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Abstract
We observed wide variation in the incidence of confirmed COVID-19 cases in 300 
communities making up Los Angeles County, the largest county by population in the 
United States. The surge in incidence from October 19, 2020 to January 10, 2021, 
accounting for two-thirds of all confirmed cases since the start of the epidemic, was 
concentrated in communities with a high prevalence of multi-generational house-
holds. This indicator of household structure was a more important predictor of the 
surge in incidence than the prevalence of households with low income or with at 
least one high-risk worker. Based upon a spatial adaptation of the standard SIR 
model, the cumulative incidence of COVID-19, adjusted for underascertainment of 
both asymptomatic and symptomatic cases, ranged from under 10% in low multi-
generational communities to over 30% in high multi-generational communities.
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1 Introduction

In this article, we attempt to identify the critical forces driving the massive outbreak 
of COVID-19 in Los Angeles County, which by January 10, 2021 had registered 
over 967,000 confirmed cases of the disease (Los Angeles County Department of 
Public Health 2021).

To that end, we bring together four critical strands of the growing research lit-
erature on the worldwide COVID-19 epidemic. First, investigators have attempted 
to reconstruct the transmission dynamics of local outbreaks by applying theoretical 
models to data on reported cases (Chang et al. 2020; Fang et al. 2020; Hao et al. 
2020). Second, numerous studies have used the techniques of geospatial analysis to 
evaluate the impacts of public health policies (Dickson et  al. 2020; Franch-Pardo 
et al. 2020; Orea and Alvarez 2020; Zheng et al. 2020). Third, cross-sectional stud-
ies have related the age structure and household composition of various countries to 
COVID-19 incidence and mortality (Aparicio Fenoll and Grossbard 2020; Esteve 
et al. 2020). And fourth, researchers have increasingly relied on data derived from 
the movements of smartphones with location-tracking software to study patterns of 
viral propagation (Dave et al. 2020; Harris, 2020a, d).

While a number of studies have assessed the effects of state-of-emergency and 
stay-at-home orders, as well as restrictions on restaurants, bars and large social gath-
erings, these efforts have largely relied upon large cross-sections of state and county 
data (Cronin and Evans 2020; Gupta et al. 2020). Here, by contrast, we rely upon 
detailed data on the dynamics of SARS-CoV-2 transmission among approximately 
300 communities within Los Angeles County from February 24, 2020 through Janu-
ary 10, 2021. Focusing sharply on Los Angeles County—far and away the largest 
by population in the United States—we follow in the line of other recent studies 
attempting to relate transmission patterns to the fine microdetails of individual com-
munities (Horn et al. 2020; Vijayan et al. 2020).

We develop a spatial extension of the conventional SIR epidemic model to study 
the radial spread of infection among these contiguous communities during the early 
phases of the epidemic. We merge our geospatial data with census-derived, com-
munity-specific data on the characteristics of households, in particular a measure of 
the prevalence of households at risk for inter-generational transmission. We study 
how wide local variations in the prevalence of this risk factor result in marked het-
erogeneity in the reproductive number during the course of the Los Angeles County 
epidemic.

1.1  The Four Phases

Before delving into the fine details of our data, methods and results, we paint a 
broad-brush picture of the epidemic under study.

Figure 1 plots the weekly incidence of confirmed COVID-19 cases per 100,000 
population in Los Angeles County over a 46-week period, from the week starting 
Monday, February 24, 2020 (which we designate as week 0) to the week starting 
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Monday, January 4, 2021 (designated week 45). The data points for the figure were 
derived principally from the web-based dashboard of the Los Angeles County 
Department of Public Health (DPH), supplemented by the dashboards of the cities 
of Long Beach and Pasadena, which are situated within Los Angeles County but 
run their own health departments (Long Beach Department of Health and Human 
Services 2021; Los Angeles County Department of Public Health 2021; Pasadena 
Health Department 2021). We characterize these as confirmed cases, as they reflect 
only those infected individuals who were tested and reported to the DPH or to the 
two other municipal health departments.

We have divided the observation period into four successive phases. Phase I 
(spanning weeks 0–5) saw an initial rapid increase in confirmed case incidence. By 
the start of Phase II (spanning weeks 6–20) the epidemic curve was already flatten-
ing, as the emergency lockdowns declared in early March by the Los Angeles mayor, 
the county supervisor and the California governor had begun to bite (Barger 2020; 
Garcetti 2020a; Newsom 2020). Following the reopening of retail stores, indoor din-
ing, hair salons, gyms and bars in May and June (Money 2020; Parvini 2020; Shalby 
2020a), confirmed case incidence rose to a temporary peak of 221 per 100,000 by 
the week of July 13 (week 20) at the end of Phase II.

Reacting to the surge in cases, the state public health officer ordered the reversal 
of most of the county’s prior reopening orders (Angell 2020; Gutierrez 2020). The 
resulting decline in confirmed case incidence, seen during the initial part of Phase 
III (spanning weeks 21–34) was short-lived, as the county reopened hair salons, nail 

Fig. 1  Weekly confirmed COVID-19 cases per 100,000 population in Los Angeles County
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salons, breweries and shopping malls in September and October (Cosgrove 2020; 
Shalby 2020b; Shalby and Cosgrove 2020). As Phase III came to a close in week 
34, the state issued new guidelines permitting gatherings of up to three households 
(Times Staff 2020).

The extraordinary, ten-fold surge in confirmed case incidence that followed dur-
ing Phase IV (spanning weeks 35–45) elevated Los Angeles County to the title 
of the new COVID-19 epicenter in the United States. Emergency stay-at-home 
orders issued by the Los Angeles mayor and the California regional health officer 
during week 40 (Garcetti 2020b; Pan 2020) had little or no short-term detectable 
effect on indicators of social mobility (Harris 2020f). Confirmed cases during the 
eleven weeks of Phase IV accounted for more than two-thirds of all confirmed cases 
recorded during the entire 46-week interval covered by the figure.

2  Data and Methods

2.1  Countywide Statistical Areas

We have already noted our data sources for confirmed COVID-19 cases in Los 
Angeles County and the cities of Long Beach and Pasadena. While Fig.  1 shows 
incidence trends at the global, countywide level, our analysis was focused princi-
pally on a detailed study of confirmed case incidence among the more than 300 
communities within the county.1 For this purpose, we relied upon the DPH’s geo-
graphic breakdown based upon countywide statistical areas (CSAs), a mixed clas-
sification of independent cities such as the City of Beverly Hills, neighborhoods 
within the city of Los Angeles such as Hollywood, and unincorporated places such 
as Hacienda Heights (City of Los Angeles 2020). In this scheme, both Long Beach 
and Pasadena have their own CSAs.

2.2  American Community Survey Data

We relied on the 2015–2019 five-year public use microsample from the U.S. Cen-
sus Bureau’s American Community Survey (ACS) (U.S Census Bureau 2021). The 
nationwide database covered 788,475 households and group living arrangements 
with a total of 1,887,461 persons. Out of the entire database, 203,545 households 
and group living arrangements with 510,501 persons were identified as residing in 
one of 69 public use microdata areas (PUMAs) within Los Angeles County (U.S 
Census Bureau 2020b).2

1 For an earlier version of this study (Harris 2020h), we relied on DPH press releases to reconstruct 
community-specific case counts. The present study relies upon a more extensive, updated database issued 
by the DPH.
2 In the earlier version of this study (Harris 2020h), we relied on the 2018 installment of the ACS. The 
present study relies upon the more recently released 5-year 2015–2019 installment.
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We used the person records of the public use microsample to identify households 
with at least four persons, of whom at least one person was 18–34 years of age and 
at least one other person was at least 45 years of age. We describe these households 
here as at risk for multi-generational transmission (abbreviated MULTI in the results 
below). Among all such at-risk families in the Los Angeles County extract of the 
ACS, 43% had four persons, 27% had five persons, 14% had six persons, and 15% 
had seven or more persons. Among the 69 public use microdata areas (PUMAs), the 
median proportion of at-risk households was 14.6%.

Using the internal household sampling weights provided by the ACS, we then 
computed the proportion of at-risk households in each PUMA. Applying a Census 
Bureau crosswalk between PUMAs and census tracts (U.S Census Bureau 2020a) 
as well as a DPH-provided crosswalk between census tracts and CSAs, we deter-
mined the corresponding proportions of at-risk households in each CSA. Among 
300 CSAs, the median proportion of at-risk households was 13.8%.

We similarly used the ACS five-year public use microsample to determine three 
other CSA-based indicators: the proportion of households receiving food stamps 
under the Supplemental Nutrition Assistance Program (SNAP, median 7.3% among 
300 CSAs); the proportion of households with total income below $22,000 annually, 
the amount that one full-time worker would earn at California’s minimum wage of 
$11 per hour (INC22, median 15.5%); and the proportion of households with at least 
one person engaged in a low-wage occupation that cannot be performed remotely 
(OCCUP, median 14.1%).3

2.3  SafeGraph Data

We relied upon the Patterns database issued by SafeGraph (SafeGraph Inc. 2020), 
which describes the movements of smartphones equipped with location-tracking 
software to numerous points of interest throughout the United States. We previously 
relied upon this data source in a comparative study of the COVID-19 epidemics in 
Milwaukee and Dane Counties in Wisconsin (Harris 2020a) and a geospatial analy-
sis of the September 2020 COVID-19 outbreak on the campus of the University of 
Wisconsin-Madison (Harris 2020e).

Here, we focused on fast-food restaurants as points of interest. We used the 
Patterns location_name variable to identify all entities whose names included at 
least one of these key words: burger, pizza, pizzeria, taco, taqueria, quesadilla, 
burrito, chipotle, tortilla, sushi, sashimi, ramen, udon, wok, and noodle. We then 

3 The occupation codes included: 3601 Home Health Aides; 4020 Cooks; 4030 Food Preparation 
Workers; 4055 Fast Food And Counter Workers; 4120 Food Servers, Nonrestaurant; 4140 Dishwash-
ers; 4220 Janitors And Building Cleaners; 4230 Maids And Housekeeping Cleaners; 4251 Landscaping 
And Groundskeeping Workers; 4255 Other Grounds Maintenance Workers; 6260 Construction Laborers; 
6600 Helpers, Construction Trades; 7840 Food Batchmakers; 9350 Parking Lot Attendants; 9640 Pack-
ers And Packagers, Hand; 9645 Stockers And Order Fillers; and 9720 Refuse And Recyclable Material 
Collectors.
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used the Patterns brands variable to identify other fast-food chains that were 
prevalent in Los Angeles County.4

Many of these restaurants, particularly the chains, had multiple locations. Each 
distinct location was identified by a point-of-interest census block group (poi_
cbg). For each distinct location, we used the variable visitor_home_cbgs to iden-
tify the home census block groups of all visitors during each weekly reporting 
period, where a device’s home is the location where it is regularly located over-
night. For each week from the week starting February 10, 2020 through the week 
starting January 11, 2021, we then accumulated the respective numbers of restau-
rant visits originating from each home CBG. Once again taking advantage of the 
census tract crosswalk provided by the Los Angeles County DPH, we converted 
these counts into a longitudinal time series of restaurant visits originating from 
each CSA.

2.4  Spatial SIR Model

We devised a spatial adaptation of a discrete-time SIR (susceptible-infective-resist-
ant) model similar to the model we employed in a study of COVID-19 transmis-
sion between younger and older persons in Florida’s most populous counties (Harris 
2020b).

To facilitate the exposition, we first review a deterministic SIR model without a 
spatial component. Let Sit denote the proportion of susceptible individuals in geo-
graphic unit i at discrete time t . In our empirical application, geographic units will 
refer to CSAs, and each time period t will refer to one week, where t = 0, 1, …, 
45. Let  Iit denote the corresponding proportion of infective individuals, and Rit the 
corresponding proportion of resistant individuals. For each CSA i , the equation of 
motion of Sit is given by

where � reflects the rate at which susceptible and infective individuals interact, as 
well as the likelihood that an interaction will result in transmission. We take � to be 
an unknown parameter to be estimated from our data.

The corresponding equation of motion of Iit is given by

where 1 > b > 0 is the rate at which infectives become resistant, either through 
recovery or death, and (1 − b) is the corresponding depreciation factor. Rather than 
estimating b from our data, we rely on external sources. With a mean duration of 
infectivity of 5.5 days (Griffin et al. 2020), we assume a weekly depreciation factor 
of 1 − b = exp(−7∕5.5) = 0.28, that is, b = 72 percent of current infectives become 

(1)Sit = Si,t−1 − �Si,t−1Ii,t−1

(2)Iit = �Si,t−1Ii,t−1 + (1 − b)Ii,t−1

4 These chains included: Arby’s, Carl’s Jr., Chick-fil-A, Five Guys, Jack in the Box, Johnny Rockets, Jol-
libee, McDonald’s, Panda Express, Rally’s, Subway, Wendy’s, and Wienerschnitzel.
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resistant each week. In sensitivity analyses, we tested the effect of increasing the 
mean duration of infectivity to 6.5 days, so that 1 − b = exp(−7∕6.5) = 0.34, that is, 
b = 66 percent of current infectives become resistant each week. We further assume 
that the population of each CSA is closed, so that

Finally, for each CSA i , we assume the initial condition Si0 = 1 − Ii0 , where 
Ii0 > 0 denotes the proportion of infectives during the initial week t = 0, and where 
Ri0 = 0.

We now add a stochastic component to our deterministic model of Eqs.  (1) 
through (3). For notational compactness, we write yit = Si,t−1 − Sit as the incidence 
of COVID-19 cases in CSA i during week t . We also write Xit = SitIit . Equation (1) 
can then be written as

where the error terms �it are assumed to be independently and identically distrib-
uted. We designate this specification as Model 0. This model excludes a constant 
term, which is ordinarily included in linear models, because all new infections are 
assumed to arise from contact with other infective persons.

So long as we take the parameter b as known, we can estimate the unknown 
parameter � in Eq.  (4) from the available data 

{

yit
}

 on COVID-19 incidence in 
each CSA i and week t  . That information is sufficient to generate the entire series 
of Xit . To that end, we start with Ii0 = yi0 for all i , so that Si0 = 1 − Ii0 = 1 − yi0 . 
For all subsequent weeks t > 1 , we compute Sit = Si,t−1 − yit , and then generate 
the values of Iit from Eq. (2). Once we have computed Sit and Iit , we have Xit as 
well. We note that the lagged values Xi,t−1 in Eq. (4) are not constructed from the 
contemporaneous incidence yit on the left-hand side.

We now incorporate a spatial component into our non-spatial Model 0. We 
write

where 
{

Xj,t−1 ∶ j ≠ i
}

 refers to all other CSAs, and where both � and � are unknown 
parameters. Here, 

{

wij

}

 are elements of a known symmetric matrix W with zero 
diagonal elements, where each off-diagonal element represents the influence of 
geographic unit j ≠ i on the rate of new infections in unit i . The parameter � thus 
captures the influence of nearby CSAs. In our empirical application, we set the off-
diagonal element wij = 1 if the distance dij between the centroids of CSA i and CSA 
j was no greater than the radius r , and wij = 0 otherwise, where the distances dij 
were calculated from the Haversine formula (Hedges 2002). In our base case, we 
specified a radius r of 1 km, but we also studied the effect of increasing r to 1.5 km. 
We designate the specification in Eq. (5) as Model 1.

Once again, this model excludes a constant term because all new infections 
are assumed to arise from contact with other infective persons located within 
the same or adjacent geographic units. As above, we can estimate the unknown 

(3)Sit + Iit + Rit = 1

(4)yit = �Xi,t−1 + �it

(5)yit = �Xi,t−1 + �
∑

j≠i

wijXj,t−1 + �it
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parameters � and � from the available incidence data 
{

yit
}

 so long as we take the 
depreciation rate b and and the matrix W  as known. Similarly, the lagged values 
Xi,t−1 and 

{

Xj,t−1 ∶ j ≠ i
}

 in Eq. (5) are not constructed from the contemporaneous 
incidence yit on the left-hand side.

We consider a further extension of Model 1 that permits covariates. In keeping 
with the strong assumption that all new infections arise from contact with other 
infectives, this model takes the form

where Zi represents a time-independent exogenous characteristic of CSA i , and � is 
an additional unknown parameter capturing the multiplicative effect of this covari-
ate on the within-CSA transmission rate. We designate this specification as Model 2. 
In what follows, we estimate Model 2 where Zi represents the prevalence of at-risk 
multi-generational households (MULTI) in CSA i.

Finally, we recognize that the parameters of our models are unlikely to remain 
constant during the 46-week time period under study. Accordingly, we estimate 
the parameters � , � , and � separately for each of the four phases described in 
Sect. 1.1 above.

2.5  Calculating the Reproductive Number

In our non-spatial Model 0, our estimate of the contemporaneous reproductive num-
ber in CSA i at week t would be Rit = �Sit∕b . When Rit = 1 , the equation of motion 
of the proportion of infective persons gives Iit = Ii,t−1 , that is, an endemic state. When 
Rit > 1 , the proportion of infectives is increasing, and when Rit < 1 , the proportion 
is decreasing. In spatial Model 1, our estimate becomes Rit = (� + �)Sit∕b , where the 
term (� + �) represents the sum of the within-CSA effect and the effect of nearby CSAs. 
By extension, in spatial Model 2, we have Rit =

(

� + � + �Zi
)

S
it
∕b . In our empirical 

analysis below, we estimate the contemporaneous reproductive numbers for the entire 
county at the starting week for each of the four phases, that is, at t = 0, 6, 21, and 35, 
respectively. To that end, we replace Zi with the population-weighted mean of MULTI 
for the county and Sit with the population-weighted proportion of survivors at week t.

2.6  Accounting for Underascertainment of Cases

It is widely recognized that confirmed COVID-19 cases undercount total incident 
infections. Asymptomatic cases appear to constitute at least 40–45 percent of all 
infections (Oran and Topol 2020) and appear to play a dominant role in disease 
transmission (Moghadas et  al. 2020). Still other symptomatic individuals may not 
have sought testing, especially in the early days of the epidemic when testing cri-
teria were restricted (Centers for Disease Control and Prevention 2020; Reese et al. 
2020).

(6)yit = �Xi,t−1 + �
∑

j≠i

wijXj,t−1 + �ZiXi,t−1 + �it
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A straightforward way to account for such underascertainment is to proportion-
ately inflate confirmed case counts. If nit is the observed number of confirmed cases 
and 1 > f > 0 is the proportion of all infections that go undetected, then the actual 
number of incident infections would be yit = nit∕(1 − f ) . In our tests of the three 
spatial models, we applied this inflation factor to confirmed cases, based on the 
alternative values f  = 0.4 and f  = 0.5.

During the earliest weeks of the epidemic, when very few cases have accumu-
lated, nearly everyone remains susceptible, so that Sit ≈ 1 and Xit ≈ Iit . In that case, 
the deterministic version of our model without spatial effects in Eq.  (4) collapses 
to yit ≈ �Ii,t−1 . Inflating confirmed cases by a factor 1∕(1 − f ) would have a negligi-
ble effect on our estimates of the transmission parameter � and the radial expansion 
parameter � . As the epidemic progresses, however, the correction for underascertain-
ment will magnify the decline in Sit and thus increase our estimates of � and �.

3  Summary of Critical Parameters

Table  1 summarizes the critical parameters of our spatial epidemic model. In the 
table, b is the proportion of infectives who become resistant each week, as shown in 
Eq. (2). The base-case and alternative values were based on assumed mean durations 
of infectivity of 5.5 and 6.5 days, respectively. The parameter r is the radius of influ-
ence underlying the definition of the elements 

{

wij

}

 in Eq. (5). In the base case, we 
take wij = 1, when the distance dij between the centroids of CSAs i and j is no more 
than 1 km. In the alternate case, we increased the radius of influence to 1.5 km. The 
parameter f  is the assumed proportion of all infections that go undetected, which we 
take to be 0.4 or, alternatively, 0.5.

The unknown parameter � in Eq. (1), which reflects the rate at which susceptible 
and infective individuals interact, appears in all three models. The unknown param-
eter � in Eq. (5), which captures the influence of neighboring communities, appears 
in Models 1 and 2. Finally, the unknown parameter � in Eq. (6), which captures the 
effect of the exogenous covariate MULTI, appears in Model 2.

Table 1  Spatial SIR model 
parameters

Parameters assumed known Parameters to be 
estimated

Parameter Base Alternative Parameter Models

b 0.72 0.66 � 0, 1, 2
r 1.0 1.5 � 1, 2
f 0.4 0.5 � 2
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4  Results

4.1  COVID‑19 Incidence in Phase IV versus Prevalence of Multi‑Generational 
Households

We focus initially here on Phase IV because of its quantitative importance. We offer 
some descriptive tests of the potential role of multi-generation transmission during 
this critical phase, based upon cross-sectional multivariate regression. In the follow-
ing section, we proceed to our spatial epidemic model, starting with Phase I.

Figure  2 below displays two color-coded maps of the CSAs of Los Ange-
les County. The left-hand map shows the geographic distribution of all confirmed 
COVID-19 cases combined during the 11 weeks of Phase IV, expressed as a per-
centage of the population of each CSA. The right-hand map shows the correspond-
ing distribution of households at risk for multi-generational transmission, expressed 
as a percentage of all households in each CSA. In both maps, the color gradient has 
7 increments, each corresponding to one septile (or 14.2%) of all CSAs.

Figure  2 shows a striking concordance between the two geographic distribu-
tions. Both figures display marked concentrations in four regions: the Antelope Val-
ley–Palmdale–Lancaster region to the north; San Fernando Valley–Pacolma region 
to the west; the San Gabriel Eastern Valley–El Monte–West Covina–Pomona region 
to the east; and the Vernon–Boyle Heights–East Los Angeles–Downey–Inglewood 
region in the center and to the south. On the left, in particular, the two darkest 
shaded areas (with a cumulative incidence exceeding 8.2%) comprised half of all 
COVID-19 cases during Phase IV but only one-third of the county population.

For the 204 CSAs with a population ≥ 10,000, Fig. 3 graphs confirmed COVID-
19 incidence during Phase IV against the proportion of households at risk for multi-
generational transmission (MULTI). Data points are proportional in size to CSA 
population. The population-weighted least squares fit had a slope of 0.300 (95% 
confidence interval 0.267–0.334).

Table  2 below addresses whether the bivariate relationship between case inci-
dence and the prevalence of at-risk multi-generational households observed in Fig. 3 

Fig. 2  Two maps of countywide statistical areas in Los Angeles County. Left: incidence of confirmed 
COVID-19 cases diagnosed during phase IV. Right: prevalence of at-risk multigenerational households
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may be attributable instead to other indicators of poverty. The table shows results 
of population-weighted cross-sectional regressions in two data sets. The first data 
set, labeled All CSAs, covers all 296 CSAs for which we were able to construct esti-
mates for each of the independent variables from the Census Bureau’s American 

Fig. 3  Bivariate plot of confirmed COVID-19 incidence during phase IV versus the prevalence of multi-
generational households (MULTI)

Table 2  Cross-section regression analysis of the percentage of the population diagnosed with COVID-19 
during phase IV

Standard errors are shown in parentheses below each parameter estimate. Estimates in boldface were sig-
nificant at the level p < 0.01, while the estimates in italics were significant at p < 0.05

Regressors All CSAs CSAs ≥ 10,000 All CSAs CSAs ≥ 10,000

MULTI 0.242
(0.022)

0.246
(0.026)

0.213
(0.025)

0.217
(0.029)

INC22 0.110
(0.030)

0.114
(0.035)

0.106
(0.023)

0.108
(0.027)

SNAP 0.079
(0.040)

0.073
(0.046)

OCCUP 0.090
(0.030)

0.087
(0.034)

Constant term 0.408
(0.458)

0.371
(0.537)

0.265
(0.356)

0.261
(0.416)

R
2 statistic 0.705 0.720 0.710 0.722

Sample size 296 204 296 204
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Community Survey 5-Year (2015–2019) database. The second data set, labeled 
CSAs ≥ 10,000, covers only those countywide statistical areas with at least 10,000 
population, as shown in Fig. 3 above.

Table 2 demonstrates that, while the estimated coefficient of MULTI was reduced 
in comparison with the bivariate model of Fig. 3, the prevalence of multi-genera-
tional households remained the dominant factor in determining confirmed COVID-
19 cases during the Phase IV surge. Inclusion of all four regressors (not shown) 
resulted in an insignificant relationship for SNAP (p = 0.757) and a marginally sig-
nificant relation for OCCUP (p = 0.049). Having offered evidence that MULTI domi-
nates over other indicators of poverty, we focus on this variable as the critical covar-
iate in the estimates of the spatial epidemic model below.

4.2  Rapid Radial Expansion

The series of six maps in Fig. 4 below show the evolution of the cumulative case 
incidence at the end of weeks 2 through 7, respectively. The lighter shaded CSAs 
correspond to a cumulative incidence between 120 and 360 per 100,000, while 
the darker shaded CSAs correspond to a cumulative incidence of at least 360 per 
100,000.

By the end of week 2 (running from March 9–15), a focus of infection exceeding 
the 120-per-100,000 threshold can be seen in the Beverly Crest community of Los 

Fig. 4  Cumulative COVID-19 incidence in Los Angeles County at the end of weeks 3–8
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Angeles and the city of West Hollywood. By the end of week 3 (March 16–22), this 
focus had expanded to include the Brentwood and Belair communities to the west, 
the Melrose and Hancock Park neighborhoods to the east, and the Crestview com-
munity to the south. By the end of week 4 (March 23–29), the focus had further 
expanded to comprise a cluster of 18 communities, extending to Pacific Palisades to 
the west, forming a hotspot with cumulative incidence over 360 per 100,000 in the 
neighborhood of West LA surrounding the Veterans Affairs Medical Center. By the 
end of week 5 (the conclusion of Phase I), this enlarging cluster added three more 
communities of high concentration, including Crestview, Hancock Park, and Little 
Armenia. By weeks 6 and 7 (now in Phase II), the initial focus is no longer distin-
guishable, and the initial areas of higher concentration had migrated to the south and 
east.

Based upon Fig. 4 alone, the dominant mechanism underlying the continued rapid 
rise in confirmed case incidence during Phase I appears to be the local radial expan-
sion around a single focus. To be sure, several other isolated areas with a cumulative 
incidence over the 120-per-100,000 threshold can be seen in such relatively afflu-
ent communities as Marina Peninsula and the cities of Manhattan Beach and Palos 
Verdes Estates to the south. While this observation points to multiple importations 
by individuals with resources to travel, these parallel importations do not appear to 
have been controlling.

The map-based observations are supported by the results of spatial Models 1 and 
2 covering Phase I, shown in Table 3 below. We focus first on the base case on the 
left, where the radius of influence r was set equal to 1 km. The significant coeffi-
cient for the regressor W , which captures the spatial component, supports the radial 
expansion interpretation. Without any spatial component, the estimated reproductive 
number came to R = 1.72, but with the inclusion of a spatial component, the esti-
mate increased to R = 2.25.

In Spatial Model 2, moreover, the multiplicative effect of MULTI was significant. 
To appreciate the estimate of � = 0.047, consider the effect of a 12-percentage-point 
increase in the prevalence of at-risk multi-generational households, equivalent to 

Table 3  Spatial model estimates for phase I (February 24–April 5)

Standard errors are shown in parentheses below each parameter estimate. Estimates in boldface were 
significant at the level p < 0.01, while the estimates in italics were significant at p < 0.05. Sample 
size = 1,480 in all models. The reproductive number R was computed at the population mean value of 
14.94 for MULTI

Regressor 
(parameter)

Base case   r = 1. 0 km Alternative   r = 1.5 km

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

X (�) 1.235
(0.090)

1.165
(0.092)

0.775
(0.149)

1.235
(0.090)

1.089
(0.094)

0.669
(0.151)

W (�) 0.458
(0.126)

0.467
(0.126)

0.289
(0.057)

0.301
(0.057)

MULTI (�) 0.047
(0.014)

0.050
(0.014)

R 1.72 2.25 2.71 1.72 1.91 2.39



68 J. E. Harris 

1 3

Table 4  Spatial model estimates for phase II (April 6–July 19)

Standard errors are shown in parentheses below each parameter estimate. Estimates in boldface were 
significant at the level p < 0.01, while the estimates in italics were significant at p < 0.05. Sample 
size = 4,440 in all models. The reproductive number R was computed at the population mean value of 
14.94 for MULTI

Regressor 
(parameter)

Base case   b = 0.72 Alternative   b = 0.66

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

X ( �) 0.604
(0.011)

0.594
(0.011)

0.203
(0.030)

0.573
(0.011)

0.563
(0.011)

0.199
(0.028)

W ( �) 0.136
(0.026)

0.197
(0.026)

0.123
(0.024)

0.181
(0.024)

MULTI ( �) 0.022
(0.002)

0.020
(0.001)

R 0.84 1.01 1.01 0.87 1.04 1.04

Table 5  Spatial model estimates for phase III (July 20–October 18)

Standard errors are shown in parentheses below each parameter estimate. Estimates in boldface were sig-
nificant at the level p < 0.01, while the estimates in italics were significant at p < 0.05. Sample size = 4144 
in all models. The reproductive number R was computed at the population mean value of 14.94 for 
MULTI

Regressor 
(parameter)

Base case  f = 0.4 Alternative  f = 0.5

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

X ( �) 0.263
(0.017)

0.256
(0.017)

0.710
(0.063)

0.292
(0.018)

0.284
(0.018)

0.707
(0.064)

W ( �) 0.195
(0.066)

0.059
(0.068)

0.181
(0.067)

0.056
(0.068)

MULTI ( �)  − 0.020
(0.003)

 − 0.019
(0.003)

R 0.36 0.61 0.63 0.39 0.62 0.64

Table 6  Spatial model estimates for phase IV (October 19–January 10)

Standard errors are shown in parentheses below each parameter estimate. Estimates in boldface were 
significant at the level p < 0.01, while the estimates in italics were significant at p < 0.05. Sample 
size = 3,256 in all models. The reproductive number R was computed at the population mean value of 
14.94 for MULTI

Regressor 
(parameter)

Base case  f = 0.4 Alternative   f = 0.5

Model 0 Model 1 Model 2 Model 0 Model 1 Model 2

X ( �) 1.049
(0.016)

1.047
(0.017)

0.879
(0.044)

1.103
(0.017)

1.103
(0.018)

0.907
(0.046)

W ( �) 0.011
(0.031)

0.048
(0.032)

 − 0.003
(0.032)

0.041
(0.033)

MULTI ( �) 0.009
(0.002)

0.010
(0.002)

R 1.38 1.39 1.39 1.44 1.43 1.44
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the difference between the population-weighted mean values of MULTI in the top 
and bottom half of the distribution. Since the proportion S of susceptible individuals 
during this early phase of the epidemic is close to 1, the reproductive number would 
increase by (0.047 × 12)∕b = 0.78. Turning to the alternative case on the right where 
the radius of influence r was increased to 1.5 km, we see that the estimated parame-
ter � was significantly decreased. This finding supports the conclusion that the influ-
ence of nearby communities on the radial propagation of the virus was highly local.

4.3  Phase II: Epidemic on the Knife Edge

Tables 4, 5 and 6, respectively, display the corresponding parameter estimates for 
Phases II, III and IV. As in Table 3, each of the tables has two sections. The section 
on the left shows the base case, while the section on the right shows the effect of 
varying one of the parameters b , r , or f .

Table 4 shows the parameter estimates for Phase II. The estimated value of the 
transmission parameter �II in the base case is significantly lower than the corre-
sponding value �I obtained in the base case in Phase I, as shown in Table 3. (We use 
subscripts here to distinguish between the estimates for different phases.) This find-
ing is consistent with role of publicly imposed and voluntary lockdowns in reducing 
transmission during this phase of the epidemic.

While the estimate for �II is still significantly different from zero, the ratio γII/αII 
= 0.23 is smaller than the corresponding ratio γI/αI = 0.39 in Phase I. That is, radial 

Fig. 5  Distribution of reproductive number R among 296 countywide statistical areas during phase II



70 J. E. Harris 

1 3

expansion continued during Phase II, but had a smaller quantitative contribution 
than during Phase I. On the other hand, the ratio �II∕

(

�II + �II
)

 = 0.055 was larger 
than the corresponding ratio �I∕

(

�I + �I
)

 = 0.037. That is, transmission via multi-
generational households had a larger contribution during Phase II. These conclu-
sions are also borne out in the right-hand panel, based upon an assumed increase in 
the average duration of infectivity from 5.5 to 6.5 days.

During Phase II, the results for spatial Models 1 and 2 in the base case show the 
average reproductive number R for the entire county hovering around the endemic 
value of 1. With an estimate of � on the order of 0.02 in Model 2, even a 5-percent-
age-point increment or decrement in the variable MULTI would flip the curve of 
infectives from increasing (with R = 1.1) to decreasing (with R = 0.9). The result-
ing heterogeneity of the reproductive number is borne out in Fig. 5, which shows the 
distribution of Rit at week t = 6 at the start of Phase II.

While the lockdowns reduced R in the aggregate from about 2.7 in Phase I to 1.0 
in Phase II, Fig. 5 informs us that the velocity of the epidemic in Phase II remained 
quite variable. As we noted in connection with our discussion of Fig. 1, county-level 
officials reopened retail stores, indoor dining, hair salons, gyms and bars in May and 
June during Phase II. Figure 5 suggests that the impact of such reopening was likely 
to be quite variable.

Fig. 6  Time path percent infective ( I ) and percent susceptible ( S ) in CSAs the upper and lower halves of 
the distribution of MULTI
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4.4  Phase III: The Paradox of the Negative Coefficient

Table 5 displays the spatial model results for Phase III. The reduced estimates of the 
transmission parameter � in Models 0 and 1 are consistent with an inhibitory effect 
of the California health officer’s order reversing most of the county’s prior reopening 
orders of Phase II (Gutierrez 2020). The results of Model 2, however, tell a different 
story. The spatial influence parameter � is now insignificant, while the coefficient � 
of MULTI is now significantly negative. The right-hand panel of Table 5, displaying 
the alternative case where f  = 0.5, shows that this finding is not an artifact of our 
assumption concerning the extent of underascertainment of confirmed cases.

The apparent paradox of the negative coefficient is resolved in Fig.  6, which 
shows the time paths of estimated proportions of infective Iit and susceptible Sit in 
two groups of CSAs: those in the lower half and those in the upper half of the dis-
tribution of MULTI. The estimates are derived from the alternative case where f  = 
0.5. Those CSAs with a higher proportion of at-risk multi-generational households, 
rendered as the darker blue curves, consistently had a higher prevalence of active 
infection. However, after the state’s reversal order at the end of Phase II, the propor-
tion infected declined more rapidly among the high-MULTI CSAs. The inference is 
that the renewed lockdown had a greater deterrent impact on social mobility in those 
communities with a higher proportion of multi-generational households.

Figure 7 below relies upon smartphone mobility data to further explore the basis 
for this conclusion. Here, we’ve broken down CSAs into four quartiles of the distri-
bution of MULTI, with the highest quartile rendered as the darkest curve. For each 

Fig. 7  Visits to fast food restaurants from smartphones originating in CSAs in the four quartiles of the 
distribution of MULTI
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of the four groups of CSAs, the curve shows the trend in the number of fast-food-
restaurant visits by smartphones originating in CSAs within that group. The trends 
have been normalized so that the mean number of visits during the weeks of Febru-
ary 10 and 17, before the start of our study period, are equal to 100. Truncated at 
the left end of the graph are the precipitous declines in restaurant visits in all four 
groups during Phase I. Thus, the time line starts with the week of March 30 (week 
5).

Figure 7 shows all four quartiles of MULTI reaching the nadir of fast-food-
restaurant visitation rates during the week of April 6 (week 6). By that point, 
CSAs in the lowest quartile had exhibited the largest declines in response to the 
lockdowns of Phase I. Visitation rates recovered in all four groups during Phase 
II, as local restrictions were relaxed. Once the state health officer reversed these 
local reopening orders during the week of July 13 (week 20), visitation rates in 
the higher quartiles began to turn around, but the lowest quartile did not. By the 
week of September 14 (week 29 in Phase III), the spread between the highest 
and lowest quartiles had narrowed to less than 5 percentage points.

4.5  Phase IV: The Reproductive Number R Climbs Back Up To 1.4

Table 5 below shows our spatial model estimates for Phase IV. The most salient 
feature of Phase IV is the marked rise in the reproductive number R back up to 
1.4, despite the emergency stay-at-home orders issued by the Los Angeles mayor 
and the California regional health officer during week 40 (Garcetti 2020b; Pan 
2020). As in Table  4, we show the alternative case where the underascertain-
ment proportion f  is assumed to be 50%. The insignificant coefficient of the 
radial expansion parameter � , also seen in Model 2 for Phase III, indicates that 
within-CSA transmission had become the dominant mode of viral propagation.

While the estimated coefficient � of MULTI is smaller than the estimates for 
Phases I and II, it remains significantly different from zero. Thus, a 12-per-
centage-point increase in the prevalence of at-risk multi-generational house-
holds, equivalent to the difference between the population-weighted mean val-
ues of MULTI in the top and bottom half of the distribution, would increase the 
transmission parameter by only about 12 � ≈ 0.11. Still, over the course of the 
11  weeks of Phase IV, that increment alone would be sufficient to account for 
the divergence in the prevalence of active infection seen in Fig. 6.

To bring home this point, Fig.  8 plots the relation between the estimated 
cumulative proportion of infections (in the notation of our spatial model, 1 − 
Sit at t  = 45) against the prevalence of at-risk multi-generational households 
(that is, Zi ). As in Fig.  6, the estimates are derived from the alternative case 
where f  = 0.5. The fitted line has a slope of 0.777 (95% confidence interval, 
0.678–0.875). With the exception of some outlier CSAs with relatively small 
populations, the communities with the highest values of MULTI had a predicted 
cumulative prevalence approaching one-third of the population. Communi-
ties with the lowest values of MULTI, by contrast, had a predicted cumulative 
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prevalence under 10 percent. The predictions of the spatial SIR model in Fig. 8 
are thus broadly consistent with the dispersion in the cumulative incidence of 
confirmed cases seen in Fig. 2.

While Fig. 8 helps to explain the striking geographic variation in the burden 
of new SARS-CoV-2 infections during Phase IV, it does not address the under-
lying causes for the marked increase in the overall reproductive number to 1.4. 
If the increase in R were attributable to lapses in compliance with social dis-
tancing policies, we would have expected to see an increase in restaurant visits 
during the final weeks in Fig. 7 above. Neither has an increase in the amount of 
time spent outside the home been observed (Harris, 2020f).

5  Discussion

5.1  Summary of Findings

We identified four phases of the epidemic in Los Angeles County during February 
24, 2020 through January 10, 2021 (Fig. 1). Phase IV (running for 11 weeks starting 
October 19) accounted for more than two-thirds of all confirmed COVID-19 cases 
during the entire 46-week interval under study.

The map of the cumulative incidence of confirmed infections during Phase IV, 
we found, bore a striking resemblance with the corresponding map of the prevalence 

Fig. 8  Predicted cumulative incidence of infection (1 − S ) through week 45 in relation to the proportion 
of at-risk multi-generation households (MULTI)
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of at-risk multi-generational households (Fig.  2). In a multivariate cross-sectional 
analysis of approximately 300 communities in the county, the prevalence of at-risk 
multi-generational households (MULTI) was a more important determinant of the 
cumulative incidence of confirmed infections in Phase IV than other community-
specific indicators. These included the proportion of households with a total income 
below that of a single minimum-wage worker (INC22), the proportion of house-
holds with at least one worker in a low-wage occupation that could not be performed 
at home (OCCUP), and the proportion of households dependent on food stamps 
(SNAP) (Fig. 3 and Table 2).

We formulated a spatial modification of an SIR epidemic model that tested 
two distinct multiplicative effects on the transmission rate in each community: 
the effect of infection rates in adjacent communities (the parameter � ), and the 
effect of multi-generational household prevalence within the same community 
(the parameter � ). We estimated this model separately on the data for each of the 
four phases.

Phase I (weeks 0–5) was characterized by substantial adjacent-community 
effects operating within a narrow radius of 1 km (Table 3). This finding was in 
accordance with serial weekly maps of the spread of infection during Phase I, 
which showed initial, rapid radial extension from a focus originating in an afflu-
ent area containing such communities as Beverly Crest (Fig.  4). Phase I was 
also characterized by the significant influence of within-community multi-gen-
erational prevalence on transmission rates. As the epidemic expanded, hotspots 
began to develop in areas with higher concentrations of multi-generational house-
holds. The estimated overall reproductive number R during this phase was on the 
order of 2.7 (Table 3).

The flattening of the epidemic curve in Phase II (weeks 6–20) reflected the effects 
of voluntary and coerced social distancing, particularly the state-of-emergency 
orders issued during Phase I. Still, both adjacent-community effects and the within-
community impact of high proportions of multi-generational households remained 
significant (Table 4). While the global, countywide reproductive number R hovered 
around the endemic level of 1.0, local reproductive numbers varied widely from 0.6 
to 1.5, depending on the prevalence of multi-generational households in the com-
munity (Fig. 5).

As the epidemic curve began to rise toward the end of Phase II, the state ordered 
the reversal of measures taken at the county level to easy restrictions on retail 
stores, indoor dining, hair salons, gyms and bars (Fig. 1). As confirmed case inci-
dence declined during Phase III (weeks 21–34) in response to this public policy 
intervention (Fig. 1), the countywide reproductive number R dropped to about 0.6 
and adjacent-community effects were no longer consistently detectable (Table  5). 
More striking, however, was the finding that a high prevalence of multi-generational 
households was significantly associated with decreased—rather than increased—
viral transmission (Table 5). Phase III, it turned out, saw a narrowing in the gap in 
infection rates between communities with high and low percentages of multi-gener-
ational households (Fig. 6). This interpretation was supported by smartphone track-
ing data showing that the gap in restaurant visitation rates during this period had 
also narrowed (Fig. 7).
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During Phase IV (weeks 35–45), infection rates surged, with the global repro-
ductive number R reverting to 1.4 (Table 5). Spillover effects between communi-
ties were no longer detectable. The model parameter ( � ) relating multi-generational 
household prevalence to the transmission rate, while smaller than at the start of the 
epidemic, was still sufficiently large to generate a wide dispersion in cumulative 
infection rates. By the end of our study period (the week of January 4, 2021), esti-
mated cumulative infection rates varied from under 10% in communities with low 
multi-generational prevalence to greater than 30% in communities with a high per-
centage of at-risk multi-generational households (Fig. 8).

These findings, taken together, supported a critical role of household structure in 
the initial dissemination and continued wide propagation of SARS-CoV-2 infection 
in Los Angeles County.

5.2  Strengths and Limitations of This Study

Our study takes advantage of the cohort structure of our database, in which we fol-
low a group of related geographic units longitudinally over time. This structure 
allowed us to test a model of radial geographic expansion during Phases I and II 
of the Los Angeles County COVID-19 epidemic, and to elucidate the substantial 
heterogeneity of transmission patterns within the county over time. While the global 
reproductive number R hovered around the endemic level of 1 during Phase II, our 
approach permitted us to discern local reproductive numbers ranging from 0.6 to 
1.5. While the overall confirmed case incidence rate rose by about tenfold during 
Phase IV, we were able to identify wide community-specific dispersion in cumula-
tive disease rates.

On the other hand, our study is exclusively population-based. We do not follow 
a longitudinal cohort of individual households to see how many young adult mem-
bers went to a restaurant or a gym, got infected, and then brought their infections 
home to older household members. A population-based indicator such as the pro-
portion of households at risk for multigenerational transmission (MULTI) could thus 
be criticized as no more than a proxy for some other correlated characteristic of the 
community.

To be sure, we confirmed the quantitative importance of multi-generational 
household prevalence in a cross-sectional regression analysis that included other 
measures of poverty (INC22, SNAP) as well as the proportion of households with 
high-risk workers (OCCUP) (Table 2). Still, one might posit that the critical under-
lying variable is the proportion of Spanish-speaking households with uninsured 
members (Vijayan et al. 2020; Weng et al. 2020). One might similarly contend that 
our variable MULTI, which relied on the presence of at least one younger adult 
(aged 18–34) and another older adult (aged 45 or more) in the household, was no 
better an indicator of multi-generational transmission risk than, say, the number of 
persons per bathroom in the household. Data on the prevalence of such risk factors 
as smoking, elevated body mass index and comorbidities such as diabetes have been 
considered (Horn et  al. 2020), but these cofactors are more relevant to a study of 
disease morbidity and mortality.
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Our principal endpoint was the incidence of confirmed cases of COVID-19. It is 
now widely acknowledged that confirmed case counts significantly understate the 
actual numbers of SARS-CoV-2 infections (Havers et al. 2020).While we adjusted 
our spatial SIR model to account for an estimated 40–50% underascertainment, 
there is some evidence that underascertainment rates are much higher (Sood et al. 
2020; Wu et al. 2020). While we estimated that cumulative infection rates ranged 
from 10% to upwards of 30% across communities, another unpublished model sug-
gested that one in three residents of Los Angeles had already been infected (County 
DHS COVID-19 Predictive Modeling Team 2021).

One alternative endpoint would be seroprevalence, but serial population-based 
studies of seroprevalence are still uncommon (Hallal et al. 2020), and there is evi-
dence that population seroprevalence may decline with time (Buss et al. 2020). Hos-
pital admission rates have been studied as an alternative to confirmed case incidence 
(Harris, 2020b, 2020g), but such an endpoint would also depend on case severity. 
The test positivity rate—the proportion of positive tests among all persons tested—
has been employed as an endpoint in cross-sectional studies (Cotti et  al. 2020; 
Vijayan et al. 2020). Adaptation of this endpoint to a dynamic epidemic model is 
problematic, however, as the number of individuals tested is endogenous and must 
be modeled as well (Bhaduri et al. 2020).

To explain the paradoxically negative value of the parameter � during Phase III, 
we relied on data on smartphone visits to fast-food restaurants as an indicator of 
social mobility (Fig.  7). While data on smartphone visits to restaurants and bars 
have been repeatedly used as a measures of potential coronavirus exposure (Harris 
2020b, e), there has been no independent verification of their accuracy.

Our specification of a spatial modification of the conventional SIR model adheres 
to the modeling philosophy that one should introduce the minimum necessary modi-
fications of the most parsimonious model (Harris 2020b). One might contend that 
the appropriate base model would instead be the SEIR (susceptible-exposed-infec-
tive-resistant) version, which has been widely employed in studies of SARS-CoV-2 
transmission (Godio et al. 2020; Radulescu et al. 2020; Li et al. 2021). It is hardly 
clear, however, that the problem of coming up with the additional between-state 
transition parameters in the SEIR model is any more tractable than our problem of 
devising an inflation factor to account for unascertained cases in Sect. 2.5 above.

5.3  Characterizing the Initial Outbreak

Our geospatial mapping study (Fig. 4), in combination with our estimates of a spa-
tial SIR model for Phase I (Table 3), permitted us to characterize the initial outbreak 
of COVID-19 in Los Angeles County. The earliest days of the outbreak saw multiple 
parallel importations in several relatively affluent areas of the county where resi-
dents had the resources to travel. A phylogenetic analysis of SARS-CoV-2 samples 
drawn during March 22–April 15 at a major hospital located within one of the initial 
foci of infection found that the larger proportion belonged to clades derived from 
Europe (Zhang et al. 2020). The epidemic then spread by radial expansion over a 
period of weeks from this focus of infection to nearby communities with a higher 
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prevalence of multi-generational households. This pattern of spread by radial exten-
sion stands in sharp contrast to the earliest days of the outbreak in New York City, 
where community-transmitted infections were dispersed throughout all five bor-
oughs in a matter of days (Gonzalez-Reiche et al. 2020; Harris 2020c). Our estimate 
of a reproductive number R equal to 2.7 (Table 2, base case, Model 2) is consist-
ent with the estimate of R0 in the range of 2.43–3.10 for the Italy (D’Arienzo and 
Coniglio 2020), but falls below the estimates of 3.47 (range, 3.16–3.78) for New 
York City (Harris 2020d) and 3.54 (range, 3.40–3.67) for Wuhan (Hao et al. 2020), 
both of which had massive subway systems.

5.4  Heterogeneous Responses to Public Policies

Our analysis of a longitudinal panel of diverse communities within Los Angeles 
County helps us understand how responses to epidemic-control policies can be so 
heterogeneous. After the state-of-emergency orders issued in March, the county 
entered into Phase II during the week of April 6 with an overall endemic-level repro-
ductive number R of 1.0. Yet Fig. 5 informs us that the local reproductive numbers 
varied widely from 0.6 to 1.5.

In response to the flattening of the global epidemic curve in Phase II, county 
policy makers reopened retail stores, indoor dining, hair salons, gyms and bars in 
May and June (Money 2020; Parvini 2020; Shalby 2020a). When these actions over-
shot the mark, the Los Angeles County health officer issued an order closing indoor 
onsite dining (Los Angeles County Department of Public Health 2020). On July 13, 
the state public health officer closed indoor operations in bars not concurrently serv-
ing meals, as well as gyms in counties on its monitoring list, to which Los Angeles 
County already belonged (Angell 2020).

All of these public policy decisions applied to the entirety of Los Angeles County. 
Yet the evidence is that the responses to these policies varied widely. Figure 7 shows 
that fast-food restaurant visits by residents of those communities in the top quar-
tile of multi-generational household prevalence, which had the highest reproductive 
numbers, had a very different response than visits by residents of communities in 
the lowest quartile, which had the lowest reproductive numbers. While this finding 
alone does not establish that all indicators of social mobility responded in the same 
manner, it highlights the bluntness of policy instruments that were to be applied uni-
formly to a county of 10 million inhabitants.

5.5  What Caused the Phase IV Surge?

While Figs. 3 and 8 and Table 2 establish the substantial contribution of multi-gen-
erational households to the surge in confirmed case incidence observed in Phase IV, 
they do not tell us why the surge occurred in the first place. In terms of our spatial 
SIR model, they do not explain the striking rebound in the transmission parameter � 
that is evident in the data.
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Figure 7 tells us that fast-food-restaurant visits declined overall during Phase IV. 
Other smartphone-based indicators of social mobility showed little change (Har-
ris 2020f) despite the emergency stay-at-home orders issued by the Los Angeles 
mayor and the California regional health officer during week 40 (Garcetti 2020b; 
Pan 2020). Even visits to gyms, compiled in an earlier draft of this article (Harris 
2020h), continued to decline.

Two plausible explanations come to mind. First, smartphone-based indices of 
social mobility have not captured large family gatherings that occurred during the 
succession of winter holidays that began with Thanksgiving. The publicly available 
smartphone data show only how frequently individual device holders moved and 
where they went, but not how many were congregated in the same place. A subse-
quent decline in the frequency of such high-density gatherings may help to explain 
the drop in confirmed case incidence that has so far been observed in January 2021, 
outside the observation interval of the present study. Second, a new strain of SARS-
CoV-2 could have emerged in Southern California (Zhang et  al. 2021). The diffi-
culty with the latter explanation is that it does not readily explain the subsequent 
post-Phase IV decline in incidence that now appears to be under way.

5.6  Implications

Despite an array of aggressive public policies aimed at reducing social mobility, our 
findings suggest that intra-household transmission has been a critical vehicle for the 
persistence of the COVID-19 epidemic in Los Angeles County. The prevalence of 
at-risk households in a community, it appears, is not simply a predictor of the persis-
tence of coronavirus transmission, but also a multiplier of the effects of other poli-
cies aimed at social distancing. The impact of preventing one case of asymptomatic 
infection in a socially active young adult, who would otherwise have brought his or 
her infection into the household, will depend directly on the number of susceptible 
household members who have been spared.

Our results cast a pessimistic shadow on so-called targeted policies that selec-
tively relax restrictions on lower-risk, younger persons while seeking to protect 
more vulnerable older persons (Acemoglu et  al. 2020; Chikina and Pegden 2020; 
Gollier 2020; Iverson et al. 2020). Such a policy might be feasible in settings where 
older persons are sequestered in retirement communities or assisted living facilities, 
but the data here show that this is not the reality of Los Angeles County.

Most importantly, our findings require us to view the household rather than the 
individual as the foremost target of healthcare policy. The message “protect your-
self” (protégete in Spanish) needs to be reconfigured as “protect your family” (pro-
tege a tu familia). When a healthcare provider encounters a new patient with sus-
pected or established COVID-19, the interview needs to turn quickly to questions 
about other household members, their health status, and their symptoms. The widely 
recognized model of the patient-centered medical home (Alexander and Bae 2012) 
needs to be replaced by the family- and household-centered medical home.
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