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their high speed and accuracy, remain the method of choice 
for classification of BSEP inhibitors, structure-assisted 
docking models demonstrate reasonably good prediction 
accuracies while additionally providing information about 
putative protein–ligand interactions.
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Introduction

Transmembrane transport proteins selectively aid in the 
translocation of molecules across biological membranes 
by binding the substrate molecules followed by a confor-
mational change [1]. Members of the ATP-binding cassette 
(ABC) superfamily facilitate the transport of their solutes 
by using the energy from hydrolysis of ATP. While some 
ABC-transporters allow specific passage of inorganic ions, 
others facilitate ATP-dependent transport of organic com-
pounds including xenotoxins, short peptides, lipids, bile 
acids, glutathione, and glucuronide conjugates. There-
fore, ABC-transporters affect the absorption, distribution, 
metabolism, excretion and toxicity of numerous pharmaco-
logical agents. Genetic variations in the genes that encode 
these transporters lead to disorders such as cystic fibrosis, 
cholesterol and bile transport defects, as well as neurologi-
cal diseases [2].

The bile salt export pump (BSEP, gene ABCB11) is a 
canalicular-specific exporter predominantly expressed in 
the cholesterol-rich apical membrane of hepatocytes [3]. 
BSEP facilitates secretion of bile salts from the liver into 
the bile canaliculi [4–6]. The main function of bile acids 
is to promote digestion and absorption of dietary fat via 

Abstract  The bile salt export pump (BSEP) actively 
transports conjugated monovalent bile acids from the 
hepatocytes into the bile. This facilitates the formation of 
micelles and promotes digestion and absorption of dietary 
fat. Inhibition of BSEP leads to decreased bile flow and 
accumulation of cytotoxic bile salts in the liver. A number 
of compounds have been identified to interact with BSEP, 
which results in drug-induced cholestasis or liver injury. 
Therefore, in silico approaches for flagging compounds as 
potential BSEP inhibitors would be of high value in the 
early stage of the drug discovery pipeline. Up to now, due 
to the lack of a high-resolution X-ray structure of BSEP, 
in silico based identification of BSEP inhibitors focused 
on ligand-based approaches. In this study, we provide a 
homology model for BSEP, developed using the corrected 
mouse P-glycoprotein structure (PDB ID: 4M1M). Subse-
quently, the model was used for docking-based classifica-
tion of a set of 1212 compounds (405 BSEP inhibitors, 807 
non-inhibitors). Using the scoring function ChemScore, 
a prediction accuracy of 81% on the training set and 73% 
on two external test sets could be obtained. In addition, the 
applicability domain of the models was assessed based on 
Euclidean distance. Further, analysis of the protein–ligand 
interaction fingerprints revealed certain functional group-
amino acid residue interactions that could play a key role 
for ligand binding. Though ligand-based models, due to 
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formation of micelles [7]. Apart from this, they are increas-
ingly being shown to have hormonal actions throughout the 
body [8, 9]. Variations in the ABCB11 gene result in dif-
ferent forms of progressive familial intrahepatic cholestasis 
(PFIC) [10, 11]. PFIC is characterized by an early onset of 
cholestasis and eventually leads to liver cirrhosis and fail-
ure [12–14].

Inhibition of BSEP can result in accumulation of bile 
salts in the liver, which is considered to be a primary 
mechanism leading to drug-induced cholestasis—one of 
the reasons for drug-induced liver injury (DILI) [15–17]. 
By inhibiting BSEP, drugs such as bosentan, rifampicin 
and troglitazone cause intracellular accumulation of bile 
salts and decreased bile flow [18]. Dysfunction due to sup-
pression of gene expression, disturbed signaling or steric 
inhibition are other important factors leading to DILI [19]. 
In its Guideline on the Investigation of Drug Interactions 
(effective: January 2013), the European Medicines Agency 
(EMA) indicated that BSEP inhibition assessment should 
be “preferably investigated”. Additionally, EMA states: 
“If in  vitro studies indicate BSEP inhibition, adequate 
biochemical monitoring including serum bile salts is rec-
ommended during drug development” [20]. Furthermore, 
studies indicate that a majority of drugs that showed 
in  vitro inhibition of BSEP have led to DILI, suggesting 
that decreased BSEP inhibition is likely to be associated 
with reduced risk for DILI [17, 21, 22].

With the increasing knowledge of the importance of 
ABC-transporter for ADMET, also in silico models for 
predicting ligand-transporter interaction became available 
[23]. With respect to BSEP, QSAR modeling was applied 
by Warner et  al. [24] in which a support vector machine 
(SVM) model provided the highest accuracy of 87% in the 
classification of BSEP inhibitors and non-inhibitors on a 
dataset of 624 compounds [24]. Our group recently pub-
lished a classification model based on a set of 670 com-
pounds, which allowed the identification of bromocrip-
tine as a BSEP inhibitor [25]. With first X-ray structures 
of ABC-transporters being published, also structure-based 
models became available. Bikadi et al. used SVM to predict 
P-gp substrate binding modes [26, 27]. Dolghih et al. sepa-
rated P-gp binders from non-binders by applying induced 
fit docking into the crystal structure of mouse P-gp using 
the docking score for classification [28]. High area under 
the curve (AUC) scores of 0.93 and 0.90, respectively were 
observed for two independent datasets (126 and 64 com-
pounds, respectively). Also Chan et  al. [29] evaluated the 
prediction capability of docking by using 245 P-gp sub-
strates and non-substrates, but the classes were not clearly 
separated based on the Glide docking scores.

Klepsch et  al. [30] showed that docking of a set of 
propafenones into a homology model of human P-gp 
reveals poses consistent with QSAR data, and that this can 

be exploited for the identification of new P-gp inhibitors 
[31]. Recently, this was enhanced towards a structure-based 
classification of almost 2000 compounds [32]. Although 
the docking-based classification showed significantly 
lower performance than ligand-based models derived from 
machine learning, it offers information on the molecular 
basis of protein ligand interaction.

Up to now, due to the lack of a high-resolution X-ray 
structure of BSEP, no structure-based studies have been 
performed for this protein. In the present study, we use 
comparative modeling [33] to create a protein homology 
model for BSEP by using the corrected mouse P-glycopro-
tein structure (PDB ID: 4M1M) as template. Subsequently, 
we developed structure-based classification models using 
a dataset comprising 408 compounds (113 inhibitors and 
295 non-inhibitors) as training set and two external test 
sets containing 166 compounds (44 inhibitors and 122 non-
inhibitors) and 638 compounds (248 inhibitors and 390 
non-inhibitors), respectively.

Materials and methods

Dataset

A set of 408 compounds (113 inhibitors and 295 non-inhib-
itors) from the work of Warner et al. [24] was used as the 
training set and another set containing 166 compounds (44 
inhibitors and 122 non-inhibitors) from Pedersen et al. [34] 
was used as external test set. Both studies provide in vitro 
inhibition data on human BSEP. While Warner et al. classi-
fied compounds with a mean IC50 ≤ 300 μM as BSEP inhib-
itors, in our study we decided to use a much lower thresh-
old (mean IC50 ≤ 10  μM) in order to retain only strong 
inhibitors. Compounds with mean IC50 > 300  μM were 
considered non-inhibitors, and the remaining compounds 
were excluded from the dataset. Finally, we have a total of 
113 strong inhibitors and 295 non-inhibitors. The Pedersen 
et al. data set is based on inhibition of bile salt export pump 
(BSEP)-mediated taurocholate (TA) transport in inverted 
membrane vesicles. After removal of compounds that over-
lapped with those in our training set, we had a total of 166 
compounds (44 strong inhibitors and 122 non-inhibitors) to 
be used as external test set. In addition, a dataset provided 
by AstraZeneca within the framework of the IMI project 
eTOX (http://www.etoxproject.eu) was used as a second 
external test set to further evaluate our models. The data 
was measured in a [3H]-taurocholate transport assay per-
formed in Sf21 membrane vesicles using the protocol as 
described by Dawson et  al. [17] and contains the BSEP 
inhibitory potencies of 1092 compounds as IC50 values. 
Removing the overlapping compounds from the first two 
datasets resulted in 638 compounds (248 inhibitors and 390 
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non-inhibitors). All datasets were standardized using the 
protocol previously described in Montanari et al. [25] and 
Pinto et al. [35].

Homology modeling

For human BSEP (UNIPROT ID: O95342), based on 
sequence identity and atomic resolution, the corrected 
mouse P-glycoprotein structure (PDB ID: 4M1M) was 
selected as the most structurally related template protein. 
Multiple homology models were constructed using MOD-
ELLER 9.13 [36] and the Prime module in Maestro [37, 
38]. Energy minimized models were then evaluated using 
DOPE score [39], and GA341 score [40, 41]. The quality 
of the stereochemical parameters and the normality of the 
structures were checked using the PROCHECK program 
included in the PDBsum analysis [42]. Ramachandran plot 
[43] and G-factor [44], and finally the Q-score [45, 46] val-
ues were evaluated to identify the top ranked homology 
model.

Molecular dynamics simulation

Molecular dynamics (MD) simulation was carried out in 
Gromacs 5.0.4 [47–50] using the GROMOS 54a7 force-
field [51]. The protein was placed inside a rectangular box 
of size 16 × 16 × 16  nm3 including approximately 34,000 
simple point charge (SPC) water molecules [52]. Sodium 
and chloride ions were added to gain a neutral system. 
Energy minimization was carried out with a maximum 
force of 1000  kJ/mol/nm using the steepest descent algo-
rithm. After the minimization, a NVT equilibration was 
performed at a constant temperature of 300 K for 100 ps. 
Followed by a NPT equilibration step for 1  ns, with the 
pressure set constant at 1 atm and a constant temperature of 
300 K. The production simulation was performed at 300 K 
for 20 ns. The LINCS algorithm [53] was used to constrain 
the covalent bonds and PME [54] was used to calculate the 
electrostatic interactions during the simulation. The stabil-
ity of the protein structure was evaluated by calculating the 
secondary structure over the simulation time according to 
the Kabsch and Sander rules [55] and the root-mean-square 
fluctuation (rmsf) of active site residues (Fig. S1 in the sup-
plementary material). All graphs were created using the 
XMGrace tool [56].

Molecular docking and scoring

In order to avoid any bias in the docking studies, the 
binding site was defined as the complete TM region, 
taking 20 Å around the coordinate of the center point to 
allow subsequent flexible docking studies of a series of 
BSEP inhibitors. The protein was prepared using Protein 

Preparation Wizard of the Schrödinger Suite (2015) [57, 
58]. During this process, hydrogen atoms were added, 
and optimal protonation states and ASN/GLN/HIS flips 
were determined. To assess their correct protonation 
states, ligands were prepared using the LigPrep module 
of Schrödinger Suite [58, 59] which produces low-energy 
3D structures that can be further used for docking stud-
ies. The OPLS_2005 force field was used for the minimi-
zation of the structures. Different ionization states were 
generated by adding or removing protons from the ligand 
at a target pH of 7.0 ± 2.0 using Epik version 3.1 [60, 
61]. Tautomers were generated for each ligand. To gener-
ate stereoisomers, the information on chirality from the 
input file for each ligand was retained as is for the entire 
calculation. This gave a dataset of 1865 structures (318 
inhibitors and 1547 non-inhibitors) for the training set, 
2009 structures (858 inhibitors and 1151 non-inhibitors) 
for the external test set from Pedersen et  al. and 1560 
structures (668 inhibitors and 892 non-inhibitors) for the 
external test set from AstraZeneca, which were used for 
docking with the genetic algorithm-based GOLD suit 
(version 5.2.0) [62, 63].

All the docking runs were performed in high-throughput 
mode with GOLD. The fitness functions GoldScore (GS) 
and ChemScore (CS) were used. GlideXP [64, 65] dock-
ing from Maestro was also used in order to compare differ-
ent scoring functions. Finally, all the poses were rescored 
using an external scoring function, XScore [66]. To gain 
deeper insights on the binding modes of BSEP inhibitors 
and non-inhibitors, the protein–ligand interaction finger-
prints (PLIF) of the resultant complexes were retrospec-
tively analyzed.

Machine learning‑based model building

The open source software WEKA (version 3.7.10) [67] 
was used for building binary classification models. The 
machine learning classifiers: J48, Random Forest, REP-
Tree, LibSVM and Naive Bayes were used with the default 
parameters along with tenfold internal cross-validation.

Network‑based representation of the dataset

Tanimoto (Tc) similarities between the inhibitors and non-
inhibitors of the training set were calculated using MACCS 
fingerprints [68]. A chemical space network (CSN) [69, 70] 
was constructed and analyzed in order to assess the struc-
tural similarity shared by the compounds of both groups. 
To show connections between the compounds, a threshold 
value of 0.7 was set based on the average of Tanimoto max-
similarity in the dataset.
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Functional group analysis

Functional group analysis was performed in two stages. 
First, the substructure patterns of 100 functional groups in 
SMARTS notation were extracted from the Daylight web-
site (http://www.daylight.com/dayhtml_tutorials/languages/
smarts/smarts_examples.html#GROUP). Next, the pattern 
matching was performed using the SMARTSQueryTool 
implemented in the Chemistry Development Kit (CDK) 
[71]. For each functional group, the occurrences of the 
fragments in a given set of molecules were calculated.

Protein ligand interaction fingerprints (PLIF)

A PLIF summarizes the interactions between a ligand and a 
protein using a fingerprint scheme. Here we generated three 
types of PLIFs that differ in the information encoded. In 
the first approach, the PLIF encodes the residues involved 
in an interaction with the ligand in each bit. The second 
one encodes not only the residue but also the nature of the 
interaction (e.g. hydrogen bond donor) with the ligand. The 
third category encodes the functional group of the ligand 
that interacts with the residue. All the PLIF bits were cal-
culated with the MOE [72] built-in function CalculateRaw-
Interactions using a 1% threshold for molecular interactions 
and a 20% threshold for surface contacts. The function was 
embedded in an SVL in-house script and was post pro-
cessed to enable to calculate functional group PLIFs.

Applicability domain assessment

An applicability domain (AD) analysis was performed to 
evaluate if the chemical space covered by the training set 
used for developing the model is applicable to predict the 
outcomes of the test sets used to evaluate the model per-
formance. Therefore, AD could provide a first hint if a 
new chemical structure is covered within the chemical 
structures or descriptor space of the training set. Many 
approaches were proposed to estimate AD, for instance 
based on descriptor ranges, Euclidean distance or probabil-
ity density, each having their pros and cons. In this study, 
we implemented the Euclidean distance approach using the 
KNIME [73] node APD [74, 75] to evaluate if the test sets 
are within the AD of the training set.

Performance evaluation

In order to evaluate the quality of our classification models 
based on the docking studies, we used standard parameters 
such as count of true positives (TP), false positives (FP), 
true negatives (TN) and false negatives (FN). Sensitivity 
(Eq. 1), specificity (Eq. 2) and accuracy (Eq. 3) values were 
calculated for each model based on the aforementioned 

parameters to estimate its performance in classifying inhib-
itors and non-inhibitors. To measure the overall quality of 
the model, the G-mean (Eq.  4), which takes into account 
both sensitivity and specificity, and the Matthews’s correla-
tion coefficient (MCC, Eq. 5) were also calculated.

Calculating the probability of prediction

We examined the distribution of docking scores [Chem-
score, Goldscore, GlideXP, Xscore (Chemscore) and 
Xscore (Goldscore)] for the training set molecules. Based 
on the minimum and maximum score values, the scores 
were binned in different intervals. Each bin is characterized 
by the corresponding number of inhibitors and non-inhib-
itors. Based on these values, we calculated the probability 
for a molecule to be an inhibitor or a non-inhibitor. A p 
value (Chi square test) is calculated for each bin to identify 
the best scoring range that can be used to separate inhibi-
tors from non-inhibitors.

Results and discussion

Chemical space network of the dataset

Figure  1 shows the CSN with well-resolved community 
structures for a set of inhibitors and non-inhibitors from the 
training set. The representative compounds of some com-
munities are shown in Fig. S2 in the supplementary mate-
rial. Major community structures [69] (communities with 
at least five representative members) were algorithmically 
detected and are color-coded. For our CSN designs, the 
Fruchterman–Reingold algorithm [76] was applied. The 
node size is proportional to the activity value (pIC50) i.e. 
the more active the compound, the bigger the node size and 
vice versa.

A majority of the nodes do not have a connection indi-
cating a high structural diversity in the training dataset. The 
test dataset from Pedersen et al., showed only three clusters 

(1)Sensitivity =
TP

(TP + FN)

(2)Specificity =
TN

(TN + FP)

(3)Accuracy =
(TP + TN)

(TP + FP + TN + FN)

(4)G−mean =
√

Sensitivity × Specificity

(5)

MCC =
{(TP × TN) − (FP × FN)}

{(TP + FP) × (TP + FN) × (TN + FP) × (TN + FN)}1∕2

http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html#GROUP
http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html#GROUP
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in the CSN with at least five representative members (Fig. 
S3 in the supplementary material).

Homology modeling

Applying the Prime module from Maestro (Schrödinger, 
Inc. V-10.1.013), a set of homology models of BSEP were 
created and refined, using the refined mouse P-gp struc-
ture as template (PDB ID: 4M1M). The sequence align-
ment was done using Prime’s alignment program STAin 
maestro [37, 38] (Fig. S4 in the supplementary material). 
Analyzing the models with the structure assessment pro-
gram PROCHECK [42], the best model had a normalized 
Dope score of −0.625, G-factor −0.12, and Qmean score 
of 0.597. Furthermore, the Ramachandran plot (Fig. S5 
in the supplementary material) showed excellent results, 
with only 1.9% of residues in generously allowed or dis-
allowed regions. These were all located in the nucleotide 
binding domains (NBD) or extracellular loops (ECL), and 
are therefore not involved in drug binding (Fig. S6 in the 
supplementary material). Based on the study by Mochizuki 
et al., Asn109, Asn116, Asn122, and Asn125 are residues 

predicted to be potential glycosylation sites in the extracel-
lular loop (No.1) (EL No.1) of human BSEP [77]. In our 
final BSEP homology model (Fig. 2), these residues were 
also found in EL No.1, thus occurring in the correct region 
of the transmembrane domain (TMD, Fig. S7 in the sup-
plementary material). For further validation, the best model 
based on normalized Dope score and Qmean score was 
subject to molecular dynamics simulations for 20 ns. Both 
the secondary structure of the protein (Fig. 3) as well as the 
root mean square fluctuation (RMSF < 0.25  nm) of active 
site residues showed the stability of the structure.

Docking (structure‑based classification)

We recently could demonstrate that a validated homology 
model of P-glycoprotein allowed docking-based classifica-
tion of inhibitors and non-inhibitors with reasonable perfor-
mance [32]. Thus, in this study we extended this approach 
also to BSEP, using a set of 408 compounds (113 inhibi-
tors and 295 non-inhibitors) published by Warner et  al. 
[24] as training set and two data sets as external test set 
(see “Materials and methods” section). The scores obtained 

Fig. 1   CNS representation 
of the training set compounds 
based on MACCS Tc similarity 
threshold of 0.70. Communities 
with at least five representative 
members are color coded
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from different fitness functions were binned and the inter-
section point of the curves for inhibitors and non-inhibitors 
in the training set served as classification criterion (Fig. 4). 
Respective confusion matrix parameters and other perfor-
mance measures are summarized in Table  1. The Chem-
Score docking run using Xscore as rescoring function 
retrieved the best performing model with AUC (0.918) 
and MCC (0.689) measures comparable to the models 

developed by Warner et al. [24] and Montanari et al. [25]. 
This model accurately predicted 88% of the training set 
compounds and 72% of the external test set compounds 
derived from Pedersen et  al. [34] as well as 77% of a set 
of AstraZeneca internal compounds. The area under the 
ROC curve (AUC) measure, being independent from class 
distribution [78, 79], is a good metric for evaluating per-
formance of virtual screening approaches. High AUC val-
ues (above 0.8) were observed, indicating a high capacity 
of the model in ranking compounds by their probability of 
being inhibitors of BSEP (Figs. S8–S12 in the supplemen-
tary material). The results from the AD assessment also 
show that all compounds from both test sets were found to 
be within the chemical domain of the training compounds 
(Table S1 in the supplementary material). Interestingly, the 
accuracy of predictions did not improve when a consensus 
of different scoring functions was used.

Probability of prediction

For the training set using ChemScore scoring, bin 35–40 
gave the maximum number of inhibitors. 88% of inhibi-
tors and 12% of non-inhibitors had the docking score in 
this range with a p value of 5.9 × 10−8. For both test sets, at 
least 75% of the inhibitors were found to be in this range. 
Results for different scoring functions can be found in the 
Table  S2 in the supplementary material. Also with the 
rescoring of ChemScore using Xscore, a particular range 
could be defined which significantly distinguishes between 
inhibitors and non-inhibitors. However, this is not the case 

Fig. 2   Homology model structure of human BSEP in the inward-facing state. a Front view of the transporter. b Side view after a 90° rotation. c 
Top view from the extracellular space

Fig. 3   Secondary structure of the protein over the simulation time
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for GoldScore scoring. With this scoring function no par-
ticular docking score range could be identified for the three 
sets (training set, both test sets) to differentiate between 
the two classes of compounds with a significant p value. 
Similar results were obtained using the GlideXP scoring 
function.

Analysis of protein ligand interactions

The Maestro tool allows the computation of different 
molecular interactions between binding site residues and 
the corresponding ligand conformation. In this study, the 
receptor–ligand interaction fingerprint analysis was per-
formed both for the true positives (TPs) and for the true 
negatives (TNs) on the basis of the docking poses gener-
ated. For the training set (Fig. 5) and the two external test 
sets (Figs. S13, S14 in the supplementary material), the 
inhibitors showed significantly more hydrophobic interac-
tions with Phe334, Leu364, Tyr772, Phe776 and Leu1026 
than non-inhibitors. More than 75% of the inhibitors in the 

training set and the external test sets showed hydrophobic 
interactions with Phe334 and Tyr772 (Fig. 5a). In contrast, 
non-inhibitors showed a higher number of hydrogen bond 
interactions than inhibitors (Fig. 5b), which points towards 
the fact that non-inhibitors are more hydrophilic.

The significant contribution of hydrophobic interactions 
prompted us to assess the importance of simple molecu-
lar descriptors such as logP and molecular weight. Fig-
ure  6 represents the distribution of molecular weight and 
logP(o/w), respectively, for the training set compounds. 
Similar distributions, represented in Fig. S15 in the sup-
plementary material, were observed with the external 
test sets from Pedersen et  al. [34] and from AstraZeneca 
(Fig. S16 in the supplementary material). As proposed by 
Warner et  al. [24], molecular properties such as molecu-
lar weight (MW) and logP(o/w) could separate the groups 
quite well (Table 2). At the intersection of MW = 390 and 
logP(o/w) = 3.6, 79 and 77% of the compounds were clas-
sified correctly. Accordingly, compounds with a molecu-
lar weight of 390 or higher or a logP of 3.6 or higher were 

Fig. 4   Distribution of BSEP inhibitors and non-inhibitors (training set) based on ChemScore scoring. Sensitivity, specificity, precision and 
MCC were calculated from the confusion matrix based on the intersection point of both curves

Table 1   Models obtained from 
different scoring functions 
based on the training set

The scoring function in brackets were used to generate the docking poses

Scoring function Intersection point AUC Sensitivity Specificity Accuracy G-mean MCC

ChemScore 29.50 0.87 0.60 0.88 0.81 0.73 0.50
GoldScore 53.50 0.82 0.74 0.75 0.75 0.74 0.45
GlideXP −6.80 0.77 0.80 0.65 0.69 0.72 0.39
Xscore (ChemScore) 6.15 0.92 0.71 0.95 0.88 0.82 0.69
Xscore (GoldScore) 6.10 0.93 0.68 0.95 0.88 0.80 0.68
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considered as inhibitors while others were considered as 
non-inhibitors.

The models based on docking scores (ChemScore 
and XScore) in combination with molecular weight and 
logP(o/w) (each normalized) outperformed the other mod-
els in terms of MCC and precision. ChemScore and XScore 
based models, when combined with the physicochemi-
cal properties [molecular weight and logP(o/w)] correctly 
predicted 87 and 88% of training set compounds, giving a 
MCC value of 0.673 and 0.701 respectively. These models 
also showed high accuracies as compared to other models 
for the two external test sets. Detailed accuracy measures 
are presented in Table S3 in the supplementary material.

Also when poses, generated with GoldScore scor-
ing function and rescored with XScore, were combined 

with the normalized molecular weight and logP(o/w), it 
provided accuracies comparable to the former models 
(Table  S3 in the supplementary material). This indicates 
that considering physicochemical properties of molecules 
that influence their activity significantly improves the per-
formance of structure-based prediction models.

Distribution of BSEP inhibitors and non-inhibitors using 
different scoring functions and in combination with phys-
icochemical properties (molecular weight, logP) are pre-
sented in Figs. S17–S32 in the supplementary material. A 
single intersection point could not be obtained, when the 
rescoring using Xscore (pose generated with GoldScore) 
was combined with logP(o/w) and thus was not used for the 
classification of inhibitors and non-inhibitors (Fig. S31 in 
the supplementary material).

Fig. 5   a Hydrophobic interaction, b hydrogen bond interaction fingerprints of true positives (TP) and true negatives (TN) of the training set. 
The classification of the compounds is based on the ChemScore scoring function
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Fig. 6   Distribution of BSEP inhibitors and non-inhibitors based on the a molecular weight, b logP(o/w) of the training set

Table 2   Models based on 
physicochemical properties

Molecular property Intersection 
point

Sensitivity Specificity Accuracy G-mean MCC

Molecular weight 390 0.76 0.80 0.79 0.78 0.54
logP 3.6 0.57 0.87 0.77 0.71 0.47
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Using the best performing docking scores (Chem-
Score, XScore) and the descriptors (molecular weight 
and logP(o/w)) as parameters, we additionally developed 
machine-learning based binary classification models using 
J48, Random Forest, REPTree, LibSVMand Naive Bayes in 
WEKA [67]. These models performed well with accuracies 
and MCC values (Table S4 in the supplementary material) 
comparable to those from machine-learning based classifi-
cation models of Warner et al. [24] and our models previ-
ously developed [25].

Analysis of functional groups and protein–ligand 
interactions

Next, we investigated the distribution of functional groups 
between inhibitors and non-inhibitors to identify structural 
features that are responsible for differences in the activity 
(inhibitor vs. non-inhibitor). About 70 SMARTS patterns 
representing the most common functional groups were 
extracted from the Daylight website (http://www.daylight.
com/dayhtml_tutorials/languages/smarts/smarts_examples.
html). Basically, groups such as halide/halogen, ether, car-
bonyl, vinyl carbons (sp2 hybridized) and amide were more 
frequently found in the inhibitors compared to the non-
inhibitors (Fig. 7, S33 in the supplementary material). This 
further points towards more hydrophobic-driven interac-
tions for inhibitors.

In addition, we also identified the most frequently 
occurring interactions between residues and functional 
groups for the training set compounds. A heat map 
(Fig.  8a) was generated to illustrate the outcomes of 
PLIF analysis by displaying the contact residues against 
the functional groups of the interacting ligands. The 
color scale represents the amount of ligands which are 
involved in interactions. Therefore, the most significant 

interactions between a specific residue and a specific 
functional group could be visually detected.

We found that the interactions of arene and carbonyl 
functional groups with tyrosine and leucine are more 
prominently found among the inhibitors in comparison 
to the non-inhibitors. We furthered with retrospective 
assessment of the docking results to check the pres-
ence of the aforementioned interactions and evaluated 
the chances to prioritize a compound as a BSEP inhibi-
tor. Figure  8b represents the docking pose of Glimepir-
ide (yellow) in which its carbonyl groups interact with 
the residues Tyr337, Tyr772 and Asn996. The residue 
Leu364 shows a hydrophobic interaction with the arene 
moiety of the ligand. Similarly, the functional group-
residue interactions were confirmed to be present in 
the docking results of both external test datasets (Figs. 
S34–S36 in the supplementary material).

Although the functional groups analysis suggests that 
halide/halogen, carbonyl, ether, vinyl and amide groups 
were significantly over represented in the inhibitors, only 
carbonyl group, amide were found to frequently interact 
with the protein. According to the heat map (Fig. 8a), hal-
ide/halogen and vinyl groups do not appear to have a sig-
nificant number of contacts with the residues. At the same 
time, arene was found at a similar rate in inhibitors (nearly 
95%) and non-inhibitors (nearly 85%), but the PLIF analy-
sis revealed that the arene moiety participates in a signifi-
cant number of interactions with residues such as Leu364 
and Leu1026. This indicates that significant differences in 
the functional group composition between inhibitors and 
non-inhibitors (Fig. 7) does not necessarily indicate or pro-
vide an outlook on the nature of interactions. This would 
rather depend on the position of these functional groups in 
the molecular structure, nature of the binding site residues 
as well as the size of the binding pocket.

Fig. 7   Distribution of functional groups in the training dataset

http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
http://www.daylight.com/dayhtml_tutorials/languages/smarts/smarts_examples.html
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Fig. 8   a Heat map illustrating the PLIF analysis of the training set 
inhibitors (x-axis contact residues; y-axis functional groups of the 
ligand showing an interaction with the residue; color scale number 

of interacting ligands). b Docking pose of Glimepiride (yellow) in 
which its carbonyl groups interact with the residues Tyr337, Tyr772 
and Asn996
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Finally, preliminary results show that the PLIF can also 
be used as predictor for inhibitor/non inhibitor properties 
by calculating the Tanimoto distance to known inhibitors. 
A more detailed description of this approach can be found 
in the supplementary material.

Analysis of misclassified compounds

Nearly 90 compounds, altogether from different datasets, 
were incorrectly classified by all the four scoring functions 
used in the study. More than 59% of the training set com-
pounds and 48% of the test set compounds were correctly 
classified by all the scoring functions. Of the 19 misclassi-
fied compounds from the training set, nine were predicted 
as inhibitors and ten were predicted as non-inhibitors.

The training set compound Ebselen was wrongly pre-
dicted as non-inhibitor by all scoring functions. Examin-
ing its molecular properties revealed that both molecular 
weight (274) and logP(2.74) fall in the range of non-inhib-
itors (Table  2). Moreover, the structure of Ebselen was 
found to be structurally more similar to a set of non-inhib-
itors compared to the set of inhibitors. Benzylpenicillin 
(Penicillin G) also belongs to the property space of non-
inhibitors (molecular weight = 333.38 and logP = 1.74). 
Interestingly, both Ebselen and Benzylpenicillin are strong 
inhibitors (IC50< 10 μM) [24]. On the other hand, Phytom-
enadione (molecular weight = 450.70, logP = 9.05), despite 
being a non-inhibitor (IC50 Y > 1000), was always misclas-
sified as inhibitor. Similar trend was noticed in both exter-
nal test sets. In total, six inhibitors and 13 non-inhibitors 
were misclassified from the Pedersen et  al. [34] dataset. 
Interestingly, all six inhibitors were found to be strongly 
hydrophobic and the molecular properties of about 80% 
of the non-inhibitors fall in the range of inhibitors. This 
strengthens the inclusion of this physicochemical proper-
ties into the classification model.

Combining ligand‑ and structure‑based classification 
(sequential modeling)

Although the structure-based models performed reason-
ably well, ligand-based methods are considerably faster and 
perform equally well. Thus, we evaluated if a sequential 
approach that starts with a ligand-based method and pro-
ceeds with screening the positives using structure-based 
models would improve the precision and reduce the false 
positives. Therefore, we used an external test set contain-
ing 39 inhibitors and 113 non-inhibitors as a starting point. 
After applying ligand-based classification using the work-
flow from Montanari et  al. [25], 30 inhibitors were cor-
rectly predicted (TPs) and there were nine FPs, which leads 
to a precision of 0.77. After application of our structure-
based model based on ChemScore and rescoring using 
XScore, the precision improved to 0.83, reducing the 
number of FPs to 5. Further performance measures on the 
sequential approach are provided in Table  3. Thus, com-
bining ligand- and structure-based models in a sequential 
setting increased the precision and reduced the calculation 
time. This might be a versatile approach to reduce the num-
ber of FPs when performing large scale in silico screening.

Conclusion

Development of structure-based methods for transmem-
brane transporters of the ABC-family has been less pro-
nounced due to limited availability of experimentally 
determined 3D structures. However, recent efforts that 
used homology models of P-glycoprotein provide promis-
ing evidences that structure-based classification methods 
can be applied to these highly flexible and promiscuous 
proteins. In this study, we used comparative modeling 
to generate a homology model for the ABC-transporter 
BSEP and developed structure-based models to classify 

Table 3   Ligand-based and 
structure-based classification

The best model of the combined approach is highlighted in bold as well as the ligand-based classification
TP true positives, TN true negatives, FP false positives, FN false negatives, LBC Ligand-based classifi-
cation (Montanari et  al. [25]), SBC_C Structure-based classification using ChemScore scoring function, 
SBC_G Structure-based classification using GoldScore scoring function, SBC_C_X Structure-based clas-
sification using ChemScore scoring function (rescoring using Xscore). Consensus Combination of LBC, 
SBC_C and SBC_C_X

Model type TP TN FP FN Sensitivity Specificity Accuracy MCC Precision

LBC 30 104 9 9 0.77 0.92 0.88 0.69 0.77
SBC_C 27 91 22 12 0.69 0.81 0.78 0.47 0.55
SBC_G 26 79 34 13 0.67 0.70 0.69 0.33 0.43
SBC_C_X 27 96 17 12 0.69 0.85 0.81 0.52 0.61
LBC + SBC_C 24 107 6 15 0.62 0.95 0.86 0.62 0.80
LBC + SBC_C_X 25 108 5 14 0.64 0.96 0.88 0.66 0.83
Consensus 27 106 7 12 0.69 0.94 0.88 0.66 0.79
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inhibitors and non-inhibitors. Including logP and molecu-
lar weight as an additional layer of information besides 
the scoring function further increased the performance 
of the models. PLIF analysis revealed certain functional 
group-residue interactions that could help to understand 
the molecular basis of inhibition of the transporter pro-
tein by a wide range of ligands. Applicability domain of 
the models was assessed using Euclidean distance. Fur-
thermore, we estimated the probability of prediction by 
employing a binning scheme and identified a docking 
score range that can distinguish a majority of inhibitors 
from non-inhibitors with high confidence. Finally, com-
bining the structure-based model with our previously 
published ligand-based classification model in a sequen-
tial order provided additional improvement.

Combining ligand- and structure-based models to 
enhance the performance of virtual screening is of course 
not a new approach. For receptors and enzymes identifica-
tion of new ligands quite often starts with a pharmacoph-
ore-based screening followed by docking of the top-ranked 
hits to further refine the shopping list [80]. However, in 
case of ABC-transporters such as P-glycoprotein, which 
shows a pronounced polyspecificity in its ligand profile, 
there is a broad variety of pharmacophore models available. 
This would render a sequential approach quite challenging. 
Furthermore, due to the eminent role of ABC-transporters 
like P-gp, BSEP, and the breast cancer protein (BCRP) in 
ADME and toxicity, the focus for in silico screening lays 
more on flagging potentially toxic compounds rather than 
on the identification of new inhibitors for further develop-
ment as drug candidates. In this setting, machine learning-
based classification models might be a better tool for a first 
computational pre-screening. Therefore, a workflow com-
prising of prescreening with simple descriptors, classifica-
tion by machine learning techniques and post processing by 
structure-based methods might be the workflow of choice 
to provide accurate prediction combined with additional 
information on the molecular basis of compound-trans-
porter interaction.
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