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approaches [1]. Many contemporary compound collections 
are strongly enriched with aromatic and other unsaturated 
compounds, due to the preferential use of efficient synthetic 
approaches such as palladium coupling reactions, giving 
rise to planar compounds with limited or absent 3D features 
[2]. Especially for developing PPI inhibitors, such predomi-
nantly “flat” molecular templates are typically unsuitable. 
Hence, there is a growing interest in utilizing scaffolds for 
design that are rich in sp3 hybridized centers, thus having 
pronounced three-dimensional (3D) character and the abil-
ity to adopt compact molecular shapes.

Peptidomimetics are compounds designed to mimic the 
bioactive conformation of isolated peptides or specific pep-
tide segments in proteins. While peptidomimetic design has 
a long tradition in drug discovery, it continues to be chal-
lenging, depending on the particular target and its ligand 
binding characteristics. This especially applies to the design 
of PPI inhibitors that are required to disrupt large protein-
protein interfaces because in such cases, binding of a single 
small molecule must compensate for the free energy gained 
by large complementary protein surfaces forming many 
specific interactions.

Grossmann proposed four different classes of peptido-
mimetics: Class A-modified peptides (formed by α-amino 
acids with small backbone and side chain differences) ; 
Class B-modified peptides/foldamers (formed by amino 
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Abstract
Mimicking bioactive conformations of peptide segments involved in the formation of protein-protein interfaces with small 
molecules is thought to represent a promising strategy for the design of protein-protein interaction (PPI) inhibitors. For 
compound design, the use of three-dimensional (3D) scaffolds rich in sp3-centers makes it possible to precisely mimic 
bioactive peptide conformations. Herein, we introduce DeepCubist, a molecular generator for designing peptidomimetics 
based on 3D scaffolds. Firstly, enumerated 3D scaffolds are superposed on a target peptide conformation to identify a 
preferred template structure for designing peptidomimetics. Secondly, heteroatoms and unsaturated bonds are introduced 
into the template via a deep generative model to produce candidate compounds. DeepCubist was applied to design pepti-
domimetics of exemplary peptide turn, helix, and loop structures in pharmaceutical targets engaging in PPIs.
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acids with varying backbone and side chain iterations); 
Class C-structural mimetics (synthetic scaffolds with sub-
stitution sites corresponding to peptide side chain vec-
tors); and Class D-mechanistic mimetics (small molecules 
mimicking the mode of action of peptides in the absence 
of side chain resemblance) [3]. Class C peptidomimet-
ics completely replace the backbone of the parent peptide 
with a small molecule and reproduce the original side chain 
arrangements with its substituents. As a design premise, the 
development of peptidomimetics based on highly saturated 
bridged scaffolds, which can adopt complex shapes and 
enable the placement of functional groups in a variety of 
spatial arrangements for forming specific interactions can 
be expected to improve target selectivity and also potency 
compared to more planar scaffolds with less 3D character. 
This is the case because substitution sites in planar scaf-
folds have very limited ability to match the geometry of side 
chain arrangements across multiple amino acids in protein 
secondary structure elements. By contrast, 3D scaffolds 
increase the potential to precisely mimic side chains in pep-
tides and match pharmacophores resulting from bioactive 
peptide conformations.

Scaffolds with new topology can in principle be obtained 
by computational enumeration of ring systems. For exam-
ple, construction of a database called GDB4c containing 
916,130 possible ring systems composed of up to four indi-
vidual rings has been reported, enabling the discovery of 
new kinase inhibitors with previously unobserved chiral-
ity and shape [4]. For peptidomimetic design, 3D scaffolds 
must also be shape-diverse. Moreover, they must be capable 
of closely matching and replacing different peptide second-
ary structure motifs. At the same time, individual scaffolds 
should preferably be rigid to minimize entropic penalties 
upon binding.

Herein, we introduce DeepCubist, a molecular genera-
tor relying on deep learning for designing peptidomimet-
ics based on previously unobserved 3D scaffolds and report 
initial proof-of-concept applications. In practice, the best 
fitting 3D scaffolds can be identified for turns, loops, or heli-
cal segments in structures of target proteins of interest and 
chemically diversified to obtain peptidomimetic candidates 
for interfering with PPIs. Hence, the DeepCubist approach 
complements and further extends structure-based design of 
PPI inhibitors by generating peptidomimetics with varying 
chemical features.

Development of DeepCubist

Methodological Concept

DeepCubist is conceptualized to include two design stages, 
as illustrated in Fig. 1. At the first stage, a preferred scaffold 
for reproducing spatial side chain arrangements of a target 
peptide is determined. Therefore, a database of 3D scaffolds 
with methyl groups initially placed at three substituent posi-
tions is constructed, enabling initial superposition of the 
scaffold and Cα-Cβ bond of the target peptide. At the second 
stage, heteroatoms and unsaturated bonds are introduced 
into selected frameworks to provide further functionalities 
and support synthetic accessibility.

Template scaffolds

Construction of DeepCubist’s scaffold database began with 
defining a qualifying 3D scaffold as a tricyclic or tetracy-
clic bridged ring system consisting of 5- and/or 6-membered 
rings. This scaffold definition can be modified for different 
applications depending on the specific requirements. Our 
definition ensured that scaffold structures could be chemi-
cally diversified compared to, for example, bicyclic systems 
while restricting theoretically possible chemical complexity 
and hence increasing the likelihood of achieving synthetic 
accessibility. For our proof-of-concept investigation, so-
defined scaffolds consisting of 10 to 14 carbon atoms were 
then systematically generated as illustrated in Fig. 2.

1) Six fused or bridged bicyclic systems consisting of 5- 
and/or 6-membered rings were computationally constructed 
as starting points (the number can be varied).

2) Tricyclic ring systems were then exhaustively gener-
ated by extensions of bicyclic systems with fragments com-
prising m carbon atoms added to any pair of ring atoms. 
From the resulting tricyclic ring systems, tetracyclic struc-
tures were obtained by addition of fragments with n carbon 
atoms to every atom pair of the tricyclic systems. Hence, 
(m, n) fragment combination were defined to obtain target 

Fig. 1 An overview of DeepCubist. The two major stages of the com-
putational design approach are illustrated
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scaffolds with 10 to 14 carbon atoms, depending on the size 
of the original bicyclic system.

For example, for bicyclic ring system 1 consisting of 
eight carbon atoms, (m, n) = {(2, 0), (1,1)} were used to 
exhaustively construct scaffolds with 10 carbons. As a result 
of these operations, a total of 1347 bridged ring systems 
were obtained at this stage.

3) The generated tri- and tetracyclic candidate structures 
were then filtered to collect chemically feasible 3D scaffolds 
with limited strain energy. Scaffold conformers were gen-
erated using the “ligand preparation” option of Discovery 
Studio 2020 [5] and conformers with a “clean energy” value 
of no more than 100 kcal/mol were collected, yielding 405 
different 3D scaffolds with no chiral information.

4) Finally, combinations of three substituents were added 
to each 3D scaffold, in each case permitting the presence 
of at most one quaternary carbon for ease of synthesis (the 
number of substituents can vary). The introduction of sub-
stituent combinations resulted in a total of 28,440 unique 
carbon atom scaffolds with no chiral information. These 
carbon atom scaffolds can be classified as 3D cyclic skel-
etons, following the hierarchical scaffold definition of 
Bemis & Murcko [6]. These skeletons served as input for 
the design of final 3D scaffolds containing heteroatoms and 
unsaturated bonds, as further described below.

Generative model

Once 3D carbon skeletons are generated, they must be con-
verted into chemically meaningful scaffolds. For this pur-
pose, DeepCubist employs a deep generative model based 

on SMILES strings [7] as a standard text-based molecular 
representation. Such generative models have been applied, 
for example, to construct target-focused virtual libraries [8] 
or natural product-like compounds [9], demonstrating the 
ability to generate chemical structures of varying complex-
ity. For training such models, SMILES of existing com-
pounds are often augmented with randomized SMILES [10] 
to support learning of the chemical language encoded by 
string representations. As a deep learning architecture, a 
transformer  model from natural language processing was 
selected [11]. Different from other sequence-to-sequence 
models, transformer models operate on the basis of atten-
tion mechanisms that identify and highly weight the most 
important representation elements for achieving accurate 
predictions during the training phase [11]. As further dis-
cussed below, the transformer model was trained to convert 
3D carbon scaffolds into compounds containing heteroat-
oms and unsaturated bonds, that is, candidate compounds 
with chemical features amenable to synthesis.

Source and target structures for training

Drug- and natural product-like compounds were retrieved 
from ChEMBL version 30 [12] and COCONUT  [13], a data-
base of natural products, respectively. A total of 1,914,739 
ChEMBL and 406,919 COCONUT compounds were 
obtained, referred to as original compounds. For model der-
ivation, all possible target (output) structures were extracted 
from the original ChEMBL and COCONUT compounds by 
removing all exocyclic atoms from primary ring substitu-
ents and replacing removed fragments with a hydrogen atom 
(including, for example, ester, amide, or sulfone moieties), 
as illustrated in Fig. 3. Thus, target structures represented 
consistently defined scaffolds with primary substituents for 
deep learning and candidate structures for further chemical 
modifications. Source (input) structures were then obtained 
by converting target structures into cyclic skeletons through 
replacement of all heteroatoms with carbons and conversion 
of all bond orders to 1 (single bonds), as also illustrated in 
Fig. 3. After original compounds were decomposed, target 
structures with no more than eight atoms in individual rings 
and {C, N, O, S, F, Cl, Br, I} elements were collected for 
modeling. A total of 53,075 pairs of target and correspond-
ing source structures were obtained. The use of these pairs 
of corresponding source and target structures for model der-
ivation provided the basis for the generation of 3D scaffolds 
containing heteroatoms and unsaturated bonds from our 
newly generated database of 3D carbon skeletons described 
above. The 53,075 target structures were found to contain 
268 of the total of 405 enumerated 3D scaffolds; hence, the 
remaining 137 scaffolds were novel.

Fig. 2 Generation of a 3D scaffold database
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for model derivation, as illustrated in Fig. 4 A. After source 
and target SMILES were augmented by generating addi-
tional SMILES rooted at each atom using RDkit [18], newly 
generated SMILES with smallest edit distance were paired 
using the sequence alignment module implemented in 
Biopython [19], as shown in Fig. 4B. In accordance with the 
DeepCubist design strategy, heteroatoms in target SMILES 
were replaced with carbon atoms to obtain corresponding 
source SMILES. Then, the additional SMILES strings were 
aligned with the original source SMILES using the “pair-
wise2.align.globalxx” function of Biopython. In the align-
ment, identical characters obtain a score of 1, otherwise 
the score is 0. Since source structures were generated from 
target structures, gaps (“-”) in aligned SMILES strings can 
only occur in source SMILES.

String representations for training

For converting scaffolds into compounds using SMILES-
based deep generative models, substitution sites in input 
structures are often marked as wild-card sites such as “*” 
to enable chemical diversification [14–16]. Furthermore, 
transformer-based retrosynthetic predictions have been 
improved by minimizing the edit distance between aug-
mented input and output SMILES strings compared to 
unique canonical SMILES [17]. The edit distance between 
two SMILES strings is defined as the number of editing 
operations consisting of insertion, deletion, and substitu-
tion for transforming one string into the other. Correspond-
ing SMILES representations with minimized edit distance 
closely link these representations for learning, which tends 
to reduce errors rates. In our study, this strategy was applied 

Fig. 4 Molecular representations. (A) illustrates the generation and (B) the alignment of source and target SMILES for transformer training

 

Fig. 3 Source and target structures for training the transformer model
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Exemplary applications

Scaffold retention

Initially, the effect of minimizing the edit distance between 
source and target SMILES was assessed. For transformer 
models trained using pairs of canonical SMILES (Fig. 6 A) 
or augmented and aligned SMILES (Fig. 6B), the loss value 
during validation was lower for augmented and aligned 
SMILES. Furthermore, for canonical SMILES, input struc-
tures were only poorly retained in target structures. After 
generating 100 unique structures using skeleton 7 as input 
with the model trained for 30 epochs, only nine target struc-
tures were found to completely retain the ring systems and the 
positions of substituents of source structures. In many cases, 
output structures with different ring sizes were obtained. By 
contrast, when the model was trained over 30 epochs with 
augmented and aligned SMILES, structure retention signifi-
cantly increased. Using the same skeleton 7 as input, 99 of 
100 newly generated structures exactly matched the compo-
sition and topology of the source structures.

The model was further evaluated using 100 randomly 
selected skeletons as input. In this case,  sampling of 100 
new structures yielded ~ 94% string validity, ~ 99% input 
structure retention, and 100% output structure novelty 
(Fig. 6 C).

Designing peptidomimetics

Having confirmed that the trained transformer model could 
effectively retain input structures during scaffold genera-
tion, DeepCubist was used to design exemplary peptidomi-
metics. To assess the general applicability of the approach, 
three types of peptide secondary structure were selected as 
starting points including peptide turns, helices, and loops. 
For each of the examples discussed below, a consistent 
number of 100 unique scaffolds was sampled. Furthermore, 
as an initial assessment of synthetic feasibility, the synthetic 
accessibility (SA) score according to Ertl & Schuffenhauer 
[21] were calculated using RDkit. The SA score ranges from 
1 (easy synthesis) to 10 (very difficult) [21].

Turn mimetics

The tripeptide Glu-Asp-Leu is an inhibitor of HIV-1 pro-
tease. X-ray crystallography revealed that this tripeptide 
adopts a turn-like bioactive conformation in the active site 
of the enzyme [22]. The Cα-Cβ bonds of the tripeptide were 
superimposed on attachment points of 3D skeletons stored 
in DeepCubist’s database using the “rdAlignment.GetAlign-
mentTransform” module of RDkit. Tetracyclic skeleton 8 
was discovered to best reproduce the side chain orientations 

Model derivation

Pairs of source and target structures were randomly divided 
into 42,990 training (90%) and 4777 validation set (10%) 
instances. Following data separation, the SMILES aug-
mentation and alignment steps were carried out. Original 
SMILES were iteratively augmented with randomized 
SMILES to obtain a total number of 168,137 pairs for train-
ing and 18,624 pairs for validation. A multi-head attention 
transformer model was constructed using Pytorch [20]. 
SMILES tokens were embedded in 512 dimensions, the 
number of heads was set as 8, the number of sub-layers 
in both encoder and decoder units was set to 3, and the 
dimensionality of the feed-forward network model was set 
to 512. For all remaining parameters, default settings were 
used. The model architecture including parameter settings 
is schematically illustrated in Fig. 5. For structure genera-
tion, SMILES tokens were sampled according to the learned 
probability distribution.

Scripts for the calculations and the data can be obtained 
via the following link:

https://www.dropbox.com/s/4gdhew9xjit43e4/Deep-
Cubist_Materials.zip?dl=0.

Fig. 5 Transformer architecture and parameter settings
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Helix mimetics

The peroxisome proliferator-activated receptor-γ (PPAR-γ) 
is a transcription factor that interacts with steroid receptor 
co-activating factor-1 (SRC-1) via the LxxLL motif pre-
sented by an α-helical peptide structure [23]. This LxxLL 
motif is widely observed at protein-protein interfaces [24]. 
If peptidomimetics were designed to precisely mimic vary-
ing conformations of this motif at different interfaces, selec-
tive PPI inhibitors might be obtained. Following the same 
calculation route as described above, DeepCubist identified 

of the tripeptide in its bioactive conformation with a sum of 
squared deviations (SSD) value of 0.944 Å2 (Fig. 7). The 
structure of skeleton 8 was not found in compounds used 
for model training. With five-fold augmentation of the skel-
eton 8 input SMILES, 100 unique output molecules retain-
ing the input structure were obtained, 98 of which contained 
heteroatoms and double bonds. For the 100 structures, the 
mean SA score was 6.17, indicating reasonable synthetic 
accessibility.

Fig. 6 Model derivation. Results of transformer training and valida-
tion are shown including the evolution of the loss function (left) and 
input/output scaffolds (right) for (A) canonical or (B) augmented and 

aligned SMILES. (C) Analysis results are reported for 100 randomly 
selected skeletons
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Loop mimetics

Modulation of nuclear factor erythroid 2-related factor(Nrf2) 
and Kelch-like-ECH-associated protein 1 (KEAP1) has been 
identified as an attractive therapeutic strategy for interfering 
with oxidative stress-related diseases such as cancer, neu-
rodegenerative, cardiovascular, metabolic, or inflammatory 

tetracyclic skeleton 9 as the best available template for 
developing peptidomimetics, with an SSD value of 1.28 Å2 
(Fig. 8). Of 100 newly generated 3D scaffolds, 98 retained 
the input structure. In this case, the mean SA score was 6.52.

Fig. 8 Design of helix mimetics

 

Fig. 7 Design of turn mimetics. Shown is the skeleton that best repro-
duced the side chain orientations of the tripeptide turn in its bioactive 
conformation with the corresponding sum of squared deviations (SSD) 
value obtained after rigid-body superimposition of the corresponding 

atom pairs (including Cα and Cβ atoms of the peptide residues). In 
addition, exemplary output structures are shown. Figures 8 and 9 are 
represented accordingly
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scaffolds, for which different methodological avenues such 
as template- or reaction-based design can be considered.
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diseases [25]. Nrf2 was identified to form a peptide loop 
structure (different from well-defined turns) at a hot spot of 
Nrf2-KEAP1 interaction, indicating the potential of loop 
mimetics as inhibitors of this interaction [26]. DeepCubist 
identified unique tetracyclic skeleton 10 hat –to our knowl-
edge– has thus far not been considered in drug discovery 
and design (Fig. 9). The SSD value for the superimposition 
was 0.156 Å2. In this case, 85 of 100 unique output 3D scaf-
folds retained the input skeleton. The mean SA score for 
generated 100 scaffolds was 6.60.

Conclusion

In this study, we have introduced DeepCubist, a molecular 
generator for the design of peptidomimetics. DeepCubist 
includes a specialized database of complex sp3-rich skele-
tons as templates for design and a transformer model trained 
to convert preferred skeletons into viable 3D scaffolds 
including heteroatoms and unsaturated bonds. Minimizing 
the edit distance of input and output SMILES was found to 
be a simple and effective way to control overfitting and tune 
the transformer for the construction of chemically mean-
ingful 3D scaffolds retaining input structures. To establish 
proof-of-concept for DeepCubist’s design capacity, we have 
reported peptidomimetic designs for different peptide sec-
ondary structure motifs in high-profile therapeutic targets. 
While mostly favorable synthetic accessibility scores are 
obtained so far for newly generated 3D scaffolds, sp3-rich 
compounds have often more limited synthetic accessibility 
thancombinations of popular aromatic ring systems. There-
fore, future work will primarily concentrate on ensuring 
a high degree of synthetic feasibility of newly generated 

Fig. 9 Design of loop mimetics
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