
Journal of Automated Reasoning (2024) 68:5
https://doi.org/10.1007/s10817-024-09694-6

Should Decisions in QCDCL Follow Prefix Order?

Benjamin Böhm1 · Tomáš Peitl2 ·Olaf Beyersdorff1

Received: 8 July 2023 / Accepted: 8 January 2024 / Published online: 9 February 2024
© The Author(s) 2024

Abstract
Quantified conflict-driven clause learning (QCDCL) is one of the main solving approaches
for quantified Boolean formulas (QBF). One of the differences between QCDCL and propo-
sitional CDCL is that QCDCL typically follows the prefix order of the QBF for making
decisions. We investigate an alternative model for QCDCL solving where decisions can be
made in arbitrary order. The resulting system QCDCLANY is still sound and terminating, but
does not necessarily allow to always learn asserting clauses or cubes. To address this potential
drawback, we additionally introduce two subsystems that guarantee to always learn asserting
clauses (QCDCLUNI-ANY) and asserting cubes (QCDCLEXI-ANY), respectively. We model all four
approaches by formal proof systems and show that QCDCLUNI-ANY is exponentially better than
QCDCL on false formulas, whereas QCDCLEXI-ANY is exponentially better than QCDCL on true
QBFs. Technically, this involves constructing specific QBF families and showing lower and
upper bounds in the respective proof systems. We complement our theoretical study with
some initial experiments that confirm our theoretical findings.

Keywords QBF · CDCL · Proof complexity · Lower bounds

1 Introduction

SAT solving was revolutionised in the late 1990s by the advent of conflict-driven clause
learning (CDCL), which has since been the dominating paradigm in propositional SAT solv-
ing [24, 25, 37]. A few years later, the CDCL approach was lifted to the computationally

An extended abstract of this paper appeared in the proceedings of SAT’22 [8].
T. Peitl: Supported by FWF grant J-4361 (Austrian Science Fund)
O. Beyersdorff: Supported by the Carl Zeiss Foundation and DFG grant BE 4209/3-1.

B Benjamin Böhm
benjamin.boehm@uni-jena.de

Tomáš Peitl
peitl@ac.tuwien.ac.at

Olaf Beyersdorff
olaf.beyersdorff@uni-jena.de

1 Friedrich Schiller University Jena, Jena, Germany

2 TU Wien, Vienna, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-024-09694-6&domain=pdf

5 Page 2 of 31 B. Böhm et al.

even harder setting of quantified Boolean formulas (QBF) in the form of quantified CDCL
(QCDCL) [38]. Though a number of competing approaches to QBF solving exist (cf. [7]
for a recent overview), QCDCL is one of most competitive. State-of-the-art implementations
include DepQBF [21] and Qute [29, 33].

In comparison to the propositional case, QCDCL poses additional technical challenges,
stemming from partitioning the variables into existential and universal (SAT can be viewed
as using only existential variables) and the dependencies between the variables imposed
by the quantifier prefix. The presence of universal variables entails additional rules for unit
propagation (universal reductions), while the variable dependencies imposed by the prefix are
typically observed by decision heuristics in the sense that QCDCL follows the prefix order in
decision making. The latter is arguably the most severe restriction when transitioning from
CDCL to QCDCL. Another difference between CDCL and QCDCL arises from the fact that
unlike in SAT, a satisfying assignment to the QBF matrix does not imply that the QBF is
true. Instead, this is witnessed by additionally learning cubes (i.e., conjunctions of literals,
also called terms) and producing a cube certificate for true QBFs.

Though CDCL and QCDCL are very efficient in practice and in particular on industrial
instances (cf. [32] for an overview of QBF solving applications and [16, 22] for experimental
studies of solver performance), their success and their inherent limitations are not at all well-
understood from a theoretical perspective. The main theoretical approach is through proof
complexity [10]. ForSAT it is known thatCDCL—viewedas a non-deterministic procedure—
is equivalent to propositional resolution [1, 3, 30]. In particular, resolution refutations can be
efficiently extracted from CDCL runs, whereby lower bounds for resolution proof size imply
lower bounds for CDCL running time. However, when using CDCL with practical decision
heuristics such as VSIDS [26], themodel becomes exponentially weaker than resolution [36].

The situation is even more intricate in QBF. Again, from QCDCL runs, proofs can
be efficiently extracted in the format of long-distance Q-Resolution [2, 38].1 However,
QCDCL—even as a non-deterministic procedure—is exponentially weaker than long-
distance Q-Resolution and incomparable to the simpler system of Q-Resolution [5]. Thus
it is very interesting, both from a theoretical and practical perspective, to gauge the precise
power of QCDCL.

In this paper we introduce and investigate QCDCL models that drop the requirement of
making variable decisions along the prefix order. Though it has been recently shown that
following the prefix order in QCDCL is not needed for correctness,2 existing prefix-relaxing
techniques do not exploit this as much as they could. Dependency schemes [23, 28, 31, 34]
workwith the assumption that the prefix has to be observed, but notice that certain parts (often
called spurious dependencies) can be relaxed in preprocessing. With dependency learning
[29], a more recent, orthogonal technique, instead of calculating dependencies upfront the
solver assumes independence until it runs into a problem, from which it learns a dependency
on the fly (dependency learning can be combined with schemes [27]). These strategies are
executed differently: with dependency schemes the solver can fully rely on the relaxed prefix
and use it for decisions, propagation, and clause/cube learning alike; with dependency learn-
ing the solver can only use the relaxed prefix for decisions and propagation and must learn
clauses and cubes with the original prefix in order to detect dependencies. However, both
approaches share the restriction that once dependencies are found, decisions must respect
them.

1 For practical solving, more succinct proof checking formats are used, both for CDCL [14] and QCDCL
[15].
2 It is needed for QDPLL [11, 13], but not for QCDCL (cf. also [5]).

123

Should Decisions in QCDCL Follow Prefix Order? Page 3 of 31 5

Fig. 1 Hasse diagram of the
simulation order of QCDCL
proof systems. Solid lines
represent p-simulations and
exponential separations. Waved
lines represent p-simulations, for
which separations are not known

Our contributions.We propose a new QCDCL model where decisions can ignore quantifi-
cation entirely; only propagation and clause/cube learning use the prefix information.

When suggesting a new model for solving, there are at least two possible approaches:
(1) to give a formal account of the model, prove its correctness, and theoretically quantify
the gains on running time; or (2) provide an implementation and experimentally evaluate its
practical performance. In this paper, our main focus is to contribute towards (1). While we
also perform some initial proof-of-concept experiments, an extensive practical evaluation of
the competitiveness of the approach is left for future work (cf. the conclusion).3

Specifically, our contributions are as follows:

1. Formal proof complexity models for QCDCL using arbitrary decisions.We provide a for-
mal proof-complexity model for QCDCL with arbitrary decisions. This follows a recent line
of research to formalise and rigorously analyse QCDCL from a proof complexity perspective
[5, 9].

Our most general model QCDCLANY allows arbitrary decisions. Care has to be taken to
ensure that we can always learn new clauses and cubes, as otherwise termination of proof
search is no longer guaranteed. We ensure this by adding a simple new constraint condition
(NCC), which forbids making decisions that immediately falsify a clause or satisfy a cube
(which is already trivially impossible in prefix-observing QCDCL).

A potential further drawback of not following prefix order is that we can no longer guaran-
tee to learn asserting clauses or cubes.4 In order to address this, we introduce two subsystems
of QCDCLANY—termed QCDCLUNI-ANY and QCDCLEXI-ANY—that allow to always learn asserting
clauses and cubes, respectively. We prove that all three systems are sound, complete, and
terminating.

2. Exponential separations between theQCDCLmodels.Themain contribution of this paper
lies in proving that bothQCDCLUNI-ANY andQCDCLEXI-ANY allow for exponentially shorter proofs
than the prefix-following QCDCLmodel. The resulting simulation order is depicted in Fig. 1.

To show this we construct two QBF families that exponentially separate the systems.
Both employ general constructions—using a ‘twin’ and a ‘reverse’ construction—that could
potentially be used for further formulas. Technically, we use the recently developed lower
bound approach via the gauge of QBFs [9]. However, different from previous work [5,
9], which only considered clause learning, our lower bounds work against a more realistic
QCDCL system that uses both clause and cube learning. Interestingly, the separation of
QCDCLUNI-ANY from QCDCL works on false QBFs, while the separation of QCDCLEXI-ANY from

3 It appears to us that in SAT solving, theoretical analysis has so far been mainly carried out in retrospect, after
practical solving developments had already taken place. However, we also see a case for theoretical research
providing a-priori guidance for practical developments.
4 An asserting clause/cube becomes unit after backtracking. This concept is important in practical SAT and
QBF solving where only asserting clauses/cubes are learned.

123

5 Page 4 of 31 B. Böhm et al.

QCDCL uses true QBFs. The latter is the first dedicated QBF proof-complexity lower bound
on true formulas.5 In fact, we provide a general method how to transform hardness of false
QBFs into hardness of true formulas.

3. Proof-of-concept experiments. Though this is not our main focus, we provide initial
experiments that confirm our theoretical findings. These experiments are only meant to illus-
trate that our approach is in principle competitivewith plainQCDCL,without considering the
impact of other techniques like preprocessing or dependency learning, etc. (cf. the discussion
of future work in the conclusion).

Organisation. The remainder of this paper is organised as follows. We start in Sect. 2 with
reviewing QBF preliminaries. In Sects. 3 and 4 we introduce and formally model the new
QCDCL versions. Their proof-complexity analysis and the separations are proven in Sect. 5.
Section6 describes our proof-of-concept experiments and Sect. 7 outlines further work.

2 Preliminaries

Propositional and quantified formulas. Variables x and negated variables x̄ are called
literals. We denote the corresponding variable as var(x) := var(x̄) := x .

A clause is a disjunctionof literals and a cube is a conjunctionof literals.Wewill sometimes
interpret clauses and cubes as sets of literals onwhichwe can perform set-theoretic operations.

A unit clause (�) is a clause that consists of only one literal. The empty clause consists
of zero literals, denoted (⊥). We sometimes paraphrase (⊥) as a unit clause with the ‘empty
literal’ ⊥. A clause C is called tautological if {�, �̄} ⊆ C for some literal �.

We define a unit cube of a literal �, denoted by [�], and the empty cube [�] with ‘empty
literal’ �. A cube D is contradictory if {�, �̄} ⊆ D for some literal �. If C is a clause or a
cube, we define var(C) := {var(�) : � ∈ C}. The negation of a clause C = �1 ∨ . . . ∨ �m is
the cube ¬C := C := �̄1 ∧ . . . ∧ �̄m .

A (total) assignment σ of a set of variables V is a non-tautological set of literals such
that for all x ∈ V there is some � ∈ σ with var(�) = x . A partial assignment σ of V is an
assignment of a subset W ⊆ V . A clause C is satisfied by an assignment σ if C ∩ σ 	= ∅. A
cube D is falsified by σ if¬D∩σ 	= ∅. A clauseC that is not satisfied by σ can be restricted
by σ , defined as

C |σ :=
∨

�∈C,�̄/∈σ

�.

Similarly we can restrict a non-falsified cube D as

D|σ :=
∧

�∈D\σ
�.

Intuitively, an assignment sets all its literals to true.
A CNF (conjunctive normal form) is a conjunction of clauses and a DNF (disjunctive

normal form) is a disjunction of cubes. We restrict a CNF (resp. DNF) φ by an assignment
σ as

φ|σ :=
∧

C∈φ non-satisfied

C |σ
⎛

⎝resp. φ|σ :=
∨

D∈φ non-falsified

D|σ
⎞

⎠ .

5 Also in SAT, basically all lower bounds are for unsatisfiable formulas.

123

Should Decisions in QCDCL Follow Prefix Order? Page 5 of 31 5

For a CNF (DNF) φ and an assignment σ , if φ|σ = ∅, then φ is satisfied (falsified) by σ .
A QBF (quantified Boolean formula) � = Q · φ consists of a propositional formula

φ, called the matrix, and a prefix Q. A prefix Q = Q′
1V1 . . .Q′

sVs consists of non-empty
and pairwise disjoint sets of variables V1, . . . , Vs and quantifiers Q′

1, . . . ,Q′
s ∈ {∃,∀} with

Q′
i 	= Q′

i+1 for i ∈ [s−1]. For a variable x inQ, the quantifier level is lv(x) := lv�(x) := i ,
if x ∈ Vi . For lv�(�1) < lv�(�2) we write �1 <� �2, while �1 ≤� �2 means lv�(�1) ≤
lv�(�2).

For a QBF � = Q · φ with φ a CNF (DNF), we call � a QCNF (QDNF). We define
C(�) := φ (resp. D(�) := φ). � is an AQBF (augmented QBF), if φ = ψ ∨ χ with CNF
ψ and DNF χ . Again we write C(�) := ψ andD(�) := χ .

We restrict a QCNF (QDNF) � = Q · φ by an assignment σ as �|σ := Q|σ · φ|σ , where
Q|σ is obtained by deleting all variables from Q that appear in σ . Analogously, we restrict
an AQBF � = Q · (ψ ∨ χ) as �|σ := Q|σ · (ψ |σ ∨ χ |σ).

If L is a set of literals (e.g., an assignment), we can get the negation of L , which we define
as ¬L := L := {�̄| � ∈ L}.
(Long-distance) Q-resolution and Q-consensus. Let C1 and C2 be two clauses (cubes)
from a QCNF (QDNF) or AQBF �. Let � be an existential (universal) literal with var(�) /∈
var(C1) ∪ var(C2). The resolvent of C1 ∨ � and C2 ∨ �̄ over � is defined as

(C1 ∨ �)
��� (C2 ∨ �̄) := C1 ∨ C2

(resp. (C1 ∧ �)
��� (C2 ∧ �̄) := C1 ∧ C2).

Let C := �1 ∨ . . . ∨ �m be a clause from a QCNF or AQBF � such that �i ≤� � j for all
i < j , i, j ∈ {1, . . . ,m}. Let k be minimal such that �k, . . . , �m are universal. Then we can
perform a universal reduction step and obtain

red∀
�(C) := �1 ∨ . . . ∨ �k−1.

Analogously, we perform existential reduction on cubes. Let D := �1∧ . . .∧�m be a cube
of a QDNF or AQBF � with �i ≤� � j for all i < j , i, j ∈ {1, . . . ,m}. Let k be minimal
such that �k, . . . , �m are existential. Then red∃

�(D) := �1 ∧ . . . ∧ �k−1.
If it is clear that C is a clause or a cube, we can just write red�(C) or even red(C), if the

QBF � is also obvious. We will write red(�) = red�(�), if we reduce all clauses and cubes
of the AQBF � according to its prefix.

As defined by Kleine Büning et al. [20], a Q-resolution (Q-consensus) proof π from a
QCNF (QDNF) orAQBF�of a clause (cube)C is a sequence of clauses (cubes)π = (Ci)

m
i=1,

such that Cm = C and for each Ci one of the following holds:

• Axiom: Ci ∈ C(�) (resp. Ci ∈ D(�));

• Resolution: Ci = C j
x�� Ck with x existential (universal), j, k < i , and Ci non-

tautological (non-contradictory);
• Reduction: Ci = red∀

�(C j) (resp. Ci = red∃
�(C j)) for some j < i .

We callC the root ofπ . In [2], an extension ofQ-resolution (Q-consensus) proofs to long-
distance Q-resolution (long-distance Q-consensus) proofs was introduced by replacing the
resolution rule by

• Resolution (long-distance): Ci = C j
x�� Ck with x existential (universal) and j, k < i .

The resolvent Ci is allowed to contain tautologies such as u ∨ ū (resp. u ∧ ū), if u is
universal (existential). If there is such a universal (existential) u ∈ var(C j) ∩ var(Ck),
then we require x <� u.

123

5 Page 6 of 31 B. Böhm et al.

Furthermore, a Q-resolution (Q-consensus) or long-distance Q-resolution (long-
distance Q-consensus) proof π from � of the empty clause (⊥) (the empty cube [�]) is
called a refutation (certificate) of �. In that case, � is called false (true). We will sometimes
interpret π as a set of clauses (or cubes).

A proof system S p-simulates a system S′, if every S′ proof can be transformed in poly-
nomial time into an S proof of the same formula.

3 Our QCDCLModels

To analyse the complexity of QCDCL procedures, we need to fully formalise them as proof
systems. This approach was initiated in [5] and [9], and we follow that framework. We will
only sketch this formalization here.

We store all relevant information of a QCDCL run in trails. Since QCDCL uses several
runs and potentially also restarts, a QCDCL proof will typically consist of many trails.

Definition 1 (trails) A trail T for a QCNF or AQBF � is a (finite) sequence of pairwise
distinct literals from �, including the empty literals ⊥ and �. In general, a trail has the form

T = (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . , p(1,g1); . . . ;dr, p(r ,1), . . . , p(r ,gr)), (1)

where the di are decision literals and p(i, j) are propagated literals. A trail T has run into a
conflict if ⊥ ∈ T or � ∈ T.

Decision literals are written in boldface. We use a semicolon before each decision to mark
the end of a decision level. If one of the empty literals ⊥ or � is contained in T, then it has
to be the last literal p(r ,gr). In this case, we say that T has run into a conflict.

Trails can be interpreted as non-tautological sets of literals, and therefore as (partial)
assignments. We write x <T y if x, y ∈ T and x is left of y in T. Furthermore, we write
x ≤T y if x <T y or x = y.

As trails are produced gradually from left to right in an algorithm, we define T[i, j] for
(i, j) ∈ ({0, . . . , r} × {0, . . . , gi })\{(0, 0)} as the subtrail that contains all literals from T up
to (and excluding) p(i, j) (resp. di , if j = 0) in the same order. Intuitively, T[i, j] is the state
of the trail before we assigned the literal at the point [i, j] (which is p(i, j) or di).

Each propagated literal p(i, j) ∈ T belongs to an antecedent clause (if p(i, j) is existential)
or an antecedent cube (if p(i, j) is universal) from �, which we call anteT(p(i, j)). At the
point where p(i, j) was propagated in T, we need that anteT(p(i, j)) had become unit, hence
red�(anteT(p(i, j))|T[i, j]) = (p(i, j)) if p(i, j) is existential, and red�(anteT(p(i, j))|T[i, j]) =
[p̄(i, j)], if p(i, j) is universal.

Trails are not generated arbitrarily, as they follow some further rules in practice, such
as propagations should not be skippable. We denote trails with these conditions as natural
trails.

Definition 2 (natural trails) We call T a natural trail for the formula �, if for each
i ∈ {1, . . . , r} the formula red(�|T[i,0]) does not contain unit or empty constraints. Fur-
thermore, the formula �|T[i, j] must not contain empty constraints for each i ∈ {1, . . . , r},
j ∈ {1, . . . , gi }, except [i, j] = [r , gr]. Intuitively, we require that decisions are only made
if and only if there are no more propagations on the same decision level left. Also, conflicts
must be detected immediately if there are any.

We state some general facts about trails and antecedent clauses/cubes one should keep in
mind.

123

Should Decisions in QCDCL Follow Prefix Order? Page 7 of 31 5

Remark 1 Let T be a trail, � ∈ T a propagated literal and A := anteT(�).

• If � is existential, then � ∈ A and for each literal x ∈ A with x 	= � we need x̄ <T �.
• If � is universal, then �̄ ∈ A and for each literal u ∈ A with u 	= �̄ we need u <T �.

An essential element of QCDCL is clause and cube learning. This guarantees to make
‘progress’ after each trail (at least under some conditions that we will specify later).

Definition 3 (learnable constraints) Let T be a trail for � of the form (1) with p(r ,gr) ∈
{⊥,�}. Starting with anteT(⊥) (resp. anteT(�)) we reversely resolve over the antecedent
clauses (cubes) that were used to propagate the existential (universal) variables, until we stop
at some arbitrarily chosen point. The clause (cube)we so derive is a learnable constraint. Note
that clause (cube) learning will skip propagations caused by cubes (clauses) and interpret
the corresponding literal in the trail as a decision. Universal (existential) reduction will be
performedwhenever applicable (basically before and after each resolution step in the learning
process). We denote the set of learnable constraints by L(T).

We can also learn cubes from trails that did not run into conflict. If T is a total assignment
of the variables from �, then we define the set of learnable constraints as the set of cubes
L(T) := {red∃

�(D)| D ⊆ T and D satisfies C(�)}.
In QCDCL, our goal is to make ‘progress’ in each run/trail. Thus, we have to ensure that

we can always learn new clauses or cubes from a constructed trail. Since we want to work
with QCDCL models that do not necessarily follow the prefix order for decision making, it
is not guaranteed that we can even learn new constraints from each trail. As we will show
later, we need the following condition to prevent such a situation, which could easily lead to
a loop in practical solving.

Definition 4 A trail T for a formula � fulfils the New Constraint Condition (NCC for short),
if for each decision di the formula red(�|T[i,0]∪{di }) does not contain the empty clause or
cube.

Intuitively, this means that a decision must not lead to a conflict immediately. It will
become clear later, why we can always find a decision that does not violate the NCC. In fact,
classical QCDCL automatically fulfils this condition.

We will now formally define our four QCDCL proof systems, namelyQCDCL,QCDCLANY,
QCDCLUNI-ANY, and QCDCLEXI-ANY.

Definition 5 (QCDCL proof systems) Let S be one of QCDCL, QCDCLANY, QCDCLUNI-ANY,
QCDCLEXI-ANY. An S proof ι from a QCNF � = Q · φ of a clause or cube C is a (finite)
sequence of triples

ι := [(Ti ,Ci , πi)]mi=1,

where Cm = C , each Ti is a trail for �i that fulfils the NCC, each Ci ∈ L(Ti) is one of the
constraints we can learn from each trail and πi is the long-distance Q-resolution or long-
distance Q-consensus proof from �i of Ci we obtain by performing the steps in Definition
3. If necessary, we set πi := ∅. We will denote the set of trails in ι as T(ι).

The AQBFs �i are defined as follows:

�1 := Q · (C(�) ∨ ∅)

and

� j+1 :=
{
Q · (

(C(� j) ∧ C j) ∨ D(� j)
)
if C j is a clause,

Q · (
C(� j) ∨ (D(� j) ∨ C j)

)
if C j is a cube,

123

5 Page 8 of 31 B. Böhm et al.

for j = 1, . . . ,m − 1.
The four systems differ from each other in the way decisions are made. We extend the

definition of natural trails with decision rules that belong to the corresponding system S. A
natural trail T for a formula
 that fulfils the following rules for S is called a natural S trail:

• QCDCL: For each decision di we have that lv
|T[i,0](di) = 1. I.e., decisions are level-
ordered.

• QCDCLANY: Decisions can be made arbitrarily as long as the NCC is fulfilled.
• QCDCLUNI-ANY: An existential decision di can only be made if all universal variables that

are quantified left of di were already assigned in T. Universal decisions can be made in
any order as long as the NCC is fulfilled.

• QCDCLEXI-ANY: A universal decision di can only be made if all existential variables that
are quantified left of di were already assigned in T. Existential decisions can be made in
any order as long as the NCC is fulfilled.

After each trail, we will backtrack to some arbitrary previous point in the trail and continue
to decide or propagate from that point.

If C = Cm = (⊥), then ι is called an S refutation of �. If C = Cm = [�], then ι is called
an S certificate of �. The proof ends once we have learned (⊥) or [�].

If C is a clause, we can stick together the long-distance Q-resolution derivations from
{π1, . . . , πm} and obtain a long-distance Q-resolution proof from � of C , which we call
R(ι). Similarly, if C is a cube, we can stick together the long-distance Q-consensus deriva-
tions and obtain a long-distance Q-consensus proof R(ι) from � of C .

The size of ι is defined as |ι| := ∑m
i=1 |Ti |. Obviously, we have |R(ι)| ∈ O(|ι|).

Our formalisation above is based on [5, 9]. However, since in the present paper cube learning
is always included, our plain model QCDCL now includes clause and cube learning (while
in [5, 9], QCDCL denotes a system with just clause learning, but without learning cubes).

The concept behind the two models QCDCLUNI-ANY and QCDCLANY was already introduced
in [5] (albeit defined slightly differently, theywere calledQCDCLASS-R-ORD

RED andQCDCLANY-ORD
NO-RED in

those papers). However, since we include cube learning now, our models here match practical
solving much better.

Remark 2 In QCDCL, decision making can never violate the NCC if we create the trails
‘naturally’ (i.e., decisions are only made if and only if there are no more propagations on the
same decision level left, and conflicts must be detected immediately if there are any).

Proof If we made a level-ordered decision di and get a conflict immediately afterwards on a
clause (w.l.o.g.) C = anteT(⊥), then di must have been existential (otherwise we could have
reduced d̄i in order to get a conflict before) and we would need d̄i ∈ C . Furthermore, there
must exist at least one universal literal u ∈ C thatwas reducedwhile propagating⊥, otherwise
C would have been a unit clause before we made the decision di . However, the reduction
must have been blocked before deciding di , otherwise we could have used this reduction to
propagate d̄i . That means u was quantified left of di , but this is a contradiction since the
decision di was level-ordered. Hence, deciding the leftmost unassigned literal according to
the prefix order, we will never violate the NCC. ��

We still have to make sure to fulfil NCC when backtracking, though. We will explain later
how this is achieved.

The next result states simulations between systems, cf. Fig. 1. They all followby definition.

Proposition 1 Each QCDCL proof is also a QCDCLUNI-ANY and QCDCLEXI-ANY proof, and each
QCDCLUNI-ANY or QCDCLEXI-ANY proof is also a QCDCLANY proof.

123

Should Decisions in QCDCL Follow Prefix Order? Page 9 of 31 5

4 Learning Asserting Constraints

We recall the notion of an asserting clause (or cube). The concept originates from SAT
solving [25], but directly lifts to QBF [13, 38]. Intuitively, asserting constraints are learnable
constraints that become unit after backtracking. We give a more liberal definition as we do
not refer to specific asserting constraints (such as UIP clauses).

Definition 6 (asserting constraints) Let T be a trail for a QCNF � that contains r decision
literals. A clause (cube) C ∈ L(T) is called asserting, if there exists some point [i, j] such
that red∀

�(C |T[i, j]) is a unit clause (resp. red∃
�(C |T[i, j]) is a unit cube). Furthermore, we

require that we backtrack by at least one decision level, i.e., i < r or j = 0.

Learning asserting clauses might be advantageous as it guarantees new unit propagations
after backtracking to a suitable point. In addition, asserting clauses are always new.

Proposition 2 If T is a trail in a QCDCLUNI-ANY (resp. QCDCLEXI-ANY) proof of a formula �, and
if ⊥ ∈ T (resp. � ∈ T), then there exists a new asserting or empty clause (cube) C ∈ L(T).

Furthermore, if C is non-empty, there exists a point [i, j] in the trail to which we can
backtrack after learning C such that the NCC continues to hold.

Proof Wewill show the case for conflicts on clauses forQCDCLUNI-ANY proofs, theQCDCLEXI-ANY

case is completely dual.
Let the trail T look like

T = (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . , p(1,g1); . . . ;dr, p(r ,1), . . . , p(r ,gr)).

Then the sequence of learnable clauses is

L(T) = (C(r ,gr), . . . ,C(r ,1), . . . ,C(1,g1), . . . ,C(1,1),C(0,g0), . . . ,C(0,1)).

We can assume that there exists at least one existential decision literal di such that d̄i is
contained in some C ∈ L(T). Otherwise, the rightmost clause in L(T) is empty since it
contains negated decisions or universal literals only, which will be reduced to the empty
clause (⊥).

Let k ∈ {1, . . . , r} be maximal such that an existential d̄k is contained in some clause
from L(T). Let p(�,m) ∈ T be the propagated (non-empty) literal directly right of dk in T and
set D := C(�,m). Note that p(�,m) does not need to be on the same decision level as dk . Such
a p(�,m) must exist by the NCC. We will show that D is asserting.

We consider the trail T at the point [k, 0], that means right before dk was decided. We will
prove that E := red∀

�(D|T[k,0]) = (d̄k).
If there is an existential literal d̄k 	= y ∈ E , then ȳ cannot have been assigned in T[k, 0],

hence we have dk <T ȳ. But that means ȳ had to be a decision, otherwise it would have been
resolved away during clause learning. But this is a contradiction to the maximality of k. We
conclude that such a y cannot exist.

Let us now assume there is a universal literal u ∈ E . Then we need u <� dk since it
was not reduced during clause learning. But T was a trail in a QCDCLUNI-ANY proof, hence
lv�|T[k,0](dk) = 1 and therefore ū ∈ T[k, 0]. Then we get u /∈ E , contradiction. Thus such a
u cannot exist, and E is in fact a unit clause.

We can backtrack to the point [k, 0] (i.e., before we made the decision dk) and will not
hurt the NCC since the only new clause we have learned can only propagate the non-empty
literal d̄k .

123

5 Page 10 of 31 B. Böhm et al.

At the end, we have to show that D is new. In fact, if D was already known, we would get
a conflict directly after deciding dk , which would violate the NCC. Thus, D must be a new
clause. ��

A similar result holds for the any-order model, albeit with the difference that we might not
be able to learn asserting constraints. But at least we can guarantee to learn a new clause/cube.

Proposition 3 If T is a trail in a QCDCLANY proof for a formula �, that has run into a conflict
or in which we assigned all variables, then L(T) contains a new clause or cube C that is not
contained in �.

Further, if C is non-empty, there exists a point [i, j] in the trail to which we can backtrack
after learning C such that the NCC continues to hold.

Proof Case 1: T runs into a conflict.
Let the trail T look like

T = (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . , p(1,g1); . . . ;dr, p(r ,1), . . . , p(r ,gr)).

Then the sequence of learnable clauses is

L(Ti) = (C(r ,gr), . . . ,C(r ,1), . . . ,C(1,g1), . . . ,C(1,1),C(0,g0), . . . ,C(0,1)).

By the NCC, we have that gr > 1. We will show that C(r ,1) (which is the clause/cube we get
after resolving over p(r ,gr−1), . . . , p(r ,1)) is a new clause (cube).

Assume not. Consider the restricted clause (cube) E := C(r ,1)|Ti [r ,1]. Suppose that there
is an existential (universal) literal x ∈ E ⊆ C(r ,1). That means that x is contained in at least
one antecedent clause (cube) after (and including) p(r ,1). In particular, we need x̄ ∈ T (resp.
x ∈ T). Because x is still contained in C(r ,1), it cannot have been resolved away during
learning, hence x̄ ∈ T[r , 1] (resp. x ∈ T[r , 1]). This is a contradiction to the definition of E .

We conclude that E can only contain universal (existential) literals, hence red∀
�(E) = (⊥)

(resp. red∃
�(E) = [�]). But then we would have got a conflict directly after dr , which is

impossible by the NCC. That means that C(r ,1) must a new clause (cube).
We can backtrack to the point where we undo the rightmost existential (universal) literal

in T that is contained in C(r ,1). At this point, C(r ,1) will not become unit since it still includes
at least this one literal.

Case 2: T does not run into a conflict, but we assigned all variables in T.
Assume that we cannot find such aC . Then there exists aC ∈ L(T) such thatC ∈ D(�a),

where �a is the current formula for T. That means there exists a cube E ⊆ T such that
red∃

�a
(E) = C and E satisfies C(�a). In particular, we have red∃

�a
(C |T) = [�], which

means that T should have run into a conflict. This is a contradiction.
We can backtrack to the point where we undo the rightmost universal literal in T, that is

contained in C . Then C will just propagate this universal literal and not an empty one. If this
point is on the last decision level, we can alternatively restart. ��
Remark 3 To illustrate the importance of the NCC, we give an example of aQCDCLANY trail—
violating the NCC—from which we cannot learn a new clause. Consider the trail T = (x,⊥)

for the false QCNF ∀u∃x · (u∨ x)∧ (u∨ x̄)∧ (ū∨ x)∧ (ū∨ x̄). The trail violates the NCC, as
we got a conflict directly after the decision x . The only learnable clause is anteT(⊥) = ū∨ x̄ ,
which is obviously already known.

Another example illustrates the case where we can learn a new clause but no asserting
clause. Let the trail be U := (x, y;u, z̄,⊥) for the false QCNF ∀u∃x, y, z · (x̄ ∨ y) ∧ (x ∨
y) ∧ (u ∨ ȳ ∨ z̄) ∧ (ū ∨ ȳ ∨ z̄) ∧ (u ∨ ȳ ∨ z) ∧ (ū ∨ ȳ ∨ z). There are two new clauses we

123

Should Decisions in QCDCL Follow Prefix Order? Page 11 of 31 5

Fig. 2 Overview of guaranteed learnable constraints after a trail conflict in the corresponding models

could learn: ū ∨ ȳ or ū ∨ x̄ . None of the two can become unit after backtracking since we
used the decision heuristic for QCDCLEXI-ANY, although we followed the NCC.

As a special case we obtain for our base model QCDCL the following situation.

Corollary 4 [Folklore, cf. [23]] If T is a trail in a QCDCL proof for a formula �, that has run
into a conflict, then L(T) contains an asserting or empty clause or cube. If T has not run into
a conflict, but we have assigned all variables in T, then L(T) contains at least a new cube C.

Furthermore, if C is non-empty, there exists a point [i, j] in the trail to which we can
backtrack after learning C such that the NCC continues to hold.

Figure2 provides an overview of the four systems and their ability to learn asserting
clauses and cubes. As a consequence of always learning new constraints, we infer that our
models are all complete and terminating proof methods.

Theorem 5 QCDCL,QCDCLANY,QCDCLUNI-ANY andQCDCLEXI-ANY are sound and complete proof
systems.6 Additionally, as long aswe follow the rules of decisionmaking (especially theNCC),
we will always learn the empty clause or cube at some point, no matter what decisions were
made.

Proof By Propositions 2 and 3 as well as Corollary 4 we conclude that from each trail (that
has either run into a conflict or assigned all variables) we can always learn a new clause or
cube. Note that these results have to be interpreted in the context of Proposition 1.

Since a given formula only consists of finitely many variables, we can only learn finitely
many new clauses and cubes. We finish the proof as soon as we learn the empty clause or
cube, which will happen at some point. Therefore all four systems are complete.

The soundness results from the fact that from each QCDCL, QCDCLANY, QCDCLUNI-ANY

and QCDCLEXI-ANY proof ι we can extract a long-distance Q-resolution or long-distance
Q-consensus proof R(ι) for the same formula. ��

5 Separations of QCDCL Systems

In this section, we will exponentially separate our three new models—where decisions do
not necessarily follow the prefix order—from the plain model QCDCL.

Wewill use the gauge lower bound technique, introduced in [9], whichwewill first review.
This technique works on �b

3 QCNFs. To ease notation, we will assume that prefixes of �b
3

QCNFs have the form ∃X∀U∃T , for sets of literals X ,U , T , and we will use the notions of
X -, U - and T -variables and -literals. Further, we define certain types of clauses:

6 I.e., they are proof systems for the language of false and true QBFs in the setting of [12]. Technically, in
order not to trivialise the notion of such a proof system, we could consider proof systems for the language L
of the marked union of true and false QBFs, i.e., L = {0� | � is a false QBF} ∪ {1� | � is a true QBF}. In
this way, L is still PSPACE complete.

123

5 Page 12 of 31 B. Böhm et al.

• X-clauses consist of X -literals only (analogously we define U-clauses and T-clauses),
• XT-clauses consist of at least one X - and at least one T -literal, but no U -literals,
• XUT-clauses consist of at least one X -, U - and T -literal, respectively.

The gauge lower bound method works for a specific class of �b
3 QCNFs with the XT-

property.

Definition 7 ([5]) We say that � fulfills the XT-property, if C(�) contains no XT-clauses, no
T-clauses that are unit (or empty) and no two T-clauses from C(�) are resolvable.

The XT-property extends to entire QCDCL proofs, as stated in the next lemma.

Lemma 6 ([5]) If � is a �b
3 QCNF that fulfills the XT-property, then it is not possible to

derive XT-clauses or new T-clauses via long-distance Q-resolution from �.

The gauge lower-bound method from [9] uses the next two notions of fully reduced and
primitive proofs (they were implicit in [9] and stated explicitly in [4]).

Definition 8 (fully reduced proofs [4, 9]) A long-distance Q-resolution refutation π of a
QCNF � is fully reduced, if for each clause C ∈ π that contains universal literals that are
reducible, the reduction step is performed immediately and C is not used otherwise in the
proof.

Fully reduced proofs are not much of a limitation. In fact, all long-distance Q-resolution
proofs that we extract from a QCDCL run are already fully reduced by default. Also, we can
always shorten a given long-distance Q-resolution proof by making it fully reduced.

Definition 9 (primitive proofs [4, 9]) A long-distance Q-resolution proof π from a �b
3

formula is primitive, if there are no two XUT-clauses in π that are resolved over an X -
variable.

Unlike the fully reduced property, not all proofs extracted from QCDCL are primitive, in
general.

Our lower bound method will not work for all QCDCL proofs, but needs fully reduced
primitiveQ-resolution proofs, which are better suited for a proof-complexity analysis. Later,
the challengewill be to show that certain extracted proofs fromQCDCL are primitive.Note that
fully reduced primitive long-distance Q-resolution proofs are always Q-resolution proofs.

The main measure for the lower bound technique is the gauge of a formula, defined in [9].

Definition 10 ([9]) Let � be a �b
3 QCNF with prefix ∃X∀U∃T . We define W� as the set of

all Q-resolution proofs π from � of X -clauses Cπ , such that π consists of resolutions over
T -literals and reductions only. We define

gauge(�) := min{|Cπ | : Cπ is the root of some π ∈ W�}.
Intuitively, gauge(�) is the minimal number of X -literals that are piled up during the

process of deriving an X -clause without using resolutions over X -literals. In other words: to
get rid of all T -literals from�, we have to pile up at least gauge(φ)many different X -literals.

All notions we introduced so far are combined into the following lower bound method:

Theorem 7 ([9]) Each fully reduced primitiveQ-resolution refutation of a�b
3 QCNF� that

fulfils the XT-property has size 2�(gauge(�)).

123

Should Decisions in QCDCL Follow Prefix Order? Page 13 of 31 5

Proof We refer to the notion of quasi level-ordered proofs from [9] (there is no need to
define this here). In that paper, it is explained how we can transform a QCDCL refutation of
a formula that fulfils the XT-property into a quasi level-ordered Q − resolution refutation in
polynomial time via an algorithm. However, the input proof does not need to be a QCDCL
proof necessarily. It suffices that this proof is fully reduced and it does not contain an X -
resolution over two XUT-clauses (these are the only two properties that were needed for
proving Theorem 2 in [9]). In other words, this algorithm can be used to transform fully
reduced primitive Q-resolution refutations into quasi level-ordered Q-resolution refutations
in polynomial times.

The lower bound then follows from Theorem 5 of [9]. ��
Our goal is to find formulas that separate QCDCL from QCDCLUNI-ANY and QCDCL from

QCDCLEXI-ANY, respectively. We start with the latter.

5.1 Separation on True Formulas

The advantage of QCDCLEXI-ANY (compared to QCDCL) is to decide existential literals out of
order while still learning asserting cubes. Since cubes are important for certificates of true
formulas, it makes sense to use true QBFs for the separation.

First, we discuss two generic modifications for QBFs. The twin construction doubles all
universal variables. For all clauses with universal variables a copy is created in the twin
variables.

Definition 11 (twin formulas) Let � = ∃X∀U∃T ·C(�) be a QCNF. LetU = {u1, . . . , um}
and let v1, . . . , vm be variables not occuring in �. Then the twin formula of � is the QCNF
Twin� defined as

Twin� := ∃X∀(U ∪ {v1, . . . , vm})∃T · C(�) ∧
∧

C∈C(�)

C[u1/v1, . . . , um/vm],

where ui/vi indicates that all occurrences of ui are substituted by vi .

The second modification is the reversion of a formula.

Definition 12 If � = Q1V1 . . .QkVk · ∧m
j=1 C j is a QCNF with Qi ∈ {∃,∀} and disjoint

sets of variables Vi for i = 1, . . . , k, then the reversion Rev(�) of � is the QCNF

Q′
1V1 . . .Q′

kVk∀w∃c1, . . . , cm · (c̄1 ∨ . . . ∨ c̄m) ∧
m∧

j=1

∧

�∈C j

(�̄ ∨ w ∨ c j) ∧ (�̄ ∨ w̄ ∨ c j)

where Q′
i = ∀ if Qi = ∃, and Q′

i = ∃ if Qi = ∀, and w, c1, . . . , cm are new variables not
contained in �.

It is easy to prove that there exists a duality between the truth values of � and Rev(�).

Lemma 8 If � is a QCNF, then Rev(�) is true if and only if � is false.

Proof Case 1: � is false.
Then there exists a winning strategy for the universal player of �. We will show that

Rev(�) has an existential winning strategy.
The existential player forRev(�) can just follow the universalwinning strategy for�. That

means there is at least one clause C j ∈ C(�) falsified by the total assignment that consists of

123

5 Page 14 of 31 B. Böhm et al.

the assignment from the universal player and the corresponding response determined by the
winning strategy. Then the clauses �̄ ∨ w ∨ c j and �̄ ∨ w̄ ∨ c j for each � ∈ C j are satisfied
(for this particular j) by this assignment. Note that it does not matter how w was assigned.
Therefore, the existential player for this modified formula can just set c j to true and all the
other ci to false.

Case 2: � is true.
This case is analogous to Case 1. The universal player for the modified Rev(�) version

follows the existential winning strategy for �. Then the universal player can set w to true (it
does not matter, actually). For each j ∈ {1, . . . ,m} the clause C j is satisfied, hence at least
one literal � ∈ C j is set to true. Therefore for each c j , the clause �̄∨ w̄ ∨ c j becomes the unit
clause (c j) at some point under the assignment determined by the strategy. That means the
existential player for Rev(�) has to set each c j to true, falsifying the clause c̄1 ∨ . . . ∨ c̄m .

We now have constructed a universal winning strategy for Rev(�). ��
We will use the reversion to lift hardness from false to true QCNFs. To verify a true

formula, we need to create a proof using cubes. We will show that Rev(�) is designed such
that its initial cubes are basically the negated axiom clauses of �. Thus, a certificate of
Rev(�) can be transformed into a refutation of �.

Our reversion was inspired by the notion of the negation from [19]. The only change we
made is adding the variable w. We did this to prevent a direct connection between an X -
or U -block and an auxiliary variable c j from the last block. Our lower bound technique is
based on the fact that on certain formulas we cannot have direct connections (hence: cannot
directly propagate) between outer and inner quantifier blocks. The added variable w helps to
maintain this property.

The next two results shows how we can transform certificates of Rev(�) into refutations
of � by interpreting the cubes from the certificate as negated clauses of a refutation.

Lemma 9 Let � = Q · ∧m
j=1 C j be a QCNF and let σ be an assignment that satisfies

C(Rev(�)). Then there exists some C ∈ C(�) with C ⊆ σ .

Proof Since we have to satisfy the clause (c̄1 ∨ . . . ∨ c̄m), there is some j ∈ {1, . . . ,m} with
c̄ j ∈ σ . Then the clauses �̄ ∨ w ∨ c j and �̄ ∨ w̄ ∨ c j have to be satisfied for each � ∈ C j . We
do not need to assign w, but we need to set each � to false, hence C j ⊆ σ . ��
Proposition 10 If � is a false QCNF and ρ is a long-distance Q-consensus certificate of
Rev(�), thenρ can be transformed into a fully reduced long-distanceQ-resolution refutation
π of � with |π | ≤ |ρ|.

More precisely, for each clause C ∈ π there is a cube C ′ ∈ ρ with C ⊆ C ′. Furthermore,
for each two clauses C, D that are resolved inπ , the corresponding cubes C ′, D′ are resolved
in ρ, as well.

Proof By Lemma 9, for each initial cube D ∈ ρ there is a clause C ∈ C(�) with
red∃

Rev(�)(C) ⊆ D (note that the assignment from Lemma 9 can still be reduced). We sub-

stitute each initial cube D with its corresponding red∃
Rev(�)(C) and shorten the proof, if

necessary (i.e., delete redundant resolutions and reductions). We receive a subproof π ′ ⊆ ρ,
that is still a certificate.

After that, we negate all cubes in π ′ and receive a proof π that consists of clauses. If we
interpret π as a proof for � (or red(�) to be precise), all resolutions and reductions are still
sound because the quantifiers were flipped, as well.

123

Should Decisions in QCDCL Follow Prefix Order? Page 15 of 31 5

We can assume that in π we will reduce as soon as possible, otherwise we could shorten
the proof even more. Obviously, the last clause in π has not received any additional literals,
therefore π is a long-distance Q-resolution refutation of �. ��

For our next results, we need an even stronger property than the XT-property: We require,
that clauses from the formula contain at least one U - and T -literal.

Lemma 11 If � is a �b
3 QCNF, in which all clauses contain at least one U- and T -literal,

then � fulfils the XT-property.

Proof Obviously, � does not contain any XT- or T-clauses and therefore the XT-property is
fulfilled. ��

We combine the results above and obtain a new lower bound technique for true formulas,
which builds on the gauge technique for false formulas.

Theorem 12 Let � be a false �b
3 . Additionally, let all clauses C ∈ C(�) contain at least

one U- and one T -literal. If the QCNF Twin� needs fully reduced primitive Q-resolution
refutations of size s, then QCDCL certificates for Rev(Twin�) also need size s.

Proof Let ι be a QCDCL certificate for Rev(Twin�). We will show that there exists a fully
reduced primitive Q-resolution refutation π for Twin� with |π | ≤ |R(ι)|.

Letπ be the long-distanceQ-resolution refutation ofTwin�n as described inProposition
10. Then π is fully reduced. We will show that π is primitive.

Assume not. Then there are two XUT-clauses B1, B2 ∈ π that are resolved over some
x ∈ X . By the construction ofπ described in Proposition 10, we can find two cubes D1, D2 ∈
R(ι) such that var(Di)∩U 	= ∅ and var(Di)∩T 	= ∅ for i = 1, 2 which are resolved over x .
One of these cubes was an antecedent cube for x in some trail T ∈ T(ι), say D1 = anteT(x)
(that means x̄ ∈ D1).

In particular, there is some T -literal t ∈ D1 such that t <T x because D1 must become unit.
Remember that t is universal in Rev(Twin�) and we can only reduce cubes existentially.
Then either t was a regular decision, or a propagation.

Case 1: t was decided.
This is only possible if allU -variables were assigned before. Hence, for each u ∈ U there

is a literal �u with var(�u) = u and �u <T t <T x . Because decisions have to be level-ordered
in QCDCL, all �u had to have been propagated.

Let �u be the leftmost U -literal in T. Consider its antecedent clause A := anteT(�u).
Claim: If �u is the leftmost U -literal in T, then there exists an i ∈ {1, . . . ,m} such that ci ∈

var(anteT(�u)) (where c1, . . . , cm are the variables from Rev(Twin�) as in Definition 12).

Proof of the claim. Assume not. We will show that A := anteT(�u) has to contain at least two
different U -literals.

Assume that A only contains one U -literal, namely �u itself. Let � consist of the clauses
C1, . . . ,Cm′ and let Twin� consist of the clausesC1, . . . ,Cm withm > m′. We can assume
that �u is a copy of a literal from � by the construction of a twin formula. In particular, �u
(and �̄u) cannot be contained in the clauses C1, . . . ,Cm′ .

Let ρ be the long-distance Q-resolution derivation of A that was constructed in ι, but
not used for R(ι) since certificates can only make use of cubes. By assumption, A does not
contain any ci or c̄i . However, each axiom clause from Rev(Twin�) includes at least one
ci or c̄i . Hence, we have to resolve over these variables somehow. In particular, we need

123

5 Page 16 of 31 B. Böhm et al.

c̄1∨ . . .∨ c̄m ∈ ρ since this is the only axiom clause where these variables occur in a negative
polarity.

We will now construct another long-distance Q-resolution derivation ρ′ by substituting
c̄1∨. . .∨ c̄m with c̄1∨. . .∨ c̄m′ in ρ and gradually deleting all redundant clauses. In particular,
all clauses fromRev(Twin�) that contain �u or �̄u will be deleted because the corresponding
ci is missing. Let A′ be the last clause in ρ′, hence ρ′ is a long-distance Q-resolution proof
of A′ from Rev(�). Obviously, we get A′ ⊆ A and �u /∈ A′ as well as ci , c̄i /∈ A′ for all
i = 1, . . . ,m. Since �u was the onlyU -literal in A, the clause A′ cannot have anyU -literals.
Therefore A′ is a clause consisting of universal literals only. Reducing A′ universally gives
us the empty clause (⊥), which means that we can extend ρ′ to a refutation of Rev(�). But
this is a contradiction to the fact that Rev(�) is a true formula (by Lemma 8).

That shows that A must contain more than one U -literal. Let �u 	= z ∈ A be another
U -literal. Then we need z̄ <T �u since z is existential. However, this contradicts the choice
of �u , which finishes the proof of the claim. ��

We want to create a contradiction by applying the claim, for which we need to show that
A does not contain any literal from {cr , c̄r | r = 1, . . . ,m}.

Assume that there is such a literal. That means we can find the leftmost literal c ∈
{cr , c̄r | r = 1, . . . ,m} in T, hence c <T �u <T t <T x . Now, c cannot have been a decision
since decisionsmust be level-ordered. Thatmeans that c has been propagated by an antecedent
clause F := anteT(c). Because c was leftmost, F cannot be the clause c̄1∨ . . .∨ c̄m . It is easy
to see that F then has to contain either w or w̄ by the structure of a reversion (see Definition
12). W.l.o.g. let w ∈ F . Then we need w̄ <T c <T �u . Because of the quantification order,
w̄ cannot be a decided literal. Hence w̄ must have been propagated by some antecedent cube
E := anteT(w̄). Let ρ be the subproof of E from R(ι). Then there exists an initial cube
G ∈ ρ withw ∈ G, which is not getting resolved away in ρ. Furthermore, G is also an initial
cube in R(ι). By Lemma 9, there exists some H ∈ C(Twin�) such that H ⊆ G. Since
each clause of � contains a U -literal, there is such a U -literal v ∈ H ⊆ G and also v ∈ E
because it cannot be resolved or reduced away. This means we need v <T w̄ <T �u , which
is a contradiction to the choice of �u .

We have now shown that A does not contain any cr , c̄r , r ∈ {1, . . . ,m}. However, this is
impossible by our claim. We conclude that Case 1 cannot occur.

Case 2: t was propagated.
Consider the antecedent cube J := anteT(t). Let τ be the subproof of J in R(ι). Then

the first cubes in τ were (reduced) satisfying assignments for Rev(Twin�n). At least one
of these initial cubes in τ contains t̄ which will not get resolved away since it appears in J .
Let I ∈ τ be an initial cube with t̄ ∈ I that does not get resolved away in τ . By Lemma 9,
there exists a clause K ∈ C(Twin�n) such that K ⊆ I . By our assumption, K contains at
least one U - and one T -literal. But then also I contains at least one U -literal �. Because � is
blocked by t̄ all the time, it does not get reduced away in τ , hence � ∈ J .

Due to � <Rev(Twin�n) t , we need � <T t in order for J to become unit. W.l.o.g. let � be
the leftmost U -literal in T (the fact that � ∈ J is not important anymore from this point on).
Because of x <Rev(Twin�n) �, the literal � cannot be a regular decision. That means it must
have been propagated.

We can repeat the argument from Case 1. We conclude that such an � does not exist. Thus
Case 2 does not occur and we get a contradiction regarding our assumption that π was not
primitive. ��

We now construct specific QBFs that meet the conditions of Theorem 12. We already
know from [9] that the equality formulas Eqn of [6] have linear gauge and therefore need

123

Should Decisions in QCDCL Follow Prefix Order? Page 17 of 31 5

exponential-size fully reduced primitive Q-resolution refutations. However, not all clauses
from Eqn contain a U -literal. We modify the formulas by adding an artificial U -literal p to
the relevant clauses:

Definition 13 The QCNF ModEqn consists of the prefix ∃x1, . . . , xn∀u1, . . . , un, p∃t1,
. . . , tn

and the matrix xi ∨ui ∨ ti , x̄i ∨ ūi ∨ ti , p∨ t̄1∨ . . .∨ t̄n , p̄∨ t̄1∨ . . .∨ t̄n for i = 1, . . . , n.

Neither this nor the Twinmodification changes the gauge of the formulas. Hence we get:

Proposition 13 It holds gauge(TwinModEqn) = n. Hence, TwinModEqn needs exponen-
tial
-size fully reduced primitive Q-resolution refutations.

Proof Since all axiom clauses contain T -literals, we have to get rid of them somehow. The
only four clauses that contain T -literals in a negative polarity are the clauses p∨ t̄1 ∨ . . .∨ t̄n ,
p̄ ∨ t̄1 ∨ . . . ∨ t̄n , q ∨ t̄1 ∨ . . . ∨ t̄n and q̄ ∨ t̄1 ∨ . . . ∨ t̄n , where q is the copy of p. Hence,
we have to use at least one of them in order to derive an X-clause. In particular, we have
to resolve over each ti . The only four clauses in which ti occurs in a positive polarity are
xi ∨ ui ∨ ti , x̄i ∨ ūi ∨ ti , xi ∨ vi ∨ ti and x̄i ∨ v̄i ∨ ti , where vi is the copy of ui . In each case
we will pile up xi or x̄i for each resolution over ti . Therefore, our X-clause at the end will
contain at least n different X -literals.

Hence gauge(TwinModEqn) = n. The second claim then follows from Theorem 7. ��
The lower bound for the true QBFs then follows with Theorem 12.

Corollary 14 Rev(TwinModEqn) needs exponential-size QCDCL certificates.

We now use a direct construction to show that Rev(TwinModEqn) is easy for
QCDCLEXI-ANY.

Proposition 15 Rev(TwinModEqn) has polynomial-size QCDCL
EXI-ANY certificates.

Proof Let us first list all the clauses of TwinModEqn . It consists of the prefix

∃x1, . . . , xn∀u1, . . . , un, p, v1, . . . , vn, q∃t1, . . . , tn
and the matrix

C(i,1) := xi ∨ ui ∨ ti C1 := p ∨ t̄1 ∨ . . . ∨ t̄n

C(i,2) := x̄i ∨ ūi ∨ ti C2 := p̄ ∨ t̄1 ∨ . . . ∨ t̄n

C(i,3) := xi ∨ vi ∨ ti C3 := q ∨ t̄1 ∨ . . . ∨ t̄n

C(i,4) := x̄i ∨ v̄i ∨ ti C4 := q̄ ∨ t̄1 ∨ . . . ∨ t̄n

for i = 1, . . . , n.
Then the true QCNF Rev(TwinModEqn) consists of the prefix

∀x1, . . . , xn∃u1, . . . , un, p, v1, . . . , vn, q∀t1, . . . , tn, w∃M,

with M := {c(i, j), c j | i = 1, . . . , n, j = 1, . . . , 4}, and the matrix

E :=
n∨

i=1

4∨

j=1

c̄(i, j) ∨
4∨

k=1

c̄k

123

5 Page 18 of 31 B. Böhm et al.

x̄i ∨ w ∨ c(i,1/3) ūi ∨ w ∨ c(i,1) v̄i ∨ w ∨ c(i,3)

x̄i ∨ w̄ ∨ c(i,1/3) ūi ∨ w̄ ∨ c(i,1) v̄i ∨ w̄ ∨ c(i,3)

xi ∨ w ∨ c(i,2/4) ui ∨ w ∨ c(i,2) vi ∨ w ∨ c(i,4)

xi ∨ w̄ ∨ c(i,2/4) ui ∨ w̄ ∨ c(i,2) vi ∨ w̄ ∨ c(i,4)

t̄i ∨ w ∨ c(i,1/2/3/4)

t̄i ∨ w̄ ∨ c(i,1/2/3/4)

p̄ ∨ w ∨ c1 p ∨ w ∨ c2 q̄ ∨ w ∨ c3 q ∨ w ∨ c4

p̄ ∨ w̄ ∨ c1 p ∨ w̄ ∨ c2 q̄ ∨ w̄ ∨ c3 q ∨ w̄ ∨ c4

ti ∨ w ∨ c1/2/3/4

ti ∨ w̄ ∨ c1/2/3/4

for i = 1, . . . , n, where variables like c(i,1/3) decode two versions of this clause: One clause
with c(i,1) and the other with c(i,3) (analogously with c(i,2/4), c(i,1/2/3/4) and c1/2/3/4).

Let us now construct a polynomial size QCDCLEXI-ANY certificate. At first, we would like to
learn the cubes

D(i,1) := x̄i ∧ ūi ∧ t̄i

D(i,2) := xi ∧ ui ∧ t̄i

D1 := p̄ ∧ t1 ∧ . . . ∧ tn

for i = 1, . . . , n. In order to learn D(i,1), we will make (level-ordered) decisions that satisfy
all literals from D(i,1), but falsify all the other D(i ′,1) for i ′ 	= i . For example, we set xi , ui
and ti to false, and we can assign all the other variables left ofw arbitrarily. Note that until we
reach w, we will never make any propagations since w or w̄ is blocking them. After having
decided all variables left of w, we will decide w and potentially trigger some propagations.
However, the variable c(i,1) will never be propagated because all clauses containing it are
already satisfied. After this we will set c(i,1) to false and all the remaining variables to true.

We now have satisfied the clause E . Furthermore, we have set all c(i ′, j) and ck to true
except c(i,1). Hence we have satisfied all clauses except the four clauses containing c(i,1).
But these two clauses were already satisfied because we have satisfied the cube D(i,1) with
the decisions left of w.

Let T(i,1) be the trail we have constructed now. We can extract the cube

x̄i ∧ ūi ∧ t̄i ∧ c̄(i,1) ∧
∧

(i ′, j)∈({1,...,n}×{1,2,3,4})\{(i,1)}
c(i ′, j) ∧

4∧

k=1

ck,

which, as an assignment, already satisfies all clauses from Rev(TwinModEqn). This cube
can be existentially reduced to D(i,1), which is the cube we learn from T(i,1). Analogously,
we can learn the cubes D(i,2) for i = 1, . . . , n via some analogue trails T(i,2).

It remains to learn the cube D1, which represents the clause C1 ∈ C(TwinModEqn). We
will construct a trail T1 which includes (level-ordered) decisions that satisfy D1. But now we
have to make sure not to trigger propagations via D(i,1) or D(i,2) since we must not set ti to
false. This can be done by setting all xi to false and all ui to true. Then we can set p to false
and all ti to true. The remaining variables left of w can again be decided arbitrarily. Then we
set w to true and potentially trigger some propagations of c(i, j) or ck , which is not a problem
since c1 will never be propagated (the clauses containing c1 are already satisfied). Then we
set c1 to false and all remaining variables can be set to true.

123

Should Decisions in QCDCL Follow Prefix Order? Page 19 of 31 5

As with T(i, 1), we have satisfied all clauses from Rev(TwinModEqn). We can extract
the cube

p̄ ∧ t1 ∧ . . . ∧ tn ∧ c̄1 ∧
n∧

i=1

4∧

j=1

c(i, j) ∧
4∧

k=2

ck,

from T1, which already satisfies the matrix and can be existentially reduced to D1.
We will now define the cubes

Ri := x̄i ∧ ūi ∧ p̄ ∧
n∧

k=i+1

(uk ∧ ūk) ∧
i−1∧

�=1

t�

Li := xi ∧ ui ∧ p̄ ∧
n∧

k=i+1

(uk ∧ ūk) ∧
i−1∧

�=1

t�

for i = 2, . . . , n − 1. We will construct trails Un−1,Vn−1, . . . ,U2,V2 with which we will
gradually learn the clauses Rn−1, Ln−1, . . . , R2, L2.

We start with

Un−1 := (p̄; x̄1; ū1, t1; . . . ; x̄n−1; ūn−1, tn−1, t̄n, x̄n,�)

with antecedent cubes

anteUn−1(t j) = D(j,1)

anteUn−1(t̄n) = D1

anteUn−1(x̄n) = D(n,2)

anteUn−1(�) = D(n,1)

for j = 1, . . . , n − 1. We learn the cube Rn−1 =
((

D(n,1)
xn�� D(n,2)

)
tn�� D1

) tn−1�� D(n−1,1).

Analogously, by flipping some polarities, we construct the trail Vn−1 and learn the cube

Ln−1 =
((

D(n,1)
xn�� D(n,2)

)
tn�� D1

) tn−1�� D(n−1,2). Note that Rn−1 will not interfere with

the assignments in Vn−1.
Assume we have already learned the clauses Rn−1, Ln−1, . . . , Ri , Li for some i ∈

{3, . . . , n − 1}. Then we can construct the following trail:

Ui−1 := (p̄; x̄1; ū1, t1; . . . ; x̄i−1; ūi−1, ti−1, xi ,�)

with antecedent cubes

anteUi−1(t j) = D(j,1)

anteUi−1(xi) = Ri

anteUi−1(�) = Li

for j = 1, . . . , i − 1. We learn the cube Ri−1 =
(
Li

xi�� Ri

) ti−1�� D(i−1,1). Analogously, we

can construct the trail Vi−1 and learn Li−1 =
(
Li

xi�� Ri

) ti−1�� D(i−1,2).

After having learned the cubes Rn−1, Ln−1, . . . , R2, L2, we construct two more trails,
namely

U1 := (p̄; x̄1; ū1, t1, x2,�)

123

5 Page 20 of 31 B. Böhm et al.

with antecedent cubes

anteU1(t1) = D(1,1)

anteU1(x2) = R2

anteU1(�) = L2,

from which we learn [x̄1] =
(
L2

x2�� R2

)
t1�� D1,1, and the trail

V1 := (x1; p̄;u1, t1, x2,�)

with antecedent cubes

anteV1(x1) = [x1]
anteV1(t1) = D(1,2)

anteV1(x2) = R2

anteV1(�) = L2,

from which we learn the empty cube [�] = red∃
Rev(TwinModEqn)

((
L2

x2�� R2

)
t1�� D(1,2)

)
x1��

[x1].
All in all, we have constructed a QCDCLEXI-ANY certificate using the 4n − 1 trails

T(1,1), . . . , T(n,1), T(1,2) . . . , T(n,2), T1,Un−1,Vn−1, . . . ,U1,V1.

��
Corollary 16 QCDCL and QCDCLEXI-ANY are exponentially separated on true formulas.

5.2 Separation on False Formulas

For separating QCDCL and QCDCLUNI-ANY, we recall the completion principle CRn of [18].

Definition 14 ([18]) The false QCNF CRn consists of the prefix ∃X∀U∃T with

X := {x(i, j)| i, j ∈ {1, . . . , n}}, U := {u}, T := {ai , bi | i ∈ {1, . . . , n}}
and the matrix

x(i, j) ∨ u ∨ ai x̄(i, j) ∨ ū ∨ b j ā1 ∨ . . . ∨ ān b̄1 ∨ . . . ∨ b̄n

for i, j = 1, . . . , n.

For the lower bound, we will use the modification TwinCRn . As we show, cube learning
becomes rather useless with the Twinmodification. This fact helps us to ensure that QCDCL
refutations of TwinCRn are primitive, and thus we can apply the gauge lower-boundmethod.

Similarly as in Proposition 13 we can compute the gauge.

Lemma 17 It holds gauge(TwinCRn) = n.

Proof For the derivation of an X-clause we need at least one of the clauses ā1 ∨ . . . ∨ ān
or b̄1 ∨ . . . ∨ b̄n since we have to get rid of all T -literals. In particular, w.l.o.g. we have to
resolve over each ai . For this, we need one of the clauses x(i, j) ∨ u ∨ ai or x(i, j) ∨ v ∨ ai
for each i . That means for each i we will pile up at least one x(i, j) for some j . Therefore
gauge(TwinCRn) = n. ��

123

Should Decisions in QCDCL Follow Prefix Order? Page 21 of 31 5

The main work is to check that QCDCL refutations of TwinCRn are primitive.

Proposition 18 If ι is a QCDCL refutation of TwinCRn, thenR(ι) is fully reduced and prim-
itive.

Proof It suffices to show that R(ι) is primitive. Assume not.
Then there exists two XUT-clauses C, D ∈ R(ι) that are resolved over an X -literal, say

x . One of these two clauses has to be the antecedent clause of x by the definition of clause
learning, say C = anteT(x) for some trail T ∈ T(ι). Let t1 ∈ C be one of the T -literals. We
want to show, that there exists a U -literal w with w <T x .

Assume that no such w exists. Since C had to become unit at the propagation of x , we
need t̄1 <T x . The literal t̄1 cannot be a decision in T, since this would mean that we assigned
all U -variables earlier in the trail, which contradicts our assumption. Hence t̄1 must have
been a propagation.

Starting with i = 1, we define Fi := anteT(t̄i). Now, Fi cannot contain U -literals since
we cannot falsify these literals before assigning t̄i . Because of the XT-property (and Lemma
6), Fi cannot contain X -literals, as well (otherwise it would be an XT-clause). But if the
XT-property is fulfilled, we cannot derive unit T-clauses, therefore Fi has to contain at least
one additional T -literal, say ti+1 ∈ Fi .

This argument can be repeated for each i ∈ N, which means we could find an infinite
amount of T -literals t̄i that must be all contained in T, which is obviously not possible. This
shows that our assumption was false and we can indeed find such a U -literal w <T t̄1 <T x .

W.l.o.g. let w be the first (leftmost) U -literal in T. Define A := anteT(w). Clearly, A is a
cube. We will show that A contains at least two different U -literals. Then, since w was the
first U -literal in T, A cannot become unit until at least one U -literal was assigned, which
would be a contradiction.

Now, A is a cube that was derived during cube learning from cubes that represent satisfying
(partial) assignments of the matrix of TwinCRn. Let D be a cube that satisfies the matrix
of TwinCRn. Because we have to satisfy the clauses ā1 ∨ . . . ∨ ān and b̄1 ∨ . . . ∨ b̄n , there
exists an r ∈ {1, . . . , n} with ār ∈ D and an s ∈ {1, . . . , n} with b̄s ∈ D. Furthermore, we
have to satisfy the clauses x(r ,s) ∨ u ∨ ar , x(r ,s) ∨ v ∨ ar , x̄(r ,s) ∨ ū ∨ bs and x̄(r ,s) ∨ v̄ ∨ bs .
That means we have to assign u in some polarity. W.l.o.g. let u ∈ D. Then we have to set
x(r ,s) to false, hence x̄(r ,s) ∈ D. In order to satisfy x(r ,s) ∨ v ∨ ar , we have to set v to true,
as well. Therefore we get v ∈ D.

We conclude, that u ∈ D if and only if v ∈ D, and analogously ū ∈ D if and only if
v̄ ∈ D. This means that we will never be able to resolve such two learned cubes in ι since we
cannot create universal tautologies in cubes. In particular, we have proven that A contains at
least two U -literals, which leads to a contradiction as described above. ��

Applying Theorem 7 then yields the lower bound.

Corollary 19 TwinCRn needs exponential-sized QCDCL refutations.

On the other hand, TwinCRn is easy for QCDCLUNI-ANY. Basically, we can simulate the
Q-resolution refutation of CRn from [17], because we can decide universal literals out of
order.

Proposition 20 TwinCRn has polynomial-sized QCDCLUNI-ANY refutations.

Proof For each k = 1, . . . , n we construct the trail

Tk := (x̄(1,k); . . . ; x̄(n,k); ū, a1, . . . , an,⊥)

123

5 Page 22 of 31 B. Böhm et al.

with antecedent clauses

anteTk (ai) = x(i,k) ∨ u ∨ ai , anteTk (⊥) = ā1 ∨ . . . ∨ ān,

for i = 1, . . . , n.
Resolving ā1∨ . . .∨ ān over each anteTk (ai) gives us the clause Ek := x(1,k) ∨ . . .∨ x(n,k),

which we will learn. Note that the trails and the learned clauses will not affect each other,
hence the order in which we construct these n trails does not matter. Next, we construct
the trails U1, . . . ,Un−1 (in that order). From each Uk we learn the clause Ck := ū ∨ bk .
While constructing Uk , we assume that C1, . . . ,Ck−1 were already learned. Then, Uk looks
as follows:

Uk := (u, b1, . . . , bk−1; v; b̄k, x̄(1,k), . . . , x̄(n,k),⊥)

with antecedent clauses

anteUk (b j) = C j , anteUk (x̄(i,k)) = x̄(i,k) ∨ ū ∨ bk, anteUk (⊥) = Ek,

for i = 1, . . . , n and j = 1, . . . , k − 1. Resolving Ek over each anteUk (x̄(i,k)) leads to the
learnable clause Ck . Having learned the clauses C1, . . . ,Cn−1, we continue with the trail V,
which will be the last one. It looks as follows:

V := (u, b1, . . . , bn−1, b̄n, x̄(1,n), . . . , x̄(n,n),⊥)

with antecedent clauses

anteV(b j) = C j , anteV(b̄n) = b̄1 ∨ . . . ∨ b̄n, anteV(x̄(i,n)) = x̄(i,n) ∨ ū ∨ bn,

anteV(⊥) = En,

for i = 1, . . . , n and j = 1, . . . , n − 1. Since we only made a universal decision, we can
learn the empty clause (⊥) from V by resolving over everything.

Thus we constructed a QCDCLUNI-ANY refutation using 2n + 1 trails. ��
Besides TwinCRn , we can find further separations between QCDCL and QCDCLUNI-ANY.

The QCNFs MirrorCRn were introduced in [4] as a modification of CRn , where it was
shown that the formula is hard for several variants of QCDCL, including our base model
QCDCL. It is notable that the matrix of MirrorCRn is unsatisfiable, and therefore we will
never perform cube learning.

Definition 15 The false QCNF MirrorCRn consists of the prefix

∃x(1,1), . . . , x(n,n)∀u∃a1, . . . , an, b1, . . . , bn
and the matrix

x(i, j) ∨ u ∨ ai ā1 ∨ . . . ∨ ān

x̄(i, j) ∨ ū ∨ b j b̄1 ∨ . . . ∨ b̄n

x(i, j) ∨ ū ∨ āi a1 ∨ . . . ∨ an

x̄(i, j) ∨ u ∨ b̄ j b1 ∨ . . . ∨ bn for i, j ∈ {1, . . . , n}.
Proposition 21 ([4]) MirrorCRn needs exponential-sized QCDCL refutations.

Proposition 22 MirrorCRn has polynomial-sized QCDCLUNI-ANY refutations.

123

Should Decisions in QCDCL Follow Prefix Order? Page 23 of 31 5

Proof At first, we will derive the clauses Ak := x(1,k) ∨ . . . ∨ x(n,k) for each k = 1, . . . , n.
Suppose, we have already learned A1, . . . , Ak−1. We construct the trail Tk as follows:

Tk := (x̄(1,k); . . . ; x̄(n,k); ū, a1, . . . , an,⊥)

with

anteTk (ai) = x(i,k) ∨ u ∨ ai

anteTk (⊥) = ā1 ∨ . . . ∨ ān

for i = 1, . . . , n. From this trail we can learn Ek by resolving over all ai and then we restart.
Our next goal is to learn the clauses Bk := ū ∨ bk for each k = 1, . . . , n − 1. We now

suppose that we have already learned A1, . . . , An and B1, . . . , Bk−1. We construct the trail
Uk as follows:

Uk := (u, b1, . . . , bk−1; b̄k, x̄(1,k), . . . , x̄(n,k),⊥)

with

anteUk (b j) = Bj

anteUk (x̄(i,k)) = x̄(i,k) ∨ ū ∨ bk

anteUk (⊥) = Ak

for j = 1, . . . , k − 1 and i = 1, . . . , n. We learn Bk by resolving Ak over all x(i,k). After
this we backtrack back to the point where we decided b̄k .

Our last trail, from which we plan to learn the empty clause, looks as follows:

Un := (u, b1, . . . , bn,⊥)

with

anteUn (b j) = Bj

anteUn (⊥) = b̄1 ∨ . . . ∨ b̄n .

We resolve over all b j and obtain (⊥). ��
Corollary 23 MirrorCRn is hard for QCDCL, but easy for QCDCLUNI-ANY.

Corollary 24 QCDCL and QCDCLUNI-ANY are exponentially separated on false formulas.

We combine both separations into our main result:

Theorem 25 a) QCDCLUNI-ANY is exponentially stronger than QCDCL on false formulas.
b) QCDCLEXI-ANY is exponentially stronger than QCDCL on true formulas.
c) QCDCLANY is exponentially stronger than QCDCL both on false and true formulas.

6 Experiments

One of the aspirations of proof complexity is to explain and predict solver behaviour, in
particular running time. In this section, we evaluate how well our proof-complexity results
transfer to the ‘real world’ of QCDCL implemented in a solver.

123

5 Page 24 of 31 B. Böhm et al.

For our experiments we picked the QCDCL solver Qute7 [29, 33], and implemented each
of the aforementioned QCDCL variants: QCDCLUNI-ANY, QCDCLEXI-ANY, and QCDCLANY (Qute
could already run in a mode that corresponds to QCDCL). In order to ensure compliance with
the NCC (Definition 4), we needed to adapt some of Qute’s internal data structures, and so
for the sake of a fair comparison we also report on a version called QCDCL3: algorithmically
plain QCDCL but with the new data structures that are required for the other variants (up to
3 watched literals rather than the usual 2, hence the name).8

We performed two experiments. In the first, we evaluated each QCDCL variant
on the first 100 formulas from each separation family—TwinCR, MirrorCR, and
Rev(TwinModEqn)—running the solverwith a time limit of 600s on each individual formula
on a machine with two 16-core Intel� Xeon� E5-2683 v4@2.10GHz CPUs and 512GB
RAM running Ubuntu 20.04.3 LTS on Linux 5.4.0-48, organizing the computation with the
help of GNU Parallel [35].

In the second, we additionally evaluated each QCDCL variant on the formulas from the
latest two QBF Evaluations, 20209 and 202210 (there was no evaluation of QBF solvers in
2021), in both PCNF and QCIR categories, with the same time limit of 10min. This was
executed on a different cluster with heterogeneous machines powered by different Intel�
Xeon� CPUs and AMD� EPYC� 7402@2.80GHz.

For all of our experiments we executed Qute with the same, default parameters for all
heuristics. However, in order to obtain any meaningful results on the separation formulas,
we had to tweak the initialization process of Qute’s decision heuristic, which determines
the next branching variable. Previously, the heuristic was initialized in prefix order, giving
higher preference to variables earlier in the prefix. As a result, on our separation formulas, the
solver kept branching on and learning clauses involving only outermost variables, and never
made any decisions out of the prefix order even when allowed to, because the heurstic never
suggested to. We changed this default initialization to go in reverse prefix order, and adopted
this change for both experiments and all runs. We emphasize that this manual change affects
only the initialization values (afterwards the heuristic updates according to the same rules as
before), and also that the previous setting of in-order default initialization was an arbitrary
choice.

6.1 Separation Formulas

In Figs. 3 and 4 we plot running times of the different QCDCL versions as a function of n.
Any gaps in the plotted lines indicate the solver timed out at 600 seconds for that particular
formula. In general, the proof complexity results are closely mirrored in solver performance,
though there is occasionally a bit of surprise.

In Fig. 3, we see that for TwinCR the configuration QCDCLUNI-ANY is best and scales rea-
sonably well up to n = 100. But there are also gaps—for some reason the solver’s heuristics
appear to be fooled for some particular formulas and fail to navigate towards the short proof.
Overall, QCDCLUNI-ANY manages to solve 87 out the first 100 TwinCR formulas. QCDCLANY,
which should theoretically be at least as good as QCDCLUNI-ANY, comes a distant second and

7 https://github.com/fslivovsky/qute.
8 We invoked Qute with the parameters –dependency-learning off –machine-readable
-t 600 and, either –watched-literals 3 for QCDCL3 or –out-of-order-decisions
off|existential|universal|all for the other variants.
9 http://www.qbflib.org/event_page.php?year=2020.
10 http://www.qbflib.org/qbfeval2022_results.php.

123

https://github.com/fslivovsky/qute
http://www.qbflib.org/event_page.php?year=2020
http://www.qbflib.org/qbfeval2022_results.php

Should Decisions in QCDCL Follow Prefix Order? Page 25 of 31 5

Fig. 3 Performance on TwinCRn (above) and MirrorCRn (below) Legends are sorted best-to-worst

fails to solve anything beyond n = 16. QCDCLEXI-ANY appears to be off to a good start, but
also quickly loses breath solving nothing after n = 10. The two vanilla variants QCDCL and
QCDCL3 scale exponentially all the way as they should.

The picture on the related MirrorCR formulas (Fig. 3 below) is boring in compari-
son and perfectly corresponds to our theoretical results. The two variants that have short
proofs—QCDCLUNI-ANY and QCDCLANY—are also fast in practice, and everything else is dead
exponential.

Finally, Rev(TwinModEq) in Fig. 4 paint a picture somewhat similar to TwinCR, though
with a different set of peculiarities. The best variant isQCDCLEXI-ANY, and unlikeQCDCLUNI-ANY

on TwinCR, it solves all formulas up to n = 100 very fast. The second best is QCDCLANY,
but once again it drops out relatively early (last solved is n = 26) in spite of its theoretical
superiority. An interesting thing seems to happen to QCDCLUNI-ANY, which appears to be
helplessly off to an exponential path, but somehow recovers and solves n = 15, 16 fast, only
to completely drop out afterwards. The two vanilla variants QCDCL and QCDCL3 are again
dead exponential, as they should be.

The recurring theme in Figs. 3 and 4 is that the theoretically strongest system QCDCLANY

is outperformed by the specialized version for each formula type. One appealing explanation
would be that the specialized systemsQCDCLUNI-ANY andQCDCLEXI-ANY profit from their ability
to guarantee learning asserting clauses and cubes respectively. But this does not appear to be
the real reason:QCDCLANY also (likeQCDCLUNI-ANY) learns almost exclusively asserting clauses
on TwinCR (96% on average, more than 99% in over 70% of cases), and similarlyQCDCLANY

(like QCDCLEXI-ANY) learns almost exclusively asserting cubes on Rev(TwinModEq) (98%

123

5 Page 26 of 31 B. Böhm et al.

Fig. 4 Running time in seconds on Rev(TwinModEqn). The legend is sorted from best downwards

Table 1 Results of the QCDCL variants on QBF Eval 2020 and 2022. VBS stands for the virtual best solver,
the best performing solver on each instance. � gives the number of true solved formulas, ⊥ the number of
false solved formulas, � = � + ⊥. Column maxima are in bold (excluding VBS)

QBF Eval 20 QBF Eval 22
PCNF QCIR PCNF QCIR

� ⊥ � � ⊥ � � ⊥ � � ⊥ �

QCDCL 33 137 170 87 37 124 18 53 71 30 55 85

QCDCL3 33 139 172 80 30 110 14 50 64 30 58 88

QCDCLANY 29 130 159 73 31 104 10 33 43 12 35 47

QCDCLUNI-ANY 35 169 204 74 32 106 7 28 35 10 42 52

QCDCLEXI-ANY 29 112 141 59 28 87 9 28 37 15 38 53

VBS 41 195 236 95 42 137 18 53 71 34 61 95

on average, more than 99% in over 70% of cases). Thus, the advantage of the specialized
systems is unlikely to be explicable solely by the quantity of asserting constraints, but rather
by their quality. This is also supported by the erratic performance of several of the variants
on both TwinCR and Rev(TwinModEq)—it appears that the existing short runs are hard
for the solver to discover. Investigating this properly might require opening up the solver
even more, and recording decisions and other details of the search path. We want to keep this
paper focused on the theory part, and leave further investigation of this behaviour to future
work.

6.2 QBF Evaluations

Table 1 and Figs. 5, 6, 7, and 8 show the performance on PCNF and QCIR (circuit) formulas
from the QBF Evaluations (QBFEval) 2020 and 2022. Even though the theoretical part is
concerned with PCNF formulas only, here we evaluate the algorithms on circuit formulas
as well, as the circuit format is a standard part of QBF Evaluations (in fact, it is preferred
due to its greater flexibility for both encoding and solving). Circuit formulas are internally
translated into a pair of PCNF formulas by Qute.

123

Should Decisions in QCDCL Follow Prefix Order? Page 27 of 31 5

Fig. 5 Performance on QBFEval 2020 PCNF instances. Cactus plot: (x, y) means the configuration solved x
instances in y seconds. Lower and right is better

In Fig. 5, we see a decisive victory of QCDCLUNI-ANY, which beat the second QCDCL3 by
a margin of 32 solved instances. QCDCLUNI-ANY solved 27 instances from this benchmark
set uniquely, of which 26 were false formulas. These 27 uniquely solved formulas include
application formulas encoding bounded model checking problems, as well as several crafted
formulas.

In all other cases, the winner is vanilla QCDCL; twice QCDCL, once QCDCL3. This, as
well as the relative ranking ofQCDCL andQCDCL3 in Fig. 5, proves that the 3-watched-literal
scheme, a by-product of the implementation, considered in its own right, is in fact competitive
with the traditional 2-watched literal scheme, at least on these formulas.

With the already mentioned exception of QCDCLUNI-ANY, no other QCDCL variant beats
vanilla QCDCL in any of the other cases. Each of QCDCLANY, QCDCLUNI-ANY, QCDCLEXI-ANY

beats the other two on at least one benchmark set. In all cases except PCNF 22, the vir-
tual best solver (VBS) is strictly better than any individual algorithm, meaning that there
were always formulas not solver by the best variant, which were solved by another vari-
ant.

Such mixed results should perhaps not surprise. The act of performing out-of-order deci-
sions amounts to revealing a future move in the game earlier than forced to. This should be
advantageous, philosophically speaking, when strong moves exist that can already be played
early. It is not clear how often such situations should arise in application formulas, into which
they are not baked the way they are into separation formulas.

In any case, the experiments show that both the new algorithms as well as the technical
implementation are competitive. Further analysis would be needed to determine whether
there are application formula families on which one QCDCL variant is significantly better
then others. We provide all of our experimental data as supplementary material.

123

5 Page 28 of 31 B. Böhm et al.

Fig. 6 Performance on QBFEval 2020 QCIR instances. Cactus plot: (x, y) means the configuration solved x
instances in y seconds. Lower and right is better

Fig. 7 Performance on QBFEval 2022 PCNF instances. Cactus plot: (x, y) means the configuration solved x
instances in y seconds. Lower and right is better

7 Conclusion

Wehave laid the theoretical foundations for new flavours of QCDCLwith the ability to ignore
all quantification order for decisions. In this paper we focused on proof complexity, showing
exponential advantage for the new systems over vanilla QCDCL.We complemented this with
a proof-of-concept implementation in Qute, which validates the feasibility of our approach.
Our preliminary experiments on crafted formulas already raise some interesting questions
about poor solver performance on theoretically easy formulas.

As part of future work, we plan to advance on the practical front, polishing and possibly
improving the implementation technically, performing a more thorough experimental evalu-
ation, and combining the approaches presented here with other techniques like Qute’s native

123

Should Decisions in QCDCL Follow Prefix Order? Page 29 of 31 5

Fig. 8 Performance on QBFEval 2022 QCIR instances. Cactus plot: (x, y) means the configuration solved x
instances in y seconds. Lower and right is better

dependency learning (and possibly dependency schemes). We would also like to dive deeper
into the analysis of how learning asserting constraints affects solver performance.

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Atserias, A., Fichte, J.K., Thurley, M.: Clause-learning algorithms with many restarts and bounded-width
resolution. J. Artif. Intell. Res. 40, 353–373 (2011)

2. Balabanov, V., Jiang, J.-H.R.: Unified QBF certification and its applications. Form. Methods Syst. Des.
41(1), 45–65 (2012)

3. Beame, P., Kautz, H.A., Sabharwal, A.: Towards understanding and harnessing the potential of clause
learning. J. Artif. Intell. Res. 22, 319–351 (2004)

4. Beyersdorff, O., Böhm,B.: QCDCLwith cube learning or pure literal elimination—what is best? Electron.
Colloquium Comput. Complex. 131 (2021)

5. Beyersdorff, O., Böhm,B.: Understanding the relative strength ofQBFCDCL solvers andQBF resolution.
In: Proceedings of Innovations in Theoretical Computer Science (ITCS), pp. 12–11220 (2021)

6. Beyersdorff, O., Blinkhorn, J., Hinde, L.: Size, cost, and capacity: a semantic technique for hard random
QBFs. Logical Methods Comput. Sci. 15(1), 13 (2019)

7. Beyersdorff, O., Janota, M., Lonsing, F., Seidl, M.: Quantified Boolean formulas. In: Biere, A., Heule,
M., Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Appli-
cations, pp. 1177–1221. IOS Press, Amsterdam (2021)

8. Böhm, B., Peitl, T., Beyersdorff, O.: Should decisions in QCDCL follow prefix order? In: Meel, K.S.,
Strichman, O. (eds.) 25th International Conference on Theory and Applications of Satisfiability Testing
(SAT). LIPIcs, Vol. 236, pp. 11–11119. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

123

http://creativecommons.org/licenses/by/4.0/

5 Page 30 of 31 B. Böhm et al.

9. Böhm, B., Beyersdorff, O.: Lower bounds for QCDCL via formula gauge. In: Li, C.-M., Manyà, F. (eds.)
Theory and Applications of Satisfiability Testing—SAT 2021, pp. 47–63. Springer, Cham (2021)

10. Buss, S., Nordström, J.: Proof complexity and SAT solving. In: Biere, A., Heule, M., Maaren, H., Walsh,
T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, pp. 233–350.
IOS Press, Amsterdam (2021)

11. Cadoli, M., Giovanardi, A., Schaerf, M.: An algorithm to evaluate quantified Boolean formulae. In: Pro-
ceedings of the FifteenthNational Conference onArtificial Intelligence andTenth InnovativeApplications
of Artificial Intelligence Conference (AAAI), pp. 262–267 (1998)

12. Cook, S.A., Reckhow, R.A.: The relative efficiency of propositional proof systems. J. Symb. Logic 44(1),
36–50 (1979)

13. Giunchiglia, E., Marin, P., Narizzano, M.: Reasoning with quantified Boolean formulas. In: Biere, A.,
Heule, M., Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 761–780. IOS Press, Amsterdam (2009)

14. Heule, M.: Proofs of unsatisfiability. In: Biere, A., Heule, M., Maaren, H., Walsh, T. (eds.) Handbook
of Satisfiability. Frontiers in Artificial Intelligence and Applications, 2nd edn., pp. 635–668. IOS Press,
Amsterdam (2021)

15. Heule, M.J.H., Seidl, M., Biere, A.: Solution validation and extraction for QBF preprocessing. J. Autom.
Reason. 58(1), 97–125 (2017)

16. Hoos, H.H., Peitl, T., Slivovsky, F., Szeider, S.: Portfolio-based algorithm selection for circuit qbfs. In:
Hooker, J.N. (ed.) Principles and Practice of Constraint Programming - 24th International Conference, CP
2018, Lille, France, August 27-31, 2018, Proceedings. Lecture Notes in Computer Science, vol. 11008,
pp. 195–209. Springer (2018). https://doi.org/10.1007/978-3-319-98334-9_13

17. Janota, M.: On Q-Resolution and CDCL QBF solving. In: Proceedings of International Conference on
Theory and Applications of Satisfiability Testing (SAT), pp. 402–418 (2016)

18. Janota, M., Marques-Silva, J.: Expansion-based QBF solving versus Q-resolution. Theor. Comput. Sci.
577, 25–42 (2015)

19. Janota, M., Marques-Silva, J.: An Achilles’ heel of term-resolution. In: Oliveira, E., Gama, J., Vale, Z.,
Lopes Cardoso, H. (eds.) Progress in Artificial Intelligence, pp. 670–680. Springer, Cham (2017)

20. Kleine Büning, H., Karpinski, M., Flögel, A.: Resolution for quantified Boolean formulas. Inf. Comput.
117(1), 12–18 (1995)

21. Lonsing, F., Egly, U.: DepQBF 6.0: A search-based QBF solver beyond traditional QCDCL. In: Proceed-
ings of International Conference on Automated Deduction (CADE), pp. 371–384 (2017)

22. Lonsing, F., Egly,U.: EvaluatingQBF solvers:Quantifier alternationsmatter. In: Proceedings of Principles
and Practice of Constraint Programming (CP), pp. 276–294. Springer (2018)

23. Lonsing, F.: Dependency schemes and search-based QBF solving: Theory and practice. PhD thesis,
Johannes Kepler University Linz (2012)

24. Marques Silva, J.P., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A.,
Heule, M., Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability. Frontiers in Artificial Intelligence and
Applications. IOS Press (2021)

25. Marques Silva, J.P., Sakallah, K.A.: GRASP - a new search algorithm for satisfiability. In: Proceedings
of IEEE/ACM International Conference on Computer-aided Design (ICCAD), pp. 220–227 (1996)

26. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: engineering an efficient sat
solver. In: Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232), pp.
530–535 (2001). 11.1145/378239.379017

27. Peitl, T., Slivovsky, F., Szeider, S.: Combining resolution-path dependencies with dependency learning.
In: Janota, M., Lynce, I. (eds.) Theory and Applications of Satisfiability Testing - SAT 2019 - 22nd
International Conference, SAT 2019, Lisbon, Portugal, July 9-12, 2019, Proceedings. Lecture Notes in
Computer Science, vol. 11628, pp. 306–318. Springer (2019). https://doi.org/10.1007/978-3-030-24258-
9_22

28. Peitl, T., Slivovsky, F., Szeider, S.: Long-distance Q-resolution with dependency schemes. J. Autom.
Reason. 63(1), 127–155 (2019)

29. Peitl, T., Slivovsky, F., Szeider, S.: Dependency learning for QBF. J. Artif. Intell. Res. 65, 180–208 (2019)
30. Pipatsrisawat, K., Darwiche, A.: On the power of clause-learning SAT solvers as resolution engines. Artif.

Intell. 175(2), 512–525 (2011)
31. Samer, M., Szeider, S.: Backdoor sets of quantified Boolean formulas. J. Autom. Reason. 42(1), 77–97

(2009). https://doi.org/10.1007/s10817-008-9114-5
32. Shukla, A., Biere, A., Pulina, L., Seidl, M.: A survey on applications of quantified Boolean formulas. In:

Proceedings of IEEE International Conference on Tools with Artificial Intelligence (ICTAI), pp. 78–84
(2019)

123

https://doi.org/10.1007/978-3-319-98334-9_13
https://doi.org/10.1007/978-3-030-24258-9_22
https://doi.org/10.1007/978-3-030-24258-9_22
https://doi.org/10.1007/s10817-008-9114-5

Should Decisions in QCDCL Follow Prefix Order? Page 31 of 31 5

33. Slivovsky, F., Peitl, T., Perebor, Heisinger, M.: Fslivovsky/qute: Out-of-order Decisions. https://doi.org/
10.5281/zenodo.10149885

34. Slivovsky, F., Szeider, S.: Soundness of Q-resolution with dependency schemes. Theor. Comput. Sci. 612,
83–101 (2016)

35. Tange, O.: GNU Parallel - The command-line power tool. login: The USENIXMagazine February, 42–47
(2011)

36. Vinyals, M.: Hard examples for common variable decision heuristics. In: Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI) (2020)

37. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven learning in Boolean
satisfiability solver. In: Proceedings of IEEE/ACM International Conference on Computer-Aided Design
(ICCAD), pp. 279–285 (2001)

38. Zhang, L., Malik, S.: Conflict driven learning in a quantified Boolean satisfiability solver. In: Proceedings
of IEEE/ACM International Conference on Computer-aided Design (ICCAD), pp. 442–449 (2002)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.5281/zenodo.10149885
https://doi.org/10.5281/zenodo.10149885

	Should Decisions in QCDCL Follow Prefix Order?
	Abstract
	1 Introduction
	2 Preliminaries
	3 Our QCDCL Models
	4 Learning Asserting Constraints
	5 Separations of QCDCL Systems
	5.1 Separation on True Formulas
	5.2 Separation on False Formulas

	6 Experiments
	6.1 Separation Formulas
	6.2 QBF Evaluations

	7 Conclusion
	References

