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Abstract
Machine learning (ML) enables modeling of quantitative structure–activity relationships (QSAR) and compound potency 
predictions. Recently, multi-target QSAR models have been gaining increasing attention. Simultaneous compound potency 
predictions for multiple targets can be carried out using ensembles of independently derived target-based QSAR models 
or in a more integrated and advanced manner using multi-target deep neural networks (MT-DNNs). Herein, single-target 
and multi-target ML models were systematically compared on a large scale in compound potency value predictions for 
270 human targets. By design, this large-magnitude evaluation has been a special feature of our study. To these ends, MT-
DNN, single-target DNN (ST-DNN), support vector regression (SVR), and random forest regression (RFR) models were 
implemented. Different test systems were defined to benchmark these ML methods under conditions of varying complex-
ity. Source compounds were divided into training and test sets in a compound- or analog series-based manner taking target 
information into account. Data partitioning approaches used for model training and evaluation were shown to influence the 
relative performance of ML methods, especially for the most challenging compound data sets. For example, the performance 
of MT-DNNs with per-target models yielded superior performance compared to single-target models. For a test compound 
or its analogs, the availability of potency measurements for multiple targets affected model performance, revealing the influ-
ence of ML synergies.

Keywords  Machine learning · Structure–activity relationships · Multi-target learning · Deep neural networks · Model 
validation

Introduction

Machine learning (ML) models are used to relate the chemi-
cal structure of compounds to their biological activity and 
derive qualitative or quantitative structure–activity relation-
ship (Q)SAR models [1–3]. Supervised modeling of such 
relationships and compound activity or potency prediction 
is facilitated via classification (i.e., prediction of active/inac-
tive states) or regression (i.e., potency value prediction) [4, 
5]. ML methods have become important components of (Q)

SAR analysis and especially deep learning (DL) approaches 
have recently attracted increasing interest in the QSAR field 
and beyond [6–8].

Deep neural networks (DNNs) have become a method of 
choice for many investigations, although significant advan-
tages compared to other ML methods are not always evi-
dent, especially in compound activity/potency predictions. 
Despite their high complexity, low interpretability, and the 
large number of hyper-parameters that need to be optimized, 
DNNs have been employed to model a variety of data, pre-
dict different assay outcomes or various compound proper-
ties, and yielded promising results in many instances [7, 
9–12]. Some studies have indicated potential benefits of DL 
in medicinal chemistry and drug design [6, 13, 14]. DNN 
models have mostly advanced new applications that were not 
operable with conventional ML methods. However, superior 
performance of DNNs in ML-based QSAR models has not 
been consistently observed in applications using data sets of 
different origins and composition [7, 12].
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In this context, one of the most promising applications 
of DNNs is multi-task or multi-target (MT) learning [15, 
16]. DNNs can be configured for MT learning, resulting in 
MT-DNNs, which aim to simultaneously predict compound 
activity or potency against multiple biological targets [16, 
17]. Different studies have shown that MT-DNN modeling 
can further increase the predictive performance of other ML 
methods depending on data characteristics and volumes, 
hyper-parameter optimization, target correlation, and/or 
the fraction of missing data missing data in a multi-target 
matrix [7, 12, 17–19]. Compared to single-target modeling, 
the performance of MT-DNNs principally benefits from the 
presence of correlated predictions tasks. However, given the 
high level of complexity of MT-DNNs, there is considerable 
interest in increasing the understanding how these models 
should best be calibrated and optimized and how they should 
be properly evaluated in practical applications. Of note, in 
addition to DNNs, other ML architectures and models are 
also amenable to and benefit from MT configurations [16]. 
This makes it interesting to ascertain whether apparent ben-
efits from MT-DNNs for multi-target activity predictions 
result from the algorithmic DL architecture and/or the MT 
configuration. Therefore, we aim to better understand under 
which conditions MT learning offers advantages over other 
prediction strategies and how varying conditions might 
influence the relative performance of different methods.

In this work, we have investigated how single-target (ST) 
and MT ML approaches compare if potency predictions 
are attempted under varying conditions on a large scale by 
investigating as many targets and compound classes as pos-
sible. Therefore, ST and MT models have been implemented 
and evaluated using different data division (splitting) strate-
gies, which have been found to affect model performance. 
Compared to other approaches, MT-DNN models provided 
incremental advantages for predicting the most challenging 
activity classes.

Methods and materials

Compound activity data

Activity classes with high confidence activity data were 
extracted from ChEMBL version 24 [20]. In each case, a maxi-
mal confidence score of nine was required for direct binding 
assays with single human targets and equilibrium constants (Ki 
values) were exclusively selected as potency measurements. 
For compounds having multiple Ki values, the geometric mean 
was calculated if all potency values fell within the same order 
of magnitude and the mean pKi value was larger than five. 
If not, the compounds were omitted. Thus, borderline active 
compounds were excluded from modeling. The resulting data 
set was composed of 70,491 compounds with activity against 

847 human proteins and a total of 116,881 pKi annotations. 
From the data set, analog series were systematically extracted 
using an algorithm [21] based upon the matched molecular 
pair formalism [22]. Activity classes containing less than 
50 compounds and/or less than two series of analogs were 
excluded from the analysis. Accordingly, the final data set 
used for modeling comprised 66,977 compounds with activ-
ity against 270 targets. A total of 110,358 pKi annotations were 
available, corresponding to 0.61% density of the correspond-
ing compound-target matrix.

Molecular representation

Compounds were represented using circular topological fin-
gerprints. An in-house version of the extended-connectivity 
fingerprint with bond diameter 4 (ECFP4) [23] based upon 
the OpenEye OEChem toolkit [24] was used to generate atom 
environments for compounds and encode them using a hashing 
function. Modulo mapping was applied to convert variably-
sized compound-based ECFP4 feature sets into a constantly-
sized folded version consisting of 1024 bits.

Calculation protocol

ML regression models were built to predict compound potency 
from chemical structure. Compounds were defined by the fea-
ture vector � or ECFP4 and one or more numerical potency 
values y (one per target). Since the equilibrium constant values 
are log-normally distributed, compound labels � consisted of 
pKi values [pKi = − log10(Ki)]. Given the negative sign, higher 
pKi values indicate increasing compound potency. For differ-
ent test systems and tasks, ST-DNN and MT-DNN models 
were built based upon corresponding training sets and applied 
to predict different test sets in three independent trials. Model 
hyper-parameters were optimized as described below. ST mod-
els were also built using random forest regression (RFR) and 
support vector regression (SVR). The calculation protocol was 
implemented in R and Python.

Performance evaluation

Different measures were used to assess model performance 
including mean absolute error (MAE), median absolute error 
(MedAE), mean squared error (MSE), and correlation coef-
ficient (r). The most frequently calculated MAE and MSE 
measures are defined in Eqs. (1) and (2), respectively:

(1)MAE(y, ŷ) =
1

n

n∑

i=1

|yi − ŷi|
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where n is the number of compounds, y is the experimental 
potency (pKi) value and ŷ the predicted value.

Machine learning algorithms

Support vector regression

SVR derives a regression function f (�) = ⟨�, �⟩ + b where 
the weights (w) and bias (b) are obtained through an opti-
mization task. The algorithm only tolerates a given amount 
of deviations from observed and predicted values in the 
training data (ε) by penalizing larger errors [25, 26]. Thus, 
so-called ε-insensitive tube SVR considers a tube of radius 
ε around the target values such that only the data points 
outside the tube are penalized. Slack variables can be intro-
duced during optimization to relax the ε-tube conditions. 
The hyper-parameter C or cost factor can be considered as 
a trade-off to balance error minimization and model com-
plexity, which might lead to overfitting. This regularization 
term penalizes large slack variables or deviations from the 
ε-tube. The optimization problem is solved in its Lagrange 
dual formulation, where �i and �i∗ multipliers are introduced 
for each data point, yielding the following prediction func-
tion as a result f (�) =

∑
i

�
�i − �i

∗
�
⟨��, �⟩ . This function 

only uses support vectors (training compounds outside the 
ε-tube) to facilitate a prediction. SVR models are rendered 
non-linear through the “kernel trick”, which replaces the 
scalar product by a kernel function to map feature vectors 
into higher-dimensional space. Herein, the non-linear Tani-
moto kernel was used.

Random forest regression

RFR consists of an ensemble of decision trees in order to 
reduce the variance of individual trees [27]. During training, 
bootstrap aggregation yields decision trees with different 
(replaced) compound subsets. In the construction of each 
tree, best data splits are determined through node-based 
splitting where only a random subset of features is consid-
ered, which further reduces correlation across trees. MSE 
was used to assess the quality of a split. RFR predicts final 
potency values as the mean prediction across all decision 
trees.

Feedforward deep neural networks

A feedforward DNN is constituted by basis functions (neu-
rons), which are organized in sequential layers. The pro-
totypic DNN architecture includes an input layer, at least 

(2)MSE(y, ŷ) =
1

n

n∑

i=1

(yi − ŷi)
2

two hidden layers, and an output layer. The input layer 
comprises as many neurons as features, in this case 1024, 
while the model assigns one output neuron to each target. 
Neurons receive input values � from the previous layer, 
which are linearly combined with weights (w) and biases 
(b). Then, an activation function (h) is applied to obtain the 
neuron’s output. Thus, the output is given by the equation 
yj = h(

∑
i�ji

n�i + bj
n) , where n indicates the layer num-

ber [28, 29]. DNN models are trained by determining the 
weights for each neuron leading to the desired output. In 
this case, experimental and predicted pKi values are com-
pared using a loss function. Backpropagation calculates the 
gradient of the error function with respect to the weights, 
which is minimized using gradient descent. Thus, weights 
are iteratively updated in the direction of the negative gradi-
ent to minimize the error.

Calculations

SVR and RFR calculations were carried out using scikit-
learn [30], whereas DNN models were implemented with 
TensorFlow [31] and Keras [32].

Missing potency annotations

Potency values were sparsely distributed across the com-
pound-target interaction matrix (density 0.61%; see above). 
ST models were trained with a single potency value per 
compound. Therefore, missing potency annotations did not 
influence ST model building. By contrast, in the case of 
MT-DNN, all tasks are modeled simultaneously. Therefore, 
each compound label was assigned a vector of length 270, 
i.e. assigning one potency value per target, and a custom loss 
function masking missing labels was created. With this func-
tion, the model only uses existing data points when comput-
ing the training loss. Thus, only available compound-target 
potency annotations were used for model training. In target-
based data splitting, there might be compounds with activity 
annotations both in the training and test sets (for different 
targets). In this case, compound potency values belonging 
to the test set were also masked during training.

Hyper‑parameter optimization

For each model and independent trial, selected model hyper-
parameters were optimized through two-fold cross-valida-
tion using training data and a grid search to minimize the 
MSE. In RFR, three candidate values were considered for 
the minimum number of samples required to split a node 
(2, 8, 16) and the minimum number of samples in a leaf 
node (1, 5, 10). In the search for the best data split, possible 
values for the maximum number of features were the square 
root or logarithm (base 2). Finally, the number of trees in 
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the ensemble was set to 500. The candidate values most fre-
quently selected as the best solution for RFR models during 
the grid search included log2 (maximum number of features) 
and 3 (minimum samples leaf).

SVR models used a customized Tanimoto kernel, and 
only the cost value C was optimized during cross-validation 
(0.001, 0.01, 0.1, 1, 10, 100). Optimized SVR models pref-
erentially employed a cost value of 0.01.

DNN models were trained with different learning rates 
(0.01, 0.001, 0.0001). Grid search was also applied to drop-
out rates (0.1, 0.25, 0.4) and batch size (64, 128). Alterna-
tive network architectures were tested including different 
numbers of hidden layers (2, 3, 4) with rectified linear unit 
(ReLU) activation and neurons (100, 200, 1000, 2000). Net-
works were trained with or without batch normalization and 
the Adam optimizer was used. The final models were trained  
for early termination and a maximum of 200 epochs. For  
ST-DNNs, combinations of preferred hyper-parameter val-
ues were frequently observed leading low MSE. For exam-
ple, learning rates of 0.001 or 0.0001 were preferred over 
0.01. Increasing the dropout rate had an effect for some 
hyper-parameter combinations, leading to higher errors. Fur-
thermore, a dropout rate of 0.1 was generally preferred. The 
most frequently selected hyper-parameters for MT-DNNs 
included two hidden layers with 2000 and 1000 neurons, 
respectively, without batch normalization, a batch size of 
128, drop-out rate of 0.1, and learning rate of 0.0001.

Results and discussion

Multi-target (MT) and single-target (ST) ML models were 
built to predict compound potency values for activity classes 
covering 270 biological targets. Initially, a large set of com-
pound activity data was obtained from ChEMBL, which only 
included assays measuring direct binding to human targets 
with available Ki values. Following data curation, the result-
ing set used for modeling comprised 66,977 compounds, and 
100,358 compound-target potency annotations (correspond-
ing to 0.61% density of the corresponding compound-target 
matrix). Next, regression models were built to systematically 
predict the logarithmic potency (pKi) values for individual 
targets or multiple targets simultaneously.

Data division strategies

ML models were built on the basis of different newly 
designed data division (splitting) strategies to provide 
increasingly challenging test systems for the evaluation of 
ST and MT learning. The different strategies accounted for 
target-based vs. global data organization as well as com-
pound- or analog series-based splitting and are schematically 
illustrated in Fig. 1.

Per‑target vs. global division

Training and tests can be assembled on a per-target basis 
such that each individual target has its own training and test 
sets. By contrast, a global splitting strategy assigns each 
compound either to the global training or test set, regard-
less of the target. For ST models, training and test sets are 
always generated in a target-based manner. However, for MT 
predictions, it must be decided whether a compound should 
be added to the training or test set.

Compound‑ vs. analog series‑based division

Training and test sets can also be generated on the basis 
of individual compounds or analog series, which consist 
of compounds sharing the same core structure and having 
different substituents (R-groups). Data organization based 
on analog series ensures that compounds with very similar 
structures will not occur in both training and test sets, which 
generally increases the difficulty of a prediction tasks com-
pared to compound-based selection. Training and test sets 
containing distinct analog series challenge prediction models 
but provide model generalization in successful instances. For 
our study, all available analog series were algorithmically 
extracted [21] from our compound collection. In network 
representations where compound nodes are connected by 
edges if they are structural analogs, disjoint clusters consist 
of individual analog series (Fig. 1).

Definition of test systems

Applying global or target-based data division as well as 
compound- or analog series-based division, four different 
test systems were defined (Fig. 1). First, compounds were 
randomly divided into training and test sets on per-target 
basis (CPD-Target). Second, a compound and its activity 
annotations were exclusively used for training or testing 
across all targets (CPD-Global). Third, complete analog 
series were randomly divided into training and test sets on 
a per-target basis (AS-Target). Fourth, analog series were 
globally divided (AS-Global).

For simplicity, in Fig. 1, all compounds are annotated 
against the same two targets. However, in our test systems, a 
compound might be active against single or multiple targets. 
The application of global data splitting schemes ensured 
that a compound (CPD-Global) or an entire analog series 
(AS-Global) consistently participated in either training or 
test sets, even if annotations against multiple targets were 
available.
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General model comparison

ST- and MT-DNN models as well as ST-RFR and ST-SVR 
models were generated and evaluated using multiple meas-
ures including the mean absolute error (MAE), median 
absolute error (MedAE), mean squared error (MSE), and 
correlation coefficient (r) values. The mean and stand-
ard deviation of these metrics were first calculated for all 
the models across all targets, as reported in Table 1. The 
results revealed general trends. Many successful models 
were obtained, which approached experimental accuracy in 
a number of instances, with differences between predicted 
and experimental potency values falling narrowly within an 
order of magnitude. Moreover, correlation between predicted 
and experimental potency was overall high, which indicated 
that well performing models should be applicable to many 

targets, at least to generate ranking schemes for compound 
prioritization. As anticipated, other activity classes displayed 
lower performance levels, which were separately analyzed, 
as discussed below. The reasonable global model perfor-
mance across different test systems provided a sound basis 
for further analysis of the predictive models.

Comparison of DNN models

MT-DNN and ST-DNN models were built for all 270 tar-
gets. Therefore, a model that predicted compound potency 
against 270 targets was compared to 270 individual models 
for single targets. Three independent trials were carried out 
per method and test system. For these three trials and 270 
targets, the percentage of cases with better predictions with 
MT-DNN or ST models is reported in Table 2. ST models 

Fig. 1   Data division strategies. 
The four data splitting schemes 
(CPD-Target, CPD-Global, 
AS-Target, and AS-Global) are 
schematically illustrated. Nodes 
represent compounds that are 
connected by an edge node if 
they form an MMP. Disjoint 
clusters represent analog series. 
The color of the nodes (blue or 
gray) indicates if a compound 
is in training (blue) or test sets 
(gray). For the CPD-Target and 
AS-Target splitting strategies, 
training and test compounds 
can differ across targets. For 
simplicity, only two targets 
and shared compounds are 
represented

Training CPD

Test CPD

CPD-Target

Target 1 Target 2

CPD-Global

Targets 1 & 2

AS-Global

Targets 1 & 2

AS-Target

Target 1 Target 2

Table 1   Global model 
performance

Mean (± standard deviation) values are reported for multiple measures (MAE, MedAE, MSE, r) and four 
types of ML models (ST-DNN, MT-DNN, RFR, SVR)

ST-DNN MT-DNN RFR SVR

MAE 0.607 ± 0.184 0.568 ± 0.154 0.546 ± 0.146 0.531 ± 0.142
MedAE 0.478 ± 0.184 0.450 ± 0.154 0.436 ± 0.150 0.415 ± 0.140
MSE 0.682 ± 0.475 0.586 ± 0.335 0.536 ± 0.299 0.519 ± 0.291
R 0.656 ± 0.213 0.673 ± 0.198 0.705 ± 0.185 0.714 ± 0.175
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are only trained with compounds having potency values 
for the particular target. In the absence of annotations for 
a given target, the compound cannot be added to the train-
ing or test sets. In the case of MT-DNN models, all com-
pounds that have at least one potency value for given target 
can be used. For MT-DNN model training and testing, only 
available potency annotations were considered in the loss 
or error calculations. When a compound was not annotated 
for a given target, the corresponding interaction in the com-
pound-target label matrix was masked in the loss function 
calculation such that this value was not used for training 
error estimation. Therefore, only available potency values 
were used for backpropagation. This masking scheme was 
also applied to potency values used for model evaluation. 
Accordingly, test set predictions were exclusively assessed 
on the basis of compound-target interactions with available 
Ki values.

When comparing MT-DNN and ST model results, the 
performance was considered superior if errors were at least 
0.1 smaller or correlation between predicted and observed 
potencies was 10% higher. For a confined proportion of 
activity classes, the performance of MT-DNN model across 
different test systems was significantly better than of ST-
DNN models, as determined using different measures. On 
the basis of error quantification (MAE, MedAE, MSE), 
there were more activity classes with accurate predictions 
for MT-DNN than ST-DNN models. For the basic CPD-
Target approach, only 4.8% of the test cases gave at least 
0.1 smaller MAE values with ST-DNN compared to MT-
DNN, whereas 26% of the cases improved with MT learning. 
For the same test system, MSE differences were larger, with 
9.5% and 41.4% of the activity classes better predicted by 
ST- and MT-DNN models, respectively. Interestingly, for the 
most challenging AS-Global test system, MAE calculations 
revealed comparably small differences. In this case, for 10 
and 16.9% of the activity classes, superior performance was 
observed for ST- and MT-DNN, respectively. On the basis 
of MSE calculations, the proportions of activity classes with 
better predictions were 18.3% for ST- vs. 29.8% for MT-
DNN models. Overall, there was a consistently detectable 

advantage of MT- over ST-DNN learning, with a notable 
influence of the data division strategies on relative model 
performance. Target-based data division favored MT-DNN 
learning. Correlation coefficient values were only similar for 
different ML methods when the per-target splitting strategy 
was applied, i.e., when test compounds with activity annota-
tions against multiple targets were separately considered for 
these targets. This provided a generally improved basis for 
MT- over ST-DNN learning, consistent with our findings.

Models with different test systems

MT-DNN performance has been compared to ST-DNN, 
RFR, and SVR models. The MAE difference between the 
MT and ST models was calculated. Figure 2 shows the dis-
tributions of MAE differences (MAEMT − MAEST) for all 
the activity classes and test systems. The distributions con-
tained statistical outliers corresponding to activity classes 
for which ST or MT models performed substantially better 
than their counterparts. Overall, SVR models yielded higher 
performance than other ML models, especially for global 
test systems. For many targets, potency predictions with 
SVR- and RFR-ST models were clearly more accurate than 
those of ST-DNN models. Although there might be specific 
architectures or hyper-parameter combinations that further 
boost in performance of DNN models, for hyper-parameter 
combinations we tested and the increasingly challenging test 
systems we investigated, there was no advantage over ST-
SVR or -RFR models. Importantly, the results also showed 
that the DNN models were substantially affected by alter-
native data splitting strategies upon which the different test 
systems were based. For target-based test systems, ST-DNN 
models produced larger errors than MT-DNN models, as 
mentioned above, but for global test systems, median error 
of these models were nearly identical. Analog series-based 
data splitting forces models to predict compounds that are 
dissimilar to the training set, which might be expected to 
favor DNN models. However, especially for the AS-Global 
test system, ST-SVR and -RFR models produced lower 

Table 2   Activity classes with 
superior MT-DNN or ST-DNN 
performance

For each data splitting strategy (CPD-Target, CPD-Global, AS-Target, AS-Global) and multiple perfor-
mance measures (MAE, MedAE, MSE, r), the percentage of compound activity classes having a > 0.1 dif-
ference in performance in MT-DNN vs. ST-DNN is reported. “MT < ST” and “MT > ST” refer to better 
predictions with ST models and MT-DNN, respectively

Measure CPD-Target CPD-Global AS-Target AS-Global

MT < ST MT > ST MT < ST MT > ST MT < ST MT > ST MT < ST MT > ST

MAE 4.8 26.0 6.8 13.8 5.3 25.8 10.0 16.9
MedAE 7.5 23.3 12.3 17.5 9.1 26.3 17.9 18.4
MSE 9.5 41.4 14.2 28.0 10.0 42.0 18.3 29.8
r 7.0 19.1 12.0 9.9 8.8 20.1 14.1 14.2
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errors than MT- and ST-DNN models, indicating that DNN 
model had less potential for generalization.

Challenging compound sets

In addition to exploring alternative test systems/conditions, 
large-scale assessment of many different activity classes was 
another driver of our study. For the 270 classes we investi-
gated, a separation into “suitable” classes, which yielded 
fairly or highly accurate predictions, and “difficult” classes 
was observed, for which prediction accuracy was much 
lower.

To track activity classes that were most challenging for 
ST models, we set an error threshold criterion to e ≥ µ + 2σ 
(mean plus two standard deviations) for difficult classes. 
On the basis of the MAE measure, 40, 34, 40, and 29 activ-
ity classes were identified that were difficult for ST-DNN 
models and the CPD-Target, CPD-Global, AS-Target, and 
AS-Global test systems, respectively. Figure 3 shows the 
distribution of activity classes with lowest ST-DNN pre-
diction accuracy compared to the remaining classes. For 
difficult classes with largest prediction errors, the results 
were compared to those obtained with MT-DNN models. 
Figure 4a reports the difference in MAE values between 

MT-DNN and ST-DNN models. For the most difficult 
classes, ST-DNN performance was clearly improved using 
MT-DNN models, as indicated by a one-sided Wilcoxon 
test applied to the distributions (p values < 0.0001), con-
firming statistical significance of the observations. Fig-
ure 4b, c show the results for corresponding comparisons 
of and ST-RFR and -SVR models with MT-DNN models, 
respectively. Statistical tests were also applied in these 
cases. For RFR/SVR models, the one-sided Wilcoxon test 
gave p values of 0.003/0.016 (CPD-Target), 0.019/0.099 
(CPD-Global), 0.004/0.003 (AS-Target), 0.046/0.199 (AS-
Global). Thus, the comparison between distributions for 
the activity classes with overall lowest performance also 
revealed an influence of data splitting strategies since 
smaller p values were obtained for target-based test sys-
tems. In particular, differences between MT-DNN and ST-
RFR/SVR models were significantly shifted towards nega-
tive values for the target-based test systems, indicating a 
larger performance gain for MT-DNN models. Equivalent 
results were obtained for statistical significance calcula-
tions on the basis of MSE values. For difficult activity 
classes, performance differences between ST- and MT-
DNN models were largest, as further illustrated by the 
MAE difference distributions shown in Fig. 5.

Fig. 2   Comparison of MT-DNN and ST models. Boxplots report the 
distribution of differences in MAE between MT-DNN and ST-DNN, 
-RFR, and -SVR models for different data division strategies. Nega-
tive and positive values indicate larger errors for ST and MT mod-
els, respectively. SVR generally provided more accurate predictions, 
followed by RFR in many instances. DNN distributions are shifted 

towards lower values for target-based splitting strategies. Boxplots 
show the smallest value (lower whisker), lower quartile (lower bound-
ary of the box), median (vertical line in box), upper quartile (upper 
boundary of the box), and the maximum value (upper whisker). Val-
ues classified as statistical outliers are represented as black dots
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For difficult activity classes with statistically significant 
improvements in prediction accuracy via MT-DNNs, the 
number of available training set instances was examined. 
Figure 6 shows the difference in the number of training 
instances available for MT-DNN and ST-DNN models. For 
suitable classes, increasingly large numbers of training com-
pounds were available in many cases, which led to balanced 
performance of ST- and MT-DNN models. For small num-
bers of training compounds, moderate performance varia-
tions were observed. By contrast, for difficult classes, only 
small numbers of training instances were generally avail-
able, but large-magnitude differences in prediction errors 
were observed, which could not entirely be attributed to the 
limited training data, as the comparison with suitable activ-
ity classes showed. Nonetheless, small training sets were a 
characteristic of difficult classes. For ST-DNN models, the 
median number of training set compounds was 64 for dif-
ficult and 134 for suitable activity classes.

Control calculations

Considering the presence of dynamic data ranges for 
learning, further control calculations were carried out by 
comparing predictions to the mean potency of training set 
compounds. Use of the mean potency as an approximation 
would not require any learning. Figure 7 shows that replac-
ing predicted potency values with the mean training set 
potency led to increasing errors. Only a small proportion 
of the regression models did not benefit from learning. In 
total, there were 1080 model instances, corresponding to 
combinations of 270 activity classes and four test systems. 
Table 3 reports the number and percentage of cases with 
equivalent or better results when predicted values were 
replaced with mean training set potencies. With 13.6%, the 
proportion of such models was by far largest for ST-DNNs. 
MT-DNN model errors were compared to assigning the 
mean training set potency of a particular compound class 
or the average across all classes. Since different activity 
classes had distinct dynamic data ranges, MT-DNN tar-
get-based model predictions were generally more accurate 
than using the global mean as a control.

Conclusions

In this work, we have investigated the influence of alter-
native data division strategies on different ST models and 
MT-DNN models and carried out large-scale potency 
value predictions over many qualifying activity classes. 
For these purposes, increasingly challenging test systems 
were defined for model training and evaluation. Overall, 
promising predictions were obtained that approached 
experimental accuracy in some instances. Furthermore, 
there was only little advantage of DL over other ML mod-
els. However, the analysis revealed that alternative data 
splitting strategies and the resulting test systems influ-
enced the relative performance of models in different 
ways. Difficult activity classes with large prediction errors 
were identified for which typically only limited training 
data were available. However, low prediction accuracy 
could only partly be attributed to data limitations. When 
MT-DNN models were evaluated on compounds that were 
included in the training sets for other targets, the obtained 
results were generally superior to ST models. In cases 
where ST model accuracy was limited, largest relative 
performance gains of MT-DNN models were observed. 
In light of our findings, model training can be adjusted 
to different conditions, depending on specific application 
tasks. For example, when data sets with training and test 

Fig. 3   Activity classes with the largest prediction errors. Histograms 
report the distribution (count) of activity classes over the MAE range 
for ST-DNN models and different data division strategies. Activity 
classes with lowest performance (highest prediction error) are colored 
in blue. These classes represent the most challenging (“difficult”) 
prediction targets. Activity classes yielding lower prediction errors 
(“suitable”) are indicated in gold. The threshold criterion distinguish-
ing between suitable and difficult classes was set to the mean error 
value plus two standard deviations (e ≥ µ + 2σ)
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Fig. 4   Error difference distribution. For suitable and challenging activity classes according to Fig.  3, density plots show the distributions of 
MAE differences between MT-DNN and ST models for different data division strategies. a ST-DNN, b ST-RFR, and c ST-SVR
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sets comprising distinct analog series are used, generaliza-
tion potential of ST and MT models is often the highest.
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Fig. 5   Absolute error differences. Boxplots report the distributions of 
absolute MAE differences between MT-DNN and ST-DNN models 
for suitable and challenging activity classes and different data divi-
sion strategies

Fig. 6   Relationship between training set size and relative model per-
formance. Plotted is the number of training compounds vs. the differ-
ence between MT and ST model performance for suitable and chal-
lenging activity classes

Fig. 7   Reference state for predictions. For different types of models, 
violin plots report the distributions of MAE and MSE values for test 
set potency predictions relative to differences to the calculated mean 
potency of the training set. Positive values indicate that predicting the 
calculated mean pKi value yields better results than the actual model. 
MT-DNN_v1 and v2 refer to comparisons to the average over indi-
vidual tasks or the average across all tasks, respectively. Replacing 
predictions with mean training set potency consistently led to larger 
errors compared to MT or ST models

Table 3   Regression models with most limited training success

For model category, the percentage (number) of models with predic-
tion errors comparable to those obtained when replacing predicted 
vales with mean training set potency is reported. MT-DNN_v1 and 
v2 refer to comparisons to the average over individual tasks or the 
average across all tasks, respectively

Models Prediction instances

ST-RFR 2.4% (26)
ST-SVM 3.6% (39)
ST-DNN 13.6% (146)
MT-DNN_v1 7.3% (79)
MT-DNN_v2 3.3% (35)
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as you give appropriate credit to the original author(s) and the source, 
provide a link to the Creative Commons licence, and indicate if changes 
were made. The images or other third party material in this article are 
included in the article’s Creative Commons licence, unless indicated 
otherwise in a credit line to the material. If material is not included in 
the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will 
need to obtain permission directly from the copyright holder. To view a 
copy of this licence, visit http://creat​iveco​mmons​.org/licen​ses/by/4.0/.
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