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Abstract In spite of all efforts, patients diagnosed with highly malignant brain tumors
(gliomas), continue to face a grim prognosis. Achieving significant therapeutic advances
will also require a more detailed quantitative understanding of the dynamic interactions
among tumor cells, and between these cells and their biological microenvironment. Data-
driven computational brain tumor models have the potential to provide experimental tumor
biologists with such quantitative and cost-efficient tools to generate and test hypotheses on
tumor progression, and to infer fundamental operating principles governing bidirectional
signal propagation in multicellular cancer systems. This review highlights the modeling
objectives of and challenges with developing such in silico brain tumor models by outlining
two distinct computational approaches: discrete and continuum, each with representative
examples. Future directions of this integrative computational neuro-oncology field, such as
hybrid multiscale multiresolution modeling are discussed.
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2D Two-dimensional
3D Three-dimensional

1 Introduction

There are two basic types of brain tumors, i.e. primary tumors and secondary or metastatic
brain tumors. Primary brain tumors arise in the brain, and here most often from its support-
ing astrocytes or glia cells (hence the terminology ‘astrocytoma’ or ‘glioma’) and generally
do not spread outside the brain tissue; on the contrary, metastatic brain tumors originate
elsewhere in the body such as in the lung or skin before disseminated cancer satellite cells
spread also to the brain. Carcinogenesis in the brain, much like elsewhere in the body, is
a complex multistage process that originates from genetic changes, distortion of the cell
cycle, and loss of apoptosis [1], and proceeds to angiogenesis, and extensive local infiltration
and invasion [51]. In the United States, for the year 2007 alone, it was estimated that there
were 20,500 new cases of (both primary and secondary) brain tumors, and 12,740 deaths
related to this disease [37]. Brain tumors are still relatively insensitive to conventional cancer
treatments, including radiation and chemotherapy [36]. Despite advances in recent targeted
anticancer therapies, the clinical outcome in treating malignant brain tumors remains dis-
appointing [60] with less than 30% of recurrent glioblastoma (GBM; the most aggressive
form of gliomas) patients surviving without further progression six months after treatment
[9]. This is mainly a result of the tumor’s extensive infiltrative behavior, its rapid develop-
ment of treatment resistance due to its inherent genetic and epigenetic heterogeneity, and
the difficulties the so called blood-brain barrier poses for delivery of therapeutic compounds
[7,43].

Cellular and microenvironmental factors along with the underlying processes at the
molecular level act as regulators of tumor growth and invasion [24,27]. Tumor cells
bi-directionally communicate with their microenvironment: they not only respond to var-
ious external cues but also impact the environment by e.g. producing (auto- and paracrine)
signals and degrading the neighboring tissue with proteases [34]. However, despite a vast
amount of qualitative findings, conventional cancer research has made few gains in exploring
the quantitative relationship between these very complicated intra- and intercellular signal-
ing processes and the behavior they trigger on the microscopic and macroscopic scales [54].
It is here where we and others argue that systems biology [42] can provide useful insights,
which may eventually promote the development of new cancer diagnostic and therapeutic
techniques. While still in its beginning, systems biology has so far focused primarily on the
single-cell level [2]. However, the usefulness of computational modeling and simulation,
combined with experiment, is being increasingly recognized for exploring the dynamics at
a multi-cell or tissue level of a variety of biological systems within a temporal, spatial and
physiological context [8].

To date, computational modeling works have produced preliminary quantifications of the
links between cell-cell and cell-extracellular matrix (ECM) interactions, cell motility, and
local concentration of cell substrates. Already, this sprawling interdisciplinary field draws
increasing attention from an experimental and clinical as well as pharmaceutical perspec-
tive [14,21,31]. A better understanding of the inherent complexity of these cancer systems
requires intensified interdisciplinary research in which the next iteration of innovative com-
putational models, informed by and continuously revised with experimental data, will play an
important role of guiding experimental interpretation and design in going forward [29]. Here,
we discuss first objectives of and challenges with modeling brain tumors mathematically and
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computationally and then briefly review some recent developments in using two distinct in
silico1 approaches.

2 In silico brain tumor modeling: objectives & challenges

As for other in silico oncology efforts, the main objective of modeling brain tumors is to design
and develop powerful simulation platforms capable of (1) providing a realistic mathemat-
ical representation and systematic treatment of the complexity of experimentally observed
cancer phenomena, across the scales of interest and within its distinct biological context,
(2) generating experimentally testable hypotheses to guide wet-lab research and help eval-
uate the algorithms, and finally (3) integrating any number of distinct data qualities (e.g.,
serum markers, genomics, phospho-proteomics and magnetic resonance images) into these
modeling algorithms in an effort to predict tumor growth patterns eventually also in a patient-
specific context. To achieve such ambitious goals, a computational brain tumor model should
be able to (i) quantitatively clarify the characteristics of a set of various basic cancer phe-
notypes (e.g., proliferation, invasion, and angiogenesis) at different scales, and (ii) to assess
the impact of the microenvironmental cues on these cell phenotypes. Finally, we argue that
(iii) an advanced brain tumor model should eventually be extended to the molecular level in
that it explicitly includes the combinational effects of oncogenes [15] and tumor suppressor
genes [11] on the aforementioned microscopic phenotypes.

There are several key challenges confronting a computational tumor biologist in devel-
oping any such model. These include: 1) Selection of modeling scale(s). Choosing the
appropriate scale is the first critical step, usually guided by both the data available and the
area of expertise of the investigator. Also, if a model is designed to be composed of different
scales, then how to link these scales in a way supported by data is another non-trivial step.
For example, GBM cells exhibit a variety of point mutations (molecular level) [35] that can
affect microvascular remodeling (microscopic level) which in turn impacts tumor size, shape,
and composition (macroscopic level) [33]. To date, while some brain tumor modeling studies
have dealt with the interaction of processes between cellular and macroscopic levels (for a
recent review, see [54]), only very few works made an attempt to quantitatively establish
the relationship between the molecular and cellular levels. 2) Level of complexity versus
computational cost. Generally, it holds that the more detailed a model, the more parameters
are involved and thus the higher the computational ‘cost’ of running the algorithm. As such,
for the time being, it is a compromise between the biological complexity to be represented
and the computational resources this would require. Given the ever increasing amount of data
available, scalability becomes an issue of paramount interest when deciding on the applica-
bility of any such in silico tool in a clinical setting. 3) Tumor boundary definition. Defining
the degree of diffuse invasion of tumor cells into the surrounding brain tissue remains difficult
regardless of advancements in conventional medical imaging [69]. While some algorithms
have made progress on translating tumor and surrounding tissue information from patient
imaging data to the coordinate system of the models with finite element methods [16,49],
there is still a long way to go towards accurately predicting where and when what number
of the currently still invisible but surely existent mobile tumor cells spread into the adjacent
healthy brain tissue.

1 In silico refers to experiments carried out entirely using a computer as opposed to being conducted in a wet
lab environment (see [47] for a brief review on differences between in silico and in vitro or in vivo studies).
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Available computational models have addressed these challenges in one form or another.
The next section will detail current approaches with a focus on briefly reviewing some signif-
icant findings of representative models developed in the past few years, and highlight some
research groups active at the forefront of this interdisciplinary field.

3 Computational modeling approaches

Two major types of modeling strategies currently exist in the computational tumor modeling
community: discrete and continuum approaches. Discrete models can explicitly represent
individual cells in space and time and easily incorporate biological rules (based on data or
assumptions), such as defining cell-cell and cell-matrix interactions involved in both che-
motaxis and haptotaxis for instance. However, these models are limited to relatively small
numbers of cells due to the compute intense nature of the method, and as a result a typical
discrete model is usually designed with a sub-millimeter or even lower domain size [70]. In
contrast, continuum models, by describing e.g. extracellular matrix or the entire tumor tissue
as continuum medium rather than at the resolution of individual cells, are able to capture
larger-scale volumetric tumor growth dynamics at comparatively lesser computational cost.
As a trade-off, continuum models lack sensitivity to small fluctuations or oscillatory behav-
iors of a tumor system at a smaller segment, such as tumor angiogenetic sprout branching
[3]. That is a significant shortcoming as in some cases such small changes can be the leading
cause in driving a nonlinear complex biosystem to a different state [10]. In the following, we
will introduce the two approaches in more detail.

3.1 Discrete modeling

The two main, related discrete modeling methods extensively used in this context are
cellular automata (CA) and agent-based model (ABM). A generic CA is a collection of
cells on a grid of specified shape that synchronously evolves through a number of discrete
time steps, according to an identical set of rules (applied to each single cell) based on the states
of neighboring cells [71]. The grid can be implemented in any finite number of dimensions,
and neighbors are a selection of cells relative to a given cell. In contrast, ABM asynchro-
nously models phenomena as dynamical systems of interactions among and between agents
and their environments [12,32]. An agent is any autonomous component that can interact or
communicate with other components. Each biological cell is often represented as an agent in
an ABM, and indeed ABM is the natural extension of CA. Because of the asynchronous char-
acteristic, the ease of implementation and the richness of detail one can expect in exploring
biosystem dynamics, ABM is an appealing choice for the simulation of tumors like glioma
where the behavior and heterogeneity of the interacting cells cannot be safely reduced to
some averaged, stylized or simple mechanism [66].

For instance, GBM growth dynamics in a three-dimensional (3D) environment have been
successfully predicted using a CA model driven by four microscopic parameters (referring to
cell-doubling time, nutritional needs of growth-arrested cells, nutritional needs of dividing
cells, and effects of mechanical confinement pressure) [39,40]. This model was then used
as the basis for a follow-up study to analyze a heterogeneous tumor by introducing a dis-
tinct subpopulation of tumor cells that exhibit a growth advantage [38]. The results showed
that changes even in a small subpopulation may lead to a drastically altered tumor growth
behavior, suggesting that prognosis based on the assumption of a homogeneous tumor cell
population can be markedly inaccurate. With a CA approach to study the effects of surgery
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plus chemotherapy on the evolution of a homogeneous and more realistic heterogeneous
GBM mass, it was found that the spatial distribution of chemotherapeutic resistant cells is an
important indicator of persistence and continued tumor growth [55]. One clinical implication
gained from this study is that the shape of the reoccurring tumor may depend on the rate
at which chemotherapy induces mutations. Since these previous iterations made oversimpli-
fying assumptions on tumor vascular and angiogenesis, a recent two-dimensional (2D) CA
simulation tool [30] considered the processes of vessel co-option, regression and angiogen-
esis in tumor growth; it enabled the researchers to study the growth of a primary neoplasm
from a small mass of cells to a macroscopic tumor mass, and to simulate how mutations
affecting the angiogeneic response subsequently impact tumor development.

To investigate highly malignant brain tumors as complex, dynamic, and self-organizing
biosystems [20], Deisboeck and co-workers have been focusing on the development of ABMs
simulating tumor properties across multiple scales in time and space. First, the spatio-tempo-
ral expansion of virtual glioma cells in a 2D microscopic setup and the relationship between
rapid growth and extensive tissue infiltration were investigated [44,45]. These earlier works
reported a phase transition leading to the emergence of two distinct spatio-temporal patterns:
a) a small number of larger tumor cell clusters exhibiting rapid spatial expansion but shorter
overall lifetime of the tumor system, and b) many small clusters with longer lifetime but
the tradeoff of a slower velocity of expansion, depending on different implicit chemotactic
search strategies. Subsequently, by incorporating a molecular scale in the form of a simplified
representation of the epidermal growth factor receptor (EGFR) signaling pathway (important
for epithelial cancers in general, and for highly malignant brain tumors in particular [46]), the
model was extended to capture tumor growth dynamics to a degree of any specific pathway
component [5,6]. Some intriguing, testable hypotheses have been generated in terms of how
molecular profiles of individual glioma cells impact the cellular phenotype and how such
single-cell decisions can potentially affect the dynamics of the entire tumor system. Most
recently, an explicit cell cycle description was introduced to the model and brain tumor growth
dynamics were examined in a 3D context with a more complicated ECM representation at
the microscopic scale [72]. Together, these works have provided a computational paradigm
for simulating brain tumors from the molecular scale up to the cellular level and beyond. It
should be noted that in these works some environmental parameters, such as growth factors,
nutrient, and oxygen tension, were expressed with a continuum term. Another contribution
of the works by Deisboeck and co-workers is that, based on available data [23,48], they pro-
pose employing, as an example, an EGFR-downstream protein, phospholipase Cγ (PLCγ ),
to determine two phenotypic traits, i.e. cell proliferation and migration, by comparing the rate
of change of its molecular-level concentration with a predefined threshold. That is, a glioma
cell becomes eligible to 1) migrate if the range of change of PLCγ exceeds the threshold, and
2) proliferate if the range of change of PLCγ is below that set threshold, yet above a noise
threshold. More generic, the change in the concentration of a pathway component over time
is calculated with a continuum element, i.e., according to the following differential equation:

dXi

dt
= αXi − β Xi (1)

where Xi represents the concentration level of the i th pathway component, and α and β are
the reaction rates of producing and consuming Xi, respectively. Figure 1 shows a series of
simulation results produced by the model [6], explaining how tumor growth dynamics at the
cellular level can be related to alterations at the molecular level. This algorithm is flexible so
that it can accommodate the governing, physical requirements of other cancer types, such as
non-small cell lung cancer [67], which demonstrates the versatility of this design concept.
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Fig. 1 (a) 2D cross-section of a tumor spheroid, for three different human glioma cell lines, from top to
bottom: D-263 MG, D-247 MG, and D-37 MG. Each simulation was terminated when the first tumor cell
reached the edge of a (red) nutrient source (representing an orthograde cut cerebral blood vessel) located in the
north-east quadrant of the lattice. (b) Polarization of the molecular concentration profiles of the EGFR-pathway
downstream component PLCγ in the first cell, at five consecutive time points. A qualitatively similar PLCγ

polarization pattern emerges in the three cell lines as higher concentrations of PLCγ eventually accumulate
in the apical part of the cell that faces nutrient abundance. Adapted from [6]

It is noteworthy that some efforts employ techniques analogous to ABM to study the
clinical level of brain tumor behavior. A series of in silico studies on simulating a GBM
response to radiotherapy, considering vasculature and oxygen supply, has been conducted
[22,58,59]. While in [59] tumor cells were considered individually, in the follow-up studies
[22,58], in an effort to overcome the extensive computational demand, cells were clustered
into dynamic equivalence classes based on the mean cell cycle phase durations (G1, S, G2,
and M, see [41] for a review); that is, tumor response to radiotherapy was investigated on
each cluster instead of on each individual cell. Moreover, for performing patient-specific
in silico experiments as a means of chemotherapeutic treatment optimization, the same
authors recently developed a four-dimensional simulation platform based on magnetic res-
onance imaging (MRI), histopathologic, and pharmacogenetic data, noting that the model’s
predictions were in good agreements with clinical practice [57]. Taken together, models
from both Deisboeck’s and Stamatakos’ groups pioneered the integration of continuum ele-
ments into a discrete framework. To put this in perspective, we will detail a strict continuum
approach in the following section.

3.2 Continuum modeling

Using a continuum approach, Cristini and co-workers have established a series of exploratory
investigations on mathematical analysis of morphologic stability in growth and invasion of
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highly malignant gliomas [17,18,25,26,53,56,73]. They propose that tumor tissue dynamics
can be simply regulated by two dimensionless parameters: one quantifies the competition
between local cell proliferation (contributing to tumor mass growth) and cell adhesion (which
tends to minimize the tumor surface area), while the other one represents tumor mass reduc-
tion related to cell death. The authors then tested the conditions for morphological stability
for an independent set of experiments where the levels of growth factors and glucose were
changed over a wide range in order to manipulate GBM cell proliferation and adhesion [25].
Most recently, they further confirmed that morphologic patterns of tumor boundary and infil-
trative shapes of invasive tumors predicted by their models were in agreement with clinical
histopathology samples of GBM from multiple patients [26]. Figure 2 shows a time-series
result of the evolving tumor shape over a course of three months using this model. The authors
claimed that their algorithm enabled the prediction of tumor morphology by quantifying the
spatial diffusion gradients of cell substrates maintained by heterogeneous cell proliferation
and an abnormal, constantly evolving vasculature. These models are based on reaction-dif-
fusion equations (that govern variables such as tumor cell density, neovasculature, nutrient
concentration, ECM, and matrix degrading enzymes) of the following generic form:

vt = −∇ · J + �–+ − �− (2)

where v represents one of the evolving variables, J is the flux, �+ and �− are the sources and
sinks with respect to variable v (expansion formulas differ according to the variable investi-
gated; see [26] for detail). This group’s work showed that a continuum approach is capable of
1) accounting for a variety of invasive morphologies observed in tumors in vitro, in vivo, and
in patients, 2) predicting different growth and invasion behaviors of tumors by calibrating
model parameters, and 3) testing the hypothesized phenomenological relationships of tumor
adhesion and proliferation that affect tissue-scale growth and morphology.

Several other groups have also been working on applying a continuum approach to the
investigation of brain tumor behaviors. For instance, [61] developed a continuum model that
incorporated the effects of heterogeneous brain tissue on diffusion and growth rates of glioma
cells in an effort to represent asymmetries of the tumor boundaries. This basic work was then
extended to examine the growth and invasion of gliomas in a 3D virtual brain refined from
anatomical distributions of grey and white matter [62]. By allowing a motility coefficient to
differ depending on the local tissue composition (so that glioma cells migrate more rapidly
along white matter than in grey matter), the algorithm predicted sites of potential tumor recur-
rence to a degree beyond the limits of current medical imaging techniques. Interestingly, as
supported by the results of this model, two independent factors, velocity of diametric expan-
sion and initial tumor size at diagnosis, were indeed found to be statistically significant in a
recent clinical survey on the prognostic evaluation of patients who harbor a grade II glioma
[52]. Based on their previous studies [61,62,65], [63] also investigated the effects of chemo-
therapy on the spatio-temporal response of gliomas. By comparing the simulation results with
MRI data of a glioma patient, it was suggested that differential delivery of the chemothera-
peutic agent to the grey and white matter could successfully describe the clinical problems of
shrinkage of the lesion in certain areas of the brain with continued growth in others. Another
recent continuum model confirmed the effects of repeated immuno-suppression treatment
(using different protocols) on the progression of glioma, and mathematically revealed the
necessity of repeating such treatment in reducing the risk of recurrence [25]. Furthermore, by
combining essential methods of two previous approaches [13,50], [68] were able to capture
the spatio-temporal dynamics of drug transport and cell-death in a heterogeneous collection
of glioma cells and normal brain cells.
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Fig. 2 (a) Time-series of the morphologic features of a growing GBM generated with a 3D model. The
morphology is directly influenced by angiogenesis, vasculature maturation, and vessel co-option. The vessels
labeled in red are capable of releasing nutrients, e.g., oxygen. (b) Histology-like section of the last frame of the
simulation in (a) reveals viable tumor regions (white) surrounding necrotic tissue (dark). The viable region’s
thickness and extent of necrosis are strongly dependent on the diffusion gradients of oxygen/nutrient in the
microenvironment. (c) Another view from the simulation shown in part A. Adapted from [26] with permission

4 Conclusions and perspectives

In recent years, computational cancer research has become a sprawling interdisciplinary field.
This is a result of a number of contributing factors. Firstly, in contrast to conventional wet-lab
experimental methods, such in silico models offer a powerful platform to reproducibly alter
parameters and thus investigate their impact on the cancer system studied, at a rapid pace and
in a cost-efficient way [42]. Secondly, computational models have demonstrated the ability
of providing a useful hypothesis generating tool for refocusing experimental in vitro and
in vivo works [54]. Thirdly, from a practical clinical perspective, computational modeling
has already been applied, with some promise, to simulating the impact of chemotherapy,
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radiotherapy, and drug delivery on brain tumors [19]. Within this in silico oncology area,
modeling and simulating malignant brain tumors is starting to emerge as a paramount driver
for advancing technical developments en route to help addressing important scientific ques-
tions.

Demonstrated with examples from the literature, we have reviewed the two major mathe-
matical modeling approaches, discussed their distinct merits and limitations in quantitatively
studying brain tumor growth dynamics. In summary: While discrete models perform at the
resolution of individual cells, which function independently through a set of behavioral
rules that are inspired by biological facts if not fueled with real data, they are limited to
a rather small number of cells or constituents. Conversely, continuum models can capture
tumor growth at a collective scale that allows monitoring the expansion of a larger cluster of
homogeneously behaving cells yet fail to register single cells, genes or proteins. Since both
discrete and continuum modeling approaches have their own advantages and shortcomings
(Table 1), and because quantifying the relationships between complex cancer phenomena at
different scales is highly desirable, we and others have begun to move into the direction
of hybrid modeling e.g., [4,58,67,72], or more appropriately, towards hybrid, multi-scale
and multi-resolution algorithms as the next stage of cancer modeling in general, and brain
tumor modeling in particular. While ‘hybrid’ refers to the integration of both discrete and
continuum techniques, ‘multi-resolution’ means that cells at distinct topographic regions
are treated differently in terms of the modeling approach applied. The overall strategy is
clear: achieving discretely high resolution wherever and whenever necessary to maintain (or
ideally, improve) the model’s overall predictive power while at the same time reducing com-
pute intensity as much as possible to allow for inclusion of sufficiently large datasets, and
thus support scalability of the approach to clinically relevant levels. Figure 3 schematically
describes the development of a 2D model using this novel strategy. Here, the MRI-demarked
hypointense region within the tumor core, often comprised of a large fraction of apoptotic
cells if not necrotic tissue, can arguably be described sufficiently as a rather homogenous pop-
ulation, thus at a lower resolution which allows employing a continuum module. Conversely,
the highly active, gadolinium enhanced tumor surface supposedly thrives with a genetically
and epigenetically heterogeneous population of cells that must at least in part be described
discretely, and at the resolution of interconnected signaling pathways, to capture topographic
areas that (e.g., with some probability, harbor an aggressive clone that) may impact overall
growth patterns in the future. As the tumor grows, these high-resolution regions of interest
(ROIs) and, thus the in silico modules representing them, will likely have to change dynam-
ically (i.e., in size, number and location) to maintain or, better, improve predictive power

Table 1 Characteristics of discrete, continuum and hybrid brain tumor modeling approaches

Category Characteristics References

Discrete • Autonomous cells, with a set of rules governing their behavior [39,40,45]
• Capable to investigate tumor dynamics at a single cell level and below
• Limited to a comparably smaller scale due to prohibitive computational

costs
Continuum • Describing tumor tissue as a continuum medium [18,26,64]

• Capable to capture larger-scale volumetric tumor dynamics
• Computational cost efficiency
• Difficult to implement heterogeneous cell-cell and cell-environmental

interaction, or molecular level dynamics
Hybrid • Applicable to both small- and large-scale models [5,6,57,58,72]

• Extensive numerical techniques required
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Fig. 3 Schematic illustration of a 2D brain tumor model using a hybrid, multi-scale and multi-resolution
strategy. “ROI” represents a region of interest which refers to a higher modeling resolution desired and thus
discrete-based technique used, versus the larger remaining volume (green) of the tumor tissue that is being
modeled with a continuum-based approach. ROIs can be obtained e.g. by using finite elements and other
numerical techniques [3,17,73]

while training on the patient-specific data set. Admittedly, much work needs to be done in
this area to tackle the considerable challenges involved that range from data processing in 3D
over time (where most computational savings would occur) to automated ROI placement and
result driven, dynamic readjustment. However, eventually, such advanced in silico oncology
approaches should be able to provide, on a clinical level, much needed quantitative insights
into the dynamic cross-scale relationships that characterize these and other highly malig-
nant tumors, and thus prove to become an effective and indispensable tool for personalized
systems medicine in the near future.
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