
Summary Alignment of multiple ligands based on

shared pharmacophoric and pharmacosteric features is

a long-recognized challenge in drug discovery and

development. This is particularly true when the spatial

overlap between structures is incomplete, in which case

no good template molecule is likely to exist. Pair-wise

rigid ligand alignment based on linear assignment (the

LAMDA algorithm) has the potential to address this

problem (Richmond et al. in J Mol Graph Model

23:199–209, 2004). Here we present the version of

LAMDA embodied in the GALAHAD program,

which carries out multi-way alignments by iterative

construction of hypermolecules that retain the aggre-

gate as well as the individual attributes of the ligands.

We have also generalized the cost function from being

purely atom-based to being one that operates on ionic,

hydrogen bonding, hydrophobic and steric features.

Finally, we have added the ability to generate useful

partial-match 3D search queries from the hypermole-

cules obtained. By running frozen conformations

through the GALAHAD program, one can utilize the

extended version of LAMDA to generate pharmaco-

phores and pharmacosteres that agree well with crystal

structure alignments for a range of literature datasets,

with minor adjustments of the default parameters

generating even better models. Allowing for inclusion

of partial match constraints in the queries yields phar-

macophores that are consistently a superset of full-

match pharmacophores identified in previous analyses,

with the additional features representing points of

potentially beneficial interaction with the target.
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Introduction

Methods for correlating molecular structure with

biological activity have long played a central role in

computer-aided molecular design. Early approaches

based on physicochemical properties and 2D (topo-

logical) structural features are increasingly being

superseded by 3D methods that take geometric or

molecular field information into account [1]. Most of

these 3D methods are dependent, to a greater or

lesser degree, on ligand conformation (e.g., EVA [2]

or GRIND [3]). Others are also dependent on how

the ligands are aligned with respect to one another in

Cartesian space—i.e., on ligand configuration. CoM-

FA [4] and CoMSIA [5] are examples of the latter

class of methods, as are in silico docking and phar-

macophore elucidation. Here, we focus on how,

given a suitable conformation for each, one can align

the ligands in a dataset so as to highlight common-

alities in the spatial distribution of ligand-protein

interactions (the pharmacophore) and in molecular

shape (the pharmacostere). A complementary

methodology [6] for generating a set of pharmaco-

phorically and pharmacosterically concordant con-

formations suitable for such an alignment will be

described in detail elsewhere [7].

Many automated alignment methods have been

described in the literature (as reviewed by Lemmen

and Lengauer [8]); here, we discuss the use of a 3D

hypermolecule, a 3D analog of a 2D chemical hyper-

structure, for rigid-body alignment. A 2D chemical

hyperstructure is generated by sequentially overlap-

ping each molecular graph onto a hyperstructure,

adding new nodes to the hyperstructure to accommo-

date any atoms that do not overlap. The overlapping is

generally carried out so as to minimize the increase in

size of the hyperstructure at each stage, which is

equivalent to maximizing the overlap between the

molecular graph and the hyperstructure. When atom

and bond data for the input molecules are retained as

features of the relevant hyperstructure nodes and

edges, subsequent analysis of the hyperstructure can

provide useful insight into aggregate properties of the

dataset without losing information about the properties

of the constituent molecules. The chemical hyper-

structure representation proposed by Vladutz and

Gould [9] was originally devised primarily to improve

the efficiency of substructure searching [10]. More re-

cently hyperstructures have been applied to the anal-

ysis of bioactivity data, with the aim of identifying

substructural features that are positively or negatively

associated with activity [11]. The molecular field

topology analysis (MFTA) technique developed by

Palyulin et al. [12] is another example of this approach.

The 2D hyperstructure is logically related to the

better known maximum common subgraph (MCS) [13]

which is the largest subgraph of every chemical graph

in a dataset of two or more molecules. The MCS can be

regarded as the logical intersection (i.e., the Boolean

AND) of the chemical graphs and is thus a substruc-

ture of every molecule in the dataset. Conversely, a 2D

hyperstructure can be regarded as the logical union

(i.e., Boolean OR) of the chemical graphs. Hence, the

chemical graph of every molecule in the dataset is a

subgraph of the hyperstructure.

A hypermolecule is a 3D representation of a dataset

that seeks to maximize the degree of molecular overlap

between structures while preserving the geometry and

molecular connectivity of each molecule in the dataset.

It is defined by a set of hyperatoms along with their in-

terconnectivity, as well as associated hyperfeatures.

Each hyperatom and hyperfeature is characterized by a

vector encoding the properties of the atoms or features

that it represents. Such a 3D hypermolecule identifies

and encodes the most important substructural and con-

formational commonalities between sets of molecules,

and can therefore provide an alignment rule for mole-

cules not used in its construction. One application of a

3D hypermolecule is for the alignment of structures as a

way to derive structure-activity relationships (SARs).

The LAMDA (linear assignment for molecular

dataset alignment) algorithm, originally developed for

atom-based alignment of pairs of 3D molecules [14],

has now been extended to the molecular alignment of

large datasets based on shared pharmacophoric and

pharmacosteric features. These alignments can be used

to define partial-match 3D search queries. Here we

provide a detailed description of how the extended

method works, and illustrate its operation from within

the GALAHAD program [15] by applying it to ‘‘fro-

zen’’ ligands from several literature datasets. In par-

ticular, the algorithm was able to reproduce target

pharmacophores for the test sets compiled by Patel

et al. for evaluating the performance of DISCO, GASP

and Catalyst [16].

Methods

The LAMDA algorithm [14] was inspired by a computer

vision algorithm developed by Belongie et al. for

matching 2D shapes, where each shape is represented by

points sampled from the internal and external bound-

aries [17]. The shape matching algorithm consists of
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three principal stages: the identification of a one-to-one

correspondence between points representing shape

A and points representing shape B; the determination of

a morphing transformation that superimposes corre-

sponding pairs of points; and the calculation of a simi-

larity measure based on the sum of the matching errors

for corresponding points and the magnitude of the

morphing transformation. Our 3D alignment algorithm,

as described in detail by Richmond et al. [14], is neces-

sarily somewhat different. A one-to-one correspon-

dence is first identified between pairs of atoms, one from

each of the two molecules. Then, these correspondences

are used to calculate a Procrustes transformation that

superimposes the two molecules so as to maximize the

overlay of the corresponding atoms. This algorithm

provides both an effective and a highly efficient way of

generating molecular alignments, with individual over-

lays typically requiring ca. 0.02 CPU seconds on an

800 MHz PC.

In the work described here, we extend the LAMDA

algorithm from purely atom-based alignment of pairs

of molecules to the alignment of datasets of two or

more molecules based on common pharmacophoric

and pharmacosteric features and the generation of a

hypermolecule. The hypermolecule not only aids in

alignment of the dataset, but also supports subsequent

generation of partial-match 3D search queries.

The core structure of the algorithm is very similar.

However, we now seek molecular alignments that

maximize the overlay of similar features in terms of

feature interaction strengths and steric environment in

which each feature finds itself. So we first identify a

one-to-one correspondence between pairs of features,

one from each of the two (hyper)molecules, then use

the set of feature-feature correspondences identified to

calculate a Procrustes transformation that superim-

poses the two (hyper)molecules so as to maximize the

overlay of the corresponding features. As is the case

with atom-based alignment, this set may include geo-

metrically inappropriate feature-to-feature correspon-

dences that could unduly compromise the quality of

the molecular overlay if included in the calculation of

the Procrustes transformation. Hence several filter and

refinement steps are used to identify and eliminate

such deleterious correspondences. One filter discards

any correspondences where either feature has a local

mirror image within its molecule, and another discards

any feature-feature correspondences that do not re-

spect distance constraints.

Order of hypermolecule construction

A hypermolecule of a dataset is generated by aligning

successive pairs of molecules or hypermolecules and

combining features of the same type that lie in close

proximity whilst retaining the individuality of the

atoms themselves. Hence, the quality of the hyper-

molecule produced depends on the quality of each

successive overlay, which in turn depends on the order

of pairwise alignment. So, to ensure that each align-

ment step has the best chance of success, we align the

most similar structures first. The hypermolecule con-

struction order is defined by a dendrogram resulting

from a hierarchical clustering of the dataset. Con-

struction then proceeds by traversing the dendrogram

from bottom to top. For the work described here, the

similarity between individual molecules A and B is

given by the similarity between the corresponding

pharmacophore multiplet bitmaps [18] and the simi-

larity between two hypermolecules A and B is the

minimum pairwise similarity found between any of the

molecules Ai making up A and Bi making up B. This

corresponds to agglomerative clustering using com-

plete linkage [19, 20].

Alternatively, one could align the most active li-

gands first, then align the next most active to the ny-

permolecule produced, and so forth. Here, we hew to

the definition of a pharmacophore as the spatial dis-

position of a (more or less) minimal feature set that is

shared by all active compounds, and so do not distin-

guish among actives based on potency. To do otherwise

risks missing partial match features that do not happen

to be shared by the most active ligand.

We illustrate the hypermolecule construction pro-

cess using the dendrogram shown in Fig. 1, where the

basal nodes (leaves) A through J correspond to the

individual molecules in the dataset and the higher

level nodes correspond to intermediate hypermole-

cules. More specifically, the hypermolecule corre-

sponding to node K is generated from molecules A

and B, then hypermolecule [21] L is generated from

the next most similar pair of molecules, C and D.

Hypermolecules M and O are similarly generated

from the molecule pairs {E, F} and {H, I} respec-

tively. Hypermolecules P, Q and S, in contrast, are

produced by aligning hypermolecules to each other.

Finally, hypermolecules N and R are each generated

by aligning a single molecule G and J, to hyper-

molecules M and Q, respectively.
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Aligning individual molecules

Identifying an optimal mapping between the features

in one molecule and those in another is an example of a

linear assignment problem (LAP), which is one of the

most important classes of problem encountered in

combinatorial optimization. Any such problem can be

recast informally as the task of assigning n jobs to n

computers so that each job is carried out as efficiently

as possible. Every computer must be assigned a job and

no job can be assigned more than once.

In the context of molecular alignment, the features

in molecule A can be identified with the computers and

the features in molecule B can be identified with the

jobs. A set of feature-to-feature correspondences can

then be computed by solving the LAP with cost matrix

whose ijth entry is the cost of matching feature ai in A

with feature bj in B. This function is minimized if

features ai and bj are similar in terms of feature

interaction strength and geometric environment. An

optimal solution to the LAP is then a set of feature-to-

feature correspondences {(ai, bi)} that minimizes the

total feature matching cost c given by

c¼
X

i

a cðaiÞ � cðbiÞj jð Þ þ 1

bi

X

j

X

k

ðkjkðaiÞ � kjkðbiÞÞ2

kjkðaiÞ þ kjkðbiÞ

" #

ð1Þ

bi ¼
X

j

X

k

ðkjkðaiÞ þ kjkðbiÞÞ ð2Þ

where c(ai) is the interaction strength of feature ai and

c(bi) is the interaction strength of the corresponding

feature bi; only correspondences between features of

the same type are considered. The function c(ai) de-

pends on the particular substructures of ai, each of

which has a characteristic strength of interaction. The c
functions we use are based on those developed for the

GASP program [22, 23]. They are tabulated as gasp

weights, ranging from 0 to 1, and are given in an

external file that defines the various feature types,

provided as Supplemental Material. For example,

carboxylates are strong hydrogen bond acceptors, so

they are assigned a gasp weight of 1.0, whereas ether

oxygens are typically much weaker acceptor atoms so

they are assigned a gasp weight of 0.35.

The double summation in Eq. 1 gives the v2 dis-

similarity between the neighborhoods k(ai) and k(bi) of

the corresponding features (ai, bi). These neighbor-

hoods, one for each feature type, are calculated from

the 20 bin radial distribution function whose kth bin

count kjk(ai) is the number of features of type j that are

between k–1 and k Å from feature ai. The scaling

factor bi ensures that the total neighborhood mismatch

cost is less than or equal to 1 regardless of the total

number of features found in the neighborhood of ai

and bi.

GALAHAD’s default configuration files in SYBYL

7.2 cover six feature types: hydrogen bond donor and

acceptor atoms (D and A, respectively); positive

nitrogen (P); negative and hydrophobic centers (N and

H); and steric features (S). Neighborhood calculations

for hydrophobic centers take the radial distribution

functions of donor and acceptor atoms, positive nitro-

gen and negative centers as well as other hydrophobic

centers and steric features into account. Neighbor-

hoods for donor atoms include the distributions of

acceptor atoms, hydrophobic centers and steric fea-

tures, whereas neighborhoods for acceptor atoms in-

clude donor atoms, hydrophobic centers and steric

features. Neighborhood dissimilarities for positive

nitrogen and negative centers, on the other hand, only

take the distribution of steric features into account.

Because correspondences between features differing

in type are not of interest, separate linear assignment

calculations can be run for each feature type. Only

donor:donor, acceptor:acceptor, positive:positive, neg-

ative:negative and hydrophobe:hydrophobe corre-

spondences were used at this stage for the work

described here; potential correspondences between

steric features were not considered. Note, however,

that the radial distribution function for steric features

is ‘‘seen’’ by each of the other feature types. Among

other things, this serves to distinguish internal features
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S

Fig. 1 Dendrogram for constructing a hypermolecule from a set
of individual structures. The basal nodes A through J (black
symbols) correspond to the individual molecular structures in the
dataset, nodes K through R (gray symbols) correspond to
intermediate hypermolecules, and node S (open symbol) corre-
sponds to the hypermolecule that represents the full dataset
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in a particular conformation from more peripheral

ones. Steric feature correspondences were also used in

the subsequent refinement steps described below.

Correspondence filters

Symmetrical substituents are a powerful tool in drug

discovery and lead optimization, but the degeneracy

they introduce can complicate the step of determining

feature-to-feature correspondences. Problematic

‘‘mirror features’’ are identified by comparing each

molecule to itself, with features in intramolecular cor-

respondences that have low matching costs being set

aside before making intermolecular comparisons. Such

correspondences can be revisited if too few good cor-

respondences survive subsequent filtering steps, but

this is usually unnecessary.

Figure 2 illustrates the factors affecting the equiva-

lence costs of several intramolecular correspondences

for a relatively simple molecule. Here, the cost entailed

in matching the hydrophobic centers is calculated as

0.58, of which 0.15 arises from differences in gasp

weights (1.0 vs 0.9, with a = 0.15) and 0.43 comes from

the differences in the feature profiles. The cost of

matching the distal phenol (A1) to either carboxylate

oxygen is even higher at 0.63, which is solely due to

feature profile mismatches. The intramolecular corre-

spondence cost for A2 and A3 is much smaller, at
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Fig. 2 Radial distribution functions for a simple molecule. Cyan
spheres indicate hydrophobic centers, purple indicates donor
atoms, green indicates acceptor atoms and blue indicates
negative centers. Gray spheres represent steric features. Abbre-

viations are as follows: H hydrophobic center; D donor atom; A
acceptor atom; N negative center; and S steric feature. Radial
distribution profiles for donor atoms and the negative center are
not shown
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0.110, most of which arises from asymmetry with re-

spect to D2.

In this example, the intramolecular cost was calcu-

lated using the total 20 bin radial distribution neigh-

borhoods, but since symmetry is generally a local

problem, only the first five 1 Å layers need to be taken

into consideration for most intramolecular compari-

sons. For intermolecular comparisons, the default

number of bins for the neighborhoods is 20 Å. Either

default value can be modified by editing the external

configuration file.

Once an optimal set of intermolecular correspon-

dences has been identified, those correspondences with

large costs are set aside to leave reduced feature sets A¢
and B¢. A geometric filter, which can be thought of as

an application of the principles upon which the dis-

tance geometry approach to pharmacophore elucida-

tion [24] is based, is applied to the reduced sets to

remove correspondences that are geometrically

incompatible [14]. If the reduced feature sets A¢¢ and

B¢¢ include too many correspondences (ten for the

analyses described here), they are subjected to a final

geodesic filtering step to identify those features that

have the greatest geometric leverage. The first features

picked are those that lie farthest from the Cartesian

centroids of A¢¢ and of B¢¢. The list of features to be

used is then built up to the specified limit by iterative

addition of those features that have the largest mini-

mum spatial separation from those already on the list.

Note that this step was not part of the original LAMDA

algorithm.

If fewer than three correspondences remain in the

reduced feature sets A¢¢ and B¢¢ after the filtering steps,

the alignment is deemed to have failed and the mole-

cule with the largest number of features is returned.

Otherwise, the remaining correspondences define a

unique least-squares transformation that superimposes

molecule A onto molecule B such that corresponding

features in A¢¢ and B¢¢ are overlaid. The initial overlay

so obtained is refined by cycling through the entire

process twice more [14]. Only steric features are con-

sidered for these refinement steps, and Euclidean dis-

tance serves as the cost function for the linear

assignment step. Geometric filtering at this stage is

based on an externally specified distance cutoff—here,

1.0 and 1.2 Å for the first and second refinement cycles,

respectively.

A hypermolecule is then created from each pair of

successfully overlaid molecules. Features of the same

type that lie within some threshold distance of each

other (the default being 0.6 Å) are consolidated into a

single hyperfeature of that type that is associated with

an array made up of the gasp weights of its constituent

features. Atoms retain their individuality and connec-

tivity, so each molecule becomes a substructure in the

hypermolecule produced.

Aligning hypermolecules

The process described thus far is the alignment of

molecules that correspond to the leaf nodes on the

construction order dendrogram. The hypermolecules

resulting from these alignments correspond to the first-

level nodes in the dendrogram. Aligning two hyper-

molecules (or a hypermolecule with a single molecule)

proceeds exactly as described for molecular alignment,

except that the cost function c is inversely weighted to

favor correspondences between ‘‘large’’ hyperfeatures

(Eq. 3).

c¼
X

i

xi

�
a0

����
�

cðaiÞ
�
�
�

cðbiÞ
�����

þa1min
j;k

����cðaijÞ � cðbikÞ
����þ

1
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X

j
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k
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kjkðaiÞ þ kjkðbiÞ

�
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bi ¼
X

j

X

k

ðkjkðaiÞ þ kjkðbiÞÞ ð4Þ

xi ¼
Ak k
aik k
þ Bk k

bik k
ð5Þ

where aij and bij are the component features that make

up hyperfeatures ai and bi, respectively; Æc(ai)æ and

Æc(bi)æ are the average interaction strengths over the aij

and bij; hypermolecule sizes ||A|| and ||B|| are the

number of molecules used in the generation of A and

B; and ||ai|| and ||bi|| are the sizes of the hyperfeatures ai

and bi, respectively. The radial distribution bin counts

kjk are weighted by the sizes of each contributing hy-

perfeature. Note that in the case of aligning individual

molecules (i.e., hypermolecules and hyperfeatures of

size 1), the cost function in Eq. 3 reduces to that in

Eq. 1. The weighting factor xi serves to favor matches

between features that are large relative to the size of

the hypermolecules that contain them.

Query generation

Once alignment is complete, individual features are

regenerated for each component 3D substructure in

the hypermolecule and clustered by associating each

feature with the nearest hyperfeature of the same type,

provided that they are close enough together. ‘‘Close

enough’’ is defined as a Euclidean distance less than 1.2
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times the specified initial tolerance threshold, the de-

fault threshold being 1.0 Å. For each cluster whose

population exceeds the minimum number of molecules

tmin required to ‘‘hit’’, a representative feature is cre-

ated and placed in the center of the box defined by the

extreme x, y and z coordinates of the features in that

cluster. The tolerance for each query feature is then set

to the maximum distance between this centroid and

any single feature in the cluster.

The value of tmin is specified separately for each

analysis of n ligands, with a value of �n rounded up to

the nearest whole number generally serving as a good

starting point. To avoid generating overly complex

queries, larger values may be needed for complex

ligands or large datasets. The DHFR example

discussed below is one such case.

Setting tmin below the number of ligands in the

training set allows the generation of queries even when

there are ligands that share too few features to be

incorporated into the hypermolecule. It also allows for

the inclusion of features found in some ligands but not

in all. Each such feature represents a potential ‘‘extra’’

interaction with the target protein that is not strictly

required for activity. Nonetheless, ligands that bind

well generally take advantage of at least one such

interaction. Such features are collected into a partial

match constraint; when the query is subsequently used

to carry out a 3D search, a target molecule will ‘‘hit’’ so

long as it can match some minimal number of the

constituent features.

Full-match queries comprised of six or more fea-

tures are generally over-specified and will only hit

molecules very similar in structure to those from which

the query was derived. Conversely, when such queries

include fewer than four features, they are rarely dis-

criminating enough to be useful in a 3D flexible search

as they produce too many non-specific ‘‘hits’’. Unfor-

tunately, many published full-match pharmacophore

models are comprised of only three features, and clo-

sely spaced ones at that [16].

One way to create flexible 3D search queries that

are specific and discriminating enough to be useful is

to include some ‘‘fuzziness’’ in the form of partial

match constraints. However, having a single such

constraint that includes all features is usually sub-

optimal. Typically, it is better to have two con-

straints—a ‘‘tight’’ partial match where most or all

features are required to match and a ‘‘loose’’ one

where relatively few features are required. The for-

mer may correspond to a generic pharmacophore

(e.g., the donor/acceptor/hydrophobe triad charac-

teristic of kinases in general), whereas the latter

features are specific to the particular target.

A detailed description of the algorithm used to

determine which features should be included in the

model query, and how they are partitioned between

partial match constraints, is provided in the Appendix.

One key objective of the algorithm is to keep features

that ‘‘hit’’ the same number of model ligand confor-

mations in the same partial match constraint. A second

aim is to get an equivalent of three to five full-match

features into the ‘‘tight’’ constraint.

Throughout the processing described above, accep-

tor atoms that fall within 2 Å of a negative center are

suppressed unless at least one ligand lacks the negative

center. Redundant donor atoms lying too close to a

positive nitrogen are also suppressed.

Results

The LAMDA algorithm was applied through the

GALAHAD interface released with SYBYL 7.2 [25]

by freezing all molecules, setting the population size to

2, and setting the number of generations to 1; these

represented the minimal requirements of the interface,

and were internally overridden in the extraordinary

case of all ligands being frozen. The program was run

under the Red Hat Enterprise Linux WS 3.0 operating

system on a 3.2 GHz Intel� XeonTM or 3.4 GHz Pen-

tium 4 processor. Otherwise default settings were used

except as noted. Mirror filtering was turned on at an

equivalence threshold cost of 0. The averaging

threshold—which determines how close two features

have to be to be merged during hypermolecule con-

struction—was set to 0.6 Å unless otherwise indicated,

and default refinement thresholds of 1.0 and 1.2 Å

were used. The initial query feature tolerance was set

to 1.0 Å unless otherwise noted.

All but one of the datasets used were drawn from

Patel et al. [16] The GASP analyses reported in that

work were carried out on groups of two to four mole-

cules selected from each dataset, with ‘‘rigid’’ indicating

that the template molecule was frozen and other ligands

were allowed to flex freely. Unless otherwise indicated,

the results described here were obtained from the full

datasets with each molecule held rigid in the confor-

mation found in the corresponding crystal structure.

Minor errors in Patel et al. for the ligand structures

from 2dhf, 1dlr, 1fin, and 1d6w have been corrected for

the analyses presented here.

Dihydrofolate reductase (DHFR)

The six ligands in the DHFR dataset fall into two re-

lated, structurally homologous classes but pose a
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challenging alignment problem nonetheless. This is

because two of the ligands—1 (folate) and 2 (5-

deazafolate)—are lactams that bind with the pterin

ring flipped with respect to the interaction patterns of

the four aminopterin analogs. In addition, the steric

overlap of the distal dimethoxyphenyl rings in 5 and 6

with the central p-aminobenzoyl of the other ligands

and with each other is poor. Finally, many of the het-

eroatoms in the pterin rings are amphoteric—able to

serve as donor or acceptor atoms—depending on the

protonation and tautomerization state of the ring.

GALAHAD uses an external macro definition file

to assign features and allows donor and acceptor fea-

tures to overlap. These macro definitions take the

acidity, basicity and tautomerization of commonly

encountered groups into account as well [18]. The

protonated N1 position in 3, for example, is recognized

as an acceptor atom as well as a donor atom because

the hydrogen that it bears can undergo a tautomeric

shift to N3 or N8. Strong acids and strong bases are

similarly accommodated, so that carboxylic acids are

treated as deprotonated regardless of how they are

entered. Hence the carboxylates in 1, 2, 3 and 4 are

depicted as anions in Fig. 3, in keeping with their

exposure to solvent and interaction with Arg70 and

Arg32 in their complexes with DHFR. They would be

treated that way, however, regardless of whether they

were entered in the deprotonated states shown or as

carboxylic acids per se [26].

Our method does an excellent job of reproducing

the alignment seen when the respective X-ray crystal

structures are overlaid based on the a carbons of the

proteins using the Bioploymer module in SYBYL

(Fig. 4). Here, GALAHAD was run with the number

of ligand ‘‘hits’’ required per feature (tmin) set to 4, so

the distal carboxylates of 1, 2 and 3 are aligned nicely

but do not produce a negative center in the model

query.

As discussed in Patel et al. and in a subsequent pa-

per from the same group discussing results obtained

with multi-objective version of GASP [27], it is difficult

to quantitatively compare alignments and 3D queries

in a meaningful way. That said, visual inspection of the

overlays shows that the alignment shown here is as

good or better than the models obtained from Catalyst,

DISCO or GASP for this dataset [16]. Indeed, the

GALAHAD model (Fig. 4a, c) is decidedly more crisp

than the overlay obtained from aligned crystal struc-

tures (Fig. 4b, d). The slight fuzziness in the latter

probably reflects uncertainties in atomic coordinates

and incidental variations in overall protein structure

due to crystal packing effects rather than true differ-

ences in binding mode.

The query shown in Fig. 4a, c is a superset of the

donor/acceptor/double hydrophobe consensus target

identified by Patel et al. [16] It includes the acceptor-

donor-donor-acceptor tetrad highlighted in Fig. 3,

along with the hydrophobic center (H1) that is common

to all six ligands. It includes eight other features as well -

a second pterin hydrophobe (H2); two amphoteric fea-

ture pairs (A3/D3 [28] and A4/D4); and a distal hydro-

phobe (H3). The features are grouped into partial match

constraints—a ‘‘tight’’ constraint that is satisfied when

at least four of its seven features are matched, and a

second, ‘‘looser’’ constraint that is satisfied when at least

two of its constituent features are matched.
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Note that one of the acceptor atoms associated with

the pterin rings—A1—falls into the secondary partial

match, because the deazapterin ring of 6 is sharply

tilted with respect to the others in the model (Fig. 4a)

as well as in alignment derived from the crystal

structures (Fig. 4b). It would be missed in a full-match

Fig. 4 Roughly orthographic views (a and b vs c and d) of
overlaid structures from the DHFR dataset. (a, c) Overlay
obtained using GALAHAD to rigidly align the conformations of
the ligands found in the crystal structures. Feature labels are D
for hydrogen bond donor atoms, A for acceptor atoms, and H for
hydrophobic centers. The associated tolerances are colored
purple, green and cyan, respectively. A slash (/) separates

overlapping feature pairs, and italics indicates the features in
the secondary partial match constraint. Four of seven (4/7)
features were required to satisfy the primary partial match
constraint, whereas two of the five (2/5) features labeled in italics
were required to satisfy the secondary partial match constraint.
(b, d) Overlay obtained by least-squares fitting of the protein a
carbons in the corresponding complexes with DHFR
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query derived from an accurate alignment of the

ligands. Note, too, that features associated with the

distal benzamide and carboxylate substructures in 1–4

contribute to the alignment despite the fact that they

do not appear in the query. This reflects the fact that

the query is derived from the alignment, not vice

versa.

Thrombin

The thrombin dataset is comprised of the seven inhibi-

tors shown in Fig. 5. Two views of the rigid-body align-

ment produced are shown in Fig. 6a, c, each paired with

the corresponding view of the overlay from the respec-

tive crystal structures (Fig. 6b, d). The union volume of

the overlaid ligands closely matches that of the active

site as reflected in the ligand crystal structures.

Figure 6a, c also show the query produced when

tmin (the minimum number of ligands a feature must

‘‘hit’’ to be included in the query) is set to 4. It consists

of a positive nitrogen (P), three hydrophobic centers

(H1, H2 and H3), two donor atoms (D1 and D2), and

an acceptor atom A. H2, H3 and A are strictly re-

quired, whereas the four distal features constitute a

two out of four (2/4) partial match constraint. D1 falls

just outside the tolerance for the positive nitrogen

center. It would have been suppressed as redundant

had the centroid of the associated donor atoms in the

model fallen slightly closer to P than it actually does,

and would likely be edited out of the query prior to

running any 3D search.

This is a superset of the full-match target pharma-

cophore identified by Patel et al. [16]: a positive

nitrogen and three hydrophobic centers. Actually, 13

lacks a proximal hydrophobic center corresponding to

H1. Even were a hydrophobic center to be placed on

the methylene chain of the arginyl group, it would

‘‘miss’’ H1 in the crystal structure overlay (Fig. 6d).

Similarly, the central hydrophobe in 13 ‘‘misses’’ H2,

albeit by less. Hence the ‘‘true’’ full match query for

these seven ligands consists of only two features—P
and H3—unless unreasonably large tolerances are al-

lowed for H2.

The partial match query generated by GALAHAD

includes acceptor atom A, a feature that is found in

most of the ligands but is absent from 11. It also in-

cludes donor atom D2, which corresponds to an

interaction with thrombin that is absent for 10, 11 and

13. Ligand 8 has a donor atom at this position in the

crystal structure, but it points in a different direction

and so is not scored as such by Patel et al. That both

appear in the query reflects the program’s ability to

identify such partial match features. Note, however,

that ligands missing those features are aligned well

nonetheless, since each ‘‘sees’’ the shape and feature

distribution in every other ligand, not just the con-

sensus features in the query.

Ligand 13 is highlighted in green in Fig. 6. Of the

seven compounds in this dataset, it alone is seriously

misaligned in the model. There are several reasons for

this. It lacks any feature corresponding to D2. As noted

above, it has no hydrophobic center adjacent to its
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positive nitrogen; its 4-ethylpiperidine ring cannot

reach the consensus hydrophobic center H2; and nei-

ther hydrophobic center from its naphthyl group can

overlap with H3 (Fig. 6b, d). Because only two good

feature correspondences—to P and A—are left to

work with, the final alignment is perforce dominated by

steric considerations.

A key reason for this nominal ‘‘failure’’ is best

appreciated by considering the view of the crystal

structures shown in Fig. 6d. This perspective points up

the fact that the arginyl side chain in 13 falls well outside

the union volume of the other ligands. Indeed, only 10
has much pharmacosteric similarity at all to 13 in the

crystal structure. Given the poor pharmacophoric and

pharmacosteric correspondence between 13 and the

other ligands, this alternative alignment is not an alto-

gether unreasonable compromise to that found in the

crystal structure, in that it maximizes overall steric

overlap in the absence of many good pharmacophoric

correspondences. The model as a whole, however, does

a good job of reproducing the consensus shape and

feature disposition seen in the aligned crystal structures.

Fig. 6 Roughly orthographic views (a and b vs c and d) of
overlaid structures from the thrombin dataset. (a, c) Overlay
obtained using GALAHAD to rigidly align the crystal structure
conformations. The positive nitrogen feature P is shown in red;
other feature labels and color coding are as in Fig. 4. Features

labeled in regular typeface were each required to ‘‘hit’’ the
query, whereas the italicized features constitute a 2/4 partial
match constraint. (b, d) Overlay obtained by least-squares fitting
of the protein a carbons in the corresponding complexes with
thrombin
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Cyclin-dependent kinase 2 (CDK-2)

Patel et al. included 1fvv, 1aq1 (staurosporine; 15), 1fin

(ATP; 16), 1di8, 1e1v and 1e1x in their CDK-2 dataset;

the corresponding ligand structures are shown in Fig. 7.

The target pharmacophore includes the donor/acceptor

dyad exemplified by the lactam syn amides in 14 and 15
and a central hydrophobic feature. In three of the li-

gands (14, 18 and 19) this dyad is elaborated into a

symmetrical triad of hydrogen bonding features [29],

which makes ‘‘hitting’’ the pharmacophore easier but

complicates getting an alignment that matches the

crystal structures. This is especially so given the fact

that one ligand—17—lacks any donor atom at all in the

appropriate area, yet bears a distal phenolic atom

which is a strong hydrogen bond donor and acceptor

(Fig. 7). The distal sulfonamide donor and acceptors in

14 also represent a serious distraction, as do the oxygen

atoms in the polyphosphate group of ATP (16), which

may or may not be protonated at neutral pH.

Just as Patel et al. noted for Catalyst and GASP,

GALAHAD overlays the polyphosphate group of

ATP (16) with the donor/acceptor pair from the other

ligands. ATP was therefore omitted from the sub-

sequent analyses presented here.

The model obtained when the other five ligands

were rigidly aligned with tmin (the minimum number of

ligands required to ‘‘hit’’ each feature) set to 3 is shown

in Fig. 8a. Staurosporine (15) was rejected by the

program because fewer than three features could be

identified that were shared with the other ligands (see

below). The query produced consists of two hydro-

phobic centers, a donor atom and three acceptor

atoms. The donor atom overlapped one of the acceptor

atoms, with all six features included in a single 4/6

partial match constraint. All six ligands were ‘‘hit’’ by

this query in a static 3D search, but the separation

between D and A3 is larger than in the target phar-

macophore.

The model depicted in Fig. 8a was obtained using

the standard feature definition file provided with

UNITY 7.2. As noted above, the default macro defi-

nitions are set up to accommodate uncertainties due to

tautomerization and pKas that may fall near physio-

logical pH. The inherent tradeoff of specificity against

simplicity and speed imposes practical limits on the

precision with which such accommodations can be

made, however, so the definitions are kept simple and

conservative. In particular, anilinic nitrogens are

identified as potentially serving as either hydrogen

bond donors or acceptors regardless of the substitution

pattern borne by the aromatic ring to which they are

attached.

The improved model shown in Fig. 8b was obtained

when the default feature definitions were modified to

prevent the exocyclic nitrogen in conjugated amino-

pyridines derivatives from serving as acceptors. The

associated query now includes the ‘‘classic’’ D/A2/H2

triad as well as a distal acceptor atom (A1) and

hydrophobic center (H1). The latter two features result

from the pharmacophorically symmetrical 18 and 19

being flipped so as to again overlap their cyclohexyl

rings.

Both GALAHAD alignments are considerably

more compact than is the alignment based on crystal

structures (Fig. 8c). This is accomplished by rotating

ligands 18 and 19 relative to 14 in the one case (Fig. 8a)

and by rotating them about their pharmacophoric
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symmetry axes in the other (Fig. 8b). This serves to

overlap their cyclohexyl rings with the phenyl group in

14 in both cases, which increases the pharmacophoric

concordance as well as the steric overlap.

Again, in both cases, ligand 17 (highlighted in purple

in Fig. 8) is rotated so that it overlaps its phenolic OH

group (a strong donor) with the amino substituents of

the pyrimidine ligands. As noted above, this ligand

lacks the donor atom normally associated with kinase

pharmacophores, so this failure to reproduce the

alignment from the crystal structure is not unreason-

able.

Langer’s CDK-2 data set

Analyses were also run on a set of CDK-2 inhibitors

compiled by Thierry Langer for the Fifth European

Workshop on Drug Design [30]. Most of these exhibit

the full D/A/D triad, with several incorporating ‘‘red

herring’’ features as well. These ligands, the structures

of which are shown in Fig. 9, represent a pharmaco-

phorically and pharmacosterically much tighter

ensemble than do those chosen by Patel et al. GAL-

AHAD consequently does a much better job of

aligning them, as can be seen from the models pre-

sented in Fig. 10.

Figure 10a shows the model generated with default

parameters. Here, 20–24 are well-aligned with each

other, as are 25 and 26. The latter pair, which are

highlighted in yellow in Fig. 10, are aligned well with

each other but are rotated with respect to their X-ray

configuration (Fig. 10c). This rotation serves to overlap

the bridging amide carbonyls in these ligands with A2
at the expense of the overlap with H1.

Increasing the averaging threshold at which proxi-

mal features coalesce from the default of 0.6–0.75 Å

yields a much better model (Fig. 10b), as judged on its

own merit as well as by comparison with the crystal

structures. This effect is traceable to the creation of a

hydrophobic hyperfeature from the phenyl and naph-

thyl rings in the intermediate hypermolecule con-

structed from 25 and 26 when the granularity is relaxed

in this way (Fig. 10b); these features are just slightly

too far apart to merge under the more stringent 0.6 Å

averaging threshold (Fig. 10a). That drives the sub-

sequent overlap of these rings with H1, flipping the two

aminopyrazole ligands over so as to overlay the amide

nitrogens with D1, just as they are in the alignment

based on the crystal structures. This loosening of the

averaging threshold was suggested by the fuzziness of

the original model, as well as the failure to pick up the

distal acceptor atoms from the sulfonyl groups in 20–

23. This adjustment did indeed lead to a pair of ‘‘new’’

acceptors in the associated query (A4a and A4b in

Fig. 10b); the observed tightening up of the overall

alignment is a side benefit.

Fig. 8 Alignments of CDK-2 ligands from Patel et al, with 16
omitted from the analysis. Ligand 17 is highlighted in purple. The
feature color scheme and naming conventions are as indicated
for Fig. 4. (a) Rigid-body alignment obtained using default
feature definitions. All features fall into a single 4/6 partial match
constraint. The program excluded 15 from the final model. (b)

Rigid-body alignment obtained after modifying feature defini-
tion to exclude the exocyclic nitrogen in conjugated amino
pyridines from serving as an acceptor atom. All features were
covered by a 4/5 partial match constraint. (c) Ligands 14, 17, 18
and 19 overlaid based on the a carbon coordinates from the
respective complexes with CDK-2
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Thermolysin

Structures for ligands from the thermolysin dataset

compiled by Patel et al. are shown in Fig. 11. This

dataset represents several challenges, not least of

which is that the wide range of ligand sizes precludes

good steric overlap in the binding site. Nonetheless,

GALAHAD successfully identified the target

pharmacophore, including the two proximal acceptor

atoms that interact directly with the Zn++ ion in the

binding site (A1a and A1b), the secondary acceptor

A2, and the conserved hydrophobic center H3. It also

highlights a donor atom (D1) found in most but not all

ligands. One ligand (27, colored yellow in Fig. 12) is

flipped so that its hydroxamic acid group is overlaid on

the isosteric methyl ester of 29. This alignment allows
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Fig. 9 Ligands from
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Fig. 10 Alignments of CDK-2 ligands from Langer et al. [30].
Ligands 25 and 26 are highlighted in yellow. The feature color
scheme and naming conventions are as indicated for Fig. 4. (a)
Rigid-body alignment obtained from GALAHAD using default
feature definitions. All features fall into a single 4/6 partial match
constraint. The program excluded 15 from the final model. (b)

Rigid-body alignment obtained after modifying feature defini-
tion to exclude the exocyclic nitrogen in conjugated amino
pyridines from serving as a hydrogen bond acceptor. All features
were covered by a 4/5 partial match constraint. (c) Ligands
overlaid based on the a carbon coordinates from the respective
complexes with CDK-2
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the hydroxyethylamide nitrogen of 27 to ‘‘hit’’ D1, an

extra interaction that is absent in the corresponding

crystal structure. Ligand 28 is also flipped, roughly

interchanging the position of the thiolate and amide

carbonyl ‘‘teeth’’ of the metal interaction site and

overlaying its alkyl hydrophobe with H3, rather than

the benzyl overlay seen in the crystal structures

(Fig. 12b).

A second complication for this dataset is that the

metal chelating groups that lie at its heart are not

explicitly defined as a separate feature class in UNI-

TY. The unsubstituted hydroxamic acid moiety in 27

and the carboxlate group in 32 would undoubtedly

both have been anticipated as chelation sites in any

such feature definitions, and the former would be as-

signed a higher gasp weight (i.e., chelation strength)

than the latter. The N-alkylated hydroxamic acid in 29

and the phosphonamidates in 30 and 31 are much less

obvious a priori candidates, however. In any event,

adding such a new class of feature after the fact would
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Fig. 12 Alignment of thermolysin ligands. Ligands 27 and 28 are
highlighted in yellow and in green, respectively. The feature color
scheme and naming conventions are as indicated for Fig. 4. (a)
Rigid-body alignment obtained using default feature definitions.

All features fall under a single 4/5 partial-match constraint. (b)
Ligands overlaid based on the a carbon coordinates from the
respective complexes with thermolysin
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obviate the value of the analysis as an exercise in

validation. Using the default feature definitions forced

GALAHAD to rely on the presence of proximal ac-

ceptors and similarities in their environment to iden-

tify appropriate correspondences. This proved

remarkably successful (Fig. 12a), especially consider-

ing the fact that the chelation strength of these groups

does not track their propensity for accepting hydrogen

bonds.

HIV reverse transcriptase

Figure 13 shows the structures of the HIV-1 reverse

transcriptase (RT) inhibitors used by Patel et al. to

evaluate the performance of DISCO, GASP and Cat-

alyst. They noted that the only feature shared by all ten

ligands—the ‘‘pharmacophore’’—is a rather ill-defined

hydrophobic center. A broader target pharmacophore

consists instead of a donor, a nearby acceptor and a

hydrophobic center. Just as for CDK-2, the geometry

of the hydrogen bonding interactions is that charac-

teristic of a syn secondary amide or a lactam. Contrary

to the literature indication [16], we find that neither the

indole carboxamide in 38 nor the carbamate in 41 align

with the donor and acceptor features in the pharma-

cophore evident from the crystal structure overlay.

Rather, as Patel et al. noted for the primary amide in

42, these substructures are located well outside the

common interactions with the protein. Nor do these

four ligands represent an alternative pharmacophore,

since their pharmacophoric features do not overlay

with each other.

Finding a pharmacophore shared by only six of the

ten ligands in the dataset represents a rather daunting

challenge. Moreover, the thiourea in 35 is a symmet-

rically degenerate donor-acceptor-donor variant of the

key hydrogen bonding interactions, and the imide

substructure in 36 presents an acceptor-donor-acceptor

variant. Taken together, these complications make this

a very difficult dataset from which to extract a coherent

alignment with much pharmacophoric or pharmacos-

teric similarity to the overlay based on the corre-

sponding crystal structures.

Applying GALAHAD to the crystal structure con-

formations yields the model shown in Fig. 14a, c. Two

of the ligands that do not fit the pharmacophore—38

and 41—are excluded from the model altogether. The

other two ligands that lack the target pharmaco-

phore—37 and 42—are included in the model but do

not ‘‘hit’’ the query deduced from them; in the interests

of clarity, these have been omitted from Fig. 14.

The model reflects the characteristic bowl shape of

the crystal structure overlay, as is evident from the

perspective shown in Fig. 14c, d. Only ligand 36
(highlighted in yellow in Fig. 14) departs seriously

from the target pharmacostere. Basically, it could have

been aligned based on H1 and H3 or based on the

donor and acceptor features. The former pair prevailed

because they corresponded to ‘‘bigger’’ hyperfeatures

that represent a broader consensus across the training

set.

Several relevant donor and acceptor features in the

model shown in Fig. 14a, c fall just outside the corre-

sponding query feature tolerances, which suggested
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that the model could be improved by loosening the

alignment constraints. In fact, rerunning the analysis

with an increased averaging threshold (raised to 0.75 Å

from the default value of 0.6 Å) and increased initial

tolerance (raised to 1.2 Å from 1.0 Å) gave the much

crisper alignment shown in Fig. 15. H2 is retained in

Fig. 14 Two roughly orthogonal perspectives on alignments of
reverse transcriptase ligands. Ligand 36 is highlighted in yellow.
Ligands 37 and 42, which do not match either the target or the
model query, have been omitted for clarity. The feature color
scheme and naming conventions are as indicated for Fig. 4. (a, c)

Rigid-body alignment obtained using default settings. Features A
and D comprise a 1/2 partial match constraint; the three
hydrophobic centers are required. tmin was set to 3. (b, d)
Ligands overlaid based on the a carbon coordinates from the
respective protein complexes
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this model, albeit with a slightly increased tolerance,

whereas H1 is shifted and the associated tolerance is

tightened up. Ligand 36 is positioned correctly with

respect to the other ligands in this model. The con-

sensus hydrophobic center at H3 disappears once the

other ligand amides are more tightly aligned, which

causes ligand 39 to be misaligned. It can be aligned

based on the two remaining hydrophobic centers or

based on the donor and acceptor pair, but those two

alternatives conflict. The program opted to align the

former rather than the latter, with a result that is at

variance with the crystal structure overlay shown in

Fig. 15b.

Discussion

LAMDA was originally developed for aligning pairs of

molecules based on correspondences between atom

position and atomic properties [14]. Such an atom-

based technique is well suited to alignment problems

involving more or less congeneric structural series,

once relevant conformations have been defined. Not

surprisingly, the extension to multi-way alignment de-

scribed here works well in such cases (data not shown).

It is less useful for structurally diverse datasets of the

sort typically subjected to pharmacophore analysis,

particularly when the ligands involved are flexible.

The GALAHAD program, in contrast, was pri-

marily designed to carry out flexible alignment of li-

gands that exhibit similar interaction patterns and

shapes when bound to a target protein—i.e., that share

pharmacophoric and pharmacosteric elements. Unlike

other pharmacophore elucidation methods, it operates

in two distinct steps [6]. The first is a genetic algorithm

that serves to generate sets of concordant conforma-

tions for the ligands of interest [7]. Subsequent appli-

cation of a rigid-body alignment algorithm is then

required to derive a common Cartesian frame of ref-

erence. The LAMDA methodology proved an excel-

lent way to accomplish the latter task, once it had been

extended to operate on pharmacophoric and steric

features.

The work described here covers the construction of

hypermolecules using the interaction strengths of the

various pharmacophoric features as well as the distri-

bution of other features around each. Overlapping

features from the individual molecules are merged into

hyperfeatures at each step, but the atoms defining

those features do not merge. As a result, the final hy-

permolecule is composed of disjoint substruc-

tures—one for each ligand—along with a

pharmacophore query constructed from the associated

hyperfeatures.

One way to validate such a methodology is to assess

its ability to reproduce crystal structure alignments.

Fig. 15 Alignments of reverse transcriptase ligands. Ligand 39 is
highlighted in yellow. The feature color scheme and naming
conventions are as indicated for Fig. 4. (a) Rigid-body alignment
obtained from GALAHAD with an averaging threshold of
0.75 Å and the initial tolerance set to 1.2 Å. The corresponding

default values for these parameters are 0.6 and 1.0 Å, respec-
tively. tmin was set to 3. All four features belong to a single 3/4
partial-match constraint. (b) Ligands overlaid based on the a
carbon coordinates from the respective protein complexes
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Rather than create our own test set, we turned to one

from the literature: the one Patel et al. [16] compiled

for evaluating the performance of three existing phar-

macophore elucidation programs by comparing the

models produced to the corresponding crystal struc-

tures. We have opted to validate rigid alignment using

GALAHAD separately from the more general, flexi-

ble fitting applications, which will be described else-

where [7]. This was done in part because it is difficult to

know if good conformations are being produced unless

one has confidence that ligands already in good con-

formations will be aligned well.

In fact, internal testing of the methodology during

its development had focused on flexible fitting of

GPCR ligands, where crystal structures are not avail-

able. Hence carrying out rigid alignments on these

relatively naı̈ve literature test sets provided a useful

test of that part of GALAHAD which utilizes the

LAMDA algorithm. In each case, the queries pro-

duced included the desired target pharmacophores,

and the ligand overlays reflected the overall pharma-

costere seen in the crystal structure overlay. In several

cases these were improved significantly by modifying

the default parameters for the released program

somewhat. This is not altogether surprising, given that

the default values used were originally designed for

aligning flexible ligands with more consistent bond

lengths, bond angles and internal torsions. Indeed, it is

somewhat surprising that adjustments as small as 0.2 Å

were enough to compensate for potential errors due to

limited X-ray structure resolutions.

Further test of the methodology lies in the ability to

align conformations generated for new candidate li-

gands to known bound conformations, and in the

ability of the queries obtained to discriminate between

known actives and inactives [31]. These and related

database searching applications will be explored else-

where [7, 32].

The adoption of an external test set led to some

unexpected complications. In particular, the program

seeks to maximize the pharmacophoric and steric

overlap among rigid ligands. This goal presumes the

existence of a shared interaction pattern and a shared

shape—i.e., that a pharmacostere exists as well as a

pharmacophore. Some ligand sets fail to meet this

criterion because the corresponding target has a very

open binding site, exhibits varying amounts of bound

water, or both. For the most troublesome cases among

the datasets compiled by Patel et al. [16], however, it is

because of substantive differences in binding site con-

figuration.

This is illustrated in Fig. 16, which compares the

crystal structure overlay for four of the DHFR binding

sites with the overlay for four of the reverse

transcriptase inhibitors. The backbone and sidechains

in the RT binding site are clearly more disordered

than in DHFR. Indeed, getting an alignment at all was

difficult in the former case; the pairwise root mean

square deviations for the backbones ranged from 0.7

up to 3.7 Å across the RT dataset, with the largest

deviation being between complexes of two ligands (33
and 39) that both exhibit the target pharmacophore.

This compares with a heavy-atom RMSD of 3.2 Å for

the model shown in Fig. 15a, an RMSD that drops to

2.5 Å when the one obviously mis-aligned ligand is

excluded. The analogous overlays for CDK-2 are

similar to that for RT, reflecting the large conforma-

tional changes many kinases undergo during activa-

tion. Such induced-fit variations in protein structure

present well known difficulties for docking programs

[33], but their interference with ligand-based align-

ment programs has not been widely appreciated to

date.

It is reassuring in this context that the least well-

reproduced crystal structure alignments are those in

which the a-carbon alignment itself is least robust, i.e.,

those in which the individual ligands ‘‘see’’ the most

structurally dissimilar binding sites. Comparing

RMSDs for purely ligand-based alignments is mean-

ingless in such circumstances and more subjective cri-

teria become relevant [16, 33].

Validation sets created based on the availability of

crystal structures are particularly likely to encounter

this problem, in part because flexible binding sites can

accommodate a wider structural range of ligands than

can more rigid targets. This can in turn lead to in-

creased synthetic activity around the target protein and

a wider range of crystal structures becoming available.

Conversely, targets for which many complexes are

available because of their established, high therapeutic

potential are likely to have their range of binding site

flexibility more widely explored.

The analyses described here indicate that being able

to specify the role of potentially amphoteric features in

the training set is likely to improve the ability of

GALAHAD to reproduce CDK-2 crystal structure

alignments. Being able to specify the location of metal

binding sites in thermolysin ligands would likely be

useful, as would providing differential weighting to

favor mapping of hydrogen bonding features over

hydrophobic ones which would probably serve to

reorient the misaligned single ligands in the RT models

shown in Figs. 14 and 15. Given that several of the test

sets present only relatively non-selective pharmaco-

phores and weak pharmacosteres, it seems clear that

GALAHAD is likely to perform at least as well on
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targets of current medicinal chemical interest as on

those considered here.

Conclusion

The linear assignment method for dataset alignment

(LAMDA) has been extended to support multi-way

rigid-body alignments of large datasets. Furthermore,

it has been extended from being a strictly atom-based

method to being able to operate on ionic, hydrogen

bonding, hydrophobic, and steric features. The ability

to generate partial-match search queries from the hy-

permolecules produced has been added as part of its

incorporation into the GALAHAD program. Working

from frozen conformations, the method was able to

generate pharmacophores and pharmacosteres in good

agreement with crystal structure alignments for a range

of literature datasets. The inclusion of partial match

constraints in the queries produced gave pharmaco-

phores that were consistently a superset of full-match

pharmacophores identified in previous analyses, with

the additional features representing points of poten-

tially beneficial interaction with the target protein.
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Appendix: Assigning features to partial match sets

Suppose that clusters of query features have been

sorted in decreasing order of how many features they

contain—i.e., of how many of the n ligands in a hy-

permolecule they ‘‘hit.’’ Suppose further that one

wishes to distribute the features in such a way that

features hitting the same number of ligands fall under

the same partial match constraint. Then the feature

centroids qi representing the clusters i = 1,2,... can be

allocated among partial match constraints in the query

by applying the following method:

1. Let k(qi) be the number features in the cluster

represented by qi—i.e., the number of ligands that

hit query feature qi;

2. Drop any qi for which k(qi) < tmin, where tmin is

the minimum number of ligands that each query

feature must ‘‘hit.’’

3. Initialize the partial match sets q2 and q1as empty

sets;

4. If the number of features |qi| < 5, set q1 = {qi} and

go to Step 15;

5. Set t = max(k(qi));

6. If k(qi) = t, add qi to q1;

7. Set t = t – 1;

8. If t < min(tmin, 0.75n), go to step 15;

9. If the cardinality |q1| < 3 and some features qi

have not been assigned, go to step 6:

10. If k(qi) = t, add qi to q2;

Fig. 16 Overlays of enzyme binding sites based on the coordi-
nates of their a carbon backbones. (a) Overlay for 1drf, 2dhf,
1hfp and 1ohk. Ligands 1–4 are highlighted in green, purple,

yellow and red, respectively. (b) Overlay for 1rt3, 1klm, 1rt5 and
1ep4. Ligands 37, 38, 39 and 41 are highlighted in purple, red,
green and yellow, respectively
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11. Set t = t – 1;

12. If t < tmin, go to step 14;

13. If |q1 | + |q2| < 8, go to step 10;

14. If |q2| = 1 and |q1| = 3, set q1 = q1 [ q2 and set q2

equal to the empty set;

15. If |q1| £ 3, mark all qi in q1 as required matches

and go to step 18;

16. if |q1| = 4:

a. If k(qi) = n for any qi in q1, mark all qi in q1 as

required matches and go to step 18; else

b. Set the minimum partial match for q1 (min1)

to 3 and go to step 18;

17. If |q1| > 4, set min1 = 4;

18. Set min2 as follows:

a. min2 = 0 if |q2| = 1;

b. min2 = 1 if |q2| = 2;

c. min2 = 2 if |q2| = 3;

d. min2 = 5 – min1 or to 2, whichever is greater,

if |q2| > 3.
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