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Abstract
Bacterial biofilms are a source of infectious human diseases and are heavily linked to antibiotic resistance. Pseudomonas 
aeruginosa is a multidrug-resistant bacterium widely present and implicated in several hospital-acquired infections. Over 
the last years, the development of new drugs able to inhibit Pseudomonas aeruginosa by interfering with its ability to form 
biofilms has become a promising strategy in drug discovery. Identifying molecules able to interfere with biofilm formation 
is difficult, but further developing these molecules by rationally improving their activity is particularly challenging, as it 
requires knowledge of the specific protein target that is inhibited. This work describes the development of a machine learn-
ing multitechnique consensus workflow to predict the protein targets of molecules with confirmed inhibitory activity against 
biofilm formation by Pseudomonas aeruginosa. It uses a specialized database containing all the known targets implicated in 
biofilm formation by Pseudomonas aeruginosa. The experimentally confirmed inhibitors available on ChEMBL, together 
with chemical descriptors, were used as the input features for a combination of nine different classification models, yielding 
a consensus method to predict the most likely target of a ligand. The implemented algorithm is freely available at https://​
github.​com/​BioSIM-​Resea​rch-​Group/​TargI​De under licence GNU General Public Licence (GPL) version 3 and can easily 
be improved as more data become available.
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Introduction

Microbial biofilms are complex consortia of bacteria 
embedded in a self-produced extracellular matrix. These 
microbial biofilms can adhere to biological or nonbiologi-
cal surfaces and differ greatly from their planktonic (single 
cells primarily in suspension) counterparts since they dis-
play metabolic heterogeneity and altered gene expression 
[1]. Biofilms typically concentrate at an interface (most 
commonly solid‒liquid), and their association with sur-
faces is mostly irreversible, complicating their removal by 
mechanical force or through rinsing [2, 3]. Their forma-
tion, development and pathogenicity depend on several 
complex factors and mechanisms. Extracellular polymeric 
substances (EPS) compose the matrix that encases the 
cells and influences the formation and development of the 
biofilm.

The study of bacteria in biofilms is important for public 
health, considering that they are more resistant to anti-
biotics and the host immune response than when in the 
planktonic state [1]. Due to the threat that they represent 
to individuals, medical [4] and industrial systems [5], 
understanding these factors and mechanisms is critical to 
develop innovative multifactorial treatments against them. 
These threats manifest particularly in healthcare. The rela-
tionship between biofilm formation and indwelling infec-
tious diseases is well reported in the literature. In 2017, 
the National Institutes of Health (NIH) estimated that over 
80% of allbacteria-related infections in humans are caused 
by biofilms [5]. In the United States, estimates point to 
over 17 million new biofilm-caused infections every year, 
resulting in 550,000 annual deaths [4, 5]. Most tissue- and 
device-related biofilm infections acquired in a hospital 
setting are caused by a relatively short list of bacteria: 
Staphylococcus aureus [6], Pseudomonas aeruginosa (P. 
aeruginosa) [7], Escherichia coli [8], and Klebsiella pneu-
moniae [9], among others [10].

As the prevalence of biofilms in clinical settings 
increases, so does the urgency to develop specific thera-
peutic strategies against these bacteria. Their increased 
antimicrobial resistance imposes a challenge in the devel-
opment of drug therapies against these structures [11]. P. 
aeruginosa is an aerobic rod-shaped gram-negative oppor-
tunistic pathogen. It forms biofilms and is responsible for 
a wide range of diseases in humans, in addition to causing 
up to 20% o hospital infections. P. aeruginosa in biofilms 
display higher resistance to external therapies and host 
defences, making their treatment extremely difficult [7, 
12]. The majority of P. aeruginosa infections are observed 
in patients with cystic fibrosis (CF) and chronic obstruc-
tive pulmonary disease (COPD) [13]. However, they are 
also involved in several urinary tract and nosocomial 

infections, in addition to invading medical devices such 
as prosthetic joints and catheters. Most of these infections 
have serious health-related consequences [7, 12]. P. aer-
uginosa pathogenicity is highly complex and depends on 
several virulence factors, and the molecular components 
related to biofilm formation and cellular attachment and 
adhesion present in P. aeruginosa can be considered pos-
sible targets to combat its pathogenicity [7, 12].

As such, in recent years, several studies have focused 
on the identification and development of molecules able to 
inhibit biofilm formation and development in P. aeruginosa 
[14–20]. While different experimental approaches can be 
used to this aim, identifying the particular protein target on 
which the given molecule is acting is significantly more dif-
ficult from a technical and economic perspective. Correctly 
identifying the protein target associated with the inhibitory 
activity of such molecules is essential for rational optimiza-
tion of their activity. Hence, the development of methods 
able to pair molecules with confirmed P. aeruginosa anti-
biofilm activity and their putative protein targets is of the 
utmost importance.

In our previous works [21, 22], we dedicated particular 
attention to seven key protein targets associated with biofilm 
formation and resistance in P. aeruginosa, namely, LasR, 
PqsA, PqsD, PqsR, RhIR, ExsA and LecB. LecB is involved 
in the adherence to target host cells [23], while the rest are 
involved in quorum-sensing (QS)/cell-to-cell communica-
tion. Using QS, bacteria can alter gene expression depend-
ing on the population density, and as such, QS pathways 
and biofilm formation are tightly related [24]. In P. aerugi-
nosa, there are four main QS systems. LasR and RhIR are 
transcriptional receptors from two different systems (the las 
and rhr systems, respectively), which bind autoinducers pro-
duced by each system synthase, inducing biofilm formation. 
PqsD, PqsA and PqsR all belong to the pqs system and are 
part of a QS activating cascade. The las system is the main 
regulator since it activates both the rhr and pqs systems [12, 
25]. ExsA is a transcriptional activator involved in the P. 
aeruginosa type III secretion system and is actively involved 
in biofilm formation [26].

Machine learning (ML) methods have been acquiring 
a growing importance in drug discovery efforts [27–30]. 
The applications of ML in drug discovery are multivariate, 
both integrated with complementary computer-aided drug 
discovery techniques such as molecular docking [31–33] 
and virtual screening [34–36] or being used on their own 
[37–40]. Furthermore, the growing availability of biologi-
cal and molecular data in online databases [41] allows the 
development of more specific and successful models. ML 
models can be divided into supervised learning (SL), where 
the training data include both the input and the target or 
desired results, unsupervised learning (UL), mostly used for 
clustering purposes, and semisupervised models, which use 
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labelled and unlabelled samples to improve the performance 
of the model [42–44]. SL can be used for classification, 
regression and clustering purposes, and several different 
models and techniques can achieve the same purpose [45].

Popular ML models include the K-nearest neighbours 
(KNN), support vector machines (SVM), neural networks 
(NN), naïve Bayes classifier (NBC), random forest (RF), 
and XGBoost. KNN is a model that compares the fea-
tures of the unknown molecule with those of the closest 
k-neighbour molecules and predicts a similar target. It is 
based on the assumption that molecules with similar fea-
tures will have similar target-binding behaviours [46]. In 
SVM, a separating hyperplane based on the input features 
is defined, and the molecules are classified according to the 
side of the hyperplane they fall into. The training dataset 
results in the definition of the hyperplane and the thresholds 
of classification. The submission of an unknown molecule 
and respective features leads the model to place it in one 
of the sides, corresponding to a predicted target [46]. NNs 
are based on the human neuron-based nervous system, in 
which several neuron layers separate the input data from the 
output response. The constant feedback between the input 
layer and the hidden neurons results in learning and train-
ing, which becomes more specific as the information moves 
through the model, allowing for accurate predictions emit-
ted by the output layer [47]. Naïve Bayes is another clas-
sifier that can be used to determine target-ligand pairs, as 
already shown by Yao et al. [48]. NBC counts the frequency 
of categories to predict probabilities for the features [49]. 
This type of classifier allows good prediction performance 
using a small amount of training data and can process large 
amounts of data with quick training times and a tolerance for 
noise [50–52]. RF combines different classification methods 
by using high-dimensional data and merging and obtain-
ing outcomes over individual decision trees. RF procedures 
were previously tested efficiently on large datasets with large 
numbers of input variables. They are relatively insensitive 
to noise and outliers [49, 53]. RF methods have also been 
applied to understand relationships between drugs over cell 
lines recurring to genomic information, drug targets and 
pharmacological information [53]. XG-Boost is an efficient 

and scalable variant of the gradient boosting machine [54] 
that can be easily parallelized and has shown a high predic-
tive accuracy. XG-Boost is characterized by an intrinsic abil-
ity to handle complex descriptor feature spaces, especially in 
cases where there is an imbalance in class distribution [55]. 
XG-Boost was used by Xing et al. [56] to detect molecules 
for targets involved in rheumatoid arthritis, and Mustapha 
et al. [57] implemented an XG-Boost model to ascertain the 
bioactive chemical potential of several molecules.

Here, we describe the development of an ensemble 
machine learning classification model to predict the most 
likely protein target of molecules with confirmed experimen-
tal antibiofilm activity against P. aeruginosa. This consensus 
model is based on a selection of nine ML models following 
initial tests involving the development of 27 different ML 
models using KNN, SVM, NN, NBC, RF and XGBoost.

Methodology

Initial database

The KEGG [58] database was searched for protein targets 
involved in biofilm formation and resistance in P. aerugi-
nosa. Each of these targets was then searched in ChEMBL 
[59], enabling the identification of ligand-target specific 
activity relationships. All ligands under the “IC50” and 
“Inhibition” categories were downloaded, and the database 
was curated to include only those with relevant values. Thus, 
we considered ligands with an IC50 above 0 and below 
600,000 nM and an inhibition percentage above 0. The final 
training database contained 231 ligands distributed over 
seven protein targets, as represented in Fig. 1. The 7 protein 
targets were used to build a multiclass (7) machine learning 
classification model.

A total of 629 chemical descriptors were calculated for 
each ligand using PaDEL [60] and DataWarrior software 
[61, 62]. These were used as input features in the classi-
fication models (Supplementary Data Table 1). Given the 
high and redundant number of features, a pipeline for feature 
reduction was applied. First, a correlation matrix between 

Fig. 1   Molecular representation 
of the protein targets included 
in this study and the number of 
ligands used per target
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features was calculated using the coefficient of determina-
tion (Pearson’s r), and one of the features above a threshold 
of 0.8 was dropped. Then, recursive feature elimination with 
a random forest estimator and 5-fold cross-validation for fea-
ture selection (RFECV) from the scikit learn Python [63, 64] 
package were used to select the 10 most relevant features as 
obtained through RFECV. All possible combinations of 4 
and 5 of these features were calculated to be used as input 
for model training, evaluation, and application.

Classification models

We have used a machine learning classification-based model 
algorithm to predict a categorical outcome considering 
the targets observed in the initial dataset (TargIDe_Full-
Database_SupplementaryTable 1). The input dataset for 
a machine learning classification-based model typically 
consists of labelled examples with features and their cor-
responding class labels (e.g., target in our dataset). The 
rationale for using a machine learning classification-based 
model development approach is that when there is similar-
ity between the data and the used features are sufficiently 
representative to classify different classes, it can accurately 
predict the class labels of new data based on the patterns 
learned from the training data. All models were developed 
with scikit learn Python packages. For model development 
and evaluation, the database was split into two sets generated 
with random sampling: (a) training (70%) and testing (30%); 
(b) training (80%) and testing (20%); (c) training (90%) and 
testing (10%). Several different machine learning classifica-
tion methods were developed and employed, namely, KNN, 
NN, SVM with 4 different kernels, NBC, RF, and XGBoost. 
The models were trained several times, first with the 10 most 
relevant features, and afterwards with combinations of 4, 
5, and 6 of these features using median values of informa-
tion gain (IG), IG ratio, Gini decrease, and chi-square (χ2). 
After training, predictions for the training and test sets were 
calculated. The metrics used to evaluate the models were 
the F1 score, Jaccard score, accuracy, precision and recall. 
These metrics were calculated for both the training and test 
set predictions. To select the better performing models and 
combinations, an average of all the metrics was calculated, 
and the results with the highest average were considered. 
The better performing combinations of 4 and 5 features from 
each model were used to re-evaluate the models by their 
attribution to a given class of two randomly selected ligands 
that were not part of the original training set. We also used 
an independent positive control database retrieved from 
https://​bioin​fo.​imtech.​res.​in/​manojk/​sigmol/​uniq_​QSSMs.​
php (SigMol). SigMol is a database of Quorum Sensing Sig-
nalling Molecules that are present in prokaryotes. We cross 
validated this database using recipient genes as targets.

Cross‑validation ROC curves

We used the JASP [65] and Orange data mining software 
(https://​orang​edata​mining.​com/) metrics generated from 
internal 5-fold and 20-fold cross-validation after bootstrap-
ping replicable sampling to evaluate and compare predictive 
performances. We ranked the features using combinations 
of 4 and 10 and evaluated the median values of IG, IG ratio, 
Gini decrease, and chi-square (χ2). We used ROC curves 
[66], a decision boundary matrix to evaluate the true and 
false positive ratios, and multidimensional scaling. The 
models were measured considering the area under the curve 
(AUC), classification accuracy (CA), F1 score, precision, 
and recall.

Applicability domain

The applicability domain of our machine learning models 
was calculated to test if the models could make reliable pre-
dictions. The applicability domain was calculated using an 
in-house Python script that transforms the features used in 
each model in the two component vectors that better repre-
sent the data. In summary, PCA1 and PCA2 are new features 
that are linear combinations of the original features, where 
the coefficients of the linear combinations are given by the 
eigenvectors of the covariance matrix. These new features 
capture most of the variance in the original data while reduc-
ing its dimensionality. The statistical method to perform this 
analysis was the principal component analysis (PCA) bound-
ing box [67]. Prediction for new compounds that fall outside 
of the applicability domain may not be reliable.

Screening

The models that resulted in the most accurate inhibitor-target 
pairing were used to screen a collection of randomly selected 
ligands from the P. aeruginosa subset of aBiofilm [68], a 
database of antibiofilm agents. Since this database is a col-
lection of biofilm inhibitors with no identified targets, it was 
used to test the usage, applicability, and consistency of the 
best performing ML models.

Implementation

The models were developed in the Python language using 
Scikit-Learn [63, 64], a Python module that integrates sev-
eral supervised and unsupervised machine learning algo-
rithms. Code development was performed in Microsoft 
Visual Studio IDE. The final ML algorithm with the model 
implementation is available at https://​github.​com/​BioSIM-​
Resea​rch-​Group/​TargI​De. The Python code was optimized 
to run in a workstation with 8 CPU cores and a minimum 
of 8 GB of RAM.

https://bioinfo.imtech.res.in/manojk/sigmol/uniq_QSSMs.php
https://bioinfo.imtech.res.in/manojk/sigmol/uniq_QSSMs.php
https://orangedatamining.com/
https://github.com/BioSIM-Research-Group/TargIDe
https://github.com/BioSIM-Research-Group/TargIDe
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Results and discussion

Feature selection

A total of 58 protein targets involved in biofilm formation 
and development in P. aeruginosa were identified in the 
KEGG database. Of these, seven had associated inhibitors in 
ChEMBL [22, 23], namely, LasR, PqsA, PqsD, PqsR, RhIR, 
ExsA and LecB. These proteins are generally considered 
primary targets for interfering with biofilm formation and 
development [69]. The curated training database contained 
231 ligands. The correlation matrix identified 378 features 
as highly correlated according to our established threshold. 
These were dropped from the database. The remaining 251 
features were subjected to an RFECV pipeline with a ran-
dom forest estimator, thereby yielding the 10 most relevant 
features, as represented in Fig. 2.

These features were GATS2e, GATS6m, GATS4p, 
GATS3m, MLFER_A, MDEO-12, LogS, MATS4p, R_
tpiPCTPC and hybridization ratio. The chemical meaning of 
these features is described in Supplementary Data Table 1.

Machine learning classification models evaluation

Each classification model was trained and evaluated with the 
10 features mentioned and with all possible combinations 
of 4 and 5 of these features. All considered metrics vary 
between 0 and 1, with 1 indicating a better model perfor-
mance, i.e., more ligands associated with the right targets 
[70]. Furthermore, similar predictive results for the train-
ing and test sets represent better predictions [71, 72]. In 
the results obtained with the 10 most relevant features for 
training dataset (90% of the initial dataset) and testing data-
set (10% of the initial dataset) [Table 1; Fig. 3], AdaBoost, 
Gradient Boosting and Random Forest achieved high scores 
across all metrics on the train set. It is important to note 

that high performance on the train set does not necessarily 
indicate good generalization to new data. The performance 
on the test set is a better indicator of how well the model 
generalizes. The cross-validation results calculates a robust 
estimate of the model’s performance compared to evaluating 
it on a single train/test split. When comparing the train and 
test set the AdaBoost and Gradient Boosting achieved high 
scores across all metrics. KNN achieved lower scores across 
all metrics on the test set compared to the train set. Based on 
the table, it appears that AdaBoost and Gradient Boosting 
achieved perfect performance on the test set with an AUC 
of 1.00 and values of 1.00 for Recall, Precision, F1 score, 
and CA. KNN had lower performance on the test set with 
an AUC of 0.91 and values of 0.54 for Recall and CA, 0.58 
for Precision, and 0.53 for F1 score. On the cross-validation 
set, AdaBoost had the highest performance with an AUC of 
1.00 and values of 0.93 for Recall, Precision, F1 score, and 
CA. On the train set, both AdaBoost and Gradient Boost-
ing achieved perfect performance with an AUC of 1.00 and 
values of 1.00 for Recall, Precision, F1 score, and CA. KNN 
had lower performance on the train set with an AUC of 0.98 
and values of 0.84 for Recall and CA, 0.84 for Precision, and 
0.83 for F1 score. In this case, the cross-validation results 
are generally consistent with the test set results. The results 
were very similar for the dataset splits with proportion train/
test, respectively 70/30 and 80/20.   

The 3 models with the best results obtained using 4 of 
the most relevant chemical descriptors as input features 
are represented in Table 2. The results show that, similar 
to the previous cases, most models performed well. Inter-
estingly, SVM with a polynomial kernel performed better 
than the linear model. NN resulted in the most similar pre-
dictions between the training and testing sets. AdaBoost 
(accuracy = 0.95), XGBoost (accuracy = 0.95), and KNN 
(accuracy = 0.96) were the better classifiers when using 4 
input features. The results obtained with combinations of 5 
and 6 features are very similar. The best performing model 

Fig. 2   Curated training database 
10 most relevant features using 
RF and selected after the recur-
sive feature elimination and 
cross-validation process
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after the cross-validation procedure is shown in Table 3. 
These results show that the boosting algorithms have 

the highest values for the different evaluation measures. 
Nevertheless, the analysis through each categorical class 
(Table 4) for XGBoost demonstrates that a higher false 
positive rate (1) is observed for the targets PqsR and RhlR. 
All the other false positive rate values for the different 
classes were lower than 0.17. These results show that our 
methodology classifiers can be used to test thousands of 
compounds, circumventing the bottlenecks of laboratory 
experiments that involve multimillion-dollar effort [72]. 

Fig. 3   Bar graphs of the 
evaluation of several clas-
sification model predictions 
on the test (10%) and training 
(90%) datasets using the 10 
most relevant features. The 
cross-validation values are also 
shown. Bar values for train/test/
cross-validation represent, from 
left to right, recall, precision, F1 
score, AUC. and classification 
accuracy (CA).

Table 1   Evaluation of several classification model predictions on the 
test and training sets using the 10 most relevant features.  The bold 
values represent the mean values of the model considering the cross-
validation, test, and train dataset

The cross-validation results are also shown. The evaluation values are 
recall, precision, F1 score, AUC, and CA

Model Recall Precision F1 AUC​ CA

AdaBoost 0.97 0.97 0.97 1.00 0.97
   Cross-validation 0.93 0.93 0.93 1.00 0.93
   Test 1.00 1.00 1.00 1.00 1.00
   Train 1.00 1.00 1.00 1.00 1.00
Gradient boosting  0.98  0.98  0.98  1.00  0.98 
   Cross-validation 0.93 0.94 0.94 0.99 0.93
   Test 1.00 1.00 1.00 1.00 1.00
   Train 1.00 1.00 1.00 1.00 1.00
 KNN  0.70  0.72  0.69  0.94  0.70 
   Cross-validation 0.73 0.74 0.73 0.92 0.73
   Test 0.54 0.58 0.53 0.91 0.54
   Train 0.84 0.84 0.83 0.98 0.84
 Neural network  0.87  0.85  0.85  0.98  0.87 
   Cross-validation 0.80 0.82 0.79 0.96 0.80
   Test 0.96 0.93 0.94 1.00 0.96
   Train 0.84 0.82 0.82 0.97 0.84
 Random forest  0.96  0.95  0.96  1.00  0.96 
   Cross-validation 0.96 0.96 0.96 0.99 0.96
   Test 0.96 0.93 0.94 1.00 0.96
   Train 0.97 0.97 0.97 1.00 0.97

Table 2   Table showing the 3 best evaluated models for the training 
and testing dataset procedures considering 4 of the 10 most relevant 
features. The bold values represent the mean values of the model con-
sidering the cross-validation, test, and train dataset

The area under the curve (AUC), classification accuracy (CA), F1 
score, precision, and recall values were used to determine the models 
with the best accuracy

Model AUC​ CA F1 Precision Recall

Gradient boosting  0.983  0.951  0.950  0.949  0.951 
   Cross-validation 0.948 0.861 0.858 0.856 0.861
   Test 1.000 0.995 0.995 0.996 0.995
   Train 1.000 0.995 0.995 0.996 0.995
AdaBoost  0.981  0.949  0.947  0.946  0.949 
   Cross-validation 0.944 0.856 0.850 0.847 0.856
   Test 1.000 0.995 0.995 0.995 0.995
   Train 1.000 0.995 0.995 0.995 0.995
Random forest  0.984  0.915  0.911  0.908  0.915 
   Cross-validation 0.956 0.828 0.822 0.818 0.828
   Test 0.999 0.962 0.958 0.958 0.962
   Train 0.999 0.957 0.953 0.949 0.957
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Table 3   Confusion matrix for 
XGBoost (showing proportion 
of actual) after cross validation 
(20-fold) of classification model 
predictions using combinations 
of 4 of the 10 most relevant 
features. The values in bold 
represent the sum of actual and 
predicted targets through the 
cross-validation process

Predicted

ExsA LasR LecB PqsA PqsD PqsR RhlR ∑ 

Actual
ExsA 100.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 16 
LasR 0.00% 94.10% 0.00% 2.40% 3.50% 0.00% 0.00% 85 
LecB 0.00% 0.00% 100.00% 0.00% 0.00% 0.00% 0.00% 27 
PqsA 0.00% 0.00% 0.00% 97.10% 2.90% 0.00% 0.00% 35 
PqsD 1.60% 3.30% 0.00% 0.00% 95.10% 0.00% 0.00% 61 
PqsR 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 0.00% 2 
RhlR 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 100.00% 5 
∑ 17 82 27 36 62 2 5 231 

Table 4   Evaluation metrics 
after the cross-validation 
procedure for each categorical 
target class present in the 
database considering the 
XGBoost machine learning 
classification model

 All metrics are calculated for every class against all other classes

Evaluation Metrics

ExsA LasR LecB PqsA PqsD PqsR RhlR Average/Total 

Support 7 33 7 8 12 1 1 69
Accuracy 0.97 0.90 1.00 0.93 0.91 0.99 0.99 0.95
Precision (Positive Predictive Value) 0.86 0.93 1.00 0.64 0.71 NaN NaN 0.83
Recall (True Positive Rate) 0.86 0.85 1.00 0.88 0.83 0.00 0.00 0.84
False Positive Rate 0.02 0.06 0.00 0.07 0.07 0.00 0.00 0.03
False Discovery Rate 0.14 0.07 0.00 0.36 0.29 NaN NaN 0.17
F1 Score 0.86 0.89 1.00 0.74 0.77 NaN NaN 0.83
Matthews Correlation Coefficient 0.84 0.80 1.00 0.71 0.72 NaN NaN 0.81
Area Under Curve (AUC) 1.00 0.86 1.00 0.92 0.94 0.00 0.68 0.77
Negative Predictive Value 0.98 0.87 1.00 0.98 0.96 0.99 0.99 0.97
True Negative Rate 0.98 0.94 1.00 0.93 0.93 1.00 1.00 0.97
False Negative Rate 0.14 0.15 0.00 0.13 0.17 1.00 1.00 0.37
False Omission Rate 0.02 0.13 0.00 0.02 0.04 0.01 0.01 0.03
Threat Score 2.00 3.11 – 0.78 1.00 0.00 0.00 –
Statistical Parity 0.10 0.43 0.10 0.16 0.20 0.00 0.00 1.00

Fig. 4   Applicability domain 
calculated for the train and 
test dataset calculated by 
PCA bounding box. The first 
principal component (PCA1) is 
the direction in which the data 
varies the most. The second 
principal component (PCA2) is 
orthogonal to the first and repre-
sents the direction of maximum 
variance that is not captured by 
the first principal component
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We also calculated the applicability domain (Fig. 4). We 
showed that the test dataset do not cross the boundaries of 
the training dataset. 

Applicability of the machine learning models using 
target‑molecule pairs

Considering the previously evaluated scores, we applied 
the models for the prediction of the target-molecule pair-
ing for two random molecules of each of the 7 protein tar-
gets included in the model. The results for this experiment 
are described in Table 5.

As expected, predictions are more accurate for the tar-
gets with a higher number of ligands in the training data-
base—LasR and PqsD. Furthermore, in situations when 
the models fail to identify the correct target, the predicted 
target is more represented in the dataset. Contrary to the 
expectation from the previous results, KNN favoured ExsA 
and failed to correctly pair most of the ligands and targets. 

The models that performed better failed to identify only 
PqsA, which can be explained by the high similarity of 
inhibitors between receptors due to their promiscuity [73].

Although the targets are very similar both in structure 
and function, the XGBoost and RF algorithms managed to 
correctly classify the ligand-target pairs. The misclassifi-
cation occurred in some cases where the dataset does not 
have sufficient information to validate the ligand accurately 
or the ligand used shows promiscuity to other targets. The 
developed pipeline is now ready to be applied as more data 
become available and more inhibitors are characterized.

The accuracy of our predicted results was in line with 
a previous comparison of ML methods for different types 
of datasets, where both the selected descriptors and algo-
rithm implementation were crucial to obtain high values of 
the cross validation metrics [71, 72]. The cross-validation 
allowed almost perfect separation for the targets represented 
in the database considering all the classes (Table 4).

Table 5   Prediction results for the target-ligand pairing between 2 randomly selected ligands for each of the 7 protein targets included in the 
model, using all the ML models with different numbers of features (FT).

Right target Random ligand A Random ligand B

PqsD LasR ExsA RhlR LecB PqsR PqsA PqsD LasR ExsA RhlR LecB PqsR PqsA

KNN 10 FT ExsA ExsA ExsA ExsA LecB ExsA ExsA ExsA ExsA ExsA ExsA ExsA ExsA ExsA
KNN 4 FT PqsD ExsA ExsA ExsA LecB ExsA ExsA ExsA ExsA ExsA ExsA LasR ExsA ExsA
KNN 5 FT ExsA ExsA ExsA ExsA LecB ExsA ExsA ExsA ExsA ExsA ExsA LasR ExsA ExsA
NN 10 FT PqsD LasR ExsA RhlR LecB LasR LasR PqsD LasR ExsA RhlR LecB LasR PqsA
NN 4 FT PqsD LasR ExsA LasR LecB PqsR LasR PqsD LasR ExsA LasR LasR PqsR PqsD
NN 5 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
SVM Linear 10 FT PqsD LasR ExsA PqsD LecB PqsD LasR PqsD LasR ExsA LasR LecB PqsD PqsA
SVM Linear 4 FT PqsD LasR ExsA PqsD LecB LasR LasR PqsD PqsA ExsA LasR LecB LasR PqsA
SVM Linear 5 FT PqsD LasR ExsA PqsD LecB LasR LasR PqsD LasR ExsA LasR LecB LasR PqsA
SVM Polynomial 10 FT LasR LasR ExsA PqsD LasR PqsD LasR LasR LasR ExsA PqsD LasR PqsD PqsA
SVM Polynomial 4 FT PqsD LasR ExsA PqsD LecB LasR LasR PqsD PqsA ExsA RhlR LecB LasR PqsA
SVM Polynomial 5 FT LasR LasR ExsA LasR LasR LasR LasR LasR LasR ExsA LasR LasR LasR PqsA
SVM RBF 10 FT PqsD LasR ExsA PqsD LecB PqsD LasR PqsD LasR ExsA PqsD LecB PqsD PqsA
SVM RBF 4 FT PqsD LasR PqsD PqsD LecB PqsD PqsD PqsD LasR PqsD LasR LecB PqsD PqsA
SVM RBF 5 FT PqsD LasR PqsD PqsD LecB PqsD PqsD PqsD PqsA PqsD PqsD LecB PqsD PqsA
SVM Sigmoidal 10 FT PqsD LasR LasR PqsD LecB PqsD PqsD PqsD LasR LasR PqsD LasR PqsD LasR
SVM Sigmoidal 4 FT PqsD LasR LasR LasR LasR ExsA LasR ExsA LecB LasR ExsA LasR ExsA LecB
SVM Sigmoidal 5 FT PqsD LasR ExsA LasR LasR PqsD LasR PqsD LasR ExsA LasR PqsA PqsD LecB
NB 10 FT PqsD LasR ExsA PqsD LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
NB 4 FT PqsD LasR ExsA LasR LecB PqsR LasR PqsD LasR ExsA PqsD LecB PqsR PqsA
NB 5 FT PqsD LasR ExsA LasR LecB PqsR LasR PqsD LasR ExsA LasR LecB PqsR PqsA
RF 10 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
RF 4 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
RF 5 FT PqsD LasR ExsA RhlR LecB PqsR RhlR PqsD LasR ExsA RhlR LecB PqsR PqsA
XG-Boost 10 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
XG-Boost 4 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
XG-Boost 5 FT PqsD LasR ExsA RhlR LecB PqsR LasR PqsD LasR ExsA RhlR LecB PqsR PqsA
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We also tested our workflow using the SigMol data-
base as a positive control using four features. We obtained 
results that showed lower AUC values for the training data-
set (< 0.91) and for the testing dataset (< 0.92) for all tested 
models. We used the features that revealed more information 
gain for all models tested. The models that performed better 
under these conditions were the random forest (AUC = 0.91), 
XGBoost (AUC = 0.90), AdaBoost (AUC = 0.88), and neu-
ral network (AUC = 0.875) models. The cross-validation 
returned the Neural Network model as the best perform-
ing model with an AUC value of 0.85. Using the database 
that represents the quorum sensing molecules for the vast 
majority of prokaryotic organisms (1372 molecules) with a 
number of categories obtained for the protein targets tenfold 
higher (n = 103 recipient genes) than the number of targets in 
the Pseudomonas aeruginosa database (n = 7), we obtained 
lower AUC values. Since the optimization of the algorithm 
for our initial database used only four features, we tested the 
prokaryotic organisms database for 10 optimized features. 
This procedure revealed no significant variation in the AUC 
values, showing values for all models between 0.72 and 0.91 
for the training dataset and between 0.74 and 0.92 for the test 
dataset. The cross-validation model that performed better 
was the neural network (AUC = 0.86). Nevertheless, some of 
the protein targets (e.g., lasR) included in our P. aeruginosa 
database showed an ROC curve in the prokaryotic dataset 
with a higher true positive rate and lower false positive rate 
(Fig. 5).

Algorithm applicability for large scale datasets

The goal of the developed classification models is their 
application in situations where the specific protein target 
for an experimentally confirmed inhibitor is unknown. In 

experimental settings, the ability to determine the molecular 
protein target would enable further directed studies to design 
new derivatives of the initial molecule, optimizing structures 
to improve its affinity to the target.

To test the large-scale applicability of the workflow, 
several P. aeruginosa biofilm-inhibiting compounds were 
downloaded from the aBiofilm database. After descriptor 
calculation, these were submitted to the better performing 
classification models that attributed a target to each com-
pound, as represented in Table 6. The compounds are identi-
fied by their ID code from the database.

This screening shows that in most cases, the nine models 
selected are in high agreement, indicating a considerable 
probability of protein‒target prediction for each ligand. Fur-
thermore, as the available data increase, the potential of this 
methodology to correctly identify the other targets could 
significantly increase, as the new results will further enable 
the improvement of the ML models used. Our computer-
aided drug design (CADD) analysis based on ML mod-
els can be used as a complement to the omics approaches 
used to understand biofilm biology, such as metagenomics, 
transcriptomics, metabolomics, and proteomics [74]. Our 
model is even more relevant, as most human clinical and 
therapeutic inhibitors have general/broad-spectrum appli-
cations (e.g., chlorhexidine or cefazolin), which impose a 
more target-directed approach for specific biofilm-forming 
species and therapeutic applications. Some applications of 
these target-specific inhibitors are already in clinical trials 
[75, 76], showing that using the right models could expand 
this type of approach to biofilms.

Fig. 5   ROC One-vs-rest curve 
for the 5 target (gene) classes 
with higher number of samples 
considering the best performing 
model (gradient boosting) for 
the training SigMol dataset. The 
graph shows the mean of the 
true positive rate (TP rate) and 
the false positive rate (FP rate)
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Example of Use

The implementation of the machine learning models using 
an Orange software workflow was used to simplify the 
evaluation of the different models (Fig. 6). To replicate this 
methodology using our database, the following steps can 
be followed:

1.	 The database file of P. aeruginosa molecules with antibi-
ofilm activity should be downloaded from https://​github.​
com/​BioSIM-​Resea​rch-​Group/​TargI​De.

2.	 Download the automatic workflow implementation file 
(Orange software *.ows file) from the same location.

3.	 Load the workflow file in Orange software.
4.	 Import the database file using the “import csv file” 

widget.
5.	 The calculations will run automatically.
6.	 The results can be visualized using ROC analysis and a 

confusion matrix.

Conclusions

Biofilms are an emergent issue that contributes to bacterial 
multidrug resistance. The urge to develop new and target-
based drugs has led to a shift in the drug-design paradigm 
in the last decade, further inspiring collaborations between 
experimental and theoretical studies. Frequently, promising 
anti-biofilm inhibitors for different bacteria are identified, 
with no knowledge of the precise protein target on which 
they are acting. A correct identification of the protein target 
directly involved in the inhibitory activity of a molecule is 
essential for optimization of its activity through the devel-
opment of new derivatives with improved target affinity. In 
this work, we propose a workflow to correctly identify the 
most likely protein targets of molecules with confirmed P. 
aeruginosa anti-biofilm activity.

Combining CAAD techniques such as database curation, 
chemical descriptor calculation, feature selection, machine 
learning classification model development, and database 
screening, the optimized workflow is now ready to be 
applied to new molecules, as more data become available 
and characterized. The developed workflow can easily be 
adapted and applied to other biological and chemical issues, 
suggesting a new way of approaching the initial issues of 
antibiofilm drug design.
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