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Abstract
Within the scope of SAMPL7 challenge for predicting physical properties, the Integral Equation Formalism of the Miertus-
Scrocco-Tomasi (IEFPCM/MST) continuum solvation model has been used for the blind prediction of n-octanol/water 
partition coefficients and acidity constants of a set of 22 and 20 sulfonamide-containing compounds, respectively. The log P 
and pKa were computed using the B3LPYP/6-31G(d) parametrized version of the IEFPCM/MST model. The performance 
of our method for partition coefficients yielded a root-mean square error of 1.03 (log P units), placing this method among 
the most accurate theoretical approaches in the comparison with both globally (rank 8th) and physical (rank 2nd) methods. 
On the other hand, the deviation between predicted and experimental pKa values was 1.32 log units, obtaining the second 
best-ranked submission. Though this highlights the reliability of the IEFPCM/MST model for predicting the partitioning and 
the acid dissociation constant of drug-like compounds compound, the results are discussed to identify potential weaknesses 
and improve the performance of the method.

Keywords  SAMPL7 · Physical properties · Water-octanol log P · pKa · Solvation free energy · MST model · Continuum 
solvation models · Conformational study

Introduction

Lipophilicity and (de)protonation are physicochemical prop-
erties that play a fundamental role to understand the biologi-
cal activity of drugs [1–4]. From a pharmacokinetic point 
of view, these properties exert a marked influence on the 
ADME-Tox profile of drugs, affecting solubility in physi-
ological fluids and permeability through biological barriers, 
as well as the excretion rate from the human body [5]. With 
regard to drug pharmacodynamics, lipophilicity affects rec-
ognition and binding of drugs to their macromolecular tar-
gets, since the global hydrophobic character is related to the 
changes in (de)solvation involved in ligand binding, whereas 
a complementarity between the 3D distribution of hydropho-
bic/hydrophilic regions in the drug and the binding pocket 
should reinforce the drug-target interaction [6–8]. On the 
other hand, the (de)protonation of a compound can clearly 
exert influence on the bioavailability of a molecule, affecting 
not only the biodistribution of the bioactive compound in the 
organism, but altering the interaction pattern that may be 
formed with specific residues in the binding pocket [9, 10].
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The n-octanol/water partition coefficient (log P) is the 
physicochemical parameter generally adopted to quantify the 
lipophilicity of a compound, and can be experimentally 
determined from the partitioning between aqueous and 
n-octanol phases. From a computational point of view, log 
P can be estimated from the transfer free energy ( ΔΔGw→o ; 
Scheme 1) of the molecule between these two solvents, 
which in turn can be derived from the solvation free energy 
in n-octanol ( ΔGo

solv
 ) and water ( ΔGw

hyd
 ). The ionization 

equilibrium of a titratable compound is quantified by the 
negative logarithm of the acid dissociation constant (pKa), 
which reflects the population of acidic and basic species. 
This quantity can be related to the free energy change for the 
ionization of the compound in water ( ΔGaq ; Scheme 1), 
which in turn can be calculated combining the free energy 
change for this process in the gas phase with the solvation 
free energies of protonated (HX) and deprotonated (X−) spe-
cies of the compound and the solvation free energy of the 
proton [11, 12].

The availability of computational tools able to provide 
accurate estimates of log P and pKa is valuable to provide 
useful guides in the search of novel hit compounds and 
the drug development process [13, 14]. This may deserve 
special interest in the screening of large libraries of com-
pounds, as the experimental measurement of these prop-
erties would be demanding and often facing experimental 
challenges for specific classes of compounds. In this con-
text, we present here the results obtained in the context of 
the SAMPL7 blind challenge [15]. Given the fundamental 
role of the solvation free energy in the computational pre-
diction of both log P and pKa, our computational strategy 
exploits the B3LYP/6-31G(d) parametrized version [16, 17] 

of the quantum mechanical IEFPCM/MST solvation model 
[18], which relies on the Integral Equation Formalism of 
the Polarizable Continuum model [19, 20]. Here, we report 
the results obtained for predicting the log P and pKa for a 
group of sulfonamide-containing compounds. The results 
are discussed in light of the experimental data provided by 
the organizers of SAMPL7 [21] and the theoretical estimates 
reported by others groups, as well as with the IEFPCM/MST 
results obtained in previous editions of this contest [22, 23].

Methods

Test compounds

The dataset used in the SAMPL7 challenge contains 22 
compounds (numbered SM25 to SM46; Fig. 1) provided 
by Carlo Ballatore and coworkers at UCSD (University 
of California, San Diego). Most of the compounds share 
chemical motifs, including the presence of a sulfonamide 
unit, a phenylethyl moiety (with the exception of compounds 
SM41- SM46), and a four-membered ring fused to the main 
chain, often containing oxygen and sulphur. Few compounds 
(SM41-SM46) include specific moieties, such as isoxazole 
(SM41-SM43) and triazole (SM44-SM46), in the main 
chain. Finally, besides the sulfonamide group, certain com-
pounds contain sulfoxide (SM35-SM37) or sulfone (SM38-
SM40) groups in their chemical structure. The smiles codes 
of the 22 compounds were obtained from the SAMPL7 
website [15], and used to generate their 3D geometries with 
OpenBabel [24].

Scheme 1   Thermodynamic cycles used to determine (left) the transfer free energy of a neutral (HX) compound between n-octanol and water, 
and (right) the pKa estimation of a titratable compound, where HX and X− stand for the acidic and basic species, respectively
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Log P computation

A preliminary sampling of the conformational preferences 
of the compounds was performed with Frog 2.14 [25]. Let 
us note that this program not only generates conformations 
at a reduced computational cost, but also exhibits a high 
performance in generating conformations close to the bioac-
tive species, as noted in a rmsd 0.74 ± 0.44 Å for 85 drug-
like compounds (Astex dataset), and a median rmsd below 
1 Å for a subset of compounds containing up to 7 rotatable 
bonds [25]. On the basis of the structural complexity of the 
molecules, generation of conformations was limited to a 
maximum of 20 conformers, which were visually checked 
in order to eliminate redundant conformations. The geom-
etry of the conformers in water and n-octanol was optimized 
at the B3LYP/6-31G(d) level of theory [26, 27] taking into 
account solvent effects on the geometrical parameters with 
the IEFPCM/MST model, which was implemented in a local 

version of Gaussian 16 [28]. The minimum energy nature of 
the optimized geometries in each solvent was verified upon 
inspection of the vibrational frequencies, and conformations 
displaying negative frequencies were discarded. Thermal 
corrections determined in water and n-octanol were sub-
sequently added to estimate the relative free energy of con-
formations in the two solvents. Finally, single-point energy 
calculations in the gas phase were performed to estimate 
the solvation free energy of each conformation. Then, the 
log P was determined considering the Boltzmann-weighted 
population of the conformational families obtained in water 
and n-octanol.

pKa computation

The pKa of the deprotonation equilibria between acid and 
basic microstates was based on the thermodynamic cycle 
shown in Scheme  1. The ensemble of conformations 

Fig. 1   Dataset of 22 small mol-
ecules proposed in the SAMPL7 
log P challenge
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determined in water for the set of compounds was used as 
starting geometries to build up the species involved in the 
deprotonation equilibria, according to the information pro-
vided by the SAMPL7 organizers for the different micro-
states [15]. The addition/removal of hydrogen atoms from 
the starting geometry of conformers was done manually 
using GaussView 6 (i.e., the graphical interface of Gauss-
ian software) [29]. The geometries were optimized at the 
B3LYP/6-31G(d) level of theory taking into account hydra-
tion effects with the IEFPCM/MST model. The free energy 
difference between protonated and deprotonated species was 
estimated by combining the relative energies determined 
with single-point computations performed at the MP2/
aug-cc-pVDZ level of theory [30] with solvation free ener-
gies and thermal corrections to the free energy calculated 
at the B3LYP/6-31G(d) in water. The pKa was determined 
using the experimental free energy of the proton in water 
(− 270.29 kcal/mol), which was determined by combining 
the gas phase free energy (− 6.28 kcal/mol), the free energy 
correction from 1 atm and 298 K to 1 M and 298 K state 
(1.89 kcal/mol), and the hydration free energy of the proton 
(− 265.9 kcal/mol) [31]. Finally, a Boltzmann weighting 
scheme was applied to account for the relative stabilities of 
the conformational species determined for the microstates 
involved in the deprotonation reaction, following the compu-
tational strategy adopted in previous studies [32, 33].

Raw data

The datasets generated during and/or analysed during the 
current study are available in the SAMPL7-IEF-PCM-MST 
GitHub repository [34].

Results and discussion

Log P prediction

The predicted log P values are listed in Table 1. The root-
mean square deviation (rmsd) between IEFPCM/MST 
results and experimental data is 1.03 log units, which places 
our results among the most accurate values in the compari-
son with both physical (rank 2nd) and global (comprising 
all submissions within empirical and physical categories; 
rank 8th) methods [21], taking into account the small dif-
ferences observed between methods with rmsd ≤ 1 (see Sup-
porting Information Fig. S1). The best ranked QM-based 
solvation models (see Supporting Information Fig. S2) were 
the Cosmotherm version of COSMO-RS [35] (ID COSMO 
RS, rmsd = 0.78), our method (ID TFE IEFPCM MST, 
rmsd = 1.03), the NHLBI TZVP model (ID TFE NHLBI 
TZVP QM, rmsd = 1.55), which combined B3LYP/Def2-
TZVP computations in the gas phase with solvent effects 

determined using the SMD solvation model [36], the 3D 
integral equation theory with a cluster embedding approach 
[37] (ID EC RISM wet, rmsd = 1.84), and another model that 
combined B3LYP computations with dispersion corrections 
in the gas phase with the SMD model [36] (ID TFE b3lyp3d, 
rmsd = 2.19), reflecting a performance similar to the trends 
found in the SAMPL6 challenge [38].

The largest deviations (> 1.50 log P units) between pre-
dicted and experimental log P values are found for SM36 
and SM42 (see Table 1). These deviations are in line with 
the analysis of the compounds that presented the highest 
mean absolute error between computed and experimental 
values (see Supporting Information Fig. S3), since SM42 
and SM36 are in ranks 1 and 5, respectively. Upon exclusion 
of these compounds, the rmsd is reduced to 0.72 log P units, 

Table 1   Calculated (ID TFE IEFPCM MST) and experimental 
n-octanol/water partition coefficient (log P) determined for the set of 
compounds included in the SAMPL7 dataset

Bold values indicate compounds with the largest deviation (> 1.50 
log P units) between predicted and experimental values
a See [39]
b Mean signed error (mse), mean unsigned error (mue), and root-mean 
square deviation (rmsd) calculated relative to the experimental values 
(log P units)

Compound Calculated Experimentala Δlog P 
(calc − exptl)

SM25 1.89 2.67  − 0.78
SM26  − 0.21 1.04  − 1.25
SM27 1.76 1.56 0.20
SM28 0.83 1.18  − 0.35
SM29 1.24 1.61  − 0.37
SM30 3.54 2.76 0.78
SM31 1.62 1.96  − 0.34
SM32 1.64 2.44  − 0.80
SM33 4.29 2.96 1.33
SM34 2.40 2.83  − 0.43
SM35 0.77 0.88  − 0.11
SM36 3.75 0.76 2.99
SM37 1.88 1.45 0.43
SM38 0.48 1.03  − 0.55
SM39 2.48 1.89 0.59
SM40 1.43 1.83  − 0.40
SM41 0.88 0.58 0.30
SM42 3.75 1.76 1.99
SM43 1.85 0.85 1.00
SM44  − 0.16 1.16  − 1.32
SM45 2.04 2.55  − 0.51
SM46 0.95 1.72  − 0.77
mseb  − 0.07
mueb 0.80
rmsdb 1.03
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and the correlation between calculated and experimental val-
ues improves from 0.52 to 0.76 (see Fig. 2).

Compared to SM35 and SM41, SM36 and SM42 imply 
the replacement of a methyl group by a phenyl substituent, 
which would increase the hydrophobicity of the compound. 
This trend is reflected in the experimental log P values for 
pairs SM41-SM42, SM29-SM30, SM32-SM33, SM38-
SM39 and SM44-SM45, where the methyl-phenyl replace-
ment leads to an average increase of 1.02 log P units. In this 
context, the pair SM35-SM36 shows a distinctive trait, as the 
log P is decreased by − 0.12. In fact, more than 80% of sub-
missions predicted the log P of SM36 and SM42 to be larger 
compared to the log P of SM35 and SM41, respectively (see 
Supporting Information Fig. S4).

Finally, we have compared the predictions performed 
for the SAMPL7 dataset with the results obtained in the 
SAMPL6 edition, which comprised a series of 11 frag-
ment-like small molecules [38]. Upon exclusion of SM36, 
the comparison yields an overall rmsd of 0.66 log P units 
(see Fig. 3). Therefore, assuming that the reported accuracy 
for log P determination is ~ 1 log unit, present results lend 
support to the reliability of the IEF-PCM/MST model and 
encourage future efforts for achieving a better description 
of solvation effects.

Without detracting from our values, among the set of 
methods presented in the current edition of log P SAMPL7 
challenge, one may notice that methods based on Machine 
Learning (ML) have led to a better match with the experi-
mental values provided by the organization. In our view, 

these type techniques present great advantages, since they 
allow a very quick estimation due to their low computational 
cost, making them suitable for large compound screening 
campaigns. However, the reliability of these methods may 
be affected by the chemical coverage of the data used in 
their training. In this context, QM-based methods seem 
better suited to provide a detailed analysis of the structural 
and energetic features of compounds, though this requires a 
significantly larger computational cost, which may be neces-
sary in the analysis of compounds containing novel chemical 
scaffolds. Keeping in mind the vast diversity of the chemical 
space [40], it may be expected that integration of QM and 
ML techniques will be very powerful to enhance the quality 
and reliability of ML models in the prediction of physico-
chemical properties, enabling large-scale exploration of the 
chemical space [41, 42].

pKa prediction

Only physical methods contributed to predicting the pKa 
values for the 22 sulfonamide-containing compounds 
included in the blind test. Table 2 reports the pKa values 
estimated from IEFPCM/MST computations and submit-
ted to SAMPL7. Compared to the values available with the 
SAMPL7 repository [39], the difference between the origi-
nally submitted results and those estimated by the organizers 
from the microstates reported in our original submission is 
in general within 0.10 pKa units, except for SM37, where 

Fig. 2   Comparison between experimental and IEFPCM/MST 
n-octanol/water log P for the SAMPL7 dataset. Red points represent 
the compounds with the largest errors in the original submission. Sta-
tistical analyses are shown for (top left) all compounds and (bottom 
right) after exclusion of SM36 and SM42

Fig. 3   Comparison between experimental and IEFPCM/MST 
n-octanol/water log P for the combined dataset including the 11 frag-
ment-like small molecules in the SAMPL6 log P challenge (blue) and 
22N-acylsulfonamides in the SAMPL7 log P challenge (lightblue). 
The red point represents the compound with the largest error in the 
final dataset. Statistical analyses are shown for (top left) all com-
pounds and (bottom right) after exclusion of SM36
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the difference increases up to 3.90 pKa units (detailed val-
ues are available in Supporting Information Table S1). The 
origin of this difference was due to a mistake in the rela-
tive free energy reported by us for the negatively charged 
microstate of compound SM37, as we had flipped the values 
for microstates SM37_micro004 and SM37_micro005 in the 
file submitted to the SAMPL7 website. This mistake led to a 
different macroscopic pKa value between the one calculated 
automatically by the organizers and the one reported in the 
original submission. For these reasons, we have kept the 
macroscopic pKa value of the original submission in Table 2.

The rmsd between predicted and experimental pKa values 
is 1.32 log units, which places our results among the best-
ranked submissions (rank 2nd, Supporting Information Fig. 
S5). The largest deviations (> 1.50 in pKa units) involve four 
compounds: SM25, SM27, SM37 and SM42. Exclusion of 

these compounds reduces the rmsd to 0.98 pKa units, and 
the correlation between calculated and experimental values 
changes from 0.86 to 0.92 (see Fig. 4).

To explore the potential sources of these deviations, we 
compared the results obtained for SM25, SM27, SM37 and 
SM42 with the values reported by the contributors ranked 
1st (ID EC_RISM) and 3rd (ID TVZP_QM) in the blind test 
(see Table 3). The results show that EC_RISM provides a 
range of values (5.42–10.17) that compares well with the 
experimental data (4.49–10.45), whereas our results are dis-
tributed in a slightly larger range (4.86 to 12.34). In contrast, 
the TVZP_QM values are in a narrower range (6.77–7.65). 
We then checked the workflow used to compute the mac-
roscopic pKa and found a mistake in the definition of the 
Boltzmann weights for the conformations sampled for the 
main microstates of compound SM25 (Fig. 5), which caused 
a 3.94 units decrease in the pKa value (pKa = 3.30), remain-
ing at 1.19 units from the experimental value.

This analysis points out the need to perform an adequate 
sampling of the conformational states available for the dif-
ferent species involved in the deprotonation reaction [44, 
45]. In particular, since our approach relied on the sampling 
performed for the neutral compounds (see above), the popu-
lation of conformers obtained for ionized species may be 
inaccurate for some compounds, affecting the final estimate 
of the macroscopic pKa. Nevertheless, one must also keep 
in mind the intrinsic errors of the gas phase and solvation 
contributions to the aqueous free energy change for the 
deprotonation of the different microstates. At this point, the 

Table 2   Calculated (ID IEFPCM MST) and experimental pKa deter-
mined for the set of compounds included in the SAMPL7 dataset

Bold values indicate the compounds with the largest deviation (> 1.50 
in pKa units) between theoretical and experimental values. For SM25, 
the value of the original submission and the corrected one during the 
revision of the calculated data are indicated as plain text and in ital-
ics, respectively
a Ref [43]

Compound Calculated Experimentala ΔpKa
(calc − exptl)

SM25 7.24/3.30 4.49 2.75/1.19
SM26 4.52 4.91  − 0.39
SM27 12.34 10.45 1.89
SM28 16.12  > 12.00 –
SM29 11.51 10.05 1.46
SM30 11.00 10.29 0.71
SM31 10.84 11.02  − 0.18
SM32 11.95 10.45 1.50
SM33 10.69  > 12.00 –
SM34 10.64 11.93  − 1.24
SM35 10.28 9.87 0.41
SM36 9.20 9.8  − 0.6
SM37 8.11 10.33  − 2.22
SM38 9.82 9.44 0.38
SM39 8.85 10.22  − 1.37
SM40 8.26 9.58  − 1.32
SM41 5.13 5.22  − 0.09
SM42 4.86 6.62  − 1.76
SM43 4.43 5.62  − 1.19
SM44 7.09 6.34 0.75
SM45 7.37 5.93 1.44
SM46 5.56 6.42  − 0.86
mse 0.00
mue 1.13
rmsd 1.32

Fig. 4   Comparison between experimental and IEFPCM/MST pKa for 
the SAMPL7 Dataset. Red points denote compounds with the largest 
errors in the original submission. Statistical analyses are shown for 
(top left) all compounds and (bottom right) after exclusion of SM25, 
SM27, SM37 and SM42
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uncertainty of the IEFPCM/MST model in predicting the 
hydration free energy for simple neutral molecules amounts, 
on average, to 0.7 kcal/mol, but can be sensibly larger for 
charged compounds [46, 47]. This would then represent an 
additional difficulty for the proper estimation of the free 
energy change determined for microscopic deprotonation 
equilibria, challenging the ability of QM-based continuum 
solvation models to yield pKa estimates with an uncertainty 
below 1 pKa unit.

Overall, the results support the suitability of our QM-
based approach for computing log P and pKa properties. 
SAMPL6 blind challenge mainly relied on rigid compounds 
[38], but SAMPL7 presented more complex compounds con-
sidering both chemical diversity and flexibility [21]. In the 
blind challenges mentioned above, the Frog tool has been 
used to explore the conformational space in our QM work-
flow mainly due to the good balance between computational 
cost and accuracy of the conformer ensemble [25]. Ongoing 
research in our group is seeking to explore protocols for 
characterizing the conformer generation based on multilevel 
strategies [45], since the proper sampling of the conforma-
tional space is a crucial issue that can directly impact the 
reliable prediction of physicochemical properties [48–50]. 
The other two critical components of our QM approach 
are the calculation of the internal energy of the generated 
conformers and the inclusion of solvation effects, which 
are relevant in determining the accuracy of the relative sta-
bilities of conformers in condensed phases. For example, 
extrapolation of the MP2 energies to complete basis set or 

the inclusion of higher-level electron correlation correc-
tions, like coupled cluster with single and double substitu-
tions (CCSD), could improve the accuracy of our protocol 
by several tenths of kcal/mol when computing deprotona-
tion free energies or relative conformer stabilities [33, 51]. 
The improvement of solvation effects is more complicated, 
as there is no systematic strategy to improve the accuracy 
of the results given the empirically parametrized nature of 
continuum models. Nevertheless, the performance obtained 
in the SAMPL6 and SAMPL7 challenges shows close agree-
ment with the results obtained in previous studies [16, 22, 
32, 52] for rigid compounds, thus lending confidence to the 
computational protocol used in this study.

After checking and considering the different drawbacks 
of our workflow, we consider that further improvements 
should be focused on two computational aspects that may 
affect the prediction of physicochemical properties. The first 
deals with obtaining a proper sampling of the conforma-
tional space available for drug-like compounds in water and 
n-octanol (or by extension other organic solvents), as it is 
reasonable to expect that distinct conformational ensembles 
will be adopted depending on the chemical features present 
in flexible compounds. In this context the exhaustiveness in 
sampling the whole conformational space can be calibrated 
through the analysis of the conformations sampled with 
other techniques, such as Molecular Dynamics simulations. 
The second is related to the capability of continuum solva-
tion models to provide an accurate description of specific 
(i.e., hydrogen bonding) and nonspecific (i.e., bulk solvent 
electrostatic screening) interactions with solvent molecules, 
which is challenging for charged molecules. In this sense, 
the usage of cluster-continuum solvation models may lead 
to meaningful improvement with respect to pure continuum 
solvation models for modeling diverse chemical process in 
solution [53].

Conclusions

The results obtained in the SAMPL7 physical proper-
ties challenge has revealed the reliability of the IEFPCM/
MST method to provide accurate estimates of both log P 
and pKa, which are relevant properties for understanding 

Table 3   Comparative results 
of the four highly deviated 
compounds with the first 
(ID EC_RISM) and third (ID 
TZVP_QM) ranked methods in 
the SAMPL7 pKa challenge

Compound Exp Calculated 
IEFPCM/
MST

Calculated 
EC_RISM

ΔpKa EC_RISM Calculated 
TZVP_QM

ΔpKa TZVP_QM

SM25 4.49 7.24 5.42  − 0.93 7.34  − 2.85
SM27 10.45 12.34 10.17 0.28 7.65 2.80
SM37 10.33 8.11 9.95 0.38 6.77 3.56
SM42 6.62 4.86 5.59 1.03 7.45  − 0.83

Fig. 5   Microstates involved in the error of SM25 pKa estimate
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the pharmacokinetics of bioactive compounds. Neverthe-
less, the analysis of the results also points out that a major 
source of error comes from an improper weight of the con-
formational preferences of some compounds, particularly 
regarding the population distribution of ionized forms. In 
contrast, the prediction of the log P value resulted to have a 
marked deviation in one out of 22 compounds, though this 
marked deviation was also shared by a significant number 
of methods. Future modifications and improvements will be 
centered in finding an efficient approach for gaining better 
definition of the conformational space of flexible compounds 
in n-octanol and in water as well as to estimate the hydration 
free energies of charged species.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​021-​00394-6.
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