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Abstract
The Arylhydrocarbon Receptor (AhR), a member of the Per-ARNT-SIM transcription factor family, has been as a potential 
new target to treat breast cancer sufferers. A series of 2-phenylacrylonitriles targeting AhR has been developed that have 
shown promising and selective activity against cancerous cell lines while sparing normal non-cancerous cells. A quantita-
tive structure–activity relationship (QSAR) modeling approach was pursued in order to generate a predictive model for 
cytotoxicity to support ongoing synthetic activities and provide important structure-activity information for new structure 
design. Recent work conducted by us has identified a number of compounds that exhibited false positive cytotoxicity values 
in the standard MTT assay. This work describes a good quality model that not only predicts the activity of compounds in 
the MCF-7 breast cancer cell line, but was also able to identify structures that subsequently gave false positive values in 
the MTT assay by identifying compounds with aberrant biological behavior. This work not only allows the design of future 
breast cancer cytotoxic activity in vitro, but allows the avoidance of the synthesis of those compounds anticipated to result 
in anomalous cytotoxic behavior, greatly enhancing the design of such compounds.

Keywords  QSAR · Model development · Model interpretation · Drug design · Breast cancer · MCF-7 · 
2-phenylacrylonitriles · MTT assay

Introduction

Breast cancer is the most common cancer in women, and the 
second-most lethal, worldwide. There is currently no cure 
for metastatic (also known as stage IV) breast cancer, and the 
5-year survival rate for this invasive disease is approximately 
25% [1]. Disease sufferers are categorized according to the 
hormone receptors expressed by their tumors. Breast cancer 
tumors are typically estrogen, progesterone or HER-2 recep-
tor positive, and a number of targeted therapies are applica-
ble to them [2]. Unfortunately, tumors expressing none of 
these receptors, known as labelled triple-negative tumors, 

have no current targeted treatment [3]. With breast cancer 
incidence on the rise, and current treatments ineffective for 
advanced disease sufferers, new targeted treatments, with 
new biological targets, are urgently required [4, 5].

We and others have identified the Arylhydrocarbon 
Receptor (AhR) as a potential breast cancer drug target 
[6–8]. The AhR is a transcription factor member of the basic 
helix-loop-helix Per-ARNT-SIM family, and is traditionally 
associated with the metabolism of xenobiotic ligands [9, 
10]. Many of the known AhR ligands, both exogenous and 
endogenous, and agonistic or antagonistic, are classed as 
either halogenated aromatic hydrocarbons (HAH) or poly-
aromatic hydrocarbons (PAH) [11, 12]. Besides its role in 
mediating the toxicity of environmental contaminants, the 
AhR has also been associated with the possible treatment of 
diseases such as immune- and inflammatory-related condi-
tions, inflammatory bowel disease, rheumatoid arthritis and 
multiple sclerosis (among others). It has recently been linked 
to some of the more insidious effects of the novel SARS-
CoV-2 disease [13] as well as a possible pathway target for 
the treatment of Duchenne’s muscular dystrophy [14].
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Our interest commenced based on phenotypic observa-
tions that ANI-7 and NAP-6 (Fig. 1) showed high levels of 
breast cancer cell line specificity. Initial observations were 
made with the MCF-7 breast cancer cell line, with subse-
quent evaluations revealing high levels of activity against 
a wide array of drug resistant breast cancer cell lines. Bio-
chemical investigations revealed the primary cell target as 
the AhR [15–17]. The development of new ligands targeting 
the AhR was subsequently conducted via in silico meth-
ods with a homology model of the ligand-binding domain 
[6, 18]. Efficacy and potency of the ligands was evaluated 
via a cytotoxic screen of 10 cancerous cell lines and one 
healthy breast cell line (MCF-10A) [19], utilizing an MTT 
[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium 
bromide] assay [18]. Those ligands exhibiting potency and 
specificity towards the breast cancer cell lines were further 
investigated in a specific AhR reporter assay to verify their 
mechanism of action [15, 16].

Our recent efforts afforded a range of ligands that, at face 
value, exhibited exquisite selectivity to the breast cancer cell 
lines examined (up to 500-fold, over the healthy breast cell 
line) and excellent potency (GI50 as low as < 1 nM). Sub-
sequent morphological examination of the cells, however, 
demonstrated that the ligands were producing a metabolite 
that interfered with the tetrazolium moiety in MTT to form 
a formazan precipitate resulting in an aberrant MTT result. 
Rescreening of these compounds in an SRB (sulforhodamine 
B) assay [20], which does not rely on mitochondrial reduc-
tase enzymes, afforded a vastly different result [21].

Standard SAR evaluation of the MTT data and our 
homology model failed to provide an insight into the appar-
ent increase in activity that we were noting, especially in 
the cases of the piperazine and piperidine analogues [21]. 
Docking of these analogues within the AhR binding pocket 
of the homology model provided no rational explanation for 
the observed MTT potency. Thus, we felt that this model was 
lacking in key descriptors of the ligand-AhR interaction. We 
decided to include a different modeling aspect in this work 

in order to augment other structure design and data analy-
sis methods used earlier. A quantitative structure–activity 
relationship, QSAR, approach was pursued because of the 
characteristics of the modeling method itself and the pheno-
typic nature of the biological activity. Unlike structure-based 
modeling methods which depend on identifying presumed 
target proteins and simulating ligand docking to the target, 
a QSAR approach makes no assumptions with regard to the 
biological target, and instead focuses on identifying differ-
ences in structural features of the ligands that correlate with 
differences in the observed biological activity. Since the 
biological activity is based on a whole-cell assay, some dif-
ferences in activity may be related to properties other than 
just the binding and inhibition of the target protein such 
as cell wall permeation and other intermolecular interac-
tions within the cytosol, and such aspects can be captured 
in a QSAR model. The physical interpretation of the QSAR 
model can provide a unique perspective on the SAR help-
ing to identify structural features of compounds that convey 
activity that can be exploited for structure design. Such a 
model also provides the ability to rapidly predict the activity 
of a large number of candidate structures for synthesis plan-
ning, or virtual screening of large databases for candidate 
compounds as their demands on computational resources are 
modest and cost much less than physical screening. Lastly, 
the process of developing a QSAR model can be highly diag-
nostic of problems in the experimental data itself, and can 
identify compounds whose behavior differs from others with 
very similar structures.

Experimental

Data

The chemical structures for 80 2-phenylacrylonitrile based 
AhR targeting compounds and their related biological data 
were collected from published reports [6, 19, 21–24]. The 
biological property of interest was growth inhibition, GI50, 
defined as the concentration of the test compound yielding 
a 50% decrease in the growth of estrogen receptor positive 
(ER +ve) human breast cancer cells, MCF-7, relative to an 
untreated control. Structures for which no GI50 values were 
reported, or for which only single point assay values were 
reported (observed % inhibition at a single fixed concen-
tration) were excluded from consideration. Since no differ-
ence in activity was detected for enantiomerically pure com-
pounds [21], a single non-stereoisomer specific 2D structure 
was used to represent reported stereoisomers, and the struc-
ture was included only once in the analysis and the average 
activity of the isomers was assigned to that one structure. 
The original activity data were reported as micromolar (μM) 
concentrations and converted to log(1/GI50) for modeling 

Fig. 1   Structures of ANI-7 and NAP-6, the initial ligands from our 
previous work that demonstrated breast cancer cytotoxicity via their 
action in the AhR pathway
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purposes. The distribution of the observed activity data is 
shown in Fig. 2. The structures were drawn into the com-
puter using MarvinSketch (ChemAxon, version 19.12.0) and 
stored in an Instant JChem database (ChemAxon, version 
19.8.0). IUPAC names were obtained using MarvinSketch. 
The chemical names, structure labels, and observed biologi-
cal data are provided in Table 1. The structures are provided 
in the form of Daylight SMILES strings and 2D structure 
diagrams in the Supplemental Information (Table S1 and 
S2, respectively).

Model development

The structures were exported from Instant JChem as Day-
light SMILES. Molecular structure descriptors were com-
puted from SMILES using winMolconn (Hall Associates 
Consulting, version 1.0.2.1). These are topology-based (so-
called “2D” descriptors) that do not require the generation of 
a three-dimensional conformation for a structure in order to 
compute the descriptor. They include molecular connectivity 
[25], electrotopological [26] and related descriptors. These 
topological descriptors were used because they help iden-
tify specific features of molecular structure and the struc-
tural environment surrounding them, and this information 
is required for extracting a detailed SAR while eliminating 
arbitrary decisions regarding the generation of relevant con-
formations [27]. A set of 1650 descriptors was computed for 
each of the 80 structures. These were filtered by removing 
any descriptor with greater than 90% zero values or greater 
than 90% identical non-zero values. A set of 296 descriptors 
remained after filtering for each of the structures. A list of 
the labels of the descriptors remaining after filtering is pro-
vided in the Supplemental Information (Table S3).

Both simulated annealing [28] and genetic algorithm [29] 
methods were used for variable selection to define subsets 
of the original 269 filtered molecular structure descriptors 
for multilinear regression evaluation. Potential models com-
prising 7–13 descriptors were evaluated based on internal 
validation statistical criteria; coefficient of multiple determi-
nation (R2) [30], root mean squared error(s) [30], partial-F 
tests [30], variance inflation factors [30], and leave-one-out 
cross-validation R2 (Q2

LOO) [31]. Partial least-squares (PLS) 
regression analysis (Minitab, Release-14) was used as a 
diagnostic for overfitting [32], and robust regression analysis 
[33] was used to detect and diagnose outlying observations. 
Y-variable (response) randomization [34] was used as a 
diagnostic for chance correlation. Following the selection of 
a final model, PLS was again used to extract the underlying 
structure-activity relationship encoded in the model [32, 35].

Results and discussion

QSAR model

Initial data analysis included all the relevant data from the 
sources described. However, it was soon discovered that sev-
eral of the observations were exhibiting undue influence in 
the model equations obtained. When these outlying obser-
vations were excluded from the training set and their activ-
ity predicted using a model generated in their absence, the 
predicted activity values were much lower than the reported 
observed activities. At the same time, anomalies in the 
experimental results from the MTT assays were observed. 
It was discovered that many of these same compounds inter-
fered with the MTT assay resulting in misleadingly high 
activity values [21]. Since the experimental and modeling 
analysis identified the same compounds, their structures 
were excluded from further modeling work (see Supple-
mental Information, Table S4). During subsequent model 
development, four additional compounds were identified 
that behaved as outliers in a fashion similar to the interfer-
ing compounds described above, supporting a decision to 
exclude them from the analysis. One additional structure was 
observed to be a major outlier for a different reason. Thus, 
a set of five observations were set aside from the original 
80 structure data set. Their identity and an examination of 
the potential reasons for their behavior are described later.

A final model was obtained for the remaining 75 observa-
tions. This model included seven molecular descriptors, and 
yielded a good fit to the observed growth inhibition values 
(R2 = 0.726, Q2

LOO = 0.663). The details of this model are 
provided in Table 2. A brief description of each of the seven 
descriptors is provided in Table 3. The correlation of the fit-
ted and observed values for the training set is illustrated in 
the fit plot in Fig. 3. The internal validation statistics for the 

Observed Activity (log 1/GI50, micromolar)

-2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

Fig. 2   A dot plot illustrating the distribution of the observed activity 
data (log 1/GI50) for the full dataset (N = 80). Each symbol represents 
a single observation (structure)
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Table 1   Structure identification and observed cell growth inhibition values for the 80 structures used in this study

Structure label Observed growth 
inhibition (GI50, 
µM)

Observed growth 
inhibition (log 1/GI50, 
µM)

IUPAC Name

A1 17 − 1.23E+00 (Z)-2-phenyl-3-(1H-pyrrol-2-yl)acrylonitrile
A2 15 − 1.18E+00 (Z)-2-(4-fluorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
A3 4 − 6.02E−01 (Z)-2-(4-chlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
A5 0.56 2.52E−01 (Z)-2-(3,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
A7 65 − 1.81E+00 2-(4-fluorophenyl)-3-(1H-pyrrol-2-yl)propanenitrile
A8 26 − 1.41E+00 2-(4-chlorophenyl)-3-(1H-pyrrol-2-yl)propanenitrile
A9 37 − 1.57E+00 2-(4-aminophenyl)-3-(1H-pyrrol-2-yl)propanenitrile
A11 49 − 1.69E+00 (Z)-2-(3,4-dichlorophenyl)hept-2-enenitrile
A22 2.2 − 3.42E−01 (Z)-2-(3,4-dichlorophenyl)-3-(p-tolyl)acrylonitrile
A23 1.5 − 1.76E−01 (Z)-2-(3,4-dichlorophenyl)-3-(naphthalen-2-yl)acrylonitrile
A25 6.5 − 8.13E−01 (Z)-2-(3,4-dichlorophenyl)-3-(4-fluorophenyl)acrylonitrile
A26 4.3 − 6.33E−01 (Z)-3-(4-chlorophenyl)-2-(3,4-dichlorophenyl)acrylonitrile
A27 16 − 1.20E+00 (Z)-3-(4-bromophenyl)-2-(3,4-dichlorophenyl)acrylonitrile
A28 0.13 8.86E−01 (Z)-2-(3,4-dichlorophenyl)-3-(4-nitrophenyl)acrylonitrile
A29 7.2 − 8.57E−01 (Z)-3-(3-chlorophenyl)-2-(3,4-dichlorophenyl)acrylonitrile
A30 23 − 1.36E+00 (Z)-2-(3,4-dichlorophenyl)-3-(4-hydroxyphenyl)acrylonitrile
A31 0.6 2.22E−01 (Z)-2-(3,4-dichlorophenyl)-3-(4-methoxyphenyl)acrylonitrile
A32 25 − 1.40E+00 (Z)-4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl acetate
A33 15 − 1.18E+00 (Z)-2-(3,4-dichlorophenyl)-3-(pyridin-4-yl)acrylonitrile
A35 28 − 1.45E+00 (Z)-2-(3,4-dichlorophenyl)-3-(3,5-dihydroxyphenyl)acrylonitrile
B2 31 − 1.49E+00 (Z)-2-(3,4-dichlorophenyl)-3-(4-(trifluoromethyl)phenyl)acrylonitrile
B3 1.3 − 1.14E−01 (Z)-2-(3,4-dichlorophenyl)-3-(1H-indol-3-yl)acrylonitrile
B4 7 − 8.45E−01 (Z)-2-(3,4-dichlorophenyl)-3-(furan-2-yl)acrylonitrile
B14 2.8 − 4.47E−01 (Z)-2-(3,4-dichlorophenyl)-3-(2-methyl-1H-indol-3-yl)acrylonitrile
B15 3.7 − 5.68E−01 (Z)-2-(3,4-dichlorophenyl)-3-(5-methyl-1H-indol-3-yl)acrylonitrile
B16 2.3 − 3.62E−01 (Z)-3-(5-chloro-1H-indol-3-yl)-2-(3,4-dichlorophenyl)acrylonitrile
B17 6.9 − 8.39E−01 (Z)-3-(5-bromo-1H-indol-3-yl)-2-(3,4-dichlorophenyl)acrylonitrile
B19 4 − 6.02E−01 (Z)-3-(1H-benzo[g]indol-3-yl)-2-(3,4-dichlorophenyl)acrylonitrile
B20 0.23 6.38E−01 (Z)-2-(3,4-dichlorophenyl)-3-(1H-indol-5-yl)acrylonitrile
C1 27 − 1.43E+00 (E)-3-(4-chlorophenyl)-2-(1H-pyrrole-2-carbonyl)acrylonitrile
C11 23 − 1.36E+00 (E)-3-(perfluorophenyl)-2-(1H-pyrrole-2-carbonyl)acrylonitrile
C18 35 − 1.54E+00 (E)-2-(2H-isoindole-1-carbonyl)-3-(4-nitrophenyl)acrylonitrile
C21 13 − 1.11E+00 (2E)‐2‐[(E)‐1H‐indole‐3‐carbonyl]‐3‐(2,3,4,5,6‐pentafluorophenyl)prop‐2‐

enenitrile
C23 11 − 1.04E+00 3‐(1H‐indol‐3‐yl)‐2‐[(1H‐indol‐3‐yl)methyl]‐3‐oxopropanenitrile
C27 34 − 1.53E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-(1H-pyrrol-2-yl)acrylamide
C28 6 − 7.78E-01 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-(1H-pyrrol-2-yl)acrylamide
C29 27 − 1.43E+00 (E)-2-cyano-3-(furan-2-yl)-N-(4-methoxybenzyl)acrylamide
C30 20 − 1.30E+00 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-(furan-2-yl)acrylamide
C31 21 − 1.32E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-(5-methylfuran-2-yl)acrylamide
C33 9 − 9.54E−01 (E)-3-(5-chlorofuran-2-yl)-2-cyano-N-(4-methoxybenzyl)acrylamide
C34 11 − 1.04E+00 (E)-3-(5-bromofuran-2-yl)-2-cyano-N-(4-methoxybenzyl)acrylamide
C35 3 − 4.77E−01 (E)-2-cyano-N-(4-methoxybenzyl)-3-(5-phenylfuran-2-yl)acrylamide
C36 20 − 1.30E+00 (E)-3-(4-bromofuran-2-yl)-2-cyano-N-(4-methoxybenzyl)acrylamide
C37 7 − 8.45E−01 (E)-2-cyano-3-(furan-3-yl)-N-(4-methoxybenzyl)acrylamide
C39 18 − 1.26E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-phenylacrylamide
C40 36 − 1.56E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-(p-tolyl)acrylamide
C41 11 − 1.04E+00 (E)-3-(4-chlorophenyl)-2-cyano-N-(4-methoxybenzyl)acrylamide
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model are good. The partial-F values are all greater than the 
critical value of 2.15 (F-distribution with 7 and 67 degrees 
of freedom, α = 0.05), indicating that each descriptor is sig-
nificant in the model given the presence of the other six. The 
variance inflation factors are generally small (below 10.0), 
and average 4.46 indicating that there is minimal collinearity 
between the descriptors. PLS analysis validates seven com-
ponents, indicating a lack of over fitting. Valid components 
are those for which the Wold criterion holds. This states that 
inclusion of components into the model terminates when the 

ratio of the PRedicted Error Sum of Squares (PRESS) values 
for the ith and the ith − 1 component exceeds 1.0 [36]. This 
corresponds to the point where Q2

LOO for the ith component 
decreases from the Q2

LOO of the ith − 1 component.  
Since a large number of molecular descriptors (X-vari-

ables) were analyzed in variable selection step (NX = 296) 
relative to the number of observations (Nobs = 75), it is 
possible that the model is a result of a random correlation 
[37]. While this may be true for a variable space of these 
dimensions composed of totally random and uncorrelated 

Table 1   (continued)

Structure label Observed growth 
inhibition (GI50, 
µM)

Observed growth 
inhibition (log 1/GI50, 
µM)

IUPAC Name

C44 33 − 1.52E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-(naphthalen-2-yl)acrylamide
C45 16 − 1.20E+00 (E)-2-cyano-N-(4-methoxybenzyl)-3-(naphthalen-1-yl)acrylamide
C46 29 − 1.46E+00 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-phenylacrylamide
C48 21 − 1.32E+00 (E)-3-(4-chlorophenyl)-2-cyano-N-(3,4-dichlorobenzyl)acrylamide
C50 45 − 1.65E+00 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-(4-methoxyphenyl)acrylamide
C51 29 − 1.46E+00 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-(naphthalen-2-yl)acrylamide
C52 8 − 9.03E−01 (E)-2-cyano-N-(3,4-dichlorobenzyl)-3-(naphthalen-1-yl)acrylamide
D6 2.5 − 3.98E−01 (Z)-2-(4-bromophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
D7 15 − 1.18E+00 (2Z)‐2‐(2‐fluorophenyl)‐3‐(1H‐pyrrol‐2‐yl)prop‐2‐enenitrile
D8 9.8 − 9.91E−01 (Z)-2-(3-fluorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
D10 1.7 − 2.30E−01 (Z)-3-(1H-pyrrol-2-yl)-2-(4-(trifluoromethyl)phenyl)acrylonitrile
D12 1.9 − 2.79E−01 (Z)-2-(3-chlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
D14 23 − 1.36E+00 (Z)-2-(2,4-dichlorophenyl)-3-(1H-pyrrol-2-yl)acrylonitrile
E13 26 − 1.41E+00 (Z)-2-(2,6-dichlorophenyl)-3-(2-nitrophenyl)acrylonitrile
E14 25 − 1.40E+00 (Z)-2-(2,6-dichlorophenyl)-3-(3-nitrophenyl)acrylonitrile
E15 2.9 − 4.62E−01 (Z)-2-(3,4-dichlorophenyl)-3-(2-nitrophenyl)acrylonitrile
E16 5.3 − 7.24E−01 (Z)-2-(3,4-dichlorophenyl)-3-(3-nitrophenyl)acrylonitrile
E18 0.89 5.06E−02 (Z)-3-(5-bromo-1H-pyrrol-2-yl)-2-(3,4-dichlorophenyl)acrylonitrile
E19 1 0.00E+00 (Z)-3-(4-bromo-1H-pyrrol-2-yl)-2-(3,4-dichlorophenyl)acrylonitrile
E20 0.33 4.81E−01 (Z)-3-(4,5-dibromo-1H-pyrrol-2-yl)-2-(3,4-dichlorophenyl)acrylonitrile
E21 0.48 3.19E−01 (Z)-2-(3,4-dichlorophenyl)-3-(3,4,5-tribromo-1H-pyrrol-2-yl)acrylonitrile
E26 3.5 − 5.44E− 01 (Z)-2-(2,6-dichloro-3-nitrophenyl)-3-(2-nitrophenyl)acrylonitrile
E27 12 − 1.08E+00 (Z)-2-(2,6-dichloro-3-nitrophenyl)-3-(3-nitrophenyl)acrylonitrile
E28 7.4 − 8.69E−01 (Z)-2-(2,6-dichloro-3-nitrophenyl)-3-(4-nitrophenyl)acrylonitrile
E29 2.8 − 4.47E−01 (Z)-2-(3-amino-2,6-dichlorophenyl)-3-(2-aminophenyl)acrylonitrile
E30 4.5 − 6.53E−01 (Z)-2-(3-amino-2,6-dichlorophenyl)-3-(3-aminophenyl)acrylonitrile
E32 0.32 4.95E−01 (Z)-3-(4-bromo-3-nitrophenyl)-2-(3,4-dichlorophenyl)acrylonitrile
E35 0.03 1.52E+00 (Z)-3-(4-aminophenyl)-2-(3,4-dichlorophenyl)acrylonitrile
E36 0.17 7.70E−01 (Z)-2-(3,4-dichlorophenyl)-3-(4-(methylamino)phenyl)acrylonitrile
E37 0.28 5.53E−01 (Z)-2-(3,4-dichlorophenyl)-3-(4-(dimethylamino)phenyl)acrylonitrile
E38 0.034 1.47E+00 (Z)-N-(4-(2-cyano-2-(3,4-dichlorophenyl)vinyl)phenyl)acetamide
E39 2.1 − 3.22E−01 (Z)-3-(1H-benzo[d]imidazol-6-yl)-2-(3,4-dichlorophenyl)acrylonitrile
F13c 13 − 1.11E+00 (2Z)-3-(4-{3-[(4-chlorophenyl)amino]-2-hydroxypropoxy}phenyl)-2-(3,4-

dichlorophenyl)prop-2-enenitrile

The structure label indicates the source of the data; the letter identifies the published article and the number is the number assigned to the struc-
ture in that article. The letter assignments are A—Tarleton, et al. [19], B—Tarelton, et al. [22], C—Tarleton, et al. [23], D—Al Otaibi, et al. [24], 
E—Baker, et al. [6], F—Baker, et al. [21]



618	 Journal of Computer-Aided Molecular Design (2021) 35:613–628

1 3

variables, the actual dimensionality of the descriptor spaces 
used in QSAR methods as practiced herein is actually much 
smaller because of a high degree of correlation between 
the molecular descriptors themselves [38]. For example, 

principal components analysis [39] of the 296 descriptors 
for the 75 observations analyzed in this instance showed 
that 27 principal components explain 99.0% of the variance 
in the descriptor space. So, the underlying dimensionality 
of the system is much smaller than it at first appears making 
it much less likely that the model is the result of a chance 
correlation. Nonetheless, the method of Y-randomization 
was used to evaluate the possibility of chance correlation. 
This was done by randomly scrambling the order of the Y 
variable (observed GI50) values without changing the order-
ing of the X variables (molecular descriptors). A set of ten 
random Y variables were generated from the original Y 
variable using Minitab-14. The maximum absolute value 
of the Pearson correlation coefficient [40] for the origi-
nal Y variable and the randomized Y variables was 0.196 
(minimum = 0.00437, average = 0.0738). Each of the 10 
randomized response variables was used to generate new 
7-variable regression equations using both the genetic algo-
rithm and simulated annealing methods yielding 20 final 
models. The average R2 for these 20 models was 0.387 (min-
imum = 0.305, maximum = 0.483), and the average Q2

LOO 
value was 0.242 (minimum = 0.121, maximum = 0.376). One 
should note that hundreds of models are evaluated for each 

Table 2   Details of the QSAR model derived for the set of 75 observa-
tions from the 2-phenylacrylonitrile data set

R2 = 0.726, s = 0.344, Q2
LOO = 0.663, Overall F-value = 25.39

Equation form: Obs. log(1/GI50) = 1.606 × SdssC + 0.2088 × SaaCH + 
0.2865 × SssNH + 6.628 × xch5 − 1.341 × dxp9 − 0.2500 × netype22 + 
0.3754 × n2pag13 − 4.182

Descriptor label Coefficient Partial-F Variance 
inflation 
factor

n2pag13 0.3754 81.24 5.42
SdssC 1.606 93.97 4.52
SaaCH 0.2088 37.20 9.15
xch5 6.628 66.90 1.83
netype22 − 0.2500 25.86 3.72
SssNH 0.2865 31.09 2.55
dxp9 − 1.341 13.57 4.08
y-intercept − 4.182

Table 3   Labels, a brief description and a diagram of the key molecular structure feature for each of the seven molecular descriptors in the final 
model

The descriptor labels within the winMolconn output are case sensitive

Descriptor label Description Key structural feature

SdssC Sum of the atom level E-State of all carbon atoms in the molecule of type = C < [26]

  
SaaCH Sum of the atom level E-State of all unsubstituted aromatic carbon atoms in the molecule [26]

  
SssNH Sum of the atom level E-State of all nitrogen atoms in the molecule of type –NH– [26]

  
xch5 Simple 5th-order chain (five ring bonds) molecular connectivity index (Only the ring bonds are consid-

ered in this version, no extra-ring bonds are included in the subgraph) [25]

  
dxp9 Simple 9th-order path difference molecular connectivity index. Computed by taking the difference 

between xp9 for the structure in question and the same descriptor for the hypothetical unbranched 
version of the structure with the same atom count and atom types [25]

netype22 Count of single edges between two delta-2 vertices

  
n2pag13 Count of 2nd-order path subgraphs (two consecutive bonds) between a delta-1 vertex and a delta-3 

vertex
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single run of model generation when using these variable 
selection methods, and that far more than 20 total equa-
tions were considered in generating these results. Since the 
Y-randomized model results are substantially poorer than 
those obtained for the original Y variable model (R2 = 0.726, 
Q2

LOO = 0.663), we conclude that the model is not a result 
of chance correlation.

Structure activity analysis of the model

In addition to providing a means to predict the activity 
of new structures, the model can be analyzed to extract 

information that explains how specific changes in structure 
affect the observed activity of the compound. Such infor-
mation provides a greater understanding of the underlying 
SAR, and can provide detailed information for designing 
new synthetic candidates. A method for conducting such an 
analysis using PLS analysis has been described previously 
[32, 35]. This method was used in this work. The details of 
conducting the analysis are not provided here, but a sum-
mary of the findings for each PLS component is provided.

As noted above, PLS analysis validates all seven compo-
nents of the model, and each component explains a part of 
the underlying SAR in the model. The model explains 72.6% 
of the variance in the observed data. A summary of the find-
ings from each component is provided below. In this discus-
sion, the signed squared PLS weights for highly weighted 
descriptors from each component are given in parentheses 
following the descriptor label.

Component‑1

The first component provides 36.3% of the informa-
tion in the model. Three of the descriptors are highly 
weighted in this component; SdssC (+ 52.0%), netype22 
(− 29.6%), and SssNH (− 15.1%). Due to the non-uniform 
distribution of the observed activity data, the model uses 
this component to help explain the bulk of the data with 
observed activity in the range of − 1.5 and − 0.3 (log1/
GI50 values). This component is focused on the linking 
group containing the nitrile and forms the connection 
between the terminal ring systems. Examples of a more 
active structure (A22) and a less active structure (C29) 
are shown in Fig. 4. More active structures have only 
the favorable ethylene linker, where less active struc-
tures include an amide group and an additional meth-
ylene carbon atom in the linker. The SdssC descriptor 
has positive values for the more active structures. The 

Observed Activity (log 1/GI50, micromolar)
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Fig. 3   Fit plot for the QSAR model showing the correlation of the fit-
ted and observed activity values for the 75 observations in the model 
training set

Fig. 4   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-1 
of the model. Activity value is 
log 1/GI50, micromolar
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less active structures take a negative value for SdssC due 
to the presence of the carbonyl group. Additionally, the 
less active structures have positive non-zero values for 
the SssNH descriptor which captures information regard-
ing the amide nitrogen atom. Combined with a negative 
weight the SssNH descriptor contributes to fit lower 
observed activity values. The amide nitrogen atom is 
missing from the more favorable ethylene linker, which 
is reflected in a value of zero for the SssNH descriptor for 
the more active structures. The presence of the combina-
tion of the methylene carbon atom and the amide nitrogen 
atom in the linker is captured by a larger value for the 
netype22 descriptor, which is combined with a negative 
weight and further contributes to fitting the lower activity 
observations.

Component‑2

Component-2 provides an additional 16.3% of the infor-
mation in the model (52.6% cumulative) and shows three 
highly weighted descriptors; SaaCH (+ 28.4%), SssNH 
(+ 25.7%), and dxp9 (+ 24.1%). This component focuses 
on the influence of the terminal portions of the structure 
for a particular subset of molecules. Figure 5 provides 
examples of structures which highlight the features that 
are the focus of which Component-2. SAR corrections are 
made to structures containing the disfavored linker iden-
tified in Component-1 which included the amide group 
and methylene carbon (see C35, Fig. 5). Those structures 
are identified using the SssNH descriptor which takes a 
positive weight in Component-2. The descriptors SaaCH 
and dxp9 descriptors, both taking positive weights, work 
together to highlight additional and larger aromatic ring 
systems present in several molecules with that linker 
which do not exhibit activity as low as suggested based 
on Component-1. This suggests that the presence of the 
unfavorable linker can be mitigated to a certain extent by 
the greater size of the terminal groups.

Component‑3

Component-3 makes further corrections to the SAR 
described in Component-1. This component expresses an 
additional 21.1% of the information in the model (63.7% 
cumulative) based on four highly weighted descriptors; 
n2pag13 (+ 28.3%), dxp9 (− 23.4%), SssNH (+ 15.2%), 
and xch5 (+ 11.5%). Component-3 primarily acts to iden-
tify structure features which appear to increase the activity 
over that expressed in Component-1. Structures illustrating 
these features are shown in Fig. 6. The n2pag13 descriptor 
captures the presence of the substituents on the rings of the 
terminal ends of the structures, particularly the pyrrole ring 
which is captured by the xch5 descriptor (see E20 and E21, 
Fig. 6). A small up-correction is also indicated for the inclu-
sion of a pyrrole ring for C28 which contains the unfavorable 
linker group identified in Component-1 and is captured by 
the positively weighted SssNH descriptor in Component-3. 
Combined, these features suggest that smaller rings, and in 
particular those with large halogen substituents, can be used 
to replace larger ring systems to achieve increased activity, 
even given the presence of other unfavorable features.

Component‑4

Component-4 accounts for an additional 9.07% of the 
information in the model (82.8% cumulative), and involves 
three highly weighted descriptors; dxp9 (− 44.1%), SdssC 
(+ 25.2%), and SaaCH (+ 12.5%). This component primar-
ily makes corrections downward in activity from the SAR 
expressed in the previous components. Example structures 
illustrating the key features are shown in Fig. 7. Com-
ponent-4 focuses primarily on the number and nature of 
the substituents on the rings at the terminal ends of the 
molecule. The dxp9 and SaaCH descriptors combine to 
identify structures with the shorter more favorable linker, 
but which have either too many substituents, or less favora-
ble substituents. The nitro groups (see E27 and E28) in 
particular appear to be disfavored as they reduce the value 

Fig. 5   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-2 
of the model. Activity value is 
log 1/GI50, micromolar



621Journal of Computer-Aided Molecular Design (2021) 35:613–628	

1 3

of the SaaCH descriptor much more than a simple halo-
gen substituent does at the same position. The compounds 
C11 and C21 contain the pentafluoro benzene ring, and 
are also differentiated from other short linker molecules 
by the presence of the carbonyl group in the linker which 
is captured by the SdssC descriptor. Unlike the methyl-
amide substructure of the longer linker identified in Com-
ponent-1, these structures have only the additional car-
bonyl group which is why they were not fit properly in 
Component-1. The larger indole ring in C21 mitigates the 
impact of the multiple aromatic substituents and the car-
bonyl in the linker, but only to a relatively small extent. 
The much larger 1H‐benzo[g]indole ring of B19 increases 
the value SaaCH, but significantly increases the value of 
dxp9 which is a more highly weighted change and suggests 

the presence of the greater bulk at that end of the molecule 
is disfavored.

Component‑5

Component-5 explains an additional 10.0% of the SAR 
expressed in the model (92.8% cumulative), and it does 
this using three highly weighted descriptors: n2pag13 
(+ 50.2%), xch5 (− 36.5%), and SaaCH (+ 7.40%). Exam-
ple structures related to Component-5 are shown in Fig. 8. 
The xch5 descriptor divides the data set into two clusters. 
One cluster generally takes a value of zero for xch5 indi-
cating the absence of a five-membered ring whereas the 
other cluster takes a non-zero value for the xch5 descriptor 
indicating the presence of a five-membered ring, typically 
in the form of a pyrrole or indole. One structural feature in 
particular is the missing double bond in the linking group 

Fig. 6   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-3 
of the model. Activity value is 
log 1/GI50, micromolar
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of several structures (A7, A8, and A9). These structures 
were overestimated in Component-1. The missing dou-
ble bond affects the value of the xch5 and SaaCH which 
helps to identify the difference in the linking feature. 
Taken together, this component adjusts the activity of 
these structures down from what was captured in earlier 

components. The n2pag13 descriptor makes its greatest 
contribution to the model in Component-5. Within the 
clusters, the n2page13 descriptor helps to capture struc-
ture features that impart greater activity than expressed 
in the previous components. This component puts special 
emphasis on branched substituents such as methylamine 
or dimethylamine (E36 and E37). The activity of these 

Fig. 7   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-4 
of the model. Activity value is 
log 1/GI50, micromolar
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structures is underestimated in the earlier components. The 
slightly more complex substituents affect the activity dif-
ferently than adding simple single atom substituents such 
as halogens.

Component‑6

This component accounts for an additional 5.39% of the 
work done by the model (98.2% cumulative), and involves 
three highly weighted descriptors: xch5 (+ 40.5%), SssNH 
(− 39.3%) and netype22 (+ 10.2%). Example structures 
that illustrate the important features for the component are 
shown in Fig. 9. The small contribution of the component 

Fig. 8   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-5 
of the model. Activity value is 
log 1/GI50, micromolar
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to the overall model indicates that it is accounting for only 
small corrections in a few specific structures. For example, 
small positive adjustments are made to fit the activity of 
C21 and C23 are captured by the combination of informa-
tion from the xch5 descriptor (encodes information for the 
5-membered ring), and netype22 which captures the addi-
tional unsubstituted aromatic carbon atoms in the indole 
ring systems. These structures were not as well fitted by 
the combination of earlier components. Similarly, a small 
correction is made in the fitting of the activity of A35 using 
netype22. There are additional substituents on this molecule 
that are more polar and hydrophilic that other related struc-
tures which are apparently less favored. The importance of 
the SssNH descriptor is in identifying a difference in C50 
compared to other similar structures based on its inclusion 
of the slightly more hydrophilic methoxy substituent. The 
overall effect of this component is to provide small adjust-
ments to the fitted activity of structures with unique rings 
and ring substituents.

Component‑7

This last component accounts for only an additional 1.8% of 
the model (100% cumulative) and uses three highly weighted 

descriptors: netype22 (− 39.5%), SaaCH (+ 35.9%), and 
SdssC (− 16.1%). The purpose of this component is to make 
a correction to one unusual structure, A11 (see Fig. 5). The 
value of SaaCH is 5.25, which is nearly the lowest value of 
any structure in the data set. The value of SdssC is 0.659, 
which is one of the largest values in the data set. Combined 
with the netype22 descriptor (value = 4) and the signs of the 
respective PLS weights, these descriptors capture the pres-
ence of the aliphatic chain and the absence of the second 
ring system present in the rest of the data set, which con-
tributes to making this the analog with the lowest activity 
in the data set.

SAR analysis summary

The PLS analysis provides very detailed information regard-
ing the underlying SAR represented in the model. Figure 10 
summarizes the extracted SAR in graphic form. The model 
addresses structure variations by dividing the structure space 
into three regions. There are two main themes in the SAR; 
the nature of the central linking group, and the nature of the 
terminal groups. Overall, the nature of the linking group 
makes the largest SAR contribution (see Component-1), and 
there are generally two classes of linker (Fig. 10, region A). 

Fig. 9   Structures and molecular 
descriptor values for examples 
illustrating the key structure fea-
tures identified in Component-6 
of the model. Activity value is 
log 1/GI50, micromolar
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A short linker group is preferred, with the ethylene linkage 
being most favored. Longer linking groups including either 
a carbonyl or a combination of amide and a methylene car-
bon are disfavored. The key feature is not just length, but 
the presence of the double bond seems to be an important 
required feature. Structures differing only by the absence 
of the double bond can exhibit a decrease in activity from 
single digit and low double digit micromolar activity to mid-
double digit micromolar activity (see Component-5). The 
positive contribution of the unsaturation in the linker may 
be related to the electrostatics of the connection between 
the terminal moieties, or may provide a desirable confor-
mational constraint.

Within two linker subsets, the nature of the terminal 
groups is quite diverse and that diversity plays the role of 
enhancing or diminishing the activity within a linker class. 
The model size (number of descriptors) is a direct result 

of the diversity of the terminal groups. Less diversity was 
experimentally explored in region B, but some specific 
trends have been observed. It is clear from the PLS analysis 
that the 3,4-dichlorophenyl group is most favored fragment 
present in region B (see Fig. 10). A number of other substitu-
ents and substituent patterns were evaluated, but none were 
as active overall. For example, 2,4-dichloro and 2,5-dichloro 
analogs are not as active as the 3,4-dichloro substitution 
pattern. Other substitution patterns that approach similar 
size and orientation are 4-bromo and 4-trifluoromethyl and 
exhibit similar activity. This suggests that ring systems that 
put greater bulk in that region would be favored, and favor-
ing hydrophobic bulk in particular. While adding bulk in 
that region, a polar nitro substituent is disfavored (see Com-
ponent-4), probably because while not being hydrophilic, it 
is not found to be as hydrophobic as other substituent types 
[41].

Greater diversity has been experimentally explored in 
region C. A preference for moderate-sized groups in this 
region (see Fig. 10) is also clear from the PLS analysis. 
Phenyl and pyrrole rings with hydrophobic substituents 
and unsubstituted indole rings are favored in region C, as is 
illustrated in PLS components 2, 3, 5 and 6. Component-6 
indicates hydrophilic substituents are disfavored. PLS com-
ponent-7 shows that a lack of sufficient bulk in region C is 
also disfavored.

Due to the nature of PLS, a significant advantage of this 
type of SAR analysis is that the SAR trends described are 
orthogonal. The results suggest that each region can be 
investigated and optimized more or less separately. This 
can simplify planning of new synthetic targets to generate 
more detail regarding the scope of what is possible in each 
region as well as increasing what can be achieved with a 
given reaction route.

Review of outliers

An examination of outliers can be instructive because 
they can help to detect either experimental issues (assay 
anomalies, sample identity or purity issues, etc.) or identify 

Fig. 10   A graphic illustration of the important structure regions iden-
tified in the structure activity relationship extracted using PLS analy-
sis. Two main features were identified; The linking group, (a), con-
necting the two terminal groups, (b) and (c). The structure for E36 is 
used to illustrate features favored in each region

Table 4   Identity, observed and 
predicted activity (MTT, log 1/
GI50, micromolar) for the five 
outliers identified during model 
development

The available results from the SRB assay are also shown
ND not determined

Structure label Observed activity 
(MTT, log 1/GI50, 
µM)

Predicted activity 
(MTT, log 1/GI50, 
µM)

Prediction error Observed activity 
(SRB, log 1/GI50, 
µM)

A28 0.886 − 0.631 1.52 − 1.26
E32 0.495 − 0.242 0.737 − 0.398
E35 1.52 − 0.655 2.18 − 0.380
E38 1.47 − 0.335 1.80 ND
F13c − 1.11 0.214 − 1.33 ND
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modeling or data analysis issues (data processing problems, 
descriptor selection limitations, structure diversity issues, 
etc.). During the development of the model, a set of five 
statistical outliers were detected and set aside. The outliers 
are identified in Table 4. The model was used to predict the 
activity values for the outliers. A comparison of the pre-
dicted and observed activity values for the outliers are shown 
graphically in Fig. 11.

Examination of the predicted activity values for the 
outliers based on the model shows that the activity of 
four of the five structures is underpredicted; the observed 
activity is much greater than the predicted activity. In gen-
eral, one would expect a random error to be more evenly 
distributed, so this pattern suggests a systematic problem 
and raises possibility that these large positive errors are 
suspicious. This is the same behavior that was detected 
in preliminary modeling work, and that was found to be 
related to interference caused by some compounds in the 
MTT assay. In work done after model development was 
already under way, experimental evaluation of activity 
of compounds A28, E32 and E35 using the SRB assay 
verified that they were, in fact, false positives in the MTT 
assay due to the compounds interfering with the method. 
The overall SAR for the model suggests hydrophobic sub-
stituents are favored in region C of the structure (Fig. 10). 
The observed activity of E38 is greater than expected 
given the more hydrophilic substituent in that region of 

the structure. For example, A30 has a hydroxyl substituent 
in the para-position and has an observed activity value of 
− 1.36. A26 has a chlorine in the same position and has 
an activity value of − 0.633. While it is possible that E38 
represents a real departure from the overall SAR captured 
by the model, based on past observations of interfering 
compounds in the MTT assay and on the comparison to 
relatively similar compounds, its exclusion from the train-
ing set seems reasonable pending the acquisition of addi-
tional experimental data.

The remaining outlier, F13c, is larger than any of the 
structures in the training set. The most unique part of the 
structure resides in region C (Fig. 10) of the structure where 
there are no structures with similarly large features. This 
structure is quite dissimilar from the structures in training set 
in this respect which takes it out of the knowledge domain of 
the model and makes it a structural outlier. It is reasonable to 
set it aside until other structures which similarly expand into 
region C are experimentally evaluated. This will be explored 
in future work.

Conclusions

The AhR, a transcription factor, has been identified as a 
potential good druggable target for the future treatment 
of breast cancer and that 2-phenylacrylonitriles likely act 
against this receptor. In this work, a good quality model was 
obtained for the cytotoxicity of a series of 2-phenylacry-
lonitriles and related compounds against MCF-7 human 
breast cancer cells. The model provides the means to pre-
dict activity of compounds not yet synthesized and also pro-
vides a detailed description of the underlying SAR which 
can be used to guide subsequent rounds of structure design. 
Additionally, recent experimental efforts have identified a 
number of compounds that gave inaccurate results in the 
standard MTT assay, with analogues expressing potency 
manyfold more active than they were later determined to 
be. The model development process showed it was possible 
to identify structures that departed significantly from the 
SAR expressed by the majority of the available data, which 
was agreement with the newly obtained experimental results. 
The model has identified several other observations likely to 
be interfering in the assay in the same way, which will need 
to be verified experimentally. This work enables design of 
future analogues targeting the AhR pathway which will be 
reported in due course.

Supplementary Information  The online version contains supplemen-
tary material available at https://​doi.​org/​10.​1007/​s10822-​021-​00387-5.
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Fig. 11   Predicted activity results for the five modeling outliers com-
puted using the model. The prediction results are shown in the con-
text of the training set fitted results
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