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Abstract Alchemical transformation of solutes using

classical fixed-charge force fields is a popular strategy for

assessing the free energy of transfer in different environ-

ments. Accurate estimations of transfer between phases

with significantly different polarities can be difficult

because of the static nature of the force fields. Here, we

report on an application of such calculations in the

SAMPL5 experiment that also involves an effort in bal-

ancing solute and solvent interactions via their expected

static dielectric constants. This strategy performs well with

respect to predictive accuracy and correlation with

unknown experimental values. We follow this by per-

forming a series of retrospective investigations which

highlight the potential importance of proper balancing in

these systems, and we use a null hypothesis analysis to

explore potential biases in the comparisons with experi-

ment. The collective findings indicate that considerations

of force field compatibility through dielectric behavior is a

potential strategy for future improvements in transfer pro-

cesses between disparate environments.

Keywords SAMPL � Force field � Solvation free energy �
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Introduction

From the first SAMPL experiment in 2008 [1], through the

most recent SAMPL experiments [2–5], classical explicit

solvent alchemical transformation calculations have been

regularly strong performers in blind predictions of hydra-

tion free energies. Such calculations usually involve static

partial charges and atom parameters, but they often have

angle and torsion flexibility and can properly sample rel-

evant solute and solvent configurations, often important

considerations in molecular transfer processes. The fixed

nature of the parameters result in a notable dependence of

the transfer free energy on the force field chosen to rep-

resent the solutes [6–12]. For the SAMPL5 challenge, the

participants were given a more challenging task of pre-

dicting the distribution coefficient values (logD) between

water and cyclohexane of 53 different drug-like com-

pounds [13]. By including non-aqueous condensed phases

in the transfer process, the force field representation of the

molecule needs to simultaneously correctly predict transfer

into both phases from air in order to form a balanced

thermodynamic cycle, otherwise there will be a systematic

bias for one of the two (or more) phases.

We have recently been interested in exploring dielectric

behavior as a possible route to improving force fields in

classical molecular simulations [14, 15]. Modulation of

standard force fields to correct for what is often flawed

dielectric behavior could have beneficial consequences for

molecule transferability in condensed-phase environments.

The static dielectric constant has traditionally not been a

core target experimental observable in force field devel-

opment because of its more prohibitive computational cost,

particularly for highly polar molecules where it tends to

converge slowly [14]. Methods that have utilized the static

dielectric constant in force field optimization have shown
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improved properties in comparisons with experiment

[14, 16], in particular hydration free energies [15].

With the potential importance of considering proper

dielectric behavior for solutes and the solvents they reside

within for accurate comparisons with and prediction of

experimental properties, we have recently devised a strat-

egy for explicit molecule transfer free energy calculations

involving the balancing of component dielectric constants

[17]. An illustration of this approach is presented in Fig. 1.

We have observed general force fields to typically under-

predict the static dielectric constant of neat liquids made

using them, usually by around 50 % [14, 15]. Additionally,

the solvent phases in typical explicit solvent transfer free

energy calculations are TIP3P water (� 0ð Þ ¼ 98) and

entirely nonpolar renditions of cyclohexane (� 0ð Þ ¼ 1),

phases with static dielectric constants notably different

from the experimental values of 78.4 and 2.0 respectively

[18]. Inserting a somewhat under-polarized solute in such

exaggerated environments will likely lead to partitioning

trends biased toward the nonpolar environment. Using

more experimentally comparable solvents and appropri-

ately polarized solutes could potentially remove such a

hydrophobic bias and result in improved predictive

accuracy.

We report here on an application of this force field

dielectric balancing approach applied to the water-to-cy-

clohexane partitioning prediction challenge of the

SAMPL5 experiment. We submitted two sets of predic-

tions to the challenge, one where the solute and solvent

environments were in proper balance and another where

the solvent force fields are in dielectric balance with

experiment but the solute is left unperturbed. We discuss

the performance of these submissions, craft retrospective

investigations to further clarify how these force field

choices alter the expected outcomes for predicting

experimental partitioning of drug-like molecules, and

finish with a discussion on sources of error and future

improvements.

Computational methods

The water-to-cyclohexane distribution coefficients were

prepared for the 53 solute molecules in the molecular

transfer portion of the SAMPL5 event. As part of our

dielectric balancing strategy (see Fig. 1), we calculated the

air-to-solvent transfer free energies of all molecules in

dielectrically corrected water and cyclohexane solvent

environments and estimated the partition coefficient

according to,

logP ¼
DG�

wat � DG�
cyh

2:303RT
: ð1Þ

We do not perform corrections for tautomer, protonation,

or aggregation states of the solute molecules in these cal-

culations. Thus, we take these logP partition coefficient

values as approximations of the experimental logD values

in comparisons with experiment.

Molecular models

The dielectrically corrected solvents were the fixed-charge

H2O-DC water model [14], and for the nonpolar phase we

used a united-atom cyclohexane with a small, fixed dipole,

here referred to as CYH-DC. This model was optimized to

reproduce the experimental static dielectric constant, den-

sity, and DHvap following a previously published protocol

[14]. Specific details about this optimization process,

dipole placement decision, and resulting topology infor-

mation are provided in the supplementary materials for this

manuscript. In retrospective investigations, a limited set of

additional calculations were performed using TIP3P water

and a cyclohexane model created using GAFF parameters

and AM1-BCC partial charges, referred to later as CYH

[19–22]. Solute molecules were prepared by assigning

GAFF parameters and AM1-BCC partial charges to the

organizer provided PDB structures using the Antechamber

package (Amber 14 version) [23]. Structures and topolo-

gies were converted to GROMACS format using ACPYPE

python script [24], and each molecule was then solvated in

Fig. 1 The dielectric balancing process involves a two part

optimization of a transfer free energy estimation, 1 a solvent selection

to ensure dielectric environments similar to those in experiments and

2 a solute force field adjustment to adapt the solute for the condensed

phase. Commonly, in such transfer free energy calculations (left side),

TIP3P and a classical cyclohexane have larger and smaller dielectric

constants respectively than experimentally expected, and an under-

polarized solute will partition into the nonpolar phase favorably by

potential exclusion from the highly polar aqueous phase. In a

dielectric balanced system (right side), systematic nonpolar biases

should be reduced in favor of a more even accounting of solvation

forces between the phases
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the appropriate solvent in a rhombic-dodecahedral box

with at least 1.2 nm of space between any solute atom and

system box face.

In addition to using GAFF/AM1-BCC parameters, we

modulated the solute non-bonded parameters following a

recently tested internal protocol in order to balance the

dielectric properties of the solute with the surrounding

solvent [17].This modulation involves a 20 % magnifica-

tion of the AM1-BCC partial charges and a corresponding

linear inflation of the Lennard–Jones r parameters to

maintain the proper liquid densities with the increased

charge magnitudes. This degree of charge magnitude

amplification has been seen as beneficial for neat liquid and

molecular transfer properties by our group and others

[15, 25], while the linear inflation is derived from auto-

mated dielectric optimization of small molecule functional

groups. Here, the rLJ modulation amounts to a generally

applied 5=12ð Þ � qnew � qoldj j percent inflation for each

atom of the molecule. We here refer to this modulated

force field as dielectric balanced GAFF, or G-DB.

Free energy calculations

The free energies associated with the molecular transfer of

solutes from vacuum to either water or cyclohexane were

computed using thermodynamic integration (TI). As is

common practice [7, 26], the total solvation free energy in

a given solvent (DGsolv) was determined by the sum of 2

separated alchemical processes for calculating the nonpolar

and polar components of solvation. An uncharged variant

of the solute molecule was grown in the solvent to obtain

the nonpolar contribution to solvation (DGsolv;np), and the

polar contribution (DGsolv;pol) was determined by turning

on the charges, less the intramolecular contributions to the

electrostatic interactions. For the DGsolv;np TI calculations,

k steps of (0.0 0.05 0.1 0.2 0.3 0.4 0.5 0.55 0.6 0.65 0.7

0.75 0.8 0.85 0.9 0.95 1.0) were used. For the DGsolv;pol TI

calculations, 6 k steps evenly distributed from 0.0 to 1.0

where used. The simulations were performed using version

5.0.4 of the GROMACS package [27–31]. The temperature

was held constant at 298.15 K with Langevin dynamics

with an inverse friction coefficient of 2 ps, and a pressure

of 1 atm was targeted using the Parrinello-Rahman baro-

stat. Following 300 ps of equilibration, each TI window

was sampled for 5 ns using a 2 fs timestep for integrating

the equations of motion with the leap-frog algorithm. All

bonds to hydrogen atoms were constrained using P-LINCS

[32]. Lennard–Jones interaction were computed using a

shifted cutoff at 1.2 nm, and energy and pressure long-

range dispersion corrections were applied. Interactions

between charges where computed using PME with 0.12

grid spacing and a real-space cut-off of 1.2 nm.

Results and discussion

We contributed two submissions to the SAMPL5 event,

submission numbers 36 and 42. Both of these used the

dielectrically balanced solvents discussed in methods

Sect. 2.1. While one (submission 42) used typical GAFF

parameters with AM1-BCC partial charges, the other

(submission 36) used dielectrically balanced GAFF/AM1-

BCC, or G-DB, parameters. Going into the challenge, we

expected the G-DB results to potentially be an improve-

ment over the GAFF free energy perturbation calculations

performed by one of the organizers. We also expected the

imbalanced submission (#42) to perform more poorly than

G-DB since the solute force field had not been adjusted to

match its balanced condensed-phase environment.

Compatible solvent and solute force fields are

critical for prediction accuracy

Figure 2 shows correlation scatter plots and error charts for

submissions 36 and 42 in comparisons with the organizers’

supplied experimental values [13]. These results confirmed

our expectations for the two submissions, though the errors

observed for the G-DB calculations are greater than

expected given the errors we have observed for

Fig. 2 Correlation and error analysis of the two prospective SAMPL5

submissions from this effort. #36 is the preliminary dielectric

balanced system, while #42 is the standard GAFF ? AM1-BCC

charges solute representation in the dielectric balanced solvents. As

expected, submission #36 is more accurate than #42 because the

solute FF and solvent environments are more compatible. Both

submissions show a positive error slope on the right side plots

indicating an exaggerated prediction behavior relative to experiment.

The darkened bars and points in submission #36 results indicate the 3

solutes with topology errors that are corrected in later retrospective

investigations
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calculations involving smaller molecules [17]. However,

one might generally expect errors to grow with increasing

numbers of functional groups and more varied local envi-

ronments [33]. Regardless, the performance was quite

respectable for G-DB, with consistent presence in the top

10–20 % of predictors across the provided error metrics for

the full set of 53 molecules. Highlights include the 2nd

ranked Pearson correlation coefficient (R = 0.75), 4th

ranked Kendall’s tau coefficient (s = 0.57), and 6th ranked

RMS error (RMSE = 2.6) of the 62 submissions that

reported results for all molecules. Care should be taken to

not read to deeply into such performance metrics, as 53

molecules is not a particularly large evaluation set. Nev-

ertheless, it is an encouraging result given the classical,

fixed-charge nature of the models and lack of any effort

placed in correcting for experimental measurement non-

idealities, such as solvent mixing and pKa corrections.

The blue bars of error plots on the right side of Fig. 2

show the signed error relative to the experimental logD

values, which are overlaid as a red line ordered by

increasing logD. Note that the calculations for the 3 bars

and points labeled in darker blue had minor topology errors

discovered after submission, though corrected results do

not significantly alter the error metrics beyond a 0.2 posi-

tive shift in the mean signed error (MSE). Corrected results

and error assessments are presented in all retrospective

plots and discussions. The G-DB results show an interest-

ing trend of errors shifting from generally negative to

generally positive values as the experimental logD values

increase. This is the result of a positive correlation slope,

indicating that near the extremes of the reported experi-

mental logD values the absolute predictions are greater in

magnitude than experiment. Though less apparent in the

error plots of the GAFF solute results in Fig. 2, this trend is

also present.

Comparison of these G-DB and GAFF solute results in

the dielectrically balanced solvent system demonstrates the

importance of compatible solute and solvent force fields in

molecular transfer calculation accuracy. While the G-DB

results appear to be mostly balanced, there is a modest bias

(MSE = 1.1 units of logD) toward solvation in the cyclo-

hexane phase. The GAFF solute results show a dramati-

cally increased bias for the cyclohexane phase (MSE = 4.6

units of logD), this because the solutes are severely under-

polarized for a condensed phase environment with cor-

rected dielectric constants. As CYH-DC is slightly polar, it

becomes a ‘‘catch all’’ universal solvent for most of

SAMPL5 solutes. The rest of the performance metrics are

similarly poor for GAFF solutes in the dielectrically bal-

anced environment because of this dramatic and systematic

shift. If high predictive accuracy is the goal, balanced

solute and solvent force fields are essential.

Polarizing solutes for the condensed phase reduces

systematic biases in partitioning

To better investigate the importance of balancing the

polarity of solutes with their solvent environments, we

retrospectively considered the possible combinations of

solute and solvent environments with respect to changes in

their dielectric properties. One of these combinations was

already performed by the organizers (submission #39) and

graciously provided for this comparison. Figure 3 shows

correlation plots of calculated values for GAFF and G-DB

solutes in the TIP3P/CYH and H2O-DC/CYH-DC solvent

environments with experimental values. The shape of the

clustering of points is expectedly similar in all four plots,

but the degree of vertical shift is what distinguishes these

sets. When a solute/solvent combination favors the cyclo-

hexane phase, we observe an upward vertical shift in the

point cluster. When a solute/solvent combination favors the

aqueous phase, we observe a downward vertical shift in the

point cluster. Notably, the dielectrically balanced set

Fig. 3 Correlation scatter plots for retrospective investigations of the

GAFF (top plots) and G-DB (bottom plots) solutes in TIP3P/CYH

(orange points) and H2O-DC/CYH-DC (blue points) environments.

The submission #39 data was provided by one of the organizers, and

the other 3 plots itemize the other solute/solvent combinations

possible when considering changes in solvent and solute topologies. If

the solute is under-polarized, as in the case of GAFF solutes in either

solvent set, we see a systematic upward shift in the distributions,

notably favoring the cyclohexane phase. The polarized G-DB solutes

significantly favor TIP3P over the very nonpolar CYH, seen in the

downward shift of the distribution. The dielectrically balanced system

of G-DB solutes in H2O-DC/CYH-DC has a slightly upward

systematic bias, though it is notably less than that seen in submission

39
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improves on simply using GAFF solutes with the very

nonpolar CYH by eliminating some of the systematic bias

(MSE = 1.6 units of logD) towards partition into CYH.

This was the original goal of this dielectric balancing

undertaking. The dielectrically balanced set still has a bias

towards the cyclohexane phase (MSE = 1.3 units of logD),

though this improvement is only moderately significant

given bootstrap sampling showing an uncertainty of 0.3

units of logD. We believe that pKa correction considera-

tions can reduce this bias further, as such corrections

should help stabilize the solute partitioning into the aque-

ous phase.

The off-diagonal combinations further demonstrate the

importance of a balanced approach to the polarity of solute

molecules and their solvent environments. On seeing the

results of GAFF in the typical solvent combination of TIP3P

and a general CYH, one might be tempted to simply polarize

the solute to appropriately ‘‘fix’’ the solute for the condensed

phase environment. A version of this is shown in the plot of

G-DB in TIP3P/CYH, and there is a significant shift towards

the aqueous phase (MSE = -1.8). We believe that a more

encompassing approach, one that considers the proper

polarity of the environment as well as the solute, is more

beneficial. This position is supported by the results seen here.

Null hypothesis for logD values provides

a challenging test

When analyzing predictive performance of a computational

technique, it is often informative to consider a theoretical

baseline expectation for accuracy given no specific

knowledge of the makeup of a given sample. In molecular

transfer processes, such a ‘‘null hypothesis’’ would not

assume any knowledge of the structure or chemistry of the

solutes and solvents involved in the experiment. For a

computational technique to provide predictive value, it

should be able to translate knowledge about the structure of

the solutes and environments into predicted values and

value trends that perform better than the baseline given no

structural information. A well-defined null hypothesis for

molecular transfer processes is that a given solute dis-

tributes equally between the two phases of interest, or

logD ¼ 0 for all solutes. This null hypothesis assumes no

specific knowledge of the concentrations of the solute in

each phase by claiming the molecule will have no prefer-

ence. This null hypothesis is also a reasonable estimation

for experiments that could potentially have limited

dynamic range. To arrive at a distribution coefficient,

accurate assessments of the solute concentrations in each of

the phases would need to be made experimentally, and

logD value of zero would be a minimum expectation for a

reliable experimental result. In other words, if the tech-

nique can measure a solute concentration in one solvent

phase, it should be able to measure a similar solute con-

centration in the other phase.

Figure 4 shows correlation plots for the proposed null

hypothesis alongside our best performing prediction for the

SAMPL5 experiment. As one should expect, assuming a

constant logD of zero means that no trends in partition will

be uncovered by the assumption. The unsigned and RMS

error are however quite low: AUE = 1.6 and RMSE = 1.8.

Surprisingly, these error values are even lower than the best

performing submission, COSMO-RS by Klamt et al., with

AUE = 1.7 and RMSE = 2.1.

Why does this assumption pose such a difficult chal-

lenge, and what does this mean for the predictive value of

the aggregate computational prediction efforts in

SAMPL5? While this could simply be a chance outcome,

the nature of the experimental data likely plays a role. The

experimental values range from logD values of -4 to 3, a

limited dynamic range of about 7 units of logD for these

molecules, this compared to a dynamic range of nearly 14

for the G-DB predictions. The limited experimental range

could be a consequence of organizer pre-selection of drug-

like solutes that have reasonable favorability for both sol-

vent phases, experimental pruning of the solute set to

minimize error by avoiding the extremes of instrumental

Fig. 4 A comparison of our best performing SAMPL5 combination

(top left), a null hypothesis (top right), and a variation that scales the

magnitude of the solvation terms in both cyclohexane and water by

50 % (bottom). While the null hypothesis assumption has low error

(AUE= 1.6 and RMSE= 1.8), it is not very predictive because of the flat

trend. The 50 % scaling reduces the overly positive slope of our best

predictor and decreases the errors by roughly 1 log unit (AUE = 1.2 and

RMSE = 1.6) while maintaining a good predictive correlation (R =

0.75). The error values are notably better than the null test and about 0.5

log units better than the best submission in the SAMPL5 experiment
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detection, and/or solvent impurities or mixing, i.e. water

content in the cyclohexane phase and vice versa. The

experimental values are also expected to be equilibrium

results, and this would include variation in the conforma-

tion, aggregation, and protonation states of the structures.

In an attempt to address these potential considerations,

we did preliminary screening of pKa corrections, like those

provided by Schrödinger’s Epik tool [34], as well as select

transfer calculations into mixed solvent states. Testing of

preliminary pKa corrections used by other participants in

and the organizers of the SAMPL5 challenge resulted in a

systematic increase in the favorability for several mole-

cules to partition into the aqueous phase. While this

improved G-DB predictive correlation for molecules that

experimentally favor the aqueous state by further stabiliz-

ing them, it unfortunately increased the positive slope of

the logD trend and increased the dynamic range of the

predictions, furthering the trend gap with the experimental

data rather than closing the gap. The few attempted mixed

solvent simulations tended to add prediction noise, likely

due to the finite nature of the systems in the TI calculations.

Surprisingly, themost successful corrective consideration

was also the most empirical. We assumed that there was an

inherent bias in the experimental data set, be it by experi-

mental selection, pre-screening, or system non-idealities and

simply tried to ‘‘say less’’ by scaling back our free energy

magnitudes in both solvents by half. We would expect this

preliminary scaling to improve predictions of experimental

measurements where there could be water content in the

cyclohexane phase and vice versa, this because such a system

non-ideality will mediate interactions between the solutes

and the environment, reducing the measured dynamic range.

The correlation plot for this 50 % G-DB approach is shown

in the bottom of Fig. 4. The errors relative to experiment are

significantly reduced: AUE = 1.2 and RMSE = 1.6, and it is

still well-correlated with experiment. This is a significant

improvement over the null hypothesis and all prospective

submissions in the SAMPL5 experiment.

What is the practical consequence of doing better by

saying less? It likely indicates that this technique, and others

positively correlated with experiment, do add practical pre-

dictive value by considering the solute structure and

molecular interactions with it and the surrounding environ-

ment. Themagnitude of the solvation effects might be overly

enhanced due to the assumption of working with near-ideal

system setups, and improvements will likely come from

more detailed consideration of system non-idealities. Pre-

sumably, one could also ‘‘win’’ prediction events with

expected narrow ranges in experimental quantities by sys-

tematically reducing prediction magnitude for techniques

believed to over-stabilize solvation extremes, either by

approximating such non-idealities through a constant scaling

term or minimizing systematic outlier effects.

Conclusion

We presented here predictions for water-to-cyclohexane

partitioning in the SAMPL5 experiment using alchemical

transformation free energy calculations. In these, we apply

an added force field consideration that the solutes and sol-

vents be balanced according to their effective static dielectric

constants. In the case where we considered a proper balance

according to this property, we achieved an enhanced accu-

racy and a general improvement in predictive quality for the

blind prediction challenge. To better illustrate this potential

improvement, we performed a retrospective analysis on the

SAMPL5 molecules across a systematic series of solute and

solvent combinations. The results highlighted how consid-

ering force field compatibility based on dielectric behavior is

critical if one hopes to achieve quantitative accuracy in

predictions of molecular transfer.

In addition to computational predictions, we performed

a null hypothesis comparison on these molecules to assess

the potential value added from our computational predic-

tion. This null hypothesis poses a rather difficult challenge

for predictions, at least with this particular set of molecules

and experimental measurements provided by the organiz-

ers. We observed the null hypothesis prediction to have a

lower error than all predictors; however, it lacked any

predictive correlation with the experimental measurements.

With the knowledge that a null hypothesis prediction per-

formed well for this set of molecules, we retrospectively

proposed a somewhat empirical prediction that halves the

magnitude of the free energy estimations in each of the

solvent phases. We observed this ‘‘say less’’ method to

significantly outperform all the SAMPL5 submissions, as

well as the null hypothesis, in the common accuracy met-

rics while retaining the predictive correlation of the base

computational model. While this does not mean the accu-

racy of a typical method will always increase by saying

less, such a strategy appears to target systematic errors in

comparisons between the simplified TI calculations we

used here and this specific set of experimental data.

Predictive comparison experiments like SAMPL are

important venues for testing and evaluating techniques and

ideas. In SAMPL5, the experiment posed a new form of

molecular transfer challenge, one that tests the limits of

classical fixed-charge force fields. Our results were

encouraging as they indicated further refinement by bal-

ancing of force fields through material dielectric constants

could represent a somewhat straightforward path to

improved quantitative accuracy in molecular transfer. It is

also expected that further improvements will likely depend

on detailed consideration of non-ideal system effects, like

solvent mixing, solute dimerization, and solute protona-

tion/deprotonation.
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