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Abstract In this work, we present a case study to explore

the challenges associated with finding novel molecules for

a receptor that has been studied in depth and has a wealth

of chemical information available. Specifically, we apply a

previously described protocol that incorporates explicit

water molecules in the ligand binding site to prospectively

screen over 2.5 million drug-like and lead-like compounds

from the commercially available eMolecules database in

search of novel binders to the adenosine A2A receptor

(A2AAR). A total of seventy-one compounds were selected

for purchase and biochemical assaying based on high

ligand efficiency and high novelty (Tanimoto coefficient

B0.25 to any A2AAR tested compound). These molecules

were then tested for their affinity to the adenosine A2A

receptor in a radioligand binding assay. We identified two

hits that fulfilled the criterion of *50 % radioligand dis-

placement at a concentration of 10 lM. Next we selected

an additional eight novel molecules that were predicted to

make a bidentate interaction with Asn2536.55, a key inter-

acting residue in the binding pocket of the A2AAR. None of

these eight molecules were found to be active. Based on

these results we discuss the advantages of structure-based

methods and the challenges associated with finding

chemically novel molecules for well-explored targets.

Keywords Adenosine A2A receptor � Virtual screening �
Explicit water � Novel ligand � Diverse chemical space

Introduction

Of all members of the class A family of G Protein-Coupled

Receptors (GPCRs), the adenosine A2A receptor is one of

the best-studied targets. There have been several driving

forces behind the interest in this target, such as the dis-

covery of the first potent and selective non-xanthine

antagonist (SCH-58261) [1], the discovery of the involve-

ment of the adenosine A2A receptor in Parkinson’s disease

[2, 3], and the solving of several early crystal structures.

Indeed, one of the first GPCR crystal structures in the

Brookhaven Protein Databank was the 2.6 Å crystal

structure of the adenosine A2A receptor (PDB: 3EML) [4].

These developments fueled medicinal chemistry research

on this receptor, leading to the discovery of many ligands

(Fig. 1). Due to the availability of a crystal structure, the

adenosine A2A receptor has been a widely studied target

using structure-based computational approaches, with at

least five independent prospective virtual screening (VS)

efforts reported up till now [5–9]. These structure-enabled

studies have resulted in the discovery of novel ligand

chemotypes such as chromones [5] and 1,2,4-triazines [10].

Most of these VS were based on the first published crystal

structure in 2008 of the adenosine A2A receptor [4]. Since

the release of this crystal structure, an additional 13 dif-

ferent adenosine A2A receptor structures have been solved,

co-crystalized with both agonists and antagonists [11]. The

highest resolution crystal structure, with a resolution of
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1.8 Å, was released in 2012 (PDB: 4EIY) [12]. Although it

was co-crystalized with the same antagonist (ZM-241385)

as the first reported structure, it revealed several interesting

and novel features, including a large number of water

molecules deep in the binding site. These water molecules

have been shown to play a pivotal role in binding of ligands

to the adenosine A2A receptor [13]. Indeed, redocking of

the co-crystalized ligand ZM-241385 was shown to be

challenging when no water molecules or restraints were

included [14]. The availability of this better solvated high-

resolution structure of the adenosine A2A receptor formed

the basis to systematically study the influence on virtual

screening enrichment of including different water mole-

cules during the docking calculations [15]. In short, we

found that five particular water molecules contributed

strongly to ligand enrichment, and combining them in an

ensemble of receptor structures using a decision tree yiel-

ded a screening protocol that showed high enrichments for

a retrospective validation dataset.

Given the high database enrichment of this protocol

validated in our previous retrospective study, here we apply

it in a prospective application with the goal of finding novel

hits for the A2A receptor. We collected 2.5 M drug-like and

lead-like structures from the eMolecules database, and

screened them using the VS-decision tree developed pre-

viously (Fig. 2). The number of known ligands for the A2A

receptor is large (e.g. more than 8800 unique tested com-

pounds reported in ChEMBL) with more than 4000 having

an affinity better than 10 lM. Here, we are not interested in

discovering additional compounds with typical A2AAR

binding features, but rather we aim to discover truly novel

scaffolds for this receptor. Thus, after filtering the top

computational hits in our protocol and excluding com-

pounds with similarity to previously tested compounds, we

selected and acquired a total of 71 compounds. Later we

added 8 additional compounds that were selected for

making a key interaction with the receptor, after further

visual inspection of the docking results. These compounds

were then evaluated for their affinity to the adenosine A2A

receptor in a radioligand binding displacement assay. In

total two novel compounds were found. In this work, the

challenging nature of finding chemically novel molecules

for well-explored targets is discussed.

Methods

Virtual Screen

All structural modeling was performed using tools in the

Schrödinger small-molecule discovery suite. Docking was

done with Glide 6.3 [16] using the SP scoring function with

default settings. We used a previously generated ensemble

of A2A receptor models prepared with the Protein Prepa-

ration Wizard [17], each containing different individual

water molecules [15]. The eMolecules database was pre-

pared using LigPrep with default settings. Protonation and

tautomeric states were assigned using Epik [18, 19]. This

resulted in a fully expanded set of *6.6 M stereoisomeric

and tautomeric states from the 2.5 M ligands. The fully

expanded set of molecules was docked into the upper node

of the decision tree (DT) (i.e. the one that generated the

Fig. 1 Retrospective overview

of bioactivities for the

adenosine A2A receptor in

ChEMBL (v20). Compounds

are colored based on their

activity: green if the activity

(pChEMBL_value) was above

7, yellow if it was between 5 and

7, and orange if it was below 5

or undefined. The number of

tested compounds each year is

shown, additionally from 2004

and onwards the percentages for

the different categories are

shown. The boxes shown in the

figure indicate key events in

adenosine A2A receptor research

[1, 4, 44]
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highest enrichment in our previous study). Ligands pro-

ceeded through the decision tree according to previously

defined rules (Fig. 2) based on Glide docking scores. For

instance in order to end up in leaf 3, compounds should

have a docking score better than -8.865 kcal/mol in the first

node, a docking score better than -9.030 kcal/mol in the

second and better than -9.115 in the third node of the

decision tree. The compounds that ended up in leaf 1, leaf

3, and leaf 5 (5378 total) were considered to be ‘‘compu-

tational hits’’ and were subjected to subsequent filters

(Fig. 2).

First we eliminated reactive compounds using the REOS

filter (as implemented in KNIME) [20, 21]. Next, we

rescored all poses using the MM-GBSA method [22], where

we used the VSGB 2.0 implicit solvent model [23] and the

OPLS2005 force field [24] to estimate a binding energy. For

the MM-GBSA calculations, explicit water molecules were

not considered. All compounds with a MM-GBSA binding

energy worse than the mean were eliminated. Since our goal

was to find novel scaffolds, we included an explicit simi-

larity filter. This filter was based on all compounds ever

tested on the A2AAR for activity from ChEMBL v17 (hu-

man, rat, mouse, bovine, guinea pig, sheep, rabbit, and pig),

resulting in a total of 12,205 compounds. Tanimoto simi-

larities between all computational hits and all tested com-

pounds were calculated based on Molprint2D [25]

fingerprints in Canvas [26] and computational hits were

eliminated if the similarity to any of the compounds in

ChEMBL was higher than a defined threshold (Tanimoto

[0.25) [27]. Next, we constructed two different sets: A) 71

compounds from the previous steps, ranked by solvent

accessible ligand efficiency (LE2/3) [28] and filtered itera-

tively (based on the rank) by similarity within the selection

of compounds (TanimotoB0.25), and B) 8 compounds from

the previous steps, prior to the filtering and ranking within

the selection of computational hits (before step A), based on

both visual inspection and further filtering to ensure a

bidentate interaction with Asn2536.55 in the 6th transmem-

brane helix of the receptor was present.

Cheminformatics

Molprint2D [25] fingerprints, as implemented in Canvas

[26, 29], were used for similarity calculations. While the

filtering screen was performed using ChEMBL v17, we

retrospectively updated the dataset from ChEMBL v17 to

v20 to include more data in the analysis figures (Figs. 1, 3).

All duplicate molecules were removed. In order to generate

Fig. 3, for each compound for the A2AAR in ChEMBL, a

global Tanimoto-based similarity score was calculated by

comparing the maximum similarity for a given compound

to any of compounds (including inactive compounds)

reported previously to the compound in question. This

yielded a similarity score for every compound, and in this

way we were able to visualize the global similarity of 4501

ligands using a bar chart. Figures were generated using

Dotmatics Vortex v2015.06.41692. For the analysis of

previously performed VS (Fig. 4), compounds were

extracted from ChEMBL if available, or else manually

retrieved from the reporting articles.

Fig. 2 a Decision Tree adapted from Lenselink et al. [15] and used

here in the virtual screen. Each box represents one docking grid

containing the adenosine A2A receptor (PDB: 4EIY) and one explicit

binding site water molecule. First, all 6.6M molecules generated by

LigPrep and taken from the eMolecules database were docked into the

first grid (2521-5 WM). Subsequently, if the docking score cutoff was

satisfied molecules proceeded to 2.1 or else to 2.2. Finally, due to

their high ratio of ligands versus decoys in the retrospective study,

only compounds from leaves 1, 3, and 5 were selected for further

inspection. b Further filters used in this study to obtain non-reactive

and novel compounds
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Radioligand binding assays

[3H]ZM241385 (45.9 Ci/mmol) was purchased from ARC

Scopus Research (Wageningen, The Netherlands). NECA

was obtained from Sigma-Aldrich (St. Louis, MO, USA).

The compounds selected by the VS were bought from

Enamine, Vitas M, Chembridge, Chemdiv and Key

Organics. All other materials were purchased from com-

mercial sources.

HEK293 cells stably expressing human adenosine A2A

receptor were cultured and harvested as has been described

previously [30]. Single point radioligand displacement

assays were performed in order to determine radioligand

displacement by the purchased molecules. 2.5 nM

Fig. 3 Retrospective overview of ligand discovery for the adenosine

A2A receptor. Similarity represents the maximum similarity against

all previously reported compounds (see ‘‘Methods’’ section). Bars are

colored based on activity: yellow bars represent compounds that have

relatively low affinity (pChEMBL 5–7), compounds in green are more

potent (pChEMBL[ 7). Inactive compounds (pChEMBL\ 5) are

not shown. The black percentages represent the distribution of

compounds in the four different novelty bins. Green percentages

represent the percentage of active compounds (pChEMBL[ 5) in

that bin. Several examples of diverse compounds (similarity B 0.25)

are shown

Fig. 4 Similarity of compounds from five previous reported virtual

screens [6–10]. Both for inactive (right) and active compounds (left) a

pie chart is shown, in which compounds are distributed into different

similarity bins based on a step size of 0.07. For the inactives,

compounds with a low similarity (B0.25, dark red) and high

similarity (\0.53, blue) are represented by one bin each. For the

actives no compounds were found in the low similarity bin (B0.25)
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[3H]ZM241385 was incubated for 2 h. at 25 �C in a final

volume of 100 lL with 15 lg A2AAR-WT membranes, in

absence or presence of 10 lM of the purchased molecules.

Total binding (TB) was determined in the absence of the

purchased compounds and non-specific binding (NSB) was

measured in the presence of 100 lM NECA. The amount

of protein added ensured that TB was less than 10 % of the

total radioactivity added to prevent radioligand depletion.

Incubations were terminated by rapid vacuum filtration to

separate the bound from free radioligand through 96-well

GF/B filter plates using a FilterMateTM Harvester (Perk-

inElmer Life Sciences). Filters were subsequently washed

ten times with ice-cold assay buffer and left to dry for at

least 15 min at 55 �C. Thereafter, 25 lL of scintillation

fluid (PE Microscint 20) was added and after at least 3 h

the filter-bound radioactivity was measured by scintillation

spectrometry using a PE 2450 MicroBeta2 Plate Counter

(PerkinElmer Life Sciences). In order to determine the total

counts and thus the exact concentration of radioligand,

3.5 mL of PE Emulsifier Safe was added to 25 lL of

radioligand and the radioactivity was measured with the PE

Liquid Scintillation Analyzer Tri-Carb 2900TR (Perk-

inElmer Life Sciences). The experiments were performed

two times in triplicate. The experimental data was analyzed

with GraphPad Prism 5.0 (GraphPad Software Inc., San

Diego, CA, USA).

Results

Experimental Results

After the initial virtual screen (VS) was performed, we

selected compounds from leaves 1, 3, and 5 because they

were previously shown to contain the majority of ligands in

our retrospective validation (Fig. 2) [15]. These com-

pounds, totaling 5378, were further filtered to ensure a

selection of diverse and non-reactive compounds (Fig. 2).

All selected compounds (1454) were novel, where novelty

was defined as having a Tanimoto similarity below or equal

to 0.25 to all active A2AAR ligands (including non-actives).

71 compounds were purchased and tested in a radioligand

binding displacement assay for adenosine A2A receptor

affinity (see Methods). Two hits were found (Table 1) that

met the criterion of approximately 50 % radioligand dis-

placement at a concentration of 10 lM. These two hits

have little similarity with the known active ligands in

ChEMBL (see Table 1). The first compound only shares

the furan and amide moieties with the most similar known

A2AAR active compound, thus representing a newly iden-

tified scaffold. The second scaffold has only an amide in

common with one of the active A2AAR compounds from

ChEMBL.

Aside from these two compounds, none of the other

molecules showed more than 50 % radioligand displace-

ment (SI Table 1). To make sure our results were not

caused by the over rewarding of non-native interactions by

Glide, we reevaluated the binding poses of the selected

1454 compounds, and compared these with the binding

mode of adenosine A2A receptor ligands for which the

binding mode was known. Indeed the poses of both the two

actives and top scoring inactives are arguably overlapping,

with all 7 compounds interacting with Asn2536.55 (SI

Figures 1 and 2, poses of the 2 actives and 5 top scoring

non-actives). However, we observed that known active

compounds tended to form a bidentate H-bond with amino

acid Asn2536.55, a residue crucial for ligand binding,

whereas most of our top scoring virtual screening hits did

not. Based on the 1454 compounds, a second selection of 8

compounds was made to ensure that these compounds form

this critical interaction as well. These compounds were also

tested in the same displacement assay; however none of

them showed radioligand displacement above 50 % (SI

Table 2).

Analysis of other compounds found in the Virtual

Screen

To determine the ability of the docking algorithm to

identify active compounds irrespective of novelty, we

analyzed the compounds that were discarded based on the

similarity criterion. In total this group represented 1207

compounds. We grouped these compounds based on the

corresponding most similar compound found in ChEMBL

tested for activity on the adenosine A2A receptor. Fre-

quencies of compounds most similar to corresponding

ChEMBL compounds were generated in order to determine

how the compounds would cluster, e.g. what type of

compounds would be frequently occurring in our VS

(Table 2). For instance, in the first row is the most fre-

quently occurring compound, ChEMBL2030685, which

has a pChEMBL value of 5.53 and was previously identi-

fied by Langmead et al. [31]. The pChEMBL represents the

negative log of concentration–response activity values (e.g.

IC50/EC50/Ki/Kd). In our screen we found 71 compounds

that were most similar to ChEMBL2030685, with the

highest Tanimoto similarity being 0.44. We found that

many compounds bear structural resemblance to com-

pounds found in ChEMBL, many of which were previously

identified using in silico methods (highlighted in bold). For

instance, two compounds were identical to ligands previ-

ously identified by Sanders et al. (ChEMBL2070726 and

ChEMBL1714515) [32]. In total the top ten most frequent

occurring compounds of ChEMBL represented 402 of the

1207 compounds (*33 %).
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Also apparent in Table 2 is that certain substructures

appear frequently; for example the succinimide moiety is

found in 3 of the 10 entries shown. When we analyzed how

frequently this substructure occurs in the raw results (the

5378 compounds prior to filtering) we found that it

appeared 411 times (7.6 %), possibly because it is often

used as a protective group in synthesis. Although in the

docking the oxygen of the succinimide was often found to

make an interaction with the backbone of Phe168EL2 (e.g.

SI Figure 2), no evidence was found that it was a beneficial

group. First of all, more than 60 % of the computational

hits (prior to filtering) containing a succinimide were found

to have an MM-GBSA score worse than mean (254 of the

411 of compounds). Moreover, when we queried com-

pounds tested on the adenosine A2A receptor (ChEMBL

v20) for this substructure mostly inactive compounds were

found (37 compounds with pChEMBL\ 5, compared to 0

highly active compounds (pChEMBL[ 7), and 16 com-

pounds with a moderate activity (pChEMBL value between

5 and 7)). To put this in context, the 1,3,5-triazine moiety

found in reference antagonist ZM-241385 is only present in

11 of our potential hit compounds (0.2 %), versus 166

highly active ligands in ChEMBL. When we further ana-

lyzed the source of these compounds we found that, of the

top 10 most frequently occurring ChEMBL compounds, 7

originated from computational studies. Additionally,

although ChEMBL2151129 (Table 2, row 7) described by

Carlsson et al. [33] was synthesized, the original scaffold

was discovered using a structure-based VS [7]. These

results indicate that of the not-so-novel compounds

discarded in our screen, many represent compounds found

by computational methods that have been experimentally

confirmed as A2AAR actives.

Retrospective analysis of the adenosine A2A receptor

Ligand Discovery

The challenging nature of finding non-similar molecules in

a virtual screen, for a thoroughly studied target, resulted in

the identification of two hit compounds in this study.

Therefore we compared our similarity threshold with the

similarity of compounds tested on the adenosine A2A

receptor. All compounds tested for A2A receptor binding in

ChEMBL were sorted by year of publication, and a global

maximum similarity to earlier reported compounds was

calculated to categorize whether bioactive compounds

were novel at the time of reporting.

Overall, the distribution of compounds across the differ-

ent novelty bins seems to be skewed toward similarity over

novelty, with a mean similarity of 0.6 and around 68 %

(44.3 ? 23.6 %, percentages shown in black, Fig. 3) of the

compounds falling in the two bins above 0.5 similarity. The

lowest similarity bin was the least populated, in which only

93 out of the 4501 active ligands were present (2.1 %). This

is also demonstrated by the fact that in the majority of years,

the bar charts do not cross theB0.25 similarity line. Some of

the novel scaffolds that have been reported include the

pyrazolo [4,3-e] 1,2,4-triazolo [1,5-c]pyrimidines in 1994,

1,2,4-triazolo [4,3-a]quinoxalin-1-ones in 2000, and

2-thioxothiazole derivatives in 2013 [1, 34, 35] (Fig. 3).

Table 1 Chemical structures of the two hits identified in this study

2D Structure Displacement

at 10 lM (%)a
ChEMBLb Tc

b Docking score

(kcal/mol)

Rankc

73 ± 1 0.23 -9.17

5326

47 ± 1 0.23 -9.59

1530

a Percentage displacement of ZM-241385 at the adenosine A2A receptor at 10 lM of the tested ligand
b Closest neighbor in ChEMBL with adenosine A2A receptor activity, and Tanimoto similarity (Tc) of the closest neighbor
c The rank and docking score of both ligands in the first node of the decision tree
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Table 2 Ten most frequent occurring ChEMBL ligands when compared with the compounds identified in our screen

ChEMBL pChEMBLa Sourcea Frequencyb Most similarb Tc
b

5.53 Langmead et al. [5] 71 0.44

– Novellino et al. [45] 68 0.47

5.54 Katritch et al. [6] 48 0.48

– Katritch et al. [6] 45 0.58

5.6 Sanders et al. [32] 37 1.00

J Comput Aided Mol Des (2016) 30:863–874 869
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Table 2 continued

ChEMBL pChEMBLa Sourcea Frequencyb Most similarb Tc
b

5.3 Sanders et al. [32] 33 1.00

6.52 Carlsson et al. [33] 27 0.62

6.19 Poulsen et al. [46] 27 0.41

– van Muijlwijk-Koezen et al. [47] 26 0.41

5.7 Langmead et al. [5] 20 0.28

a Affinity values are given if the compound was active against the adenosine A2A receptor (pChEMBL_value). The source lists the publication

where the compounds originate from, in bold are publications where the source of compounds is commercial and the compound was found using

a computational method
b Frequencies represent the number of times a certain ChEMBL-ligand is identified as the most similar in the discarded novelty bins (\0.75), e.g.

ChEMBL2030685 (row 1) is most similar to 71 compounds in our screen. The most similar compound in our screen is shown and Tanimoto

similarity (Tc) indicates the similarity value of this compound to the reference ChEMBL compound

870 J Comput Aided Mol Des (2016) 30:863–874
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The 93 active ligands in the lowest similarity bin consti-

tute, using the current definition, the total number of unique

scaffolds that have been discovered over the years. Next we

compared the number of actives as a fraction of the total

number of reported compounds, across the different simi-

larity bins (percentages shown in green). This confirms the

expected result that the less similar a newly tested compound

is, the lower the chance is that it will be active. However for

active compounds, we did not find a significant difference

between active (green, pChEMBL[7) and less highly active

(yellow, pChEMBL5–7) compounds, although this seems to

vary strongly between years. Nevertheless, in the lowest

similarity bin less than 1 in 5 compounds (18.5 %)was found

to be active, thus demonstrating the difficulty in finding

molecules that are both active (18.5 %) and novel (2.1 %) for

a well-studied target with many actives.

Retrospective analysis of Virtual Screens

Because at least five structure-based VS have been con-

ducted on the adenosine A2A receptor prior to the VS

reported here, we assumed that similar trends (as in Fig. 3)

could be observed for these earlier screens as well [6–10].

To test this hypothesis we retrieved all the compounds

from the five known screens that were reportedly bought

and tested (unfortunately, not all the papers reported full

datasets of all tested compounds). The different screens

yielded a combined total of 54 active compounds. When

we compared these active molecules with the reported

inactive compounds from those studies we learned that,

similar to the retrospective analysis shown in Fig. 3, there

is a trend toward lower similarity amongst the inactive

compounds. For instance, almost 75 % of the reported

inactives had a similarity B0.39 while only 55 % of the

active compounds were found in these bins. There is a

higher fraction of low similarity compounds reported in the

five VS than in the retrospective data, e.g. more than 75 %

of the actives from these VS had a similarity below 0.50

(Fig. 4) compared with 32 % for the retrospective data

(Fig. 3; 30 ? 2.1 % respectively). Nevertheless none of

the actives found with VS were below the 0.25 similarity

threshold, and using our current definition they cannot be

considered novel scaffolds. The three most novel com-

pounds originated from the VS by Heptares [5] where the

authors explicitly selected non-similar molecules (hit 3, hit

4, and hit 9 in their publication) [5].

Discussion

In this study we used a previously established structure-

based virtual screening protocol [15] that incorporates

explicit water molecules to find novel ligands for the

adenosine A2A receptor. A more practical scenario would

involve pre-filtering based on 2D-similarity and reactivity

(REOS), increasing efficiency of the screen; however

docking of all compounds allowed us to compare the non-

similar/novel computational hits with the full spectrum of

docked compounds. We defined ‘novel’ as compounds

with a Tanimoto similarity smaller than or equal to 0.25

compared to any known compound tested for activity on

the adenosine A2A receptor. Our hit rate was much lower

(1.4 %) than in previously reported screens and we deter-

mined that the low hit rate could be most likely attributed

to an overly stringent requirement to find novel compounds

for a target that has a wealth of chemical matter. In ret-

rospect a higher cutoff around the mean similarity (0.40) of

adenosine A2AAR compounds (see ‘‘Retrospective analysis

of the adenosine A2A receptor Ligand Discovery’’) might

have been more suitable. Because of the use of different

fingerprints, similarity thresholds in other VS are only

comparable qualitatively. Nonetheless, we can draw some

conclusions about the results obtained here when compared

with those from previous screens. In the study by Katritch

et al. [6], who also included explicit water molecules in

their VS, a hit rate of 41 % (23/56) at a test concentration

of 10 lM was observed. Hits were compared with mole-

cules in GLIDA [36], and their calculated similarities

ranged from 0.44 to 0.68 [6]. Another study by Carlsson

et al. where modified partial charges were used on

Asn2536.55 to favor hydrogen bonding to this residue

yielded a comparable hit rate of 35 % (7/20) at a test

concentration of 20 lM [7]. Moreover, the authors

employed filters such as molecular weight, formal charges,

and the Similarity Ensemble Approach (SEA) to further

narrow down their hit list. Compounds emerging from this

screening approach were compared with adenosine recep-

tor ligands from ChEMBL and Wombat, revealing simi-

larities between 0.30 and 0.52. A subsequent study by

Langmead et al. [5] was performed on a homology model

of the adenosine A2A receptor yielding a hit rate of 9 %

(20/230) at a test concentration of 55 lM. Compounds

were filtered for CNS-like properties and ligands contain-

ing xanthine or furan moieties were removed. Subsequent

hits were subjected to a biophysical mapping approach

[13]. The 10 hits that were reported all had relatively low

similarities to known A2AAR antagonists, ranging between

0.19 and 0.31. However the authors noted that their most

potent scaffold contained the same moiety as found in the

previous two virtual screens described above [6, 7].

Another recent screen focused on finding fragments for the

adenosine A2A receptor [8] resulted in a hit rate of 64 %

(14/22) at a test concentration of 500 lM, while similari-

ties to known compounds ranged between 0.28 and 0.41.

Lastly, a VS was performed by Rodriguez et al. to identify

agonists for the adenosine A2A receptor [9]. Although none
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of the hits turned out to be agonists, a hit rate of 45 % (9/

20) was achieved at a test concentration of 10 lM, with

similarities ranging from 0.30 to 0.61.

In this study we attempted to determine the ability of

docking-based VS to identify novel compounds. We

explicitly selected compounds that bore no resemblance to

any compound previously tested against the adenosine A2A

receptor. Indeed, the adenosine A2A receptor is one of the

best studied targets of all class A GPCRs, and the number

of bioactivities (10,184) in ChEMBL (version 20) ranks it

at number 7 of the 688 class A GPCRs [37]. This represents

the result of decades of screening and medicinal chemistry

efforts (see also Figs. 1, 3) [38]. In our screen we included

not only active but also inactive compounds as similarity

filters. This was done primarily to exclude inactive mole-

cules identified in previous screens, but also to explore

actual uncharted chemical space. In some VS [5, 8] not all

the tested compounds, i.e. including inactives, have been

disclosed. This arguably leads to a loss of useful infor-

mation, in the form of validated ‘true negatives’ that can be

used as decoys in a benchmark screen or to bias future

screening efforts away from explored chemical space. As a

consequence of this data incompleteness we may have

tested compounds that had been found inactive in previous

studies as well. Including this information in future VS

reports would be helpful to prevent future screens from

exploring the same (inactive) chemical space.

Despite the differences in data completeness, we

attempted to compare previous VS results with our current

similarity-filtered method. We found that ligands identified

in a VS have a higher novelty than the ligands for the

adenosine A2A receptor (Figs. 3, 4) in general. Inactives

have an even higher novelty, which is the consequence of a

tradeoff between similarity and activity. In fact it is a well-

established paradigm that activity correlates with similarity

[23, 24, 39]. Indeed, this is the basis for 2D virtual

screening. Therefore depending on the goal of VS, and the

extent of the mapped chemical space, one may wish to

filter out molecules with a novelty above a certain thresh-

old (e.g. C0.75) as the chances of success become

increasingly small as similarity to known actives decreases.

On this basis, virtual screening efforts often include a step

of visual inspection, where ligands that interact in non-

native manner (e.g. no hydrogen bond with key residue) are

filtered out [40]. Selecting compounds across a range of

similarity, e.g. between 0.20 and 0.50 provides a good

balance between potential activity and novelty (Fig. 3).

Another possibility would be to test compounds that have a

higher novelty at a higher concentration. In this study we

considered hits as displaying approx. 50 % or higher

radioligand displacement at 10 lM (equivalent to

pChEMBL[5), but in previously performed VS concen-

trations between 10 and 500 lM were used as a test

concentration. Additionally the number of selected com-

pounds based on all the filters (Fig. 2) is on the low side

due to the relatively high docking score cutoffs in the

decision tree. These scores were determined based on

known and potent ligands [15], and in hindsight these

cutoffs could have been adjusted to select hits from a larger

pool of compounds. Indeed, it is crucial to select ligands

that end up in multiple leaves to capture more chemical

space [15]. Here we selected compounds that satisfied the

docking score cutoff in at least two out of the three nodes

(i.e. compounds ending up in leaf 1, 3, and 5, Fig. 2a). This

could easily be extended to another ensemble strategy such

as the ‘‘Z2 score’’, which combines Z-scores from multiple

screens and has been proven to outperform other ensemble

methods [41].

Although some of the virtual screens (by us and others)

have expanded A2A receptor chemical space with new

chemotypes, they all draw from essentially the same pool

of commercially available compounds (Table 2). In addi-

tion it has been shown that available chemical libraries

only cover a limited part of the chemical space [42, 43].

Future studies using unbiased libraries that cover larger

chemical spaces such as GDB [42] could potentially sug-

gest new chemotypes for this important target.

Conclusions

Structure-based virtual screening is a widely used approach

to identify hits for drug targets, and has been applied

previously to the adenosine A2A receptor. We performed a

virtual screen on this target while excluding all compounds

similar to known actives and inactives in order to explore

unchartered chemical space for this GPCR. Of the 79

compounds we tested, only 2 exhibited affinity for the

target. We found several explanations for this relatively

low hit rate: the overly stringent novelty threshold, the

abundance of known ligands for the adenosine A2A

receptor, and the overlap in results with previous virtual

screening efforts. Finding novel compounds for a particular

target of interest becomes increasingly difficult as the tar-

get is more extensively studied, as was the case with the

adenosine A2A receptor studied here. Nonetheless, struc-

ture-based methods still seem to offer the greatest possi-

bility to find novel actives for targets that have been well

explored, since ligand-based methods are generally

designed to find compounds similar to known actives. As

such, researchers should choose their virtual screening

method for a project based on their objectives and the

known chemical matter for the target. Structure-based

methods may not be necessary when sufficiently interesting

compounds can be found with simpler/faster methods.

However, when minimal biases from existing chemical
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matter is sought, structure-based methods will likely be

preferred, even though there is still substantial room for

these methods to improve based on treating the underlying

physics of the system more accurately (protein flexibility,

explicit waters, variable ionization states, etc.). With

improvements of structure-based virtual screening methods

coupled with rapidly increased computational capabilities

to handle the complexities of sampling we expect to see the

value of these methods continue to increase in the coming

years.

Supporting information

Displacement results of the non-active molecules, docking

poses of the two actives and five top scoring inactives,

HPLC and 1H NMR spectra of the active molecules.
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