Results

To generate the LIECE models, we chose ligand sets that 
are based on known scaffolds of 5-HT2A R ligands and for 
which affinity values are available. Figure 1 shows the 2D 
structures of the core scaffold of each data set.

We started the docking calculations using an inactive 
model of the 5-HT2A R, termed ‘inactRisp’ in the following, 
prepared based on PDB ID 6A93 (cf. Methods). [17] We 
chose this structure because affinity values have been deter-
mined for risperidone at the wild-type receptor, allowing 
for an accurate calculation of ΔGexp values for this ligand. 
Furthermore, because we were able to base our predicted 
binding modes on an experimental structure, we reasoned 
that the energy terms for the LIECE calculation can be deter-
mined with higher confidence than in cases where we do not 
have such a template.

Another point to consider was the experimental setup 
in which the affinity values were acquired and the radiola-
beled ligand used in these,  [3H]-ketanserin. We surmised 
that using a model with ketanserin as the cocrystallized 
ligand may be more relevant in our calculations because 
it is closer to the conformation that would be observed in 
real life. Hence, we repeated the docking calculations with 
an inactive-conformation model of the 5-HT2A R bound to 
ketanserin, inactKeta (cf. Methods), using DOCK3.7 and 
HYBRID.

Pose evaluation for the LIECE calculation

The pose evaluation step was the bottleneck of the process. 
This was true even though the 5-HT2A R has a relatively well-
defined pocket, in which the polar interaction with  D1553.32 
(the superscript indicates Ballesteros-Weinstein number-
ing [19]) is known to be necessary for receptor activation. 
Moreover, the role of other residues, such as  S1593.36, 
 S2425.46,  F3396.51 and  F3406.52, on regulating potency and 
efficacy of ligands has been studied extensively.  [17, 18, 
20] Deciding on the correct alignment of molecules was not 
straightforward, as poses with an “upside down” orientation 
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were generated as readily as canonical poses. The same was 
true for different orientations of flexible functional groups, 
each of which was present in various orientations.

For the purposes of this study, we tried to keep the poses 
within a data set as consistent as possible for comparability 
reasons, although this was not always possible. Poses that 
did not fulfill the constraints imposed on interactions by evo-
lution and chemistry, i.e. no interaction with  D3.32, stranded 
H-bond donors or acceptors, or solvent-exposed hydropho-
bic moieties, were not included in the LIECE calculations. 
For instance, no docking poses fulfilling these constraints 
were obtained for NBTrp in the inactKeta model when using 
HYBRID, and thus, this data set was not included in the 
LIECE calculations and analyses. Another example is the 
quinazoline data set, for which DOCK3.7 did not return any 
pose for a few of the molecules (apparent from the lower 
number of data points for the quinazoline data set in the 
DOCK3.7-related plots vs. the ones based on HYBRID; 
Fig. 2). However, if an interaction was possible in a slightly 
different orientation of the molecule in the pocket, in which 
for instance the angle or the distance between the donor and 
acceptor becomes favorable for an H-bond, then that pose 
was considered.

LIECE models

The energy terms, including van der Waals (vdW), Coulom-
bic, and desolvation, were calculated for the selected poses 
in CHARMM [14] and these terms were correlated to the 
experimentally obtained Δ G ( ΔGexp ) values. Linear regres-
sion was performed to compute the correlation coefficients 
� , � and � , respectively. The parameters were fitted with 
and without an intercept, � . Using these coefficients, pre-
dicted Δ G ( ΔGpred ) values were calculated and LIECE mod-
els were generated for each data set. The linear regression 
coefficients,  R2, and RMSE values for each LIECE model 
can be found in Tables 1, A1 and A2. We also monitored 
the stability of the LIECE models by employing leave-one-
out (loo) cross-validation analysis. Based on this analysis, 
we calculated standard deviations (std. dev.) of the fitting 
parameters and the average of ΔΔGpred (this is the differ-
ence between the ΔGpred of each individual loo model and 
the ΔGpred of the model considering all molecules of a set; 
⟨ΔΔG⟩ ). The parameters for models that we consider physi-
cally reasonable and of acceptable quality are presented in 
Tables 1. For comparison, values for models generated for 
all data sets are included in this table, too. The values for 
all other models are presented in Table A1 (with intercept) 
and A2 (without intercept).

Comparing the DOCK3.7 and HYBRID out-
comes when using the inactRisp model, both softwares 
resulted in acceptable performances in the case of the 

2,5-dimethoxy-substituted phenethylamines (2Cdrugs) and 
N-benzyl phenethylamine (NBPhe) sets. Superior RMSE 
and  R2 values were observed for HYBRID-generated poses 
 (R2 = 0.673 and RMSE = 0.819; Fig. 2). In case of the 
quinazoline set, the outcome of the two programs was very 
different. While the  R2 value for poses from DOCK3.7 
was 0.863, no correlation better than  R2 = 0.16 could be 
obtained for HYBRID. RMSE values were 0.183 and 0.581 
for DOCK3.7 and HYBRID, respectively, i.e. an overall low 
difference between ΔGpred and ΔGexp . These two models are 
hard to compare, however, because DOCK3.7 was not able 
to generate poses for all of the molecules in this data set.

No correlation between ΔGpred and ΔGexp could be 
obtained for the N-benzyl tryptamine series (NBTrp) in 
any of the programs. The very low correlation obtained for 
this data set when using the two programs was surprising 
because both HYBRID and DOCK3.7 resulted in acceptable 
poses. The latter program achieved this to a greater extent, 
presumably due to the reduced emphasis on the structural 
input from the cocrystallized ligand. We speculated that 
this may have originated from the structural dissimilarity 
between the cocrystallized ligand in inactRisp, risperidone, 
and the NBTrp core scaffold, i.e. piperidine vs. tryptamine, 
or the state of the receptor. Therefore, we docked the same 
data set to two other 5-HT2A R models; an active serotonin-
bound model based on PDB ID 6A93 generated in our group 
using MD simulations (actSer), and a structure (termed 
‘act25CN-NBOH’) prepared and modeled based on PDB 
ID 6WHA. The receptor is also in the active state in this 
structure and is bound to 4-(2-[(2-hydroxyphenyl)methyl]
aminoethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH). 
Docking calculations were performed with HYBRID to 
emphasize the structural information from the cocrystallized 
ligands. Despite reasonable poses in which the tryptamine 
moiety was placed at the bottom of the binding pocket, close 
to  D3.32,  S3.36 and  S5.46, the correlations between the experi-
mental and predicted free energy values were poor, R 2 = 
0.049 and 0.021 for act-Ser and act25CN-NBOH, respec-
tively (cf. Supplementary Figure A1).

Essentially, the same trend as for the inactRisp model 
was observed when we repeated the calculations using the 
inactKeta model (cf. Supplementary Figure A2), i.e. high 
 R2 and low RMSE values for the 2Cdrugs and NBPhe sets 
and no correlation for NBTrp. For the quinazoline set, the 
difference to the  R2 value which was observed with the inac-
tRisp model became smaller, with DOCK3.7 still showing 
superior performance.

Lastly, we pooled all the energy values calculated for 
the four data sets by each docking program and generated 
a LIECE model based on the combined data to check if 
this would improve the correlation or not. When includ-
ing all four data sets in the correlation studies, no satis-
factory result could be obtained (Table 1, Supplementary 
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Figure A3). We suspected that this may have been due to 
the negative contribution of the NBTrp set to the overall 
performance of the LIECE model (considering the poor cor-
relation between the predicted and experimental for this data 
set). Therefore, we repeated the calculations with three data 

sets, NBPhe, 2Cdrugs and quinazoline (Supplementary Fig-
ure A4). Although the correlation between ΔGpred and ΔGexp 
improved in the case of DOCK-inactRisp and HYBRID-
inactKeta, no  R2 better than 0.25 was obtained.

Table 1  Parameters for selected LIECE models derived from each data set

a arithmetic mean of the difference between ΔGpred for the full model and all the individual ΔGpred values of the loo models

INT no INT

� � � � R2 RMSE ⟨ΔΔG⟩a � � � R2 RMSE ⟨ΔΔG⟩a

DOCK-inactRisp
NBPhe 0.171 −0.032 −0.054 −2.903 0.525 1.48 0.09 0.179 −0.029 −0.085 0.514 1.46 0.13
±std. dev. 0.028 0.010 0.017 0.712 0.029 0.010 0.020
NBPhe-vdWonly 0.214 – – −3.596 0.485 2.71 1.90 0.314 – – 0.485 2.95 2.40
±std. dev. 0.018 0.581 0.003
All 0.057 −0.012 −0.022 −6.938 0.076 1.58 0.01 0.122 −0.011 −0.077 0.060 1.74 0.00
±std. dev. 0.003 0.001 0.002 0.164 0.003 0.001 0.009
All-vdWonly 0.074 – – −7.354 0.064 1.59 0.00 0.274 – – 0.064 1.96 0.00
±std. dev. 0.003 0.117 0.001
HYBRID-inactRisp
2Cdrugs 0.110 −0.004 −0.097 −0.616 0.673 0.82 0.06 0.112 −0.004 −0.104 0.673 0.82 0.02
±std. dev. 0.017 0.006 0.012 1.727 0.022 0.005 0.022
2Cdrugs-vdWonly 0.087 – – −8.729 0.391 1.15 0.03 0.386 – – 0.391 2.23 0.04
±std. dev. 0.006 0.194 0.003
All 0.021 −0.023 −0.169 6.713 0.049 1.52 0.07 0.019 −0.024 −0.093 0.032 1.95 0.07
±std. dev. 0.002 0.002 0.015 1.484 0.002 0.002 0.002
All-vdWonly −0.009 – – −10.049 0.003 1.54 0.00 0.289 – – 0.003 3.42 0.00
±std. dev. 0.001 0.019 0.000
DOCK-inactKeta
NBPhe 0.563 0.069 −0.080 13.727 0.812 0.99 0.02 0.225 0.003 −0.059 0.695 1.41 0.04
±std. dev. 0.036 0.008 0.014 1.561 0.030 0.010 0.020
NBPhe-vdWonly 0.226 – – −3.202 0.451 1.69 0.06 0.317 – – 0.451 1.80 0.00
±std. dev. 0.015 0.547 0.003
2C drugs 0.148 0.014 0.043 −8.626 0.510 1.00 0.04 0.277 0.023 −0.026 0.461 1.06 0.02
±std. dev. 0.024 0.004 0.012 1.344 0.014 0.003 0.007
2Cdrugs-vdWonly 0.131 – – −7.025 0.483 1.03 0.01 0.343 – – 0.483 1.95 0.02
±std. dev. 0.007 0.246 0.002
All −0.020 −0.008 0.002 −11.004 0.011 1.61 0.00 0.166 0.014 −0.061 0.006 1.77 0.01
±std. dev. 0.004 0.001 0.003 0.210 0.004 0.001 0.002
All-vdWonly 0.010 – – −9.646 0.002 1.63 0.00 0.267 – – 0.002 2.32 0.00
±std. dev. 0.003 0.107 0.001
HYBRID-inactKeta
2C drugs 0.249 0.093 −0.017 6.063 0.631 0.92 0.06 0.229 0.072 0.026 0.613 0.95 0.06
±std. dev. 0.023 0.017 0.017 2.041 0.019 0.012 0.018
2Cdrugs-vdWonly 0.159 – – −5.885 0.482 1.09 0.01 0.328 – – 0.482 1.58 0.01
±std. dev. 0.010 0.038 0.002
All 0.141 0.035 0.083 −10.363 0.251 1.52 0.01 0.124 0.033 −0.045 0.105 1.69 0.01
±std. dev. 0.005 0.001 0.006 0.044 0.005 0.002 0.003
All-vdWonly 0.077 – – −7.799 0.099 1.66 0.01 0.294 – – 0.099 2.30 0.00
±std. dev. 0.005 0.155 0.001
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As can be seen in Tables 1,  A1 and A2, in some cases 
linear regression coefficients do not follow the expected 
trend, i.e. they are negative for vdW and Coulombic energy 
terms and desolvation. This is particularly obvious when an 
intercept is included in regression analysis. Such negative 
coefficients are unexpected, as the energy terms themselves 
were negative for vdW and Coulombic energies and posi-
tive for desolvation. As a result, a negative coefficient would 
indicate an unfavorable contribution of the associated term. 
Looking closer into the data, we found out that � values 
are on average 10 to 11 times higher than � and 2.5 to 3 
times higher than � coefficients, suggesting that the main 
driver of ligand binding in the pocket of the receptor are the 
vdW interactions. When calculating the total electrostatic 
energy by adding up the Coulombic and desolvation terms, 
the resulting values are frequently very close to zero. This 

renders the corresponding coefficients, � and � , rather small 
and ill-defined. We hypothesize that in such situations, the 
fitting algorithm results in more or less arbitrary positive 
or negative signs of these coefficients. Hence, such models 
cannot be considered predictive. To test this, we repeated 
the fitting step by only considering the vdW energy, the cor-
responding parameters for which are included in Table 1 and 
Supplementary Table A1 and A2 (model names followed 
by "vdWonly"). If the electrostatic contribution is indeed 
negligible, this should yield models that are of comparable 
quality as the models based on all three energy terms. This 
was mostly observed, with models deteriorating in perfor-
mance only marginally. Comparing the models in which an 
intercept was forced in linear regression with those with-
out one showed the following differences: We found that 
the ‘INT’ models have improved correlation, whereas the 

Fig. 1  The 2D structures of the 
core scaffolds of the selected 
data sets. Red boxes depict the 
areas in which modifications 
have been introduced by the 
respective authors

Fig. 2  ΔGpred vs. ΔGexp plots for the LIECE models obtained for each data set with the inactRisp receptor model. Each colored frame groups the 
DOCK3.7 and HYBRID results for each data set. Color guide: NBPhe, blue box; 2Cdrugs, orange; quinazoline, yellow; NBTrp, green
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‘no INT’ models reflected the physical chemistry behind 
binding to a higher degree (i.e. had positive coefficients for 
vdW and Coulombic terms).

Evaluating the quality of the LIECE models

We selected a set of 5-HT2A R ligands with an NBPhe core 
structure as the test set. [9] The reason for choosing this 
scaffold was that the LIECE models based on NBPhe and 
2Cdrugs showed the best performance in both inactRisp and 
inactKeta models (cf. Fig. 2, Table 1, Supplementary Fig-
ure A2, and Supplementary Tables A1 and A2). We repeated 
the same steps as previously explained during docking-based 
pose prediction and LIECE calculations for this data set and 
then used the coefficients obtained for each model, listed in 
Table 1, to compute the ΔGpred values for the test set. The 
results are given in Supplementary Table A3. As expected, 
the models generated based on NBPhe and 2Cdrugs showed 
the best performance and the ΔGexp values for NBPhe and 
2Cdrugs overlap with the test set (Supplementary Fig-
ure A5). Specifically, the LIECE model generated for the 
2Cdrugs data set using the inactRisp receptor model and 
HYBRID docking poses was noteworthy with RMSE values 
as low as 0.878. Due to the small span of the ΔGexp values, 
however,  R2 values were very low even for the best model 
(data not shown). In a ligand discovery setting, arguably 
the most important region of such a plot is the lower left 
region, which contains the correctly predicted high-affinity 
ligands. Many dots in that area, and a lack of such dots close 
to the x- and y-axis (which would constitute the false posi-
tives and false negatives, respectively) would make a model 
useful even though the numerical quality criteria might be 
considered suboptimal.

In addition, we wanted to test if any of our models could 
successfully predict the binding free energy for risperi-
done, for which affinity values for the wild-type 5-HT2A R 
are available. Searching the literature, we found pK i values 
that range from 8.27 to 10, which equals ΔGexp from −11.27 
to −13.63 kcal/mol. [21–24] In the calculations we used 
the binding mode from PDB ID 6A93 and calculated the 
energy terms for this pose (cf. Supplementary Table A4). 
Mainly the quinazoline set-based models showed the best 
performance, predicting values in the same range as the  
ΔGexp . Comparing the chemical structure of risperidone with 
the molecules from the quinazoline set, we see that they 
share similarities, e.g. a pyrimidine ring in both, but there 
are also differences, such as a piperidine in risperidone vs. a 
piperazine in the quinazoline molecules. This may provide 
an explanation for the more precise Δ G prediction for risp-
eridone by quinazoline-based models — however, since the 
prediction is only for one molecule and not a set of data, no 
statistically valid conclusions can be drawn. Furthermore, 
for the quinazoline set, especially when using the inactRisp 

receptor model, the predictivity of the LIECE models was 
not consistent between different models and docking pro-
grams, limiting how useful they might be in practice.

Methods

Structure preparation

Two inactive models of the 5-HT2A R were prepared based 
on the structure with PDB ID 6A93 [17] with the protein 
preparation menu of the Molecular Operating Environment 
(MOE) software. [25] In the first model, termed ‘inactRisp’, 
risperidone was kept as the cocrystallized ligand. To obtain 
a model with ketanserin as the cocrystallized ligand, ketan-
serin was docked to the 6A93 structure with DOCK3.7. [15] 
The top-ranked docking pose of ketanserin was then mini-
mized using the MMFF94x variant of the Merck Molecular 
force field [26] in MOE. This structure will be referred to as 
‘inactKeta’ hereafter.

Two structures of the 5-HT2A R in an active conformation 
were used. One had previously been generated in our group 
based on PDB ID 6A93 following MD simulations of the 
receptor structure with a G protein to obtain an active state 
receptor bound to serotonin. The other one is based on PDB 
ID 6WHA [18], bound to 4-(2-[(2-hydroxyphenyl)methyl]
aminoethyl)-2,5-dimethoxybenzonitrile (25CN-NBOH) 
which was prepared in MOE and then used in docking 
studies.

Selection of the data sets

We searched published data sets to find those sets featur-
ing ligands with scaffolds frequently occurring in 5-HT2A R 
ligands and for which affinity values had been measured. To 
decrease the systematic error between the different data sets 
(that might lead to incomparability of the LIECE results), 
we ensured that all the ligands had been tested in the same 
experimental setup, i.e. a radio-ligand competition assay 
with  [3H]-ketanserin. In the end, four data sets were chosen 
as the training sets for the LIECE models: N-2-methoxy-
benzyl derivatives of 2,5-dimethoxy-substituted pheneth-
ylamines (2Cdrugs);  [27] N-benzyl-phenethylamines 
(NBPhe); [28]; N-benzyl-tryptamines (NBTrp); [29] and 
ligands with a quinazoline scaffold. [30] To test the quality 
of the LIECE models, a test set containing molecules with 
N-benzyl phenetylamine [9] scaffolds was chosen.
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3D conformation of the ligands

The 2D structure of the molecules was sketched in the Mar-
vin Sketch module [31] and saved in SMILES format. The.
smi inputs were then used with two different 3D conforma-
tion generation approaches, OMEGA [32] and the db2-gen-
eration pipeline, for HYBRID and DOCK3.7, respectively. 
The 3D conformations of ligands were created at pH 7.4.

Docking calculations

Docking calculations were conducted in DOCK3.7 [15] and 
HYBRID [16]. The templates, inactRisp and inactKeta, act-
Ser and act25CN-NBOH were converted to the input format 
of the two docking programs, pdb and oeb.gz, for DOCK3.7 
and HYBRID, respectively. All 3D conformers of all data 
sets were docked to the two inactive models using the two 
docking programs. Additionally, the docking calculations 
to the actSer and act25CN-NBOH were performed for the 
NBTrp data set. Three poses per ligand were generated and 
the best poses were inspected visually in Chimera [33] and 
PyMOL, [34] for DOCK3.7 and HYBRID, respectively. The 
selected poses were then saved in.mol2 format.

CHARMM inputs

The CHARMM input files for the receptor models and the 
selected poses of the ligands were generated in the "PDB 
Reader & Manipulator" and "Ligand Reader & Modeler" 
menus of CHARMM-GUI [35] (https://www.charmm-gui.
org/), respectively.

LIECE calculations

The van der Waals and electrostatic interaction energies 
were calculated for the receptor alone, each ligand alone, and 
the receptor-ligand complexes in CHARMM [14], using the 
CHARMM46b2 force field. The estimate of the free energy 
of binding of each ligand was calculated by subtracting the 
energy values for receptor and ligand alone from the respec-
tive value for the receptor-ligand complex. In all calcula-
tions, structures were minimized in CHARMM with 500 
steps of steepest descent mode followed by 1000 steps of the 
conjugate gradient algorithm, where the rms of the gradient 
was set to 0.001 kcal/mol. The van der Waals and finite-
difference Poisson calculations were done on the minimized 
structures. The cutoff for the van der Waals energy was set 
to 14 Å. For the Poisson calculations, the exterior dielectric 
constant was set to 78.5, the one for the protein to 1.0 and 
the grid spacing for the focus procedure was set to go from 

1.0 to 0.4. More details on the LIECE calculations can be 
found in refs. [12, 13].

Binding free energy estimates

The reported mean K i values of the ligands were converted 
to the free energies of binding using equation 1, where T 
was set to 298 K.

The energy terms calculated from the CHARMM-based 
LIECE calculations were fit to a three-parameter model and 
a four-parameter version including an intercept (Eq. 2).

where ΔEvdW is the van der Waals interaction energy, and 
ΔEcoul and ΔGsolv correspond to electrostatic interactions and 
desolvation penalty, respectively. All these differences are 
calculated as ΔEcomplex − ΔEprotein − ΔEligand . Parameters � , 
� and � are the scaling factors. � is the optional intercept. In 
our calculations, we examined the correlation between the 
predicted and experimental ΔG values, with and without 
considering the � constant.

Binding free energy estimates for the test set 
and risperidone

ΔGexp was calculated with Eq. 1. The NBPhe test set was 
docked to the inactRisp and inactKeta receptor models using 
DOCK3.7 and HYBRID. LIECE calculations were run for 
the selected docking poses and the coefficients ( � , � , � and 
� ) which were obtained for the various training sets (NBPhe, 
2Cdrugs, NBTrp and quinazoline) were used to calculate  
ΔGpred according to Eq. 2.

Statistical analysis

The LinearRegression module of scikit-learn 1.2.1  [36] 
was used to fit the experimental and predicted Δ G values 
using � , � , � and the optional � coefficients with a lin-
ear model. Cross-validations were performed using the  
LeaveOneOut module of scikit-learn 1.2.1. The  R2 of the 
fit and the root mean square error (RMSE) between the pre-
dicted and experimental energy values were calculated in 
scikit-learn 1.2.1. The experimental vs. predicted Δ G were 
plotted in ggplot2. [37]

(1)ΔGexp = RT ⋅ ln(Ki)

(2)ΔGpred = �ΔEvdW + �ΔEcoul + �ΔGsolv(+�)
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Discussion

Computer-aided drug discovery campaigns can benefit 
substantially from fast, yet accurate predictions of the free 
energy of binding. Despite the demand, such methods are 
still not broadly available and accessible in the field. Cur-
rently, end-point methods such as the LIE approaches are 
positioned between the computationally demanding but 
accurate rigorous alchemical methods and fast but less accu-
rate docking scoring methods. Hence, they offer a balance 
between accuracy and speed.

Here, we have used a modified version of the original 
LIE method, LIECE, which substitutes MD simulations with 
energy minimization steps and explicit solvent with a rigor-
ous treatment of continuum electrostatics. The success of 
the LIECE calculations for kinases [12, 13, 38] triggered 
the current study in which we sought to investigate the per-
formance of this method for estimating the free energy of 
binding for GPCRs.

We ran LIECE calculations for four data sets comprised 
of ligands with known core scaffolds of 5-HT2A R ligands. 
The affinity values for these molecules had been measured in 
radioligand binding assays, competing with  [3H]-Ketanserin, 
and were used to calculate ΔGexp values. Following the 
LIECE calculation and obtaining the vdW and electrostatic 
energy terms, the coefficients for a three-parameter equation 
(Eq. 2), with and without considering an intercept ( � ), were 
acquired through linear regression methods.

To account for the effect of different cocrystallized 
ligands – and thus slightly different binding sites – on the 
performance of the LIECE models, we used two inactive-
conformation models of the receptor, bound to risperidone 
and ketanserin, respectively. The reason for preparing a 
receptor structure with ketanserin was to mimic the experi-
mental setup in which the molecules needed to compete 
with ketanserin and bind to the receptor in this conforma-
tion (ketanserin-bound conformation). Furthermore, to 
inspect the effect of the different docking algorithms on 
the LIECE models, we used DOCK3.7 and HYBRID as 
docking engines. These two programs have slightly differ-
ent approaches to including the structural information of a 
cocrystallized ligand when generating poses. This can lead 
to substantial differences between the docking poses and 
hence the accuracy of the LIECE models.

Our results did not reveal any significant differences 
between the LIECE models generated with the two receptor 
structural models. The overall performance of the LIECE 
models was acceptable for two out of the four data sets, 
namely NBPhe and 2Cdrugs. As for the effect of the dock-
ing program on the quality of the LIECE models, the results 
were comparable for both softwares, as they both resulted 
in similar trends for the different data sets. However, there 

were two cases with dramatic differences between the results 
based on HYBRID or DOCK3.7 docking poses: (i) LIECE 
models for quinazoline using inactRisp showed a significant 
difference between the  R2 values for the two programs (0.8 
for DOCK3.7 vs. 0.1 for HYBRID). This, indeed, happened 
as a direct consequence of the docking program: Lower 
numbers of successfully docked ligands, yet apparently 
more congruent docking poses, for DOCK3.7, in contrast 
to a higher number of poses, yet with lower consistency, 
for HYBRID. (ii) No LIECE model could be generated for 
NBTrp using the inactKeta model with HYBRID, since 
the program failed to generate any poses with the expected 
binding profile (interaction with  D1553.32 and other residues 
of the orthosteric binding pocket of the 5-HT2AR). These 
observations emphasize the importance of considering the 
similarity between the cocrystallized ligand and the ligands 
in the data set when using programs such as HYBRID.

At the other end of LIECE performance, the models 
generated for the data set with an NBTrp scaffold did not 
perform well in any of the tested conditions. In spite of test-
ing additional different conditions for this data set, which 
included performing the calculations on the active state of 
the receptor with two different bound ligands, no correla-
tion better than  R2 = 0.14 could be obtained. Despite our 
best efforts, we were not able to find an explanation for this 
failure.

When testing our models using a test set with an NBPhe 
scaffold, we observed that the models generated based on 
ligands containing this scaffold provided the best correla-
tion. This result emphasizes the importance of the similarity 
between the training and the test sets.

To elaborate on the potential errors in our calculations 
that might have resulted in low correlations between the  
ΔGexp and ΔGpred values, we should mention the question-
able accuracy of the docking poses in some cases where no 
clear-cut decision could be made when choosing the correct 
binding mode. We believe that despite all considerations 
during docking pose evaluation, there might still be incom-
patible poses, which is reflected in the correlation plots. It 
should be mentioned that for any docking program, an aver-
age RMSD of 2-3 Å is expected between the poses and the 
experimental binding modes. [39] Such deviations can of 
course lead to less relevant binding energy values.

One other major source of error that leads to less accurate 
prediction of Δ G values is the absence of water molecules. 
In fact, although often ignored in docking campaigns, water 
molecules can have a substantial effect on binding events and 
facilitate the binding of a molecule to the receptor through, 
for instance, water bridges. In our study, we did not consider 
any water molecule in the binding pocket as no such mol-
ecule was available in the used structures, 6A93 and 6WHA.

The other underlying reason for the occasionally low cor-
relation between the predicted and experimental Δ G values 



321Journal of Computer-Aided Molecular Design (2023) 37:313–323 

1 3

may be the flexibility of GPCRs. Compared to other protein 
families such as kinases, for which LIECE models resulted 
in high correlations and low RMSE values, GPCRs are more 
flexible by nature. In fact, GPCRs are highly allosteric pro-
teins and their conformation can change quite dramatically 
in the presence of different extra- and intracellular binding 
partners, including small molecules, solvents, transducers 
such as G proteins, phospholipids, and cholesterol. There-
fore, each set of related molecules might indeed bind to sub-
tly different conformations of a receptor, thus rendering our 
assumption that we are able to treat the ΔEprotein values as 
constant moot.

Although with the tested data sets, we were not able to 
obtain a universal LIECE model for 5-HT2A R ligands, we 
were able to clarify some of the conditions in which such 
models work and also address a few of the challenges. As a 
direct conclusion of our study, it seems more reasonable to 
generate LIECE models for each data set, choosing a suit-
able receptor structure based on the training set, and not 
striving for universal LIECE models.

Conclusion

We have investigated the applicability of the LIECE 
method for the estimation of the free energy of binding for 
5-HT2A R, as one of the main targets for drug development 
for central nervous system disorders. We chose four data 
sets with representative core scaffolds of 5-HT2A R ligands 
and, following a careful pose evaluation step, generated 
LIECE models for each data set. The evaluation of the 
correlation between the ΔGexp and ΔGpred values and the 
resulting RMSE revealed that our approach was successful 
in generating predictive LIECE models for two out of four 
studied data sets, namely NBPhe and 2Cdrugs. For these 
sets a consistent trend using different receptor models and 
docking programs was observed. The predictivity of the 
LIECE models for these two data sets was further assessed 
with a test set based on the same core scaffold.

For the quinazoline derivatives, DOCK3.7 outper-
formed HYBRID, and inactKeta appeared as the receptor 
model leading to more predictive models for this data set. 
We reason that this might be due to the fact that ketan-
serin also contains a 1H-quinazoline-2,4-dione group in 
its structure, further emphasizing the point that the train-
ing data should be as close as possible to the molecules 
for which predictions are made. However, we believe that 
the LIECE models for this data set need to be improved 
by including more data points, i.e. bigger training sets. 
In the case of the NBTrp scaffold, we failed to achieve a 
reasonable correlation between the ΔGexp and ΔGpred val-
ues, despite testing different conditions. This process will 

therefore need to be repeated with more NBTrp training 
sets as they become available in the future.

In conclusion, we demonstrated that upon careful selec-
tion of a suitable receptor model for the docking stud-
ies and the docking program itself, predictive LIECE 
models are achievable. However, to create such models, 
multiple conditions – including the conformation of the 
receptor, the cocrystallized ligand, and a suitable dock-
ing program – need to be tested. Along these lines, our 
study will be expanded when more structural information 
of the 5-HT2A R becomes available. Moreover, one might 
consider different conformational states of the receptor 
in the future, to see whether more accurate estimates can 
be obtained. Of course, in prospective ligand discovery 
programs, it is hard to predict precisely which conforma-
tion is optimal.

Nevertheless, we believe that due to the flexibility of 
GPCRs, LIECE models with high correlation and low 
RMSE between ΔGexp and ΔGpred are still very challeng-
ing to achieve. Longer energy minimization steps, flex-
ible docking, the explicit consideration of (bridging) water 
molecules or short MD simulations may indeed be neces-
sary to account for the slightly different conformational 
arrangements in the binding pocket of the receptor.
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