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Abstract
Choice logics constitute a family of propositional logics and are used for the representation of
preferences, with especially qualitative choice logic (QCL) being an established formalism
with numerous applications in artificial intelligence. While computational properties and
applications of choice logics have been studied in the literature, only few results are known
about the proof-theoretic aspects of their use. We propose a sound and complete sequent
calculus for preferred model entailment in QCL, where a formula F is entailed by a QCL-
theory T if F is true in all preferred models of T . The calculus is based on labeled sequent
and refutation calculi, and can be easily adapted for different purposes. For instance, using
the calculus as a cornerstone, calculi for other choice logics such as conjunctive choice logic
(CCL) and lexicographic choice logic (LCL) can be obtained in a straightforward way.

Keywords Sequent calculus · Choice logics · Preferences · Non-monotonic logics ·
Refutation systems · Antisequents · Preferred Model Entailment

1 Introduction

Choice logics are propositional logics for the representation of preferences between different
options [1]. These logics add newconnectives to classical propositional logic that allow for the
formalization of ranked options. A prominent example is qualitative choice logic (QCL) [2],
which adds the connective ordered disjunction �× to classical propositional logic. Intuitively,
A �×B means that if possible A, but if A is not possible than at least B. The semantics of a
choice logic induce a preference ordering over the models of a formula.
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Let us make this more concrete with the help of a small example: say that we want to
choose ice cream flavors. The following QCL-formula expresses that we want strawberry
and either hazelnut or chocolate, but preferably hazelnut. Moreover, we do not want hazelnut
and chocolate together.

strawberry ∧ (hazelnut �×chocolate) ∧ ¬(hazelnut ∧ chocolate).

Themodels of the above formula according toQCL-semantics areM1={strawberry, hazelnut}
and M2 = {strawberry, chocolate}, with M1 being preferred to M2.

As choice logics are well suited for preference handling, they have a multitude of appli-
cations in AI such as logic programming [3], alert correlation [4], or database querying [5].
Recently, it has been suggested that choice logics can be used for preference learning [6],
with the problem of antibiotics recommendations chosen as a particular use case [7]. But
while computational properties and applications of choice logics have been studied in the
literature, only few results are known about the proof-theoretic aspects of their use. In par-
ticular, no proof system capable of deriving valid sentences containing choice operators has
been described yet. In this paper we propose a sound and complete calculus for preferred
model entailment in QCL that can easily be generalized to other choice logics.

Entailment in choice logics is non-monotonic: conclusions that have been drawn might
not be derivable in light of new information. For instance, let us say that, in our ice cream
example above, we learn that hazelnut is not available. Then M2 is the only model of the
updated formula and we can no longer conclude that hazelnut is contained in all preferred
models. It is therefore not surprising that choice logics are related to other non-monotonic
formalisms. For example, it is known [2] that QCL can capture propositional circumscription
[8] and that, if additional symbols in the language are admitted, circumscription can be used
to generate models corresponding to the inclusion-preferred QCLmodels up to the additional
atoms. We do not intend to use this translation of our choice logic formulas (or sequents) in
order to employ an existing calculus for circumscription, for instance [9].

Instead, we define calculi in sequent format directly for choice logics, which are different
from existing non-monotonic logics in the way non-monotonicity is introduced. Specifically,
the non-standard part of our logics is a new logical connective which is fully embedded in the
logical language. For this reason, calculi for choice logics also differ from most other calculi
for non-monotonic logics: our calculi do not use non-standard inference rules as in default
logic [10], modal operators expressing consistency or belief as in autoepistemic logic [11],
or predicates whose extensions are minimized as in circumscription. However, one method
that can also be applied to choice logics is the use of a refutation calculus (also known as
rejection or antisequent calculus) axiomatising invalid formulas, i.e., non-theorems [12–15].
Refutation calculiwere successfully employed for entailment in non-monotonic logics [9, 16].
Specifically, by combining a refutation calculus with an appropriate sequent calculus, elegant
proof systems for the central non-monotonic formalisms such as default logic, autoepistemic
logic, and circumscription were obtained.

Another aspect of choice logics semantics we must account for is their similarity to many-
valued logics. Specifically, interpretations ascribe a natural number called satisfaction degree
to choice logic formulas. Preferred models of a formula are then those models with the least
degree. There are several kinds of sequent calculus systems formany-valued logics, where the
representation as a hypersequent calculus [16, 17] plays a prominent role. However, there are
crucial differences between choice logics and many-valued logics in the usual sense. Firstly,
choice logic interpretations are classical, i.e., they set propositional variables to either true or
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false. Secondly, non-classical satisfaction degrees only arise when choice connectives, e.g.
ordered disjunction in QCL, occur in a formula. Thirdly, when applying a choice connective
◦ to two formulas A and B, the degree of A ◦ B does not only depend on the degrees of
A and B, but also on the maximum degrees that A and B can possibly assume. Therefore,
techniques used in proof systems for conventional many-valued logics cannot be applied
directly to choice logics.

In [18] a sequent calculus based system for reasoning with contrary-to-duty obligations
was introduced, where a non-classical connective was defined to capture the notion of repa-
rational obligation, which is in force only when a violation of a norm occurs. This is related
to the ordered disjunction in QCL, however, based on the intended use in [18] the system was
defined only for the occurrence of the new connective on the right side of the sequent sign.
We aim for a proof system for reasoning with choice logic operators, and to deduce formulas
from choice logic formulas. Thus, we need a calculus with left and right inference rules.

To obtain such a calculus we combine the idea of a refutation calculus with methods
developed for multi-valued logics. First, we develop a (monotonic) sequent calculus for
reasoning about satisfaction degrees using a labeled calculus, a method developed for (finite)
many-valued logics [19–21]. Secondly, we define a labeled refutation calculus for reasoning
about invalidity in terms of satisfaction degrees. Finally, we join both calculi to obtain a
sequent calculus for the non-monotonic entailment of QCL. To this end, we introduce a new,
non-monotonic inference rule that has sequents of the two labeled calculi as premises and
formalizes degree minimization.

The rest of this paper is organized as follows. In the next section we present the basic
notions of choice logics and introduce the most prominent choice logic QCL, as well as CCL
(conjunctive choice logic) [22] and LCL (lexicographic choice logic) [1]. In Section 3 we
develop a labeled sequent calculus for propositional logic extended by theQCL connective �×.
This calculus is shown to be sound and complete and already can be used to derive interesting
sentences containing choice operators. In Section 4 we extend the previously defined sequent
calculus with an appropriate refutation calculus and non-monotonic reasoning, to capture
entailment in QCL. The developed methodology for QCL can be extended to other choice
logics as well. In particular we show in Sect. 5 how the calculi can be adapted for CCL and
LCL.

Note that this is an extended version of a paper published at IJCAR 2022 [23]. Newly
added in this iteration are our calculi for the minmax and inclusion-based preferred model
semantics (cf. Definitions 17 and 19, as well as Theorem 6), our calculus for LCL (Sect. 5.2),
and a brief outline on how to obtain calculi for choice logics with multiple choice connectives
(Sect. 5.3). The soundness of the cut-rule in our labeled calculi is now explicitly shown (cf.
Propositions 2 and 5). Moreover, additional examples (Examples 3, 6, 11,12,13) and more
detailed explanations have been added throughout the text.

2 Choice Logics

First, we formally define the notion of choice logics in accordance with the choice logic
framework of [1, 24] before giving concrete examples in the form of QCL, CCL, and LCL.
Finally, we define preferred model entailment.
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2.1 Syntax and Semantics

Definition 1 Let U denote the (countably infinite) set of propositional variables (also called
atoms). The set of choice connectives CL of a choice logic L is a finite set of symbols such
that CL ∩ {¬,∧,∨} = ∅. The set FL of formulas of L is defined inductively as follows:

1. if a ∈ U , then a ∈ FL;
2. if F ∈ FL, then (¬F) ∈ FL;
3. if F,G ∈ FL, then (F ◦ G) ∈ FL for ◦ ∈ ({∧,∨} ∪ CL).

For instance, in QCL the set of choice connectives is CQCL = { �×}. An example of a
QCL-formula is ((a �×c)∧ (b �×c)) ∈ FQCL. Formulas that do not contain a choice connective
are referred to as classical formulas.

The semantics of a choice logic is given by two functions, satisfaction degree and option-
ality. The satisfaction degree of a formula given an interpretation is either a natural number
or ∞. The lower this degree, the more preferable the interpretation. The optionality of a
formula describes the maximum finite satisfaction degree that this formula can be ascribed,
and is used to penalize non-satisfaction.

Definition 2 The optionality of a choice connective ◦ ∈ CL in a choice logic L is given by
a function opt◦L : N

2 → N such that opt◦L(k, �) ≤ (k + 1) · (� + 1) for all k, � ∈ N. The
optionality of an L-formula is given via optL : FL → N with

1. optL(a) = 1, for every a ∈ U ;
2. optL(¬F) = 1;
3. optL(F ∧ G) = max(optL(F), optL(G));
4. optL(F ∨ G) = max(optL(F), optL(G));
5. optL(F ◦ G) = opt◦L(optL(F), optL(G)), ◦ ∈ CL.

The optionality of a classical formula is always 1. Note that, for any choice connective ◦, the
optionality of F ◦G is bounded such that optL(F ◦G) ≤ (optL(F)+1) ·(optL(G)+1). The
reason for this is that there are optL(F) many finite degrees that could be ascribed to F , plus
the infinite degree∞. Likewise for G. Thus, there are at most (optL(F)+1) · (optL(G)+1)
possibilities in which the degrees of F and G can be combined.

In this paper, an interpretation I is a set of propositional variables, i.e., I ⊆ U . A variable
x is true under I iff x ∈ I, and false under I iff x /∈ I. Regarding the domain of satisfaction
degrees we write N for (N ∪ {∞}).
Definition 3 The satisfaction degree of a choice connective ◦ ∈ CL in a choice logic L
is given by a function deg◦

L : N
2 × N

2 → N such that deg◦
L(k, �,m, n) ≤ opt◦L(k, �) or

deg◦
L(k, �,m, n) = ∞ for all k, � ∈ N and all m, n ∈ N. The satisfaction degree of an

L-formula under an interpretation I ⊆ U is given via degL : 2U × FL → N with

1. degL(I, a) = 1 if a ∈ I, degL(I, a) = ∞ otherwise for every a ∈ U ;
2. degL(I,¬F) = 1 if degL(I, F) = ∞, degL(I,¬F) = ∞ otherwise;
3. degL(I, F ∧ G) = max(degL(I, F), degL(I,G));
4. degL(I, F ∨ G) = min(degL(I, F), degL(I,G));
5. degL(I, F ◦ G) = deg◦

L(optL(F), optL(G), degL(I, F), degL(I,G)), ◦ ∈ CL.

Note that, by definition, either degL(I, F) ≤ optL(F) or degL(I, F) = ∞ for all L-
formulas F , as intended.
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We sometimes use the alternative notation I |�L
m F for degL(I, F) = m. If m < ∞, we

say that I satisfies F (to a finite degree), and if m = ∞, then I does not satisfy F . If F is a
classical formula, then I |�L

1 F ⇐⇒ I |� F and I |�L∞ F ⇐⇒ I �|� F . The symbol ⊥
is shorthand for the formula (a ∧ ¬a), where a can be any variable. We have optL(⊥) = 1
and degL(I,⊥) = ∞ for any interpretation I in every choice logic.

The models of a choice logic formula are the interpretations that satisfy the formula, and
the preferred model are the models that satisfy the formula to a minimal degree.

Definition 4 Let L be a choice logic, I an interpretation, and F an L-formula. I is a model
of F , written as I ∈ ModL(F), if degL(I, F) < ∞. I is a preferred model of F , written as
I ∈ Prf L(F), if I ∈ ModL(F) and degL(I, F) ≤ degL(J , F) for all other interpretations
J .

We also require the notion of classical counterparts for choice connectives and choice
logic formulas.

Definition 5 LetL be a choice logic. The classical counterpart of a choice connective ◦ ∈ CL
is the classical binary connective� such that, for all atoms a and b, we have degL(I, a◦b) <

∞ ⇐⇒ I |� a � b. The classical counterpart of an L-formula F is denoted as cp(F)

and is obtained by replacing all occurrences of choice connectives in F by their classical
counterparts.

Every choice connective has exactly one classical binary connective as its classical coun-
terpart [24, Proposition 22]. For example, the classical counterpart of ordered disjunction �×
is regular disjunction ∨, and the classical counterpart of the QCL-formula F = (a �×b) ∨ c
is cp(F) = (a ∨ b) ∨ c.

A natural property of choice logics considered in the literature is that choice connectives
can be replaced by their classical counterpart without affecting satisfiability, meaning that
degL(I, F) < ∞ ⇐⇒ I |� cp(F) holds for all L-formulas F [24, Proposition 23].

2.2 Prominent Choice Logics

So far we introduced choice logics in a quite abstract way. We now introduce three particular
instantiations, namely QCL [2], the first and most prominent choice logic in the literature,
CCL [22], which introduces a connective �� called ordered conjunction in place of QCL’s
ordered disjunction, and LCL [1], which replaces ordered disjunction with a lexicographic
operator.

Definition 6 QCL is the choice logic such that CQCL = { �×}, and, if k = optQCL(F), � =
optQCL(G), m = degQCL(I, F), and n = degQCL(I,G), then

optQCL(F �×G) = opt �×
QCL(k, �) = k + �, and

degQCL(I, F �×G) = deg �×
QCL(k, �,m, n) =

⎧
⎪⎨

⎪⎩

m if m < ∞;
n + k if m = ∞, n < ∞;
∞ otherwise.

In the above definition, we can see how optionality is used to penalize non-satisfaction:
given a QCL-formula F �×G and an interpretation I, if I satisfies F (to some finite degree),
then degQCL(I, F �×G) = degQCL(I, F) ≤ optQCL(F); if I does not satisfy F , then
degQCL(I, F �×G) = optQCL(F) + degQCL(I,G) > optQCL(F). Therefore, interpretations
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Table 1 The classical
connectives ∧, ∨ and the choice
connectives �× (QCL), �� (CCL),
and �� (LCL), applied to atoms.
Taken from [1]

I a ∧ b a ∨ b a �×b a ��b a��b
∅ ∞ ∞ ∞ ∞ ∞
{b} ∞ 1 2 ∞ 3

{a} ∞ 1 1 2 2

{a, b} 1 1 1 1 1

that satisfy F result in a lower degree, i.e., are more preferable, compared to interpreta-
tions that do not satisfy F . Table 1 shows how ordered disjunction behaves when applied to
atoms. The following example highlights how classical conjunction interacts with ordered
disjunction.

Example 1 Consider theQCL-formula F = (a �×c)∧(b �×c). Asmentioned already, the classi-
cal counterpart of �× is∨, i.e., cp(F) = (a∨c)∧(b∨c). Thus, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}
∈ ModQCL(F). Of these models, {a, b} and {a, b, c} satisfy F to a degree of 1 while {c},
{a, c}, and {b, c} satisfy F to a degree of 2. Therefore, {a, b}, {a, b, c} ∈ Prf QCL(F).

Next, we define CCL. Note that we follow the revised definition of CCL [1], which differs
from the initial specification.1 Intuitively, given a CCL-formula F ��G it is best to satisfy
both F and G, but also acceptable to satisfy only F . For instance, when buying a new car,
one might insist that the car has cruise control (cruise), while preferring configurations that
additionally feature a lane assistant (lane). This can be formalized in CCL as the formula
cruise ��lane.

Definition 7 CCL is the choice logic such that CCCL = { ��}, and, if k = optCCL(F), � =
optCCL(G), m = degCCL(I, F), and n = degCCL(I,G), then

optCCL(F ��G) = k + �, and

degCCL(I, F ��G) =

⎧
⎪⎨

⎪⎩

n if m = 1, n < ∞;
m + � if m < ∞ and (m > 1 or n = ∞);
∞ otherwise.

Example 2 Consider the CCL-formula G = (a ��c) ∧ (b ��c). Note that the classical counter-
part of �� is the first projection, i.e., cp(G) = a ∧ b. Thus, {a, b}, {a, b, c} ∈ ModCCL(G).
Of these models, {a, b, c} satisfies G to a degree of 1 while {a, b} satisfies G to a degree of
2. Therefore, {a, b, c} ∈ Prf CCL(G).

The last choice logic we consider, LCL, employs a more fine-grained type of preference:
given a LCL-formula F ��G, it is best to satisfy F and G, second-best to satisfy only F , and
third-best to satisfy only G.

Definition 8 LCL is the choice logic such that CLCL = {��}, and, if k = optLCL(F), � =
optLCL(G), m = degLCL(I, F), and n = degLCL(I,G), then

optLCL(F ��G) = (k + 1) · (� + 1) − 1, and

1 It seems that, under the initial definition ofCCL, a ��b is always ascribed a degree of 1 or∞, i.e., non-classical
degrees cannot be obtained (cf. Definition 8 in [22]).
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degLCL(I, F ��G) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(m − 1) · � + n if m < ∞, n < ∞;
k · � + m if m < ∞, n = ∞;
k · � + k + n if m = ∞, n < ∞;
∞ otherwise.

Example 3 Consider the LCL-formula H = (a��c) ∧ (b��c). Just as in the case of
QCL, the classical counterpart of �� is ∨, i.e., cp(H) = (a ∨ c) ∧ (b ∨ c). Thus,
{c}, {a, b}, {a, c}, {b, c}, {a, b, c} ∈ ModLCL(H). Of these models, {a, b, c} satisfies H to a
degree of 1, {a, b} satisfies H to a degree of 2, and {c}, {a, c}, {b, c} satisfy H to a degree of
3. Therefore, {a, b, c} ∈ Prf LCL(H).

2.3 PreferredModel Entailment

If L is a choice logic, then a set of L-formulas is called an L-theory. An L-theory T entails a
classical formula F , written as T |∼ F , if F is true in all preferred models of T . However, we
first need to define what the preferred models of a choice logic theory are. There are several
approaches for this. In the original QCL paper [2], a lexicographic and an inclusion-based
approach were introduced. A simpler but less expressive minmax semantics was introduced
later on [1].

Definition 9 Let L be a choice logic, I an interpretation, and T an L-theory. I is a model of
T , written as I ∈ ModL(T ), if degL(I, F) < ∞ for all F ∈ T . Moreover, Ik

L(T ) denotes the
set of formulas in T satisfied to a degree of k by I, i.e., Ik

L(T ) = {F ∈ T | degL(I, F) = k}.
• I is a lexicographically preferredmodel of T , written as I ∈ Prf lexL (T ), iff I ∈ ModL(T )

and if there is no J ∈ ModL(T ) such that, for some k ∈ N and all l < k, |Ik
L(T )| <

|J k
L(T )| and |IlL(T )| = |J l

L(T )| holds.
• I is an inclusion-based preferredmodel of T , written as I ∈ Prf incL (T ), iff I ∈ ModL(T )

and if there is noJ ∈ ModL(T ) such that, for some k ∈ N and all l < k, Ik
L(T ) ⊂ J k

L(T )

and IlL(T ) = J l
L(T ) holds.

• I is a minmax preferred model of T , written as I ∈ Prf mmL (T ), iff I ∈ ModL(T ) and if
there is no J ∈ ModL(T ) such that max{degL(I, F) | F ∈ T } > max{degL(J , F) |
F ∈ T }.

Intuitively, the lexicographic and inclusion-based approaches choose those models as
preferred models that satisfy as many formulas in the theory to a degree of 1 as possible.
If there is a tie between two interpretations with regards to degree 1, then it is determined
which interpretation satisfies more formulas to a degree of 2, and so forth. The differences
between the two approaches is how the phrase ‘as many degrees as possible’ is understood:
either in terms of cardinality (lexicographic approach) or in terms of subset-maximization
(inclusion-based approach). As for the minmax semantics, a finite theory T = {A1, . . . , An}
can straightforwardly be seen as the conjunction of its formulas, i.e., T = A1 ∧ · · · ∧ An .
We now formally define preferred model entailment:

Definition 10 Let L be a choice logic, T an L-theory, S a classical theory, and σ ∈
{lex, inc,mm}. T |∼σ

L S iff for all I ∈ Prf σ
L(T ) there is F ∈ S such that I |� F . We

overload this notation and instead of T |∼σ
L {F} we also write T |∼σ

L F .
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Example 4 Consider the QCL-theory T = {¬(a ∧ b), a �×c, b �×c}. Then {c}, {a, c}, {b, c} ∈
ModQCL(T ). Note that, because of ¬(a ∧ b), a model of T cannot satisfy both a �×c and b �×c
to a degree of 1. Specifically,

{a, c}1QCL(T ) = {¬(a ∧ b), a �×c} and {a, c}2QCL(T ) = {b �×c},
{b, c}1QCL(T ) = {¬(a ∧ b), b �×c} and {b, c}2QCL(T ) = {a �×c},
{c}1QCL(T ) = {¬(a ∧ b)} and {c}2QCL(T ) = {a �×c, b �×c}.

Thus, {a, c}, {b, c} ∈ Prf lexQCL(T ) but {c} /∈ Prf lexQCL(T ). It can be concluded that T |∼lex
QCL

c ∧ (a ∨ b). However, T �|∼ lex
QCLa and T �|∼ lex

QCLb. Analogously for |∼inc
QCL.

Regarding |∼mm
QCL, note that all threemodels of T have the sameminmax degree, namely 2.

Thus, {a, c}, {b, c}, {c} ∈ Prf lexQCL(T ), which means that T �|∼ mm
QCLc ∧ (a ∨ b).

It is easy to see that preferred model entailment is non-monotonic. For example,
{a �×b} |∼σ

QCL a but {a �×b,¬a} �|∼ σ
QCL a for all σ ∈ {lex, inc,mm}. Previously it has

been examined [1, 2] whether preferred model entailment for QCL and other choice logics
satisfies semantical properties for non-monotonic entailment laid out by Kraus, Lehmann,
and Magidor [25, 26]. It was found that, given finite theories, |∼σ

L satisfies cautious mono-
tonicity and cumulative transitivity for all of σ ∈ {lex, inc,mm}. These properties are widely
considered to be among the basic properties that any defeasible entailment relation should
satisfy [25]. Moreover, |∼lex

L and |∼mm
L satisfy rational monotonicity, an even stronger and

often desired property of non-monotonic entailment relations [25, 26], while |∼inc
QCL does

not.

3 The Sequent Calculus L[QCL]

Towards the development of a calculus for preferred model entailment, we first propose a
labeled calculus for reasoning about the satisfaction degrees of QCL formulas in sequent for-
mat and prove its soundness and completeness. An advantage of the sequent calculus format
is the possibility to have symmetrical left and right rules for all connectives, in particular for
the choice connectives. This is in contrast to the representation of ordered disjunction in the
calculus for deontic logic [18], in which only right-hand side rules are considered.

As the calculus will be concerned with satisfaction degrees rather than preferred models,
entailment will be defined in terms of satisfaction degrees. To this end, the formulas occurring
in the sequents of the calculus will be labeled.

Definition 11 (labeled QCL-formulas) Let A be a QCL-formula and k ∈ N, then (A)k is a
labeled QCL-formula. The labeled QCL-formula (A)k is satisfied by those interpretations
that satisfy A to a degree of k.

Instead of labeling formulas with degree ∞ we will use the negated formula, i.e., instead
of (A)∞ we will use (¬A)1. Observe that (A)k for optL(A) > k can never have a model. We
will deal with such formulas by replacing them with (⊥)1. For classical formulas, we may
write A for (A)1.

Definition 12 (labeled QCL-sequents) Let (A1)k1 , . . . , (Am)km and (B1)l1 , . . . , (Bn)ln be
labeled QCL-formulas. Then
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(A1)k1 , . . . , (Am)km � (B1)l1 , . . . , (Bn)ln

is a labeled QCL-sequent.
(A1)k1 , . . . , (Am)km � (B1)l1 , . . . , (Bn)ln is valid if and only if every interpretation that

satisfies all labeled QCL-formulas (A1)k1 , . . . , (Am)km to the degree specified by the label
also satisfies at least one labeled QCL-formula out of (B1)l1 , . . . , (Bn)ln to the degree spec-
ified by the label.

In contrast to preferred model entail, the entailment in terms of satisfaction degrees, as
defined above, is monotonic.

Frequently we will write (A)<k as shorthand for the sequence of labeled QCL-formulas
(A)1, . . . , (A)k−1 and (A)>k for the sequence of labeled QCL-formulas (A)k+1, . . . ,

(A)optQCL(A), (¬A)1. Moreover, 〈�, (A)i � �〉i<k will denote the sequence of labeled QCL-
sequents

�, (A)1 � � . . . �, (A)k−1 � �.

Analogously, 〈�, (A)i � �〉i>k will denote the sequence of labeled QCL-sequents

�, (A)k+1 � � . . . �, (A)optQCL(A) � � �, (¬A)1 � �.

Below we define the sequent calculus L[QCL] over labeled QCL-sequents. In addition to
introducing inference rules for the choice connective �× we have to modify the inference
rules for conjunction and disjunction of propositional LK. We first state the calculus, and
then explain the intuition behind the rules.

Definition 13 (L[QCL]) The axioms of L[QCL] are labeled QCL-sequents � � � such that
⊥ ∈ � or such that p ∈ � and p ∈ � for some atom p. The inference rules are given below.
Whenever a labeled QCL-formula (F)k appears in the conclusion of an inference rule (except
for the dol- and dor -rules) it holds that k ≤ optL(F).
The rules for the classical connectives are

� � (cp(A))1,�

�, (¬A)1 � �
¬l �, (cp(A))1 � �

� � (¬A)1,�
¬r

�, (A)k � (B)<k,� �, (B)k � (A)<k,�

�, (A ∨ B)k � �
∨ l

〈�, (A)i � �〉i<k 〈�, (B)i � �〉i<k � � (A)k, (B)k,�

� � (A ∨ B)k,�
∨ r

�, (A)k � (B)>k,� �, (B)k � (A)>k,�

�, (A ∧ B)k � �
∧ l

〈�, (A)i � �〉i>k 〈�, (B)i � �〉i>k � � (A)k, (B)k,�

� � (A ∧ B)k,�
∧ r

The rules for ordered disjunction are:

�, (A)k � �

�, (A �×B)k � �
�×l1

�, (B)l , (¬A)1 � �

�, (A �×B)optQCL(A)+l � �
�×l2

� � (A)k,�

� � (A �×B)k,�
�×r1

� � (¬A)1,� � � (B)l ,�

� � (A �×B)optQCL(A)+l ,�
�×r2

where k ≤ optL(A) and l ≤ optL(B).
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The degree overflow rules2 are:

�,⊥ � �

�, (A)optQCL(A)+k � �
dol

� � �

� � (A)optQCL(A)+k,�
dor

where k ∈ N.

The rules for negation are analogous to propositional LK. Note that we replace A by
its classical counterpart cp(A). This reflects the fact that negation in choice logics erases
all information about preferences, and that we therefore are only interested in the classical
satisfaction of A.

The idea behind the ∨-left rule is that a model M of the labeled QCL-formula (A)k is
only a model of the labeled QCL-formula (A ∨ B)k if there is no l < k s.t. M is a model of
(B)l . Therefore, every model of (A ∨ B)k is a model of � if and only if

• every model of (A)k is a model of � or of some (B)l with l < k,
• every model of (B)k is a model of � or of some (A)l with l < k.

Essentially, the same idea works for ∧-left but with l > k. For the ∨-right rule, in order for
every model of � to be a model of (A∨ B)k , every model of � must either be a model of (A)k
or of (B)k and no model of � can be a model of (A)l for l < k, i.e., �, (A)l � ⊥. Similarly
for ∧-right.

Observe that, in case we are dealing with classical formulas only, the modified inference
rules for ∧ and ∨ are equivalent to the inference rules for ∧ and ∨ of propositional LK
without structural rules [27, Section 3.5]. Consider the ∨-left rule in L[QCL]: if A and B are
classical, and k = 1, the rule equals the ∨-left rule of propositional LK, as (A)<1 is empty.
Similarly, the ∨-right rule in L[QCL] equals the ∨-right rule in propositional LK, because
〈�, (A)i � �〉i<1 is empty. Moreover, as (A)>1 = ¬A for a classical formula A, the ∧-left
rule of L[QCL] is equivalent to the ∧-left rule of propositional LK if A and B are classical
formulas and k = 1 (but splits the proof-tree unnecessarily). Analogously for ∧-right, as
〈�, (A)i � �〉i>1 equals �,¬A � � if A is classical. Therefore, this is equivalent to the
∧-right rule of propositional LK if A and B are classical formulas and k = 1 (but adds an
unnecessary third condition � � A, B,�).

The rules for ordered disjunction follow straightforwardly from QCL-semantics. If A �×B
is satisfied to a degree k ≤ optQCL(A), then we know that A must be satisfied to a degree
of k. If A �×B is satisfied to a finite degree higher than optQCL(A), then we know that B is
satisfied but A is not.

The intuition behind the degree overflow rules dol and dor is that we sometimes need to fix
sequences inwhich a labeledQCL-formula F is assigned a label kwith optQCL(F) < k < ∞.
This can happen after applying the rules for conjunction/disjunction. For instance, consider
the∧l-rule: as the premise we have�, (A∧B)k � �with k ≤ optQCL(A∧B). Recall that the
optionality of this conjunct is defined as optQCL(A ∧ B) = max(optQCL(F), optQCL(G)).
Thus, it may be the case that, for example, optQCL(A) < k. The ∧l rule, however, will
introduce the premise�, (A)k � (B)>k,�. Since (A)k cannever be satisfied, asoptQCL(A) <

k < ∞, we have to apply the dol-rule which replaces (A)k by ⊥.
Wenowprovide someexamples for valid derivations inL[QCL]before showing soundness

and completeness.

2 dol/dor stands for degree overflow left/right.
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Example 5 The following is an L[QCL]-proof of a valid sequent.3

...
b ∨ c,¬a, b � a ∧ b, a ∧ c, b

b ∨ c, (a �×b)2 � a ∧ b, a ∧ c, b
�×l2

(a �×b)2 � ¬(b �×c), a ∧ b, a ∧ c, b
¬r

a ∨ b,¬b, c � a ∧ b, a ∧ c, b

a ∨ b, (b �×c)2 � a ∧ b, a ∧ c, b
�×l2

(b �×c)2 � ¬(a �×b), a ∧ b, a ∧ c, b
¬r

((a �×b) ∧ (b �×c))2 � a ∧ b, a ∧ c, b

¬(a ∧ b), ((a �×b) ∧ (b �×c))2 � a ∧ c, b
¬l

∧ l

Example 6 The following end-sequent is similar to the end-sequent of Example 5, but with
the exception that (a �×b) ∧ (b �×c) is assigned a label of 1. However, ((a �×b) ∧ (b �×c))1 is
unsatisfiable in view of ¬(a ∧ b).

...
...

b ∨ c, a � ¬b, a ∧ b,⊥ b ∨ c, a � c, a ∧ b,⊥
b ∨ c, a � (b �×c)2, a ∧ b,⊥

b ∨ c, (a �×b)1 � (b �×c)2, a ∧ b,⊥ �×l1

(a �×b)1 � (b �×c)2,¬(b �×c), a ∧ b,⊥ ¬r (ϕ)

�×r2

((a �×b) ∧ (b �×c))1 � a ∧ b,⊥
¬(a ∧ b), ((a �×b) ∧ (b �×c))1 � ⊥¬l

∧ l

where ϕ is

...

a ∨ b, b � ¬a, a ∧ b,⊥ a ∨ b, b � b, a ∧ b,⊥
a ∨ b, b � (a �×b)2, a ∧ b,⊥

a ∨ b, (b �×c)1 � (a �×b)2, a ∧ b,⊥ �×l1

(b �×c)1 � (a �×b)2,¬(a �×b), a ∧ b,⊥ ¬r

�×r2

Example 7 The following proof shows how the ∧r -rule can introduce more than three
premises.

a, b � a

a, b,¬a �¬l a, b, c � b
a, b, c, ¬b �
a, b, (b �×c)2 � �×l2

¬l a, b � b, c
a, b � b ∨ c

a, b, ¬(b �×c) �¬l
∨ r a, b � a, (b �×c)1

a, b � (a ∧ (b �×c))1
∧ r

Theorem 1 L[QCL] is sound and complete.
Proof ((Soundness of) L[QCL]) We have to prove that all rules of L[QCL] are sound.
• For the axioms this is clearly the case.
• (¬r) and (¬l): follows from the fact that degQCL(I, F) < ∞ ⇐⇒ I |� cp(F) for all

QCL-formulas F .

3 Note that, oncewe reach sequents containing only classical formulas, we do not continue the proof. However,
it can be verified that the classical sequents on the left and right branch are provable in this case. Moreover,
given a labeled QCL-formula (A)1 with a label of 1, the label is often omitted for readability.
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• (∨l): Assume that the conclusion of the rule is not valid, i.e., there is a model M of �

and (A ∨ B)k that is not a model of �. Then, M satisfies either A or B to degree k and
neither to a degree smaller than k. Assume M satisfies A to a degree of k, the other case
is symmetric. Then M is a model of � and (A)k but, by assumption, neither of � nor of
(B) j for any j < k. Hence, at least one of the premises is not valid.

• (∧l): Analogous to the proof for (∨l): assume that the conclusion of the rule is not valid,
i.e., that there is a model M of � and (A∧ B)k that is not a model of�. Then, M satisfies
either A or B to degree k and neither to a degree higher than k. Assume M satisfies A
to a degree of k, the other case is symmetric. Then M is a model of � and (A)k but, by
assumption, neither of � nor of (¬B)1 or (B) j for any j > k. Hence, at least one of the
premises is not valid.

• (∨r): Assume there is a model M of � that is not a model of � or of (A ∨ B)k . There
are two possible cases why M is not a model of (A ∨ B)k :

1. M satisfies neither A nor B to degree k. But in this case the premise� � (A)k, (B)k,�

is not valid as M is also not a model of � by assumption.
2. M satisfies either A or B to a degree smaller than k. Assume that M satisfies A to

degree j < k (the other case is symmetric). Then the premise �, (A) j � � is not
valid. Indeed, M is a model of � and (A) j but not of �.

• (∧r): Analogous to the proof for (∨r): assume that the conclusion of the rule is not valid,
i.e. there is a model M of � that is not a model of � or of (A ∧ B)k . There are two
possible cases why M is not a model of (A ∧ B)k :

1. M satisfies neither A nor B to degree k. However, then the premise� � (A)k, (B)k,�

is not valid as M is also not a model of � by assumption.
2. M satisfies either A or B to a degree j higher than k. By symmetry, it suffices

to consider the case that M satisfies A to a degree j higher than k. Then either
k < j ≤ optQCL(A) or j = ∞. If k < j ≤ optQCL(A) the premise �, (A) j � � is
not valid. If k = ∞ the premise �, (¬A)1 � � is not valid.

• ( �×l1) and ( �×r1): follows from the fact that (A)k has the same models as (A �×B)k for
k ≤ optL(A).

• ( �×l2): Assume the conclusion of the rule is not valid and let M be the model witnessing
this. Then M is a model of (A �×B)optQCL (A)+l . By definition, M satisfies B to degree l
and is not a model of A. However, then it is also a model of �, (B)l and (¬A)1, which
means that the premise is not valid.

• ( �×r2). Assume that both premises are valid, i.e., every model of � is either a model of �

or of (¬A)1 and (B)l with l ≤ optL(B). Now, by definition, anymodel that is not amodel
of A (and hence a model of (¬A)1) and of (B)l satisfies A �×B to degree optQCL (A)+ l.
Therefore, everymodel of� is either a model of� or of (A �×B)optQCL (A)+l , whichmeans
that the conclusion of the rule is valid.

• (dol): �,⊥ has no models, i.e., the premise �,⊥ � � is valid. Indeed, the sequent
�,⊥ � � is an axiom in our system. Crucially, the sequent �, (A)optQCL(A)+k has no
models as well since A cannot be satisfied to a degree m with optL(A) < m < ∞.

• (dor) is clearly sound. ��
Proof (Completeness of L[QCL]) To prove completeness, we observe that for any sequent,
we can decompose every formula into atomic and hence classical formulas by applying the
rules of L[QCL]. Moreover, we observe that if all formulas are classical and labeled with 1,
then all inference rules reduce to the inference rules of the classical propositional calculus
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without structural rules [27, Section 3.5], which is known to be complete. Therefore, we
know that a sequent containing only classical formulas is valid if and only if it is provable.
It remains to show that the rules of L[QCL] preserve validity when read “upwards”.

• (dol): Assume that a sequent of the form �, (A)optQCL(A)+k � � with k ∈ N is valid.
Since �,⊥ has no models, �,⊥ � � is valid.

• (dor): Assume that a sequent � � (A)optQCL(A)+k ,� is valid. (A)optQCL(A)+k cannot be
satisfied, i.e., � � � is valid.

• (¬r) and (¬l): Assume that a sequent of the form � � (¬A)1,� is valid. Then every
model of � is either a model of (¬A)1 or of �. In other words, every model of � that
is not a model of (¬A)1 (i.e., is model of cp(A)) is a model of �. Therefore, every
interpretation that is a model of both � and cp(A) must be a model of �. It follows that
�, cp(A) � � is valid. Similarly for �, (¬A)1 � �.

• (∨l) and (∧l): Assume that a sequent of the form �, (A ∨ B)k � � is valid, with
k ≤ optL(A∨ B). We claim that then both �, (A)k � (B)<k,� and �, (B)k � (A)<k,�

are valid. Assume to the contrary that �, (A)k � (B)<k,� is not valid (the other case is
symmetric). Then, there is a model M of � and (A)k that is neither a model of (B)<k

nor of �. But then M is also a model of � and (A∨ B)k , but not of �, which contradicts
the assumption that �, (A ∨ B)k � � is valid. Therefore, both �, (A)k � (B)<k,� and
�, (B)k � (A)<k,� are valid. Similarly for a sequent of the form �, (A ∧ B)k � �.

• (∨r) and (∧r): Assume that a sequent of the form � � (A ∨ B)k,� is valid, with
k ≤ optL(A ∨ B). We claim that then for all i < k the sequents �, (A)i � � and
�, (B)i � � and � � (A)k, (B)k,� are valid. Assume by contradiction that there is an
i < k s.t. �, (A)i � � is not valid. Then, there is a model M of � and (A)i that is not a
model of �. However, then M is a model of � but neither of � nor of (A ∨ B)k (as M
satisfies A∨ B to degree i �= k), which contradicts our assumption that � � (A∨ B)k,�

is valid. The case that there is an i < k s.t. �, (B)i � � is not valid is symmetric.
Finally, we assume that � � (A)k, (B)k,� is not valid. Then, there is a model M of
� that is not a model of (A)k , (B)k or �. Then, M is model of � but neither of � nor
of (A ∨ B)k , contradicting our assumption. Therefore, all sequents listed above must be
valid. Similarly for a sequent of the form � � (A ∧ B)k,�.

• ( �×l1) and ( �×r1): Assume that a sequent of the form�, (A �×B)k � �with k ≤ optQCL(A)

is valid. Then �, (A)k � � is also valid since (A �×B)k and (A)k have the same models
if k ≤ optQCL(A). Analogously for sequents of the form � � (A �×B)k,�.

• ( �×l2): Assume a sequent of the form �, (A �×B)optQCL(A)+l � � is valid, with l ≤
optL(B). We claim that the sequent �, (B)l ,¬A � � is then also valid. Indeed, if M is
a model of �, (B)l and ¬A, then it is also a model of � and (A �×B)optQCL(A)+l . Hence,
by assumption, M must be a model of �.

• ( �×r2): Assume that a sequent of the form � � (A �×B)optQCL (A)+l ,� is valid, with
l ≤ optL(B). We claim that then also the sequents � � ¬A,� and � � (B)l ,� are
valid. Assume by contradiction that the first sequent is not valid. This means that there is
a model M of � that is not a model of neither ¬A nor of �. However, then M is a model
of A and therefore satisfies A �×B to a degree smaller than optQCL(A). This contradicts
our assumption that � � (A �×B)optQCL(A)+l ,� is valid. Assume now that the second
sequent is not valid, i.e., that there is a model M of � that is neither a model of (B)l nor
of�. Then,M cannot be a model of (A �×B)optQCL(A)+l and we again have a contradiction
to the assumption. ��
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A cut rule has not been introduced for L[QCL] so far. However, it is easy to see that
L[QCL] is cut-admissible.

� � (A)k,� �′, (A)k � �′

�,�′ � �,�′ cut

Proposition 2 The cut-rule is sound.

Proof Assume � � (A)k,� and �′, (A)k � �′ are valid. Let M be some model of �,�′. M
must satisfy some formula in (A)k,�. If M satisfies (A)k then M satisfies both �′ and (A)k
and thus also some formula in �′. In any case, M satisfies some formula in �,�′. ��

We do not prove an effective cut-elimination theorem in the sense of Gentzen, i.e. by
providing an algorithm for the elimination of cut inferences in a derivation. But since we do
not use a cut rule when proving the completeness of L[QCL] (cf. Theorem 1), we obtain a
cut-elimination theorem for free.

Another aspect of our calculus that should be mentioned is that, although L[QCL] is
cut-free, we do not have the subformula property. This is especially obvious when looking
at the rules for negation, where we use the classical counterpart cp(A) of QCL-formulas.
For example, ¬(a �×b) in the conclusion of the ¬-left rule becomes cp(a �×b) = a ∨ b in the
premise.

Moreover, note that we introduced no structural rules (i.e., weakening or contraction) in
L[QCL], as they are not needed for completeness of the calculus. It is easy to see, however,
that weakening and contraction are sound in this setting. Thus, if desired, one could extend
L[QCL] with the following rules:

� � �

�, (A)k � �
wl

� � �

� � (A)k,�
wr

�, (A)k, (A)k � �

�, (A)k � �
cl

� � (A)k, (A)k,�

� � (A)k,�
cr

Towards Preferred Model Entailment While we believe that L[QCL] is interesting in its
own right, the question of how this calculus can be used to obtain a calculus for preferred
model entailment arises. Essentially, an inference rule has to be added that allows for the
transition from standard to preferred model inferences. As a first approach we consider
theories � ∪ {A} with � consisting only of classical formulas and A being a QCL-formula.
In this simple case, preferred models of � ∪ {A} are those models of � ∪ {A} that satisfy A
to the smallest possible degree. We call the resulting calculus L[QCL]naive|∼ .

Definition 14 (L[QCL]naive|∼ ) The labeled sequent calculus L[QCL]naive|∼ is L[QCL] extended
by the inference rule

〈�, (A)i � ⊥〉i<k �, (A)k � �

�, A |∼lex
QCL �

|∼naive

Intuitively, the inference rule |∼naive states that, if there are no interpretations that satisfy
� while also satisfying A to a degree lower than k, and if � follows from all models of
�, (A)k , then � is entailed by the preferred models of � ∪ {A}. However, it can be shown
that L[QCL]naive|∼ is unsound.

Proposition 3 L[QCL]naive|∼ is unsound.
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Proof Consider the invalid entailment ¬a, a �×b |∼lex
QCL a, which is derivable in L[QCL]naive|∼

as follows:

¬a, a � a

¬a, (a �×b)1 � a
�×l1

¬a, a �×b |∼lex
QCL a

|∼naive

��
Thus, an extension of L[QCL] by |∼naive does not yield the desired calculus, not even

in this restricted setting where we consider only a single non-classical formula A. What is
missing is an assertion that �, (A)k is satisfiable. Unfortunately, this cannot be formulated
in L[QCL]. A way of addressing this problem is to make use of a refutation calculus, as has
been done for other non-monotonic logics [9].

4 A Calculus for PreferredModel Entailment

To obtain a calculus for preferred model entailment, we first need to introduce a refutation
calculus, which we call L[QCL]−. In the literature, such a rejection method for first-order
logic with equality was first introduced in [14] and proved complete w.r.t. finite model theory.
The refutation calculus L[QCL]− used in this work is based on a simpler rejection method
for propositional logic defined in [9]. Using L[QCL]−, we prove that (A)k is satisfiable by
deriving the antisequent (A)k � ⊥.

Definition 15 (labeled QCL-antisequents) � � � is a labeled QCL-antisequent if and only
if � � � is a labeled QCL-sequent. � � � is valid if and only if � � � is not valid, i.e., if
at least one model that satisfies all labeled QCL-formulas in � to the degree specified by the
label satisfies no labeled QCL- formula in � to the degree specified by the label.

The rules for L[QCL]− can be derived from the rules of L[QCL]. For example, consider
the antisequent�, (A∨B)k � �. To show that this antisequent is valid, wemust show that the
corresponding sequent�, (A∨B)k � � is not valid. This in turnmeans thatwemust show that
at least one of the two premises �, (A)k � (B)<k,� and �, (B)k � (A)<k,� introduced by
the ∨l-rule are not valid. In other words, we must show that either the antisequent �, (A)k �

(B)<k,� or the antisequent �, (B)k � (A)<k,� is valid. We therefore introduce two rules:

�, (A)k � (B)<k,�

�, (A ∨ B)k � �
� ∨l1 �, (B)k � (A)<k,�

�, (A ∨ B)k � �
� ∨l2

Which one of these two rules should be applied must be guessed, i.e., we trade the branching
of L[QCL] for non-determinism.

The rules for other connectives are derived similarly. Binary rules are translated into two
rules; one inference rule per premise. (∨r) inL[QCL] has an unbounded number of premises,
but due to the rules’ structure it can be translated into three inference rules. Similarly for
(∧r), but we need to introduce two extra rules for the case that either A or B is not satisfied.

Moreover, regarding the degree overflow rules we introduce a right-hand side rule, but no
left-hand side rule. The reason for this is that the antisequent�, (A)optQCL(A)+k � � is always
invalid, i.e., a left-hand side degree overflow rule could never be used in the derivation of a
valid antisequent.

Definition 16 (L[QCL]−) The axioms of L[QCL]− are labeled QCL-antisequents of the
form � � �, where � and � are disjoint sets of atoms and ⊥ /∈ �. The inference rules of
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L[QCL]− are given below.Whenever a labeled QCL-formula (F)k appears in the conclusion
of an inference rule (except for the � dor -rule) it holds that k ≤ optL(F).

The rules for the classical connectives are:

�, (cp(A))1 � �

� � (¬A)1,�
� ¬r � � (cp(A))1,�

�, (¬A)1 � �
� ¬l

�, (A)k � (B)<k,�

�, (A ∨ B)k � �
� ∨l1 �, (B)k � (A)<k,�

�, (A ∨ B)k � �
� ∨l2

�, (A)i � �

� � (A ∨ B)k,�
� ∨r1 �, (B)i � �

� � (A ∨ B)k,�
� ∨r2

where i < k;

� � (A)k, (B)k,�

� � (A ∨ B)k,�
� ∨r3

�, (A)k � (B)>k,�

�, (A ∧ B)k � �
� ∧l1 �, (B)k � (A)>k,�

�, (A ∧ B)k � �
� ∧l2

�, (A)i � �

� � (A ∧ B)k,�
� ∧r1 �, (¬A)1 � �

� � (A ∧ B)k,�
� ∧r2

where k < i ≤ optQCL(A);

�, (B)i � �

� � (A ∧ B)k,�
� ∧r3 �, (¬B)1 � �

� � (A ∧ B)k,�
� ∧r4

where k < i ≤ optQCL(B);

� � (A)k, (B)k,�

� � (A ∧ B)k,�
� ∧r5

The rules for ordered disjunction are:

�, (A)k � �

�, (A �×B)k � �
� �×l1

�, (B)l , (¬A)1 � �

�, (A �×B)optQCL (A)+l � �
� �×l2

� � (A)k,�

� � (A �×B)k,�
� �×r1

� � (¬A)1,�

� � (A �×B)optQCL(A)+l ,�
� �×r2

� � (B)l ,�

� � (A �×B)optQCL(A)+l ,�
� �×r3

where k ≤ optL(A) and l ≤ optL(B).
The degree overflow rule is:

� � �

� � (A)optQCL(A)+k ,�
� dor

where k ∈ N.

As already mentioned, instead of branching over several premises it must be guessed
non-deterministicly which rule to apply next in L[QCL]−, e.g., whether to apply ∧l1 or ∧l2.
Moreover, in the proof of an antisequent � � � the axiom we encounter directly witnesses a
counter example for the corresponding sequent� � �. These differences betweenL[QCL]−
and L[QCL] reflect the duality between validity and satisfiability in classical logic.
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Example 8 The followingderivation is related toExample 5 and shows that¬(a∧b), ((a �×b)∧
(b �×c))2 is satisfiable.

a, a, c � b, b,⊥
� ¬l

a, c, ¬b � b,⊥
� ∧r4a, c � a ∧ b, b,⊥
� ¬l

a, c,¬b � a ∧ b,⊥
� ∨l1

(a ∨ b), c, ¬b � a ∧ b,⊥
� �×l2

(a ∨ b), (b �×c)2 � a ∧ b,⊥
� ¬r

(b �×c)2 � ¬(a �×b), a ∧ b,⊥
� ∧l2

((a �×b) ∧ (b �×c))2 � a ∧ b,⊥
� ¬l¬(a ∧ b), ((a �×b) ∧ (b �×c))2 � ⊥

The interpretation {a, c} witnesses the axiom a, a, c � b, b,⊥ and also the final antise-
quent ¬(a ∧ b), ((a �×b) ∧ (b �×c))2 � ⊥.

Theorem 4 L[QCL]− is sound and complete.

Proof (Soundness ofL[QCL]−) It is easy to see that, for each rule, the samemodel witnessing
the validity of the premise also witnesses the validity of the conclusion. We exemplify this
on hand of the � ∨l1-rule: assume �, (A)k � (B)<k,� is valid. Then there exists a model
M of �, (A)k . which does not satisfy B to a degree lower than k, and does not satisfy any
formula in �. Thus, M satisfies �, (A ∨ B)k and hence �, (A ∨ B)k � � is valid. ��
Proof (Completeness ofL[QCL]−) Analogously toL[QCL], inL[QCL]− we can decompose
the formulas of any antisequent into atomic formulas by applying the rules ofL[QCL]−. Thus,
it again suffices to show that the rules of L[QCL]− preserve validity when read “upwards”.
Assume � � � is valid, i.e. � � � is not valid. There must be a rule in L[QCL] for
which � � � is the conclusion. This rule cannot be the dol-rule, since both the premise and
conclusion of this rule are always valid. By the soundness of L[QCL], the fact that � � � is
not valid implies that at least one of the premises �∗ � �∗ of the rule is not valid. However,
then �∗

� �∗ is valid. Now, by the construction of L[QCL]−, there is a rule that allows us
to derive � � � from �∗

� �∗. ��
Observe that we have not introduced a cut rule for L[QCL]−. Indeed, a counterpart of

the cut rule would not be sound. One possibility is to introduce a contrapositive of cut as
described in [9].

� � � �, (A)k � �

� � (A)k,�
cut2

Proposition 5 The cut2-rule is sound.

Proof Assume � � � and �, (A)k � � are valid. Then there is a model M of � that does
not satisfy any formula in �. This further means that M does not satisfy (A)k , otherwise
�, (A)k � � would not be valid. Thus, � � (A)k,� is valid. ��

It is easy to see that, as in L[QCL], contraction is also sound in L[QCL]−. In contrast
to L[QCL], however, weakening is not sound in L[QCL]−. With left weakening we could,
e.g., derive a, b � b (which is not valid) from a � b (which is valid). Likewise, with right
weakening we could derive a � a, b from a � b.

We are now ready to combine L[QCL] and L[QCL]− by defining an inference rule that
allows us to go from labeled QCL-sequents to non-monotonic inferences. We first consider
preferred model entailment under minmax semantics (recall Definitions 9, 10).
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Definition 17 (L[QCL]mm|∼ ) The axioms of L[QCL]mm|∼ are either labeled QCL-sequents of
the form (p)1 � (p)1 with p being an atom, or labeled QCL-antisequents of the form � � �,
where � and � are disjoint sets of atoms and ⊥ /∈ �. The inference rules of L[QCL]mm|∼ are
the inference rules of L[QCL] and L[QCL]−, extended by
〈�, (A1 ∧ · · · ∧ An)i � ⊥〉i<k �, (A1 ∧ · · · ∧ An)k � ⊥ �, (A1 ∧ · · · ∧ An)k � �

�, A1, . . . , An |∼mm
QCL �

|∼mm

and

�, cp(A1), . . . , cp(An) � ⊥
�, A1, . . . , An |∼mm

QCL �
|∼unsat

where � consists only of classical formulas and every A j with 1 ≤ j ≤ n is a QCL-formula.

Observe that the premises of the new rules |∼mm and |∼unsat are QCL-sequents and QCL-
antisequents, while the conclusion is a |∼mm sequent. Consequently, any proof inL[QCL]mm|∼
can contain only one application of the new rules, in the very last step of the proof. The |∼mm-
rule makes use of the fact that, under minmax semantics, a QCL-theory T = {A1, . . . , An}
is semantically equivalent to A1 ∧ · · · ∧ An . The rule can be explained as follows: first,
an optimal degree k is guessed. The premises 〈�, (A1 ∧ · · · ∧ An)i � ⊥〉i<k along with
�, (A1 ∧ · · · ∧ An)k � ⊥ ensure that models satisfying A1 ∧ · · · ∧ An to a degree of k are
preferred, while the premise �, (A1 ∧ · · · ∧ An)k � � ensures that � is entailed by those
preferred models. The rule |∼unsat is needed in case a theory is classically unsatisfiable.

Example 9 The valid entailment ¬(a ∧ b), (a �×b), (b �×c) |∼mm
QCL a ∧ c, b is provable in

L[QCL]mm|∼ by choosing k = 2. Let � = ¬(a ∧ b) and � = a ∧ c, b.

(ϕ2) (ϕ3)

(ϕ1) �, ((a �×b) ∧ (b �×c))2 � ⊥ �, ((a �×b) ∧ (b �×c))2 � �

�, (a �×b), (b �×c) |∼mm
QCL �

|∼mm

where (ϕ1) is the derivation

...
...

�, b ∨ c, a,� ¬b,⊥ �, b ∨ c, a � c,⊥
�,b∨c,a�(b �×c)2,⊥ �×r2

�,b∨c,(a �×b)1�(b �×c)2,⊥ �×l1

�,(a �×b)1�(b �×c)2,¬(b �×c),⊥ ¬r

...

�, a ∨ b, b � (a �×b)2,⊥
�,a∨b,(b �×c)1�(a �×b)2,⊥ �×l1

�,(b �×c)1�(a �×b)2,¬(a �×b),⊥ ¬r
�, ((a �×b) ∧ (b �×c))1 � ⊥ ∧ l

Note that (ϕ2) is the L[QCL]−-proof from Example 8 and (ϕ3) is the L[QCL]-proof from
Example 5.

Theorem 6 L[QCL]mm|∼ is sound and complete.

Proof (Soundness of L[QCL]mm|∼ ) Consider first the |∼mm-rule and assume that all premises
are derivable. By the soundness of L[QCL] and L[QCL]− they are also valid. From the first
set of premises 〈�, (A1 ∧ · · · ∧ An)i � ⊥〉i<k we can conclude that if there is some model
M of � that satisfies A1 ∧ · · · ∧ An to a degree of k, then M ∈ Prf mmQCL(� ∪ {A1, . . . , Ak}).
The premise �, (A1 ∧ · · · ∧ An)k � ⊥ ensures that there is such a model M . By the last
premise �, (A1 ∧ · · · ∧ An)k � �, we can conclude that all models of � ∪ {A1, . . . , Ak} that
are equally as preferred as M , i.e., all M ′ ∈ Prf mmQCL(� ∪ {A1, . . . , Ak}), satisfy at least one
formula in �. Therefore, �, A1, . . . , Ak |∼mm

QCL � is valid.
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Now consider the |∼unsat-rule and assume that �, cp(A1), . . . , cp(Ak) � ⊥ is derivable
and therefore valid. Then � ∪ cp(A1), . . . , cp(Ak) has no models. Since in general we have
degQCL(I, F) < ∞ ⇐⇒ I |� cp(F), also � ∪ {A1, . . . , Ak} has no models and thus no
preferred models. Then �, A1, . . . , Ak |∼mm

QCL � is valid. ��

Proof (Completeness of L[QCL]mm|∼ ) Assume that �, A1, . . . , Ak |∼mm
QCL � is valid. If � ∪

{A1, . . . , Ak} is unsatisfiable then �, cp(A1), . . . , cp(Ak) � ⊥ is valid, i.e., we can apply the
|∼unsat-rule.

Now consider the case that�∪{A1, . . . , Ak} is satisfiable and assume that some preferred
model M of � ∪ {A1, . . . , Ak} satisfies A1 ∧ · · · ∧ An to a degree of k. Then, we claim that
all premises of the rule are valid and, by the completeness of L[QCL] and L[QCL]−, also
derivable.

Assume by contradiction that one of the premises is not valid. First, consider the case that
�, (A1 ∧ · · · ∧ An)i � ⊥ is not valid for some i < k. Then there is a model M ′ of � that
satisfies A1 ∧ · · · ∧ An to a degree of i < k. However, this contradicts the assumption that
M is a preferred model of � ∪ {A1, . . . , Ak}.

Next, assume that �, (A1 ∧ · · · ∧ An)k � ⊥ is not valid. However, M satisfies (A1 ∧ · · · ∧
An)k and does not satisfy ⊥. Contradiction.

Finally, we assume that �, (A1 ∧ · · · ∧ An)k � � is not valid. Then, there is a model M ′
of � that satisfies A1 ∧ · · · ∧ An to a degree of k but does not satisfy any formula in �. But
M ′ is a preferred model of � ∪ {A1, . . . , Ak}, which contradicts �, A1, . . . , Ak |∼mm

QCL �

being valid. ��

To obtain a calculus for preferred model entailment under lexicographic semantics, we
adapt the |∼mm-rule of L[QCL]mm|∼ .

Definition 18 (L[QCL]lex|∼ ) Let ≤l be the order on vectors in N
k defined by

• �v <l �w if there is some n ∈ N such that �v has more entries of value n and for all
1 ≤ m < n both vectors have the same number of entries of value m.

• �v =l �w if, for all n ∈ N, �v and �w have the same number of entries of value n.

The axioms and inference rules of L[QCL]lex|∼ are the same as those of L[QCL]mm|∼ , except
that |∼mm is replaced by

〈�, (A1)w1 , . . . , (Ak)wk � ⊥〉 �w<l �v �, (A1)v1 , . . . , (Ak)vk � ⊥ 〈�, (A1)w1 , . . . , (Ak)wk � �〉 �w=l �v
�, A1, . . . , Ak |∼lex

QCL �
|∼lex

where �v, �w ∈ N
k , � consists only of classical formulas and every A j with 1 ≤ j ≤ k is a

QCL-formula.

Instead of guessing the degree of preferred models as in L[QCL]mm|∼ , we now guess a
“degree-profile” (in form of the vector �v) of at least one preferred model of�∪{A1, . . . , Ak}.
The rule |∼lex can be explained as follows: The premises shown in the left branch confirm that
our guess is indeed optimal, i.e., that �, (A1)w1 , . . . , (Ak)wk cannot be satisfied if �w is better
than �v with respect to the lex-semantics. The center premise ensures that our degree-profile
is satisfiable. The right premise ensures that all preferred models, meaning all models with
a degree profile �w as good as �v with respect to the lex-semantics, satisfy at least one formula
in �. Note that, as for L[QCL]mm|∼ , any proof in L[QCL]lex|∼ can contain only one application
of the new rules, in the very last step of the proof. Let us provide a small example before
showing soundness and completeness of L[QCL]lex|∼ .
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Example 10 Consider the valid entailment¬(a∧b), (a �×b), (b �×c) |∼lex
QCL a∧c, b similar to

Example 9. Let � = ¬(a∧ b) and � = a∧ c, b. Therefore, we can also write the entailment
as �, (a �×b), (b �×c) |∼lex

QCL �. Note that it is not possible to satisfy all labeled QCL-formulas

on the left to a degree of 1. Rather, it is optimal to either satisfy �, (a �×b)1, (b �×c)2 or,
alternatively, �, (a �×b)2, (b �×c)1. We choose �v = (1, 2). Observe that �w = (1, 1) is the only
vector �w such that �w <l �v. Moreover, (1, 2) =l �v and (2, 1) =l �v. Thus, we get

...
...

...

�, (a �×b)1, (b �×c)1 � ⊥ �, (a �×b)1, (b �×c)2 � ⊥ �, (a �×b)1, (b �×c)2 � � ∗
�, (a �×b), (b �×c) |∼lex

QCL �
|∼lex

where ∗ is

...

�, (a �×b)2, (b �×c)1 � �

It can be verified that indeed all branches are provable, but we do not show this explicitly
here.

Theorem 7 L[QCL]lex|∼ is sound and complete.

Proof (Soundness of L[QCL]lex|∼ ) Consider the |∼lex-rule and assume that all premises are
derivable. By the soundness ofL[QCL] andL[QCL]− they are also valid. From the first set of
premises 〈�, (A1)w1 , . . . , (Ak)wk � ⊥〉 �w<l �v we can conclude that if there is some model M
of� that satisfies Ai to a degree of vi for all 1 ≤ i ≤ k, thenM ∈ Prf lexQCL(�∪{A1, . . . , Ak}).
The premise �, (A1)v1 , . . . , (Ak)vk � ⊥ ensures that there is such a model M . By the last
set of premises 〈�, (A1)w1 , . . . , (Ak)wk � �〉 �w=l �v we can conclude that all models of � ∪
{A1, . . . , Ak} that are equally as preferred as M , i.e., all M ′ ∈ Prf lexQCL(� ∪ {A1, . . . , Ak}),
satisfy at least one formula in �. Therefore, �, A1, . . . , Ak |∼lex

QCL � is valid. ��
Proof (Completeness of L[QCL]lex|∼ ) Assume that �, A1, . . . , Ak |∼lex

QCL � is valid. If � ∪
{A1, . . . , Ak} is unsatisfiable then �, cp(A1), . . . , cp(Ak) � ⊥ is valid, i.e., we can apply
the |∼unsat-rule. Now consider the case that � ∪ {A1, . . . , Ak} is satisfiable and assume that
some preferred model M of � ∪{A1, . . . , Ak} satisfies Ai to a degree of vi for all 1 ≤ i ≤ k.
Then, we claim that all premises of the rule are valid and, by the completeness of L[QCL]
and L[QCL]−, also derivable.

Assume by contradiction that one of the premises is not valid. First, consider the case that
�, (A1)w1 , . . . , (Ak)wk � ⊥ is not valid for some �w <l �v. Then there is a model M ′ of �

that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k. However, this contradicts the assumption
that M is a preferred model of � ∪ {A1, . . . , Ak}.

Next, assume that �, (A1)v1 , . . . , (Ak)vk � ⊥ is not valid. However, M satisfies
�, (A1)v1 , . . . , (Ak)vk and does not satisfy ⊥. Contradiction.

Finally, we assume that �, (A1)w1 , . . . , (Ak)wk � � is not valid for some �w =l �v. Then,
there is a model M ′ of � that satisfies Ai to a degree of wi for all 1 ≤ i ≤ k but does not
satisfy any formula in�. But M ′ is a preferred model of�∪{A1, . . . , Ak}, which contradicts
�, A1, . . . , Ak |∼lex

QCL � being valid. ��
Finally, a calculus for the inclusion-based approach of preferred model entailment can

be obtained by simply adapting the way in which vectors over N
k are compared (cf. Defini-

tion 18).
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Definition 19 (L[QCL]inc|∼ ) The calculusL[QCL]inc|∼ is defined analogously toL[QCL]lex|∼ (cf.
Definition 18) except that the order ≤l is replaced by the order ≤i :

• �v <i �w if there is some n ∈ N such that every entry in �w with value n also has value n
in �v, there is an entry in �v with value n that has a value higher than n in �w, and for all
1 ≤ m < n both vectors have exactly the same entries with value m.

• �v =i �w if �v �<i �w and �w �<i �v.

Soundness and completeness of L[QCL]inc|∼ are analogous to that of L[QCL]lex|∼ (cf. The-
orem 7).

5 Beyond QCL

QCL was the first choice logic to be described [2], and applications concerned with QCL
and ordered disjunction have been discussed in the literature [3–7]. For this reason, the main
focus in this paper lies with QCL. However, as we have seen in Section 2, CCL with its
ordered conjunction and LCL with its lexicographic operator show that interesting logics
similar to QCL exist. We will now demonstrate that the calculi for QCL introduced in the
previous sections can easily be adapted for other choice logics.

To introduce a labeled calculus for some logic L belonging to the choice logic framework
of [1] (cf. Sect. 2.1) it suffices to replace the �×-rules in L[QCL] by appropriate rules for the
choice connectives of L. The rules for the classical connectives in L[QCL] can be retained.
Moreover, note that the inference rules for preferred model entailment (i.e., the rules |∼mm,
|∼lex , |∼inc, |∼unsat from Definitions 17, 18, 19) do not depend on any specific choice logic.
Thus, once labeled calculi are developed for L, the calculi for preferred model entailment
follow immediately.

5.1 Calculi for CCL

First, we introduceL[CCL] by defining rules for the choice connective �� of CCL. Recall that
A ��B expresses that, if possible, both A and B should be satisfied, but if this is not possible
then satisfying only A is also acceptable.

Definition 20 L[CCL] is L[QCL], except that the �×-rules are replaced by the following
��-rules:

�, (A)1, (B)k � �

�, (A ��B)k � �
��l1

�, (A)1, (¬B)1 � �

�, (A ��B)optCCL(B)+1 � �
��l2

�, (A)l � �

�, (A ��B)optCCL(B)+l � �
��l3

� � (A)1,� � � (B)k,�

� � (A ��B)k,�
��r1

� � (A)1,� � � (¬B)1,�

� � (A ��B)optCCL(B)+1,�
��r2

� � (A)l ,�

� � (A ��B)optCCL(B)+l ,�
��r3
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where k ≤ optCCL(B) and 1 < l ≤ optCCL(A).4

The ��l1-rule takes care of the case in which A is optimally satisfied, and B is satisfied to
some degree. In ��l2 and ��l3 the label m of (A ��B)m is higher than the optionality of B. If
m = optCCL(B) + 1 we know that B cannot be satisfied, and hence we need to apply ��l2.
If m = optCCL(B) + l with l > 1 then, by the semantics of CCL (cf. Definition 7), it must
be that A is satisfied to a degree of l, regardless of whether B is satisfied or not.

Example 11 The following is a smallL[CCL]-proof of a valid sequent, showcasing the appli-
cation of the ��l2- and ��l3-rules.

...

�, (a)1, (¬b)1 � a ∧ ¬b
�,(a ��b)2�a∧¬b

��l2

((a ��b) ��c)3 � a ∧ ¬b
��l3

Theorem 8 L[CCL] is sound and complete.
Proof (Soundness of L[CCL]) We consider the newly introduced rules.

• For ��l1, ��l2, and ��l3 this follows directly from the definition of CCL.
• ( ��r1). Assume both premises are valid, i.e., every model of � is a model of � or of (A)1

and (B)k with k ≤ optCCL(B). By definition, any model that satisfies (A)1 and (B)k
satisfies A ��B to degree k. Thus, every model of � is a model of � or of (A ��B)k , which
means the conclusion of the rule is valid.

• ( ��r2). Assume both premises are valid, i.e., every model of � is either a model of � or
of (A)1 and (¬B)1. By definition, any model that satisfies (A)1 and does not satisfy B
(and hence satisfies (¬B)1) satisfies A ��B to degree optCCL(B) + 1.

• ( ��r3). Assume that the premise is valid, i.e., every model of � is either a model of � or
of (A)l with 1 < l ≤ optCCL(A). By definition, any model that satisfies (A)l , regardless
of what degree this model ascribes to B, satisfies A ��B to degree optCCL(B) + l. ��

Proof (Completeness of L[CCL]) We adapt the completeness proof of L[QCL] (cf. Theo-
rem 1).

• Assume that a sequent of the form �, (A ��B)k � � is valid, with k ≤ optCCL(B). All
models that satisfy (A ��B)k must satisfy A to a degree of 1 and B to a degree of k.
Thus, �, (A)1, (B)k � � is valid. Similarly for the cases �, (A ��B)optCCL(B)+1 � � and
�, (A ��B)optCCL(B)+l � � with 1 < l ≤ optCCL(A).

• Assume that a sequent of the form � � (A ��B)k,� is valid, with k ≤ optCCL(B).
We claim that then � � (A)1,� and � � (B)k,� are valid. Assume, for the sake of
a contradiction, that the first sequent is not valid. This means that there is a model M
of � that is neither a model of (A)1 nor of �. However, then M satisfies A ��B to a
degree higher than optCCL(B). This contradicts the assumption that � � (A ��B)k,�

is valid. Assume now that the second sequent is not valid, i.e., that there is a model M
of � that is neither a model of (B)k nor of �. Then M cannot be a model of (A ��B)k ,
contradicting the assumption. Similarly for the cases � � (A ��B)optCCL(B)+1,� and
� � (A ��B)optCCL(B)+l ,� with 1 < l ≤ optCCL(A).

��
4 Note that the rules ��l2 and ��r2 are different from those provided in a previous iteration of this paper [23],
where A was erroneously assigned a label of l ≤ optCCL(A) instead of 1.
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We do not define the refutation calculus L[CCL]− here, but the necessary rules for �� can
be inferred from the ��-rules of L[CCL] in a similar way to how L[QCL]− was derived from
L[QCL]: if a rule contains only a single premise then it suffices to replace the �-symbol with
the �-symbol; if a rule contains two premises then we introduce two rules in L[CCL]−, one
for each premise. Once L[CCL] and L[CCL]− are established, calculi for preferred model
entailment follow immediately.

5.2 Calculi for LCL

Our methods can also be adapted for LCL (cf. Sect. 2), in which A��B expresses that it is best
to satisfy A and B, second best to satisfy only A, third best to satisfy only B, and unacceptable
to satisfy neither.

Definition 21 L[LCL] is L[QCL], except that the �×-rules are replaced by the following
��-rules:

�, (A)k, (B)l � �

�, (A��B)(k−1)·optLCL(B)+l � �
��l1

�, (A)k, (¬B)1 � �

�, (A��B)optLCL(A)·optLCL(B)+k � �
��l2

�, (¬A)1, (B)l � �

�, (A��B)optLCL(A)·optLCL(B)+optLCL(A)+l � �
��l3

� � (A)k,� � � (B)l ,�

� � (A��B)(k−1)·optLCL(B)+l ,�
��r1

� � (A)k,� � � (¬B)1,�

� � (A��B)optLCL(A)·optLCL(B)+k,�
��r2

� � (¬A)1,� � � (B)l ,�

� � (A��B)optLCL(A)·optLCL(B)+optLCL(A)+l ,�
��r3

where k ≤ optLCL(A) and l ≤ optLCL(B).

The labels used in the above rules might appear quite involved. However, finding the
correct rule to apply given a labeled LCL-formula (A��B)m is actually a straightforward
task: the values for optLCL(A) and optLCL(B) can be computed according to Definition 8. If
m ≤ optLCL(A) · optLCL(B) then the ��l1-rule must be applied. If optLCL(A) · optLCL(B) <

m ≤ optLCL(A) · optLCL(B) + optLCL(A) then the ��l2-rule must be applied. If optLCL(A) ·
optLCL(B)+ optLCL(A) < m ≤ optLCL(A) · optLCL(B)+ optLCL(A)+ optLCL(B) then the
��l3-rule must be applied.

Example 12 The following is a small L[LCL]-proof of a valid sequent. Since we have a label
of 2 in the end-sequent, and since optLCL(a ∨ b) = optLCL(b ∨ c) = 1, we know that the
��l2-rule must be applied.

...

a ∨ b � b ∨ c, a ∧ ¬b
a∨b,¬(b∨c)�a∧¬b ¬l

((a ∨ b)��(b ∨ c))2 � a ∧ ¬b
��l2

Theorem 9 L[LCL] is sound and complete.
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Proof (Soundness of L[LCL]) We consider the newly introduced rules.

• For ��l1, ��l2, and ��l3 this follows directly from the definition of LCL.
• (��r1). Assume both premises are valid, i.e., every model of � is a model of � or of (A)k

and (B)l with k ≤ optLCL(A) and l ≤ optLCL(B). By definition, any model that satisfies
(A)k and (B)l satisfies A��B to degree (k − 1) · optLCL(B) + l. Thus, every model of �

is a model of � or of (A��B)(k−1)·optLCL(B)+l , which means the conclusion of the rule is
valid.

• (��r2). Assume both premises are valid, i.e., every model of � is either a model of � or
of (A)k and (¬B)1 with k ≤ optLCL(A). By definition, any model that satisfies (A)k
and does not satisfy B (and hence satisfies (¬B)1) satisfies A��B to degree optLCL(A) ·
optLCL(B) + k.

• (��r3). Analogous to (��r2). ��
Proof (Completeness of L[LCL]) We adapt the completeness proof of L[QCL] (cf. Theo-
rem 1).

• Assume that a sequent of the form �, (A��B)m � � is valid, with m = (k − 1) ·
optLCL(B) + l such that k ≤ optLCL(A) and l ≤ optLCL(B). Now assume some model
satisfies �, (A)k , and (B)l . Then M satisfies � and (A��B)m , and, since �, (A��B)m � �

is valid, M also satisfies �. Thus, �, (A)k, (B)l � � is valid.
The proofs for sequents of the form �, (A��B)optLCL(A)·optLCL(B)+k � � and �,

(A��B)optLCL(A)·optLCL(B)+optLCL(A)+l � � are analogous.
• Assume that a sequent of the form � � (A��B)m,� is valid, with m = (k − 1) ·

optLCL(B) + l such that k ≤ optLCL(A) and l ≤ optLCL(B). We claim that then
� � (A)k,� and � � (B)l ,� are valid. Assume, for the sake of a contradiction,
that the first sequent is not valid. This means that there is a model M of � that is neither
a model of (A)k nor of �. Following Definition 8, M must satisfy A��B to some degree
other than m. This contradicts the assumption that � � (A��B)m,� is valid. Assume
now that the second sequent is not valid, i.e., that there is a model M of � that is neither
a model of (B)l nor of �. Again, this means that M satisfies A��B to some degree other
than m, and this would contradict our assumption that � � (A��B)m,� is valid. Thus,
both � � (A)k,� and � � (B)k,� are valid and � � (A��B)m,� is provable.
The proofs for sequents of the form � � (A��B)optLCL(A)·optLCL(B)+k,� and � �
(A��B)optLCL(A)·optLCL(B)+optLCL(A)+l ,� are analogous. ��
Just as with CCL, the refutation calculus L[LCL]− can be obtained from L[LCL] by

modifying the ��-rules accordingly. Calculi for preferred model entailment then follow imme-
diately.

5.3 Multiple Choice Connectives

Lastly, we want to point out that, according to the choice logic framework (cf. Sect. 2.1),
choice logics can make use of more than one choice connective. Indeed, a combination of
QCL and CCL into the so-called QCCL has been suggested previously [1]. QCCL is simply
the choice logic containing the choice connectives CQCCL = { �×, ��}, with the optionality and
satisfaction degree of �× (resp. ��) defined in the same way as in QCL (resp. CCL). A calculus
for QCCL can be obtained simply by adding both the rules for �× and ��. We demonstrate
this with a small example.
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Example 13 The following is a proof of a valid sequent in QCCL. Note that we use lex-
icographic entailment, but one could also use the minmax or inclusion-based approaches
instead. Since the formulas (a ��b) and (b �×c) are jointly satisfiable to a degree of 1 we can
simply guess the optimal degree-profile (a ��b)1, (b �×c)1. Thus, we only have two branches
in the |∼lex-rule.

a, b, b � ⊥
a, b, (b �×c)1 � ⊥ � �×l1

(a ��b)1, (b �×c)1 � ⊥ � ��l1

...

a, b, b � a ∧ b

a, b, (b �×c)1 � a ∧ b
�×l1

(a ��b)1, (b �×c)1 � a ∧ b
��l1

(a ��b), (b �×c) |∼lex
QCCL a ∧ b

|∼lex

6 Conclusion

In this paper we introduce a sound and complete sequent calculus for preferred model entail-
ment in QCL. This non-monotonic calculus is built on two calculi: a monotonic labeled
sequent calculus and a corresponding refutation calculus.

Our systems are modular and can easily be adapted: on the one hand, calculi for choice
logics other thanQCL can be obtained by introducing suitable rules for the choice connectives
of the new logic, as exemplified with our calculi for CCL and LCL; on the other hand, non-
monotonic calculi for alternative preferred model semantics can be obtained by adapting the
inference rule which transitions from preferred model entailment to the labeled calculi (e.g.,
the |∼mm, |∼lex or |∼inc-rule).

Our work contributes to the line of research on non-monotonic sequent calculi that make
use of refutation systems [9, 16]. Our system is the first proof calculus for choice logics,
which have been studied mainly from the viewpoint of their computational properties [1] and
potential applications [3–7] so far.

Regarding future work, we aim to investigate the proof complexity of our calculi, and
how this complexity might depend on which choice logic or preferred model semantics is
considered.

Another interesting avenue for future work is to examine alternative semantics for lan-
guages using ordered disjunction or other choice connectives, and see whether our methods
can be adapted to those approaches. We now give a brief overview over relevant work in this
direction. In Prioritized QCL (PQCL) and QCL+ [28] ordered disjunction is defined in the
same way as in QCL, but the classical connectives are given new semantics. As pointed out
in previous work [1], both PQCL and QCL+ can be captured by the choice logic framework
as fragments by allowing negations only in front of atoms. Another interesting paper is that
of Maly and Woltran [29], in which the concept of satisfaction degrees is abandoned and the
semantics rather ‘directly’ induces a partial order over models. The most recent reinterpreta-
tion of QCL that we are aware of is an approach [30, 31] using game theoretic semantics, with
a special focus on providing an alternative negation for the language of QCL. A logic similar
to LCL was proposed by Charalambidis et al. [32]. In contrast to LCL, their lexicographic
logic uses lists of truth values to rank interpretations rather than satisfaction degrees. In the
world of logic programming, recent works [33, 34] have suggested a new semantics for logic
programs with ordered disjunction (LPODs) [3]. While the original semantics of LPODs
uses satisfaction degrees as in QCL, the new approach uses a four-valued logic. Develop-
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ing a calculus for LPODs might prove to be interesting since they contain two sources of
non-monotonicity (logic programming itself as well as ordered disjunction).
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