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Abstract
Accurately predicting free energy differences is essential in realizing the full potential of rational drug design. Unfortunately, 
high levels of accuracy often require computationally expensive QM/MM Hamiltonians. Fortuitously, the cost of employing 
QM/MM approaches in rigorous free energy simulation can be reduced through the use of the so-called “indirect” approach 
to QM/MM free energies, in which the need for QM/MM simulations is avoided via a QM/MM “correction” at the classical 
endpoints of interest. Herein, we focus on the computation of QM/MM binding free energies in the context of the SAMPL8 
Drugs of Abuse host–guest challenge. Of the 5 QM/MM correction coupled with force-matching submissions, PM6-D3H4/
MM ranked submission proved the best overall QM/MM entry, with an RMSE from experimental results of 2.43 kcal/mol 
(best in ranked submissions), a Pearson’s correlation of 0.78 (second-best in ranked submissions), and a Kendall � correla-
tion of 0.52 (best in ranked submissions).

Keywords Host–guest binding · Force-matching · SAMPL8 · QM/MM free energy · Binding free energy

Introduction

The ability to accurately compute free energy is fundamental 
to most (if not all) of rational drug design [1, 2]. Quantities 
such as binding affinities, acidity constants, and partition 
coefficients are intrinsically tied to free energy differences 
and only highlight this demand. Numerous computational 
approaches have come to fruition to answer the call for reli-
able free energy predictions [3–5]. The breadth of rigor 
encompassed by these techniques within the computational 
chemistry community is vast, ranging from purely empirical 
to strictly ab-initio based.

Unfortunately, in practice, the sheer number of ways 
available to compute free energy differences makes selecting 

an appropriate method an almost unwieldy task, as test-sets 
across methodological benchmarks tend to be dissimilar, 
making “apples-to-apples” comparisons impossible. To 
address the need for unbiased evaluations of the various 
free energy methodologies peddled throughout the compu-
tational community, the Statistical Assessment of the Mod-
elling of Proteins and Ligands (SAMPL) challenge seeks to 
systematically appraise the current state of computational 
approaches for computing free energy [6–11]. One of the 
most popular components of the SAMPL challenges is the 
prediction of host–guest binding affinities. The ability to 
accurately perform a virtual screening for a library of ligands 
against a potential target protein or properly ranking poten-
tial therapeutics against a known binding compound is vital 
to the drug design process. Thus, it is no surprise that the 
reliable prediction of binding free energies lies at the heart 
of rational drug design.

Accomplishing this goal requires a faithful and versatile 
energetic description that encapsulates various chemical 
moieties and nuanced covalent/non-covalent interactions. 
Mixed quantum mechanical/molecular mechanical (QM/
MM) methods are well-suited for this task, but employ-
ing QM/MM Hamiltonians in free energy simulations is 
often prohibitive, as the cost of performing the relevant 
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dynamics is quite egregious. Even if the computational 
expense can be ameliorated, the need for alchemical tricks 
(e.g., soft-core potentials [12, 13]) essentially necessitates 
the use of MM. Thus, the indirect approach to free energy 
is a popular strategy for achieving QM/MM free energies 
by performing the brunt of calculations at a classical level 
and simply “correcting” to a QM/MM level of theory 
(see Fig. 1) [14–19]. To keep the requisite free energy 
differences between levels of theory tenable, it is often 
desirable to use the Zwanzig equation (e.g., Free Energy 
Perturbation, FEP, see Eq. 1) [20], as the sampling is all 
performed classically and the QM/MM energetics can be 
trivially post-processed. It should be noted that Eq. 1 only 
works whenever there is sufficient configurational overlap 
between the MM and QM/MM levels of theory.

This work presents a culmination of QM/MM-based 
attempts at computing binding free energies for the SAMPL8 
drugs-of-abuse challenge. This particular challenge involved 
predicting the binding free energy of several narcotics, such 
as cocaine, morphine, and fentanyl to curcurbit-[8]-uril [21, 
22]. A list of all seven challenge compounds, as well as the 
host molecule, can be seen in Fig. 2 (see [23]).

Results herein are obtained in a two step process. First, 
classical parameters are obtained through QM intra-molecu-
lar force-matching [25–33], the rationale being that selecting 
parameters that best reproduce forces at the desired level of 
QM theory will produce better results through the indirect 
cycles (i.e., convergence of Eq. 1 will be easier to achieve). 
Binding free energies are then computed with the force-
matched (FM) parameters, and corrections are computed at 
thermodynamic end states. This manuscript solely focuses 
on indirectly obtained QM/MM binding free energies. Fur-
ther discussion on the classical results (e.g., with FM param-
eters) can be found in a companion work.

Methods

Parameterization

All parameters herein are based on the potential energy 
function utilized by the CHARMM forcefield [34]. Initial 
host/guest CHARMM parameters were obtained with the 
Paramchem server [35] and designated herein as the “C36” 
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Fig. 1  Themodynamic cycle used for computing QM/MM free 
energy indirectly. By computing each of the legs (ii), (iii), and (iv), 
it is possible to use the cycle closure to obtain (iii) + (iv) − (ii) = (i) , 
the desired QM/MM free energy difference

Fig. 2  Molecules of interest for 
the SAMPL8 drugs of abuse 
CB[8] host–guest binding chal-
lenge. Image was provided by 
the SAMPL coordinators [23, 
24]
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parameter set. The host parameters were reused from a pre-
vious (SAMPL6) competition, designated as “S6” CB[8]. 
Details of the S6 parameterization process, as well as their 
overall performance, can be found in [36, 37]. For molecule 
G5 (Ketamine), we opted to model both the R & S enanti-
omers of ketamine, which in principal should give identical 
outcomes when bound to an achiral host in achiral solvent. 
Since the experimental results were obtained at a pH of 7.4 
[38], and the experimental pH of ketamine is about 7.5 [39], 
both protonated and neutral ketamine were considered, giv-
ing a total of 4 parameter sets for G5 (i.e., either R or S 
enantiomer, and either protonated or neutral). The guest 
compound p Kavalues, found in a corresponding literature 
search, are summarized in SI (Table S1).

As the use of FM potentials proved beneficial in 
SAMPL6, we opted to incorporate a similar workflow into 
the present SAMPL8 challenge [37]. That is, all parameters 
governing bonded degrees of freedom (e.g., bonds, angles, 
dihedrals, etc.) were fit via QM intramolecular force-
matching. Lennard-Jones (LJ) terms were carried over from 
CGenFF [40] (based on Paramchem assignment), and partial 
charges were fit via QM charge fitting. The goal of using FM 
based parameters is that by forsaking transferability, one can 
create parameters that have higher configurational overlap 
with the target Hamiltonian of interest (e.g., QM/MM) and 
thereby allow easier convergence of free energy differences 
between levels of theory [37].

Assigning non‑bonded parameters

Using Q-Chem and following along the flowchart shown 
in Fig. 3, all the guest molecules were subjected to geom-
etry optimizations with MP2/6-31G* [41, 42], whereas the 
host was optimized with B3LYP/6-31G* [43, 44] to reduce 
computational expense. We attempted to obtain charges 
that would be most similar to what would be found in the 
CGenFF force field, thus a benchmark of 19 small rigid mol-
ecules found in CGenFF was performed with various charge 
fitting schemes and ranked based on RMSE from the original 
CGenFF charges. The results of the benchmark (details can 
be found in SI, section S1) demonstrated CM5-symmetrized 
[45] charges with HF/6-311G** and PCM [46] implicit sol-
vent provided the lowest RMSE from the CGenFF refer-
ence, and thus was used in this study. As mentioned prior, LJ 
parameters were kept consistent with CGenFF via the initial 
assignment based on the Paramchem server.

Assigning bonded parameters

Employing the C36 parameter sets for the guest (and S6 
for the host), 100 ns of gas-phase Langevin Dynamics (LD) 
without non-bonded interaction cutoffs was generated via 
CHARMM at 300 K with a collision frequency of 5 ps−1 , a 

timestep of 1 fs, and a coordinate snapshot saving frequency 
of 10 ps [34]. From the 10,000 collected configurations per 
molecule, QM1 force calculations were performed on each 
snapshot at the MP2/6-31G(d) [41] (B3LYP/6-31G(d) for 
the host), �B97X-D/def2-SVP, PM6-D3H4, and GFN-2 lev-
els of theory using Psi4 [51], MOPAC [52], and XTB [48] 
respectively. Classical non-bonded forces (LJ and Coulomb) 
were removed from the QM-computed force to focus the fit 
solely on the intramolecular terms (i.e., bonds, angles, dihe-
drals, etc). Force matching proceeded via the ForceSolve 
program, which incorporates a Bayesian formalism that 
obtains parameters by minimizing a log-likelihood function 
of the observed QM forces [37, 53]. Urey-Bradley terms 
were omitted from fits, as numerical issues can arise in the 
force-matching process [54], and the functional form of the 
potential (e.g., dihedral multiplicities, improper dihedrals 
where present, etc.) were carried over from the initial Para-
mchem assignment. In a few cases where force constants 
for dihedrals were unfeasibly high (e.g., greater than 50 
kcal/mol), the multiplicities were tweaked to obtain viable 
torsional parameters while maintaining reasonably similar 
residuals. Manual adjustments to dihedrals were based on 
the FM parameters obtained with PM6-D3H4 and kept con-
sistent across other FM parameter set (i.e., dihedral multi-
plicities were kept identical during force-matching across 
different QM/MM Hamiltonian for each molecule). A sum-
mary of the various FM parameters can be found in Table 1.

Pose generation and system setup

Each of the guest molecules was docked into CB[8] using 
GalaxyDock [55, 56], with 3–5 unique poses identified 
per host–guest pairing. Pose refinements were obtained by 
employing GBMV implicit solvent model in CHARMM 
with a center-of-mass restraint between the guest and host 
(vide infra), as well as RMSD restraints on the host and 
guest individually. Successive short MD simulations fol-
lowed in which the force constants of the restraints were 
relaxed.

Implicit solvent refinement details

Generated poses were placed into a cylindrical restraint 
that protruded through the CB8 host, with the z-axis of 
the cylinder defined by the two midpoints of the oxygens 
along the top and the bottom of the CB[8] host, and a 
cylinder radius of 6.2 Å. Initial conformations of bound 

1 QM herein is used to designate the use of either semi-empirical 
QM (SQM; e.g., PM6-D3H4 [47] or GFN-2 [48]) or ab-initio/density 
functional theory (DFT; e.g., BLYP [44, 49], �B97X-D [50], etc.) 
Hamiltonians.
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poses were maintained with a heavy-atom RMSD restraint 
of 200 kcal/mol⋅Å2 and with a maximum allowable RMSD 
of up to 1 Å, whereas an absolute RMSD restraint held the 
host fixed in Cartesian space about the origin with a force 
constant of 999 kcal/mol⋅Å2 . The guest was then further 

dragged into the host via a flat bottom harmonic restraint 
between center-of-masses of the host and the guest to keep 
the COM distance below a specified value (i.e., 2 Å for 
G3 and G4, 6 Å for G2, and 3 Å for G1, G5, G6, and G7). 
With an initial force constant of 0.001 kcal/mol⋅Å2 , the 

Fig. 3  Flowchart used in the 
intramolecular force-matching 
process
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Table 1  Breakdown of the 
different classical Hamiltonians 
relevant to the QM/MM 
submissions for the SAMPL8 
challenge

Classical FF key Charge treatment Bonded treatment

S6 Parameters from SAMPL6 (host only)
FM(GFN-2) HF/6-311G**/PCM/CM5s FM with GFN-2
FM(PM6-D3H4) HF/6-311G**/PCM/CM5s FM with PM6-D3H4
FM(�B97X-D) HF/6-311G**/PCM/CM5s FM with �B97X-D/def2-

SVP
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RMSD restraint on the guest is removed and a series of 5 
ps GBMV implicit solvent LD simulations are ran, with 
the next subsequent simulation increasing the host–guest 
COM distance force constant by a factor of 10, up to a 
maximum of 10 kcal/mol⋅Å2 (i.e. five sequential simula-
tions). All of these simulations were run using a 5 ps−1 
coefficient of friction, without non-bonded cutoffs and a 
timestep of 1 fs.

System setup

Both the bound poses and the individual guests were 
solvated in a 55 Å cubic water box of TIP3 water molecules. 
Sodium cations were added as needed to neutralize the sys-
tem, and 2 additional sodium/chlorine ion pairs were added 
in order to replicate the experimental ionic strength of 0.15 
M. All simulations herein were performed using LD with 
a timestep of 1 fs, a temperature of 298.15 K, a friction 
coefficient of 5 ps−1 , a 1 ps coordinate saving frequency, 
particle-mesh Ewald for electrostatic treatment, and a poly-
nomial potential switching function between 10 and 12 Å for 
LJ interactions. Simulations were performed with OpenMM 
version 7.4.2 on GPUs [57]. No bond or angle constraints 
were used on either the host or guest. Host–guest bound 
complexes were maintained via a flat bottom potential with 
a force constant of 1.5 kcal/mol⋅Å2 with an offset of 5.5 Å to 
ensure the guest remained bound. Each system underwent a 
brief 1 ns NPT LD simulation using a Monte-Carlo barostat 
set to 1 atm with a frequency of 25 steps.

Free energy simulations

All classical binding free energies were obtained through the 
scheme outlined in Fig. 4.Starting from the guest–host com-
plex (GH, top right, Fig. 4), the guest � is bound within the 
host � (generation of binding poses is described in the next 
section). To ensure that the guest remains within the host, a 
flat-bottom harmonic COM restraint is applied between the 
guest and the host, corresponding to a free energy contribu-
tion �A��

restr off
 (Eq. 4). The so-called “double-decoupling” 

method (DDM) [58, 59], in which electrostatics and van 
der Waals interactions are sequentially disabled on the guest 
compound, is used to make the guest “vanish” from inside 
the host. Then, the free energy of deactivating the COM 
restraint for the unbound guest is accounted for via the free 
energy of changing to a standard state �A�+�

restr off
 (Eq. 6) [36]. 

Since the guest has no intermolecular interactions, the envi-
ronment is switched from guest–host complex to guest free 
in aqueous solution without incurring any energetic pen-
alty. At this point, the guest has intermolecular interactions 
restored through a second DDM calculation2.

Using the DDM approach, electrostatics on the guest mol-
ecules were gradually “shut-off” over 5 simulations ( �-states 

(2)�Abind = �A�+�

DDM
− �A�+�

restr off
− �A��

DDM
+ �A��

restr off

Table 2  �-state schedule, with accompanying decoupling parameters for van der Waals ( �vdW ) and electrostatic ( �elec ) interactions defining each 
�-state

�-states 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

�vdW 1.0 1.0 1.0 1.0 1.0 1.0 0.81 0.64 0.49 0.36 0.25 0.16 0.09 0.04 0.01 0.00
�elec 1.0 0.8 0.6 0.4 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

G+H GH

Goff +H Goff +H (Goff +H)restr (GH)restr

∆Abind

∆AG+H
DDM

∆A = 0 ∆AG+H
restr off

Eq 6

∆AGH
DDM

∆AGH
restr off

Eq 4

Fig. 4  The cycle used for computing the classical binding free energy. 
The guest bound-state is designated as GH, whereas the guest free 
in solution (or rather, infinitely seperated from the host) is labeled 
as G+H. The term “off” is used to indicate the deactivation of non-

bonded (e.g., electrostatic and van der Waals) interactions on the 
guest compound. Subscripts ”restr” denotes a restraining potential 
is active, and “restr off” refers to the deactivation of the restraining 
potential . See Eq. 2 for a summary equation

2 The aforementioned workflow is effectively a procedure to comput-
ing the “unbinding free energy” (e.g., going from a bound guest to a 
guest free in solution)—which simply yields the opposite of the bind-
ing free energy.
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0–5), followed by the deactivation of guest van der Waals 
interactions over an additional 10 simulations ( �-states 
5–15). Details of the 16 successive �-states are listed in 
Table 2. Deactivation of the guest electrostatics was accom-
plished by simply scaling partial charges on the guest solute, 
whereas van der Waals deactivation was performed with the 
so called “soft-core” LJ potential as given by the following 
equation,

All 16 alchemical simulations were performed independently 
and simultaneously. Alchemical functionality was provided 
through a specially modified variant of the Alchemy module 
in OpenMM Tools based on fixes provided in one of the last 
SAMPL challenges [60].

Starting from snapshots obtained from the final step of 
the aforementioned NPT equilibration, each lambda-state 
underwent a 500 steps minimization. An NVT equilibration 
run of 1 ns followed, based on the consensus box-length 
obtained from the second half of the NPT equilibration. 
From this, production simulations were run for 15 ns, giv-
ing a total of 15,000 snapshots per lambda-state. Energies 
for each lambda-state were calculated on the fly per snapshot 
using the AlchemyFlow module from the RickFlow in-house 
code [61], and the deactivation free energies �ADDM were 
computed via MBAR [62].

Restraint free energy

To account for the effect of the flat-bottom potential on the 
binding free energy, we consider the two contributions to 
the free energy: (1) �A��

restr off
 , the free energy of turning the 

restraint off at � = 0 and (2) �A�+�

restr off
 , the free energy of 

turning off the restraint at � = 15.
For � = 0 , host–guest interactions are unperturbed, and 

for a well-bound system the COM distance between the 
guest and host stays fairly stable. In this situation, the free 
energy of turning off the restraint can be determined using 
the FEP method, which yields

where

(3)

ULJ
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At � = 15 , the guest electrostatics and van der Waals terms 
are deactivated (i.e., �vdw = �elec = 0 ). Therefore, the flat-
bottom restraint will only act as a restriction of the space 
the guest explores. Hence, the free energy of deactivating 
the COM restraint �A�+�

restr off
 corresponds to the free energy 

of changing to standard state (e.g., changing from the effec-
tive volume explored through the COM restraint, Veff , to 
the concentration corresponding to the standard state, V0 ). 
Based on the work of [63], we can compute the free energy 
of releasing the restraint as

where V0 = 1661 AA3 as the volume corresponding to 
standard state concentration. Using this, and approximating 
(albeit, an overestimation) Veff as

we arrive at

where rmax is the maximum observed COM distance between 
the host and guest, and rmin the minimum observed COM 
distance between host and guest [59, 63–65]. Values for rmin 
and rmax are found in SI Table S5, with the largest rmin at 
0.27 Å, and thus having a maximum contribution of about 
0.08 Å3.

G5 p K
a
 correction

As mentioned prior, both protonated and neutral ketamine 
(G5) were considered as to incorporate relevant p Ka effects 
on the binding free energy. Given that the ketamine p Ka 
in solution is known (pKa(aq) = 7.5, which is close to the 
experimental pH of 7.4), the p Ka of bound-state ketamine 
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Fig. 5  Thermodynamic cycle used to indirectly compute the bound 
ligand p K

a
 . Quantities (ii) and (iii) are binding free energies, com-

puted as described in section ‘Free energy simulations’, and (iv) is 
known from the guest p K

a
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can be indirectly obtained through computing both the pro-
tonated and neutral binding free energies ( �AG+

bind
 and �AG

bind
 , 

respectively), and applying the thermodynamic cycle seen 
in Fig. 5.

S imp le  man ipu l a t i on  a l l ows  u s  t o  f i nd 
�AG+

→G
GH

= (iv) + (iii) − (ii) , and therefore we arrive at the 
following expression for the bound state p Ka:

Finally, the pH dependent binding free energy is determined 
by the equation [66, 67],

(7)pKa(G,bnd) = pKa(G,aq) +
��AG+

→G
bind

RT ln 10
.

(8)�A
pH=7.4

bind
=�AG+

bind
−

1

�

log

[

1 + 107.4−pKa(G,bnd)

1 + 107.4−pKa(G,aq)

]

(9)=�AG
bind

−
1

�

log

[

1 + 10pKa(G,bnd)−7.4

1 + 10pKa(G,aq)−7.4

]

Indirect QM/MM practical scheme

After calculating the classical binding free energies with FM 
potentials, we then aimed to compute QM/MM binding free 
energies. The cycle of Fig. 1 can be extended for obtaining 
QM/MM binding free energies as shown in Fig. 6.

In this case, we chose to only perform the QM/MM 
correction on the guest compounds. Although there is no 
conceptual barrier for correcting the host as well, the size 
of the host would make the convergence of these QM/MM 
free energy corrections dubious at best. The contributions 
required to obtain the indirect QM/MM binding free energy 
are summarized in the following:

Calculating the free energy difference between the MM and 
QM/MM levels of theory is done through FEP (Eq. 1). To 
this end, 10 ns of NVT LD simulation were performed for 
every guest both in bound state and free in solution, saving 
out a total of 10,000 configurational snapshots per end-state 
per guest. Four QM/MM methods were selected as target 
levels of theory, consisting of two SQM (PM6-D3H4 and 
GFN-2) and two DFT ( �B97X-D and BLYP) approaches. 
For the DFT based methods, the MM regions were treated 
as either a field of point charges or by “smearing” charges 
through fitting to delocalized Gaussians (i.e., Gaussian blur-
ring) [68]. A blur width of 1 Å was used for all QM/MM cal-
culations with Gaussian blurring. A summary of the various 
levels of theory, MM charge treatments, and software used 
for computation can be found in Table 3. Standard devia-
tions of the free energy difference were computed via block 
averaging using 10 blocks of 1000 snapshots each.

Since QM/MM Ewald is not fully supported for all the 
QM levels of theory employed, QM/MM energies were 
evaluated without cutoffs or Ewald. Instead, following 
the logic of Refs. [37] and [70], classical energies were 
also obtained with and without cutoffs or Ewald, and the 
difference of the two was used to obtain the so-called 
“PBC” energy ( UMM

PBC
= UMM

w/PBC
− UMM

noPBC
 ). From this, the 

relevant energies for evaluating the Eq. 1 were setup as 
UMM = UMM

noPBC
+ UMM

PBC
 and UQM/MM = U

QM/MM

noPBC
+ UMM

PBC
 , 

(10)
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Fig. 6  The cycle used for the indirect calculation of QM/MM binding 
free energies. H and G respectively designate the host and guest sys-
tems, and (G H) the guest–host complex

Table 3  List of target QM/MM levels of theory and the MM levels of theory through which the corrections are computed

Key QM level of theory MM treatment Host treatment Corrected from Software

PM6-D3H4 PM6-D3H4 Electrostatic potential S6 FM(PM6-D3H4) MOPAC16 [52]
GFN-2 GFN-2 Point charges S6 FM(GFN-2) XTB [48]
�B97X-D �B97X-D/def2-SVP Point charges S6 FM(�B97X-D) Q-Chem 5.2 [69]
�B97X-D[blur] �B97X-D/def2-SVP Gaussian blur S6 FM(�B97X-D) Q-Chem 5.2
BLYP BLYP/6-31G* Point charges S6 FM(�B97X-D) Q-Chem 5.2
BLYP[blur] BLYP/6-31G* Gaussian blur S6 FM(�B97X-D) Q-Chem 5.2
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giving �UMM→QM/MM = �U
MM→QM/MM

noPBC
 . Inherently, the 

underlying assumption is that the contributions from Ewald 
for QM/MM and MM do not differ drastically. In the case 
of the two SQM/MM calculations, the energy of the MM 
environment as well as the QM/MM van der Waals inter-
actions between solute-environment (which are modelled 
with classical van der Waals potentials) were added in post-
processing through CHARMM.

QM/MM correction metrics

Although a plethora of methods exist for evaluating the con-
vergence quality of a free energy calculation, most require 
sampling both end states of interest. Since sampling the QM/
MM surface is prohibitive, we restrict our focus to metrics 
applicable to “one-sided” (i.e., only requiring sampling of 
the FM/MM configurational space) approaches. In previous 
work, it has been shown that the standard deviation of poten-
tial energy difference between FM/MM and QM/MM, as 
well as the so-called bias measure, can give insight as to 
when free energy calculations with FEP fail. In regards to 
�

[

�U
(FM→QM)/MM

FM/MM

]

 (i.e., the standard deviation of the poten-
tial energy difference from the FM/MM ensemble), larger 
values are associated with poor convergence due to a sparse 
collection of snapshots truly contributing to the exponential 
average (i.e., snapshots occupying the lower energy tail of 
the �U  distribution). As a rule of thumb, keeping 
�

[

�U
(FM→QM)/MM

FM/MM

]

≤ 4kBT ( ≈ 2.4 kcal/mol) is desirable (the 
smaller the better).

The second metric, the bias measure, indicates the pres-
ence of bias in a free energy estimate [71–73]. By assuming 
that the spread of �U(FM→QM)/MM is similar between FM/MM 
and QM/MM surfaces, the bias measure can be applied to 
our one sided approach, taking the form

where �L is the Lambert function, and �A(FM→QM)/MM is the 
FEP estimate evaluated with a configurational sampling of 
size N. Following the recommendations of Refs. [72, 73], � 
should be greater than 0.5 (the larger the better). Take note 
that this condition is necessary but not sufficient: although 
failing to have a 𝛱 > 0.5 or a �

[

�U
(FM→QM)/MM

FM/MM

]

≤ 4kBT can 
cast doubt onto the converge of the FEP estimate, satisfying 
both criteria does not guarantee convergence.

(11)

� =

�

�L

�

1

2�
(N − 1)2

�

−

�

2�
�

⟨�U(FM→QM)∕MM
⟩FM/MM − �A(FM→QM)∕MM

�

Results and discussion

Overview of results

Results for the 6 QM/MM submissions, as well as the three 
FM-based submissions they are corrected from, are found 
in Table 4 and Fig. 7. From a cursory glance, a few obser-
vations can be made. First, the PM6-D3H4 submission is 
easy to discern as our best QM/MM submission (as well 
as our best submission overall), with a RMSE of 2.4 kcal/
mol. Similar success was achieved using PM6-D3H4 in the 
SAMPL6 challenge by the Ryde Group [74], and served as 
inspiration for utilitizing it in SAMPL8. Predictions based 
on GFN-2 also performed rather well3 with a RMSE of 
2.9 kcal/mol. Although correlation statistics are compara-
tively high amongst the QM/MM submissions ( � is between 
0.58–0.79 [75] and Kendall-� is between 0.43–0.62 [76]), 
RMSE is the more indicative metric of success due to the 
rather small sample size of 7.

Some noteworthy observations can be made about the 
effects of correcting FM to QM/MM on our SAMPL8 sub-
missions. First, FM(PM6-D3H4) did reasonably well, but 
improved remarkably after the QM/MM correction step. 
This is not the first time that PM6-D3H4 has shown good 
results for binding free energies in the SAMPL challenges 
[36]. The semi-empirical GFN-2 was a popular QM/MM 
choice in this challenge, with 3 other GFN-2 based meth-
ods submitted by other groups. However, our GFN-2 results 
outperformed these in every single metric of interest (see 
Table 5).

The FM(GFN-2) results were somewhat poor, but drasti-
cally improved upon correction (RMSE went from 5.16 to 
2.94 kcal/mol). The results for correcting FM to QM/MM 
with DFT, however, seemed to either offer little improve-
ment (e.g., going from FM(�B97X-D) to �B97X-D/def2-
SVP), or worsen results. Of particular note is the systemati-
cally poor performance of DFT in predicting the G7 binding 
free energy. In previous work, we found underestimates of 
this magnitude, to the point of suggesting non-binding, were 
indicative of a problem with the FM parameters (vide infra 
section ‘Metrics for the indirect approach’).

Charge blurring, as a whole, worsened results. For 
BLYP/6-31G* calculations, there was a net increase in 
RMSD of about 0.5 kcal/mol, whereas for the �B97X-D/
def2-SVP calculations the RMSD went up by about 2.1 kcal/
mol after using blurring. These findings are not entirely 
unexpected, as results are often dependent on selecting the 
correct blur width, for which the correct choice is not always 

3 The GFN-2 entry was omitted from the original verified submis-
sions due to a minor scripting issue resolved (unfortunately) shortly 
after the submission deadline.
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transferable among different QM levels of theory (e.g., the 
appropriate blur width for BLYP/6-31G* and �B97X-D/
def2-SVP will not be the same) [68]. Overall, the SQM per-
formance was markedly better than the DFT results. It is 
worth noting BLYP was included because of its good per-
formance when computing solvation free energies in past 
works, but it is generally considered less robust in compari-
son to common methods (e.g., �B97X-D, B3LYP, etc.), and 
its poor results here are not too surprising [77]. The results 
for �B97X-D/def2-SVP, excluding G7 (RMSE ≈ 2.86 kcal/
mol), show promise for this level of theory if executed cor-
rectly. A summary of pre- and post-QM/MM correction 
binding free energies can be found in Fig. 8 and plots illus-
trating the associated change in binding free energy for each 
guest can be found in Fig. 9.

Metrics for the indirect approach

One of the most important steps in indirectly computing 
QM/MM free energy is to determine the degree to which 
results are converged. In particular, one way to check how 
well force-matching improved our indirect scheme is to 
compare how the metrics �

�U and � change when using a 
standard force field (e.g., CGenFF) versus a FM description. 
In principle, changing from CGenFF to FM should improve 
both statistics, with � getting large and �

�U getting smaller 
(i.e., 𝛥𝛱 > 0 and 𝛥𝜎

𝛥U < 0).
Since the force-matching is performed in gas-phase, one 

would expect improvements to be much larger in gas-phase 
than in solution. However, we anticipate that trends observed 
based on comparing the change in metrics when computing 
�A

MM→QM
gas  should be consistent with �AMM→QM/MM

aq  (e.g., if 
the calculation fails when going from FM to QM in gas-
phase, it will most likely fail for FM/MM to QM/MM in 
solution as well). The resulting metric changes for each guest 
in gas-phase is shown in Table 5 for PM6-D3H4 and GFN-2. 

Overall, the changes are somewhat modest, with guests G1, 
G2, G3, G4, and G6 demonstrating decent improvement. For 
guest G7, the quality of correction deteriorated when using 
a FM description, indicating a bad fit most likely stemming 
from overenthusiastic manual tweaking of dihedral multi-
plicities. This observation also explains why the DFT results 
were rather poor for G7.

The results for the four G5 compounds are rather per-
plexing. Although, in principle, the parameter sets between 
enantiomers with the same charge should be identical, the 
force-matching procedure produced subtle differences in the 
resulting fit for each enantiomer pair. This discrepancy is 
likely due to the inherent limitation of finite sampling. That 
is, the sampling of configurations between the two enanti-
omers is similar, but not perfectly identical due to different 
initial starting conditions (such as different random starting 
velocities). In the limit of infinite sampling, the ensembles 
would theoretically be identical. Coupling the initial devia-
tions with the need to tweak dihedral multiplicities for each 
parameter set (e.g., the adjustments to multiplicities for R-
G5 were different than the adjustments for S-G5), these fac-
tors only exacerbated the differences in the quality of FM fit. 
However, one must note that the quality of correction based 
on the metrics of Table 5 for the G5 derivatives seem to be 
Hamiltonian dependent, with GFN-2 based parameters only 
improving the correction as compared to the deterioration 
observed for the R enantiomers with the �B97X-D/def2-
SVP based parameters. Since dihedral forms remain constant 
across Hamiltonians, this likely indicates that the fitting of 
dihedrals in the force-matching procedure will potentially 
have a large dependence on the Hamiltonian of interest (e.g., 
different levels of theory might require different dihedral 
multiplicities).

Small inconsistencies found within the ForceSolve soft-
ware during the fitting procedure also attracted our attention, 
specifically regarding the need to remove electrostatic and 

Fig. 7  Statistical measurements ranked for all QM/MM submissions. 
Non-NIH method’s names were given as follows in the SAMPL 
Github (see [24]). S1: GFN2-xTB/MetaMD/GBSA/ensemble/

Nobuffer, S2: GAFF-RESP/TIP3P/MD/xtb-GFN2B/Boltz-Avg, S3: 
GAFF-RESP/TIP3P/MD-Classical/xtb-GFN2B
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van der Waals forces before the FM fitting. For neutral com-
pounds, ForceSolve is able to remove all non-bonded forces 
internally. For charged compounds however, ForceSolve will 
arbitrarily neutralize the charge and therefore produce the 
wrong electrostatic forces. Thus, electrostatic forces should 
be removed prior to invoking ForceSolve, and then the force-
matching should be performed with all partial charges set 
to 0. Whether the electrostatic forces are removed prior to 
invoking ForceSolve or handled by ForceSolve internally 
should not affect the fit. Unfortunately, it seems that intra-
molecular fitting results are better whenever ForceSolve is 
allowed to handle the electrostatic forces, as can be seen by 
the differences in residuals obtained for force-matching the 
CB[8] host (see SI, Table S4). Although the average differ-
ences is small ( ∼ 0.3 kcal/mol⋅Å), it will still contribute to 
less effective parameters for use in the indirect approach.

Lessons learned

A few things become rather clear in retrospective. First, the 
level of QM/MM theory required to accurately compute 
binding free energies is not necessarily high. Rather, use of 
well-suited semi-empirical QM methods can perform fairly 
well at a fraction of the cost of DFT/ab-initio QM methods. 
Going forward, efforts towards employing SQM methods, 
such as PM6-D3H4 and GFN-2, and their furthering devel-
opment into relevant software (e.g., including GFN-2 sup-
port into Psi4, and interfacing Psi4 with CHARMM) will be 
central to future challenges.

Better methods for computing the QM/MM correction, 
�A��→��∕�� . In particular, faster and more accessible 
SQM Hamiltonians open the door to more sophisticated 
methods for computing free energy differences between dif-
ferent levels of theory. Specifically, use of non-equilibrium 
approaches for computing the free energy between MM and 
QM/MM has shown much promise. Methods such as fast-
switching non-equilibrium work [78], in conjunction with 
the Jarzynski equality, will, in principle, guarantee the pro-
duction of a converged free energy difference (so long as 
the switching lengths are long enough to bridge disparity 
between configurational spaces). By combining non-equilib-
rium approaches with force-matched potentials, the length of 
non-equilibrium switching simulations required to converge 
free energy differences between levels of theory can be dras-
tically reduced [37].

Force-Matching procedure can be improved The poor 
overlap between MM and QM/MM is the biggest obstacle 
to the mainstream use of the indirect approach to QM/MM 
free energy. The use of force-matching seeks to address 
this problem by providing an improved “launching-point” 
for performing one-sided free energy calculations between 
levels of theory, but critical consideration is required to Ta
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correctly ascertain FM parameters. The largest limitation 
to FM based approaches is the underlying sampling of the 
training set. Specifically, it is important to ask how repre-
sentative of the target space the sampled configurations are. 
Although we have shown that our force-matching methods 
generally improved our FEP calculations, it stands to reason 
that classical gas-phase ensembles may be a poor training 
choice for improving overlap with QM/MM aqueous/bound 
state phase space. Thus, we seek to shift our force-matching 
to train on simulations of condensed phase systems in future 
work.

We also seek to explore the fitting of partial charges 
in future challenges. Potentially, charge assignment can 
be provided in a somewhat arbitrary, yet uniform manner 
(as was the case for the above force-matching procedure). 
Alternatively, partial charges could be assigned as a pre-
step of the force-matching process, where charge popula-
tions are evaluated at the same time forces are computed 
on the relevant training set (e.g., taking the average of 
the partial charges on all snapshots). The fitting of partial 

charges in force-matching is a non-linear fit, which not only 
slows the procedure, but is unclear as to whether it can pro-
vide improvements for the use of FM in indirect QM/MM 
approaches [79].

And finally, as demonstrated, highly expensive QM/MM 
levels of theory are not necessarily required to produce 
excellent binding free energies. Using computationally less 
demanding SQM methods paves the way for using force-
matching approaches on larger, more complex molecules 
of interest (e.g., generating FM potentials for both host and 
guest, and performing QM/MM corrections for host, guest, 
and host–guest complex).

Better MM is needed to pair with better QM An impor-
tant concern regarding QM/MM approaches in binding free 
energies is how well the QM level of theory works with the 
classical force field. Often times, more sophisticated QM 
approaches are out-performed by simpler QM methods (e.g., 
semi-empirical QM, BLYP, etc.) due to beneficial “error 
cancellation” (e.g., TIP3 water tends to be over-polarized, 
whereas BLYP tends to underestimate polarization) [77]. This 

Table 5  Table showing the 
change in the correction 
metrics � and � for computing 
�A

MM→QM in gas-phase, with 
�� = �

FM/MM −�
C36/MM and 

�� = �
FM/MM − �

C36/MM

Mol ID PM6-D3H4 GFN-2 BLYP/6-31G* �B97X-D/def2-
SVP

�� �� �� �� �� �� �� ��

G1 0.98 − 0.59 1.33 − 0.94 1.16 − 0.97 1.47 − 1.21
G2 1.15 − 0.59 1.56 − 0.99 0.65 − 0.66 1.49 − 1.43
G3 1.44 − 1.44 2.86 − 1.89 1.60 − 1.10 2.77 − 2.47
G4 1.13 − 0.76 1.02 − 0.76 0.43 0.16 2.13 − 1.53
R-G5◦ 0.24 − 0.03 1.34 − 0.21 − 1.75 4.89 0.04 5.07
S-G5◦ − 0.51 0.82 0.56 − 0.19 0.23 0.33 0.74 − 0.80
R-G5+ − 1.80 − 0.91 0.73 − 0.90 0.21 0.80 1.43 0.05
S-G5+ 0.20 − 0.53 1.43 − 0.94 0.00 0.11 0.94 − 0.51
G6 0.82 − 0.70 1.40 − 1.02 1.55 − 0.78 1.69 − 1.15
G7 − 0.65 1.46 − 0.82 1.48 − 0.24 0.54 − 0.33 0.17

Fig. 8  Bar graphs showing the relevant statistics for each QM/MM submission, as well as the associated classical (FM) submission for which 
QM/MM corrections were added. Results for the FM submissions are outlined in black, and the QM/MM blurred results are translucent
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highlights the unfortunate truth that often, the classical MM 
description is the limiting factor for the accuracy of QM/MM 
calculations. With the goal of employing more sophisticated 
QM Hamiltonians in QM/MM descriptions, it is only natural 
to turn ourselves to polarizable molecular mechanics [80], 
which represent one more step to close the gap between MM 
and QM/MM.

Conclusions

In this SAMPL challenge, we aimed to evaluate how well 
our indirect QM/MM free energy schemes performed on a 
blind dataset (particularly as QM/MM methods have his-
torically not performed well in previous iterations of the 
SAMPL challenges). Our submissions showed how semi-
empirical methods (GFN2, PM6-D3H4) can successfully 
provide accurate results at relatively low computational 
expense. The bridging capability of the indirect scheme 
coupled with force-matching procedure shone brightest 

Fig. 9  Plots of the experimental results vs. computed binding free energies before and after employing the QM/MM correction scheme. All ener-
gies are given in kcal/mol
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at this intermediate level, allowing the correction scheme 
to reduce the RMSE of the binding free energies by more 
than 30%.

This work also sheds light on some of the more nuanced 
aspects of force-matching for indirect QM/MM free ener-
gies, and parameterization in general. In particular, adjusting 
torsional parameters in force-matched descriptions should be 
performed with great trepidation, as bad dihedral terms can 
still provide reasonable residuals at fit time, but skew over-
laps with the targeted level of theory. It also illuminated the 
need for a critical evaluation of “best-practices” for force-
matching with the goal of improving indirect QM/MM cal-
culations in condensed phase systems.

And finally, the dominance of SQM Hamiltonians in our 
results highlights the feasibility of more sophisticated meth-
ods for computing free energy differences between levels 
of theory. Specifically, the ease and expedience with which 
modern SQM methods can be performed perfectly lends 
itself to the use of non-equilibrium methods for comput-
ing free energy between levels of theory. Pairing better one-
sided approaches with enhancements to our force-matching 
methods will only yield improvement in the future.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s10822- 022- 00443-8.
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