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Abstract

We propose Abstract Execution, a static verification framework based on symbolic execution

and dynamic frames for proving properties of schematic programs. Since a schematic pro-

gram may potentially represent infinitely many concrete programs, Abstract Execution can

analyze infinitely many programs at once. Trading off expressiveness and automation, the

framework allows proving many interesting (universal, behavioral) properties fully automat-

ically. Its main application are correctness proofs of program transformations represented as

pairs of schematic programs. We implemented Abstract Execution in a deductive verification

framework and designed a graphical workbench supporting the modeling process. Abstract

Execution has been applied to correct code refactoring, analysis of the cost impact of trans-

formation rules, and parallelization of sequential code. Using our framework, we found and

reported several bugs in the refactoring engines of the Java IDEs IntelliJ IDEA and Eclipse,

which were acknowledged and fixed.

Keywords Schematic Programs · Symbolic Execution · Deductive Verification · Program

Transformation · Second-Order Program Properties

1 Introduction

Abstract Execution (AE) generalizes symbolic execution to programs with “holes,” i.e., ab-

stract or schematic programs: Abstract programs may contain symbols that stand for arbitrary

statements or expressions. Symbolic execution of such abstract elements is achieved by

approximating them with abstract specifications of conditions on normal or exceptional be-

havior, frames and footprints, etc. The symbolic execution “flavor” we consider here is

complete symbolic execution. This refers to the logic-based variant used in deductive ver-

ification [5, 9, 37] that comes with first-order and invariant reasoning. We do not regard
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the incomplete (often dynamic) symbolic execution variants employed in test case genera-

tion [25].

Abstract Execution permits to prove universal second-order properties of program behav-

ior by implicitly quantifying over all permissible instances of abstract elements. However,

given that schematic elements and their specifications are abstract, it is generally not pos-

sible to prove interesting functional properties of a single abstract program. The power of

AE derives from being able to compare the execution of two related abstract programs with

the same abstract elements. For loop-free abstract programs this tends to be fully automatic

and even in the presence of loops it is usually much easier to find coupling invariants than

functional ones [2, 10].

Second-order program properties involving the comparison of the behavior of two pro-

grams occur in any area of programming, where relative correctness of two program schemata

is of concern: Rule-based compilation [48, 81] and optimization [46, 50], code refactor-

ing [24], program synthesis [75], Correctness-by-Construction [45], to name a few.

Mechanized proofs of such properties traditionally are often performed with interactive

proof assistants [56, 59, 82]. An example is the work on verified compilers [48, 81]. This

permits specifying arbitrarily complex properties, but a substantial effort is required to man-

ually write proof scripts. Existing automatic approaches, on the other hand, target specific

applications (e.g., regression verification [26], “peephole” optimizations [50], symbolic ex-

ecution rules [6]) and lack expressiveness. AE is positioned in a “sweet spot” in between

these extremes, combining considerable expressiveness and generality with a high degree of

automation.

1.1 The Setting of Abstract Execution

Most areas mentioned above involve the transformation of schematic programs. Proving

the correctness of program transformation rules can be understood as a relational verifi-

cation [12] problem over programs with placeholders. For example, the pair of schematic

programs “p q” and “q p” (where p, q represent arbitrary statements) describes a program

transformation swapping two statements. If we can prove that, under certain assumptions, all

instances of the schematic programs before and after the transformation behave equivalently,

the transformation is safe.

AE is implemented on top of KeY [5], a highly automatic deductive verification framework

for Java programs based on symbolic execution. Our setting of AE extends the Java language

by Abstract Statements (ASs) “\abstract_statement P;,” and Abstract Expressions

(AExps) “\abstract_expression T e;,” whereP ande are the identifiers of an abstract

statement and expression, respectively, and T is the type of the abstract expressione. ASs and

AExps are called Abstract Program Element (APE), programs containing APEs are called

abstract (or schematic) programs. AE universally closes over APEs in programs.

Without additional constraints, APE represents all of its well-formed concrete instances.

This is insufficient to express meaningful properties. For instance, the above mentioned

transformation “p q → q p,” which is a refactoring technique called Slide Statements [22],

is generally unsound: if we instantiate p with “x=1;” and q with “y=x;,” the final value of x

will generally be different in executions of the original and the transformed code. Therefore,

AE provides a specification language to constrain the behavior of concrete instantiations

represented by APEs. An APE is the declaration of a placeholder symbol (e.g., P) together

with all specification clauses constraining it. It represents all concrete programs satisfying

the specification; if multiple APEs with the same identifier are declared in a program, those

represent the same programs (if applicable, modulo renaming of input/output locations).
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1.2 Specifying Abstract Programs by Example

In the following, we call the memory locations which APE may write to its frame, and the

locations it may read from its footprint.

Remark 1 (Wording: Frames and Footprints) In everyday language, the notion of a “foot-

print,” as in “carbon footprint,” is used for effects on the outside world. Here, we adhere to

the meaning coined in the context of “dynamic frames,” where frames are regarded as “the

part of the world which the operation has license to change” [40]. Footprint, on the other hand,

is a standard term for accessible location sets in the context of dependency contracts [88], a

research area closely related to AE.

Slide Statements is safe, i.e., retains the external behavior of the affected code, under the

following conditions: (1) The frames of p and q must be disjoint, (2) the frame of p and

footprint of q must be disjoint, (3) the frame of q and footprint of p must be disjoint, (4) if

p completes abruptly (e.g., by throwing an exception), q must complete normally (and vice

versa), and (5) if either p or q completes abruptly, the other may not have relevant side effects.

Conditions (1) to (3) ensure that p and q are “independent,” i.e., do not interfere; Condition

(4) establishes that the reason for (abrupt) completion of the program is the same before and

after the transformation. For example, it cannot happen that before, the program completes

because of an exception thrown by p, while afterward, it completes due to a return by q.

Condition (5) is required because if one statement completes abruptly, the other one can only

change the state either before or after the transformation, which is why any changes must be

confined to locations we are not interested in.

To impose constraints on frames and footprints of abstract elements, we have to define

which locations APEs may read and write. However, no further constraints other than the

given ones should be enforced: frames and footprints should apply to all programs satisfying

Conditions (1) to (3) and (5). We achieve this by using abstract, set-valued specification

variables inspired by the theory of dynamic frames [40]. Specifically, we introduce constants

frP, fpP, frQ, fpQ, etc., each representing an abstract set of program variables or heap

locations that can be used to refer to the same frame or footprint in multiple specifications.

The abstract program model for Slide Statements is shown in Fig. 1 (to simplify the exam-

ple, we only consider normal completion as well as completion due to a thrown exception or

returned value, disregarding, e.g., abrupt completion due to a break statement). Our speci-

fication language extends the Java Modeling Language (JML) [47]. Constraints on ASs are

imposed inside specification comments starting with “@”; the keyword “ae_constraint”

initiates the declaration of a constraint. In lines 25/26 and 33/34, we assign the newly intro-

duced dynamic frame specification variables to the ASs, where the keyword assignable

specifies a frame, and accessible a footprint of AS or AExp. Conditions (1) to (3)

are encoded in lines 2–4. To realize mutual exclusion of abrupt completion (Condition

(4)), we first bind abrupt completion of ASs P and Q to abstract predicates throwsExcP,

returnsP, throwsExcQ and returnsQ, resp., with “exceptional_behavior requires

�

” and “return_behavior requires” in lines 27–30 and 35–38. These predicates

represent unknown conditions in the same way that dynamic frames represent unknown lo-

cation sets, with the intention of giving them a name for future reference. The binding via

“... requires” is both necessary and sufficient: The respective behavior is always de-

manded when the specified conditions hold and only then. The function “\value(· · · )”

maps to the (abstract) value of a location set at the point in the program where it is used. It

is needed since the locations represented by an abstract location set like fpP do not change

during program execution, while their values can change. Because furthermore, the same
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Fig. 1 Abstract Program Model for Slide Statements

program may, or may not, throw an exception (return, etc.) depending on the evaluation of

its footprint in the current environment, the abstract predicates are defined parametrically in

the values of the footprints. Now, we can stipulate that at most one of the predicate holds

(i.e., at most one AS completes abruptly) in lines 5–16 using the “\mutex” keyword.

To encode Condition (5) in the model, we employ a further dynamic frame specification

variable rel representing an underspecified set of relevant locations. We use it to specify

the property that the program performs equivalently before and after the transformation. If

\result_1 represents the value of rel before and \result_2 its value after the transforma-

tion, this property is specified as \result_1
.
= \result_2. Without further constraints,

the model has to be proven under the assumption that all locations are in rel, i.e., we prove

full equivalence. In lines 17–22 of the model, we relax the proof goal by declaring the frame

of Q disjoint from rel if AS P completes abruptly, and vice versa. This is more liberal than

preventing the normally completing statement from changing any part of the state.

Our AE tool proves correctness of the transformation specified in Fig. 1 fully automatically

in less than 20 seconds. Such safety conditions on program transformations as shown above

are hard to find. Indeed, nearly all conditions presented in this paper were not mentioned in

the literature. We discovered them with a feedback loop on interpreting failed proof attempts.
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This process is supported by our implementation of AE in a semi-automatic program prover

that permits proof inspection.

1.3 Organization of This Paper

Our formalization of AE is based on a dynamic program logic and an abstract, formal defini-

tion of Symbolic Execution, which we expound in Sect. 2. Sect. 3 presents the concrete and

abstract syntax of our AE framework and defines the semantics of abstract programs. The

core of the framework are our rules for executing APEs and simplifying abstract stores, which

we present in Sect. 4. In Sect. 5, we explain details about the feedback loop for extracting

preconditions for safe transformations and our approach to proving loop transformations. Fur-

thermore, we provide an overview of the applications of AE to correct code refactoring, cost

impact of transformation rules, and parallelization of sequential code. The implementation

of AE in the program verification framework KeY is described in Sect. 6. Sect. 7 describes

related work, and Sect. 8 concludes the paper and outlines ideas for future applications and

extensions.

Novelty

This work is a heavily revised and much-extended version of a conference paper [79]. In

contrast to the latter, it is fully based on dynamic frames (Sect. 3.1 presents the extended

specification language), which enables the specification of general transformations. Fur-

thermore, we introduce abstract expressions (AExps), whereas [79] relied on an “abstract

expression idiom” using ASs. The brief, informal semantics definition [79] is made precise

by translating it into dynamic logic (Sect. 3.3). This reduction makes it possible to mechan-

ically check whether a given concrete program instantiates an abstract one. The symbolic

execution rules for APEs and all simplification rules for abstract stores (Sect. 4) have been

replaced by wholly revised versions, including rules for better support of heap-related prop-

erties. We use a new technique for proving loop transformations based on “abstract strongest

loop invariants” (Sect. 5.1.2) that no longer requires manual loop coupling. For the appli-

cation to correct refactoring (Sect. 5.1.3), we derived more precise safety preconditions for

the analyzed refactoring techniques and added a transformation not considered in [79]. Fur-

thermore, we found several unreported bugs in the refactoring engines of major Java IDEs,

which we also discuss in Sect. 5.1.3. Finally, we give an overview of other applications of

AE conducted since the publication of [79] (included in Sect. 5).

Most of the technical content in this paper is included in a Ph.D. thesis [76]. Here, we

give a more condensed account and formalize AE rules in an abstract symbolic execution

framework to make the theory independent of KeY’s program logic.

2 JavaDL and Symbolic Execution

This section introduces the program logic, including theories of heaps and location sets on

which we rely. We also define a general theory of symbolic execution wherein we later express

abstract execution rules.

2.1 Program Logic

Our framework is based on Java Dynamic Logic (JavaDL), a first-order dynamic logic for

sequential Java programs. In this section, we provide the essential parts of the logic needed to

keep the paper self-contained and refer to [5] for a full account. JavaDL extends typed first-

order logic by three modal operators: Modalities [p]ϕ and 〈p〉ϕ, as well as updates {U}ϕ.
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The box modality [p]ϕ expresses that if the program p terminates, then it terminates in a

state where postcondition ϕ holds; the diamond modality additionally requires p to terminate.

Updates denote certain limited state changes. In particular, they always terminate. The empty

update Skip represents an empty state change, an elementary update x := t the transition

where variable x is assigned the value of term t . Two updates U1 andU2 can be combined

into a parallel update U1 ||U2, where both state changes are executed simultaneously. In

case of conflicting assignments to the same variable, the syntactically later one “wins.” For

example, the parallel composition x := 1 ||x := 2 is equivalent to the elementary update

x := 2. Updates are applied to terms and formulas: {U}t and {U}ϕ represent the value of

term t and truth value of formula ϕ after the state change effected by U, respectively. In a

sequential update {U1}{U2}ϕ, the right-hand sides ofU2 are interpreted in the state after the

transition described by U1, while in parallel compositions, they are interpreted in the same

pre-state. The formula {U1}{U2}ϕ is equivalent to {U1 || {U1}U2}ϕ. We use the notation

U1 ◦U2 forU1 || {U1}U2 and write Upd for the set of all updates.

Terms and formulas are standard; we denote by Fml and TrmT the sets of formulas and

terms of type T . We write PVSym for the set of program variables x and VSym for the

set of logic variables v. The semantics of JavaDL is based on first-order Kripke structures

K = (D, I ,S, ̺) consisting of a domain D, an interpretation function I of function and

predicate symbols, a set S of states σ mapping program variables to domain values, and a

program transition relation ̺ associating with legal program fragments p a transition relation

̺(p) ∈ S×S such that (σ1, σ2) ∈ ̺(p) iff p, when started in σ1 , completes normally (without

throwing an exception, breaking, or returning, etc.) in σ2 . This is sufficient, because programs

that might terminate abnormally are locally transformed into normally terminating programs

by the rules of the Java DL calculus, see Example 2 below. Full details are in [5, Chapter 3].

A legal program fragment p for a context program Prg is a sequence of Java statements

which may appear legally (according to the rules of the Java Language Specification [28])

in the extension of Prg by an additional class C with a suitable method m into which p

is embedded as a body. Updates, terms, and formulas are evaluated using an overloaded

valuation function val (K, σ, β|·), where β is a (logic) variable assignment. It assigns to

updatesU ∈ Upd a state transformer val (K, σ, β|U) ∈ S×S, to terms t ∈ TrmT a domain

value val (K, σ, β|t) ∈ D of type T , and to formulas ϕ ∈ Fml a truth value tt or ff. For closed

formulas (without free logic variables), we omit β. For example, the valuation of the term

{x := y}x > 0, which expresses that in all states where x was updated to the value of y, x

is strictly positive, is computed as follows:

val
(

K,σ, β|{x := y}x > 0
)

= val
(

K, val (K, σ, β|x := y) (σ ), β|x > 0
)

= val
(

K,σ [x 7→ val (K, σ, β|y)], β|x > 0
)

= val
(

K,σ [x 7→ σ(y)], β|x > 0
)

= σ [x 7→ σ(y)](x) > 0 = σ(y) > 0

We write K,σ |H ϕ for val (K, σ, β|ϕ) = tt. If K,σ |H ϕ for all K and σ , we write |H ϕ

and say that ϕ is valid. JavaDL has a sound sequent calculus [5] to derive from judgments

Ŵ ⊢ 1 the validity of the semantic entailment Ŵ |H 1.

JavaDL implements a heap theory based on the theory of arrays [53]. A heap is a

sequence of mappings from pairs of objects and fields to values. Writing to the heap

is accomplished by a function store, which takes a heap, object, field, and a value,

and returns an updated heap. Reading values is done by the function select, taking a

heap, an object, and a field, and returning the field’s value. For example, the configu-
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ration store(h,Person,age, 42) represents a heap identical to h, but where the value

of Person.age is 42. To evaluate the expression Person.age in it we compute

select(store(h,Person,age, 42),Person,age)
.
= 42. A sequence of mappings is

modeled using nested store expressions, as in store(store(h,Person,age, 42),Person,

weight, 83).

Semantically, the current heap configuration in a state σ ∈ S is stored in σ(heap),

for a designated variable heap of type Heap. The value of location (o, f ) in a state σ is

σ(heap)(o, f ). The pair (o, f ) is an element of JavaDL’s LocSet type for location sets.

Its domain are pairs of objects and fields; in Sect. 3.2, we extend this by program variable

locations. The Heap and LocSet theories in JavaDL are closely related: For instance, the

function anon:Heap × LocSet × Heap → Heap anonymizes the fields of the location set in

the first heap argument; when accessing those, the values in the second heap are used instead.

See [5] for details on the heap and location set models.

2.2 Symbolic Execution

Symbolic Execution (SE) [8, 91] is a popular program analysis technique introduced in the

1970s [15, 18, 41] for exploring a large number of execution paths of a program. The key idea

is to treat inputs to a program as abstract symbols. Whenever the execution depends on the

concrete value of a symbolic variable, SE follows the branching execution paths in parallel.

Symbolic Execution engines maintain for each explored path (1) a path condition describing

the conditions satisfied by the branches taken along that path, (2) a symbolic store mapping

variables to (symbolic) values, and (3) a program counter pointing to the next instruction to

execute. Branch execution updates the path condition, while assignments update the symbolic

store [8]. The triple consisting of these elements is called a Symbolic Execution State (SES).

Semantically, a symbolic execution state s represents a (potentially infinite) set of concrete

execution states σ ∈ S, in the same way as a symbolic parameter represents a potentially

infinite set of concrete parameters. We call the set of concrete execution states concretiza-

tions for s. Based on the notion of concretization, we develop two desirable properties of

SE transition relations: Exhaustiveness, satisfied by overapproximating SE, and precision,

satisfied by underapproximating SE. The definitions in this section are a digest of [76, Chapt.

3]. Specifically, the definitions of exhaustiveness and precision and their implications on the

correctness of SE do not appear in previous publications. In Sect. 3, we extend this framework

to abstract SESs, and define SE rules for SESs with abstract program counters in Sect. 4.

We formally define our notion of SESs. We represent path conditions by closed formulas

and symbolic stores by JavaDL updates. Updates have the advantage that we can evaluate,

for example, a formula, in a symbolic store by simply applying the update to the formula. A

program counter in our framework is the whole remaining program (instead of a pointer to

the next instruction).

Definition 1 (Symbolic Execution State) A Symbolic Execution State (SES) is a triple

(C,U, p) of (1) a set of closed formulas C ∈ 2Fml, the path condition, (2) an update

U ∈ Upd, the symbolic store, and (3) a legal program fragment p, the program counter. We

omit p for empty program counters and denote the set of all SESs by SSE.

Based on the valuation function of JavaDL, we define the concretization function concr

which, given an initial concrete state σ , concretizes a symbolic state s to a concrete state

relative to a given structure K . The union
⋃

σ concr(s, σ ) for all initial states represents the

set of concretizations. We begin with a “K-indexed” version concrK and then define concr

as the union for all structures K . The idea is that all different interpretations of uninterpreted
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function and predicate symbols are captured in the concretizations. If, for instance, new

Skolem symbols are introduced after a loop invariant application, the represented concrete

state space is extended, which must be reflected in the definition.

Definition 2 ((K-indexed) Concretization Function) The K-indexed concretization function

concrK :SSE × S → 2S maps an SES (C,U, p) and a concrete state σ ∈ S (1) to the

empty set ∅ if either K,σ 2
∧

C, or, where σ ′:=val (K, σ |U) (σ ), there is no σ ′′ such that

(σ ′, σ ′′) ∈ ̺(p), or otherwise (2) to the singleton set {σ ′′} such that (σ ′, σ ′′) ∈ ̺(p), where σ ′

is as before. The concretization function concr is defined as concr(s, σ ):=
⋃

K concrK (s, σ ).

Definition 3 (Semantics of SES) The semantics JsK of an SES s ∈ SSE is defined as the union

of its concretizations: JsK:=
⋃

σ∈S concr(s, σ ).

The following example demonstrates the application of Def. 3 along a program containing

a loop, which is abstracted using a loop invariant.

Example 1 (Concretization of SES) We consider a program p which decrements a positive

variable inside a loop until it reaches 0 and adds 2 afterward:

while (i > 0){ i--; } i += 2;

Assume we want to show that i always has the value 2 after p terminates. Since the initial

value of i, and therefore the number of loop iterations, is unknown, we abstract the loop with

an invariant. SE starts with the initial SES s = ({i ≥ 0}, Skip, p), where the path condition

contains the precondition that i is nonnegative. A suitable loop invariant for the while loop

in p is i ≥ 0. This loop invariant is inductive: It is strong enough to imply the postcondition.

Together with the negated loop guard i ≤ 0, which holds after termination of the loop, this is

sufficiently strong to infer that i is 0 after loop termination. After the application of a typical

loop invariant rule, one has to show, as a side condition, that i ≥ 0 is an inductive loop

invariant. Hence, we obtain the successor state s1 = ({c ≥ 0, c ≤ 0},i := c,i += 2;),

where i := c is an anonymizing update with a Skolem constant c, c ≥ 0 the loop invariant,

and c ≤ 0 the branch condition signifying that the loop has been exited. Semantics-preserving

simplification of the path condition yields the state s ′
1 =

(

{c
.
= 0},i := c,i += 2;

)

. Its

semantics is computed as follows:

Js ′
1K =

⋃

σ

concr(s ′
1, σ )

=
⋃

σ∈S

⋃

K

{

σ ′ : (val
(

K,σ |i := c
)

(σ ), σ ′) ∈ ̺(i += 2;) and K,σ |H c
.
= 0

}

(∗)
=

⋃

σ∈S

⋃

K

{

σ ′ : (val
(

K,σ |i := 0
)

(σ ), σ ′) ∈ ̺(i += 2;)
}

=
⋃

σ∈S

{

σ ′ : (σ [i 7→ 0], σ ′) ∈ ̺(i += 2;)
}

=
⋃

σ∈S

{

σ [i 7→ 2]
}

Consequently, s ′
1 represents all concrete states where i attains the value 2. Step (∗) results

from the following considerations: if all structures K in the specified set are such that K,σ |H

c
.
= 0, then the transformers created for val (K, σ |i := c) are equivalent to those created

for val (K, σ |i := 0). After this simplification, there remain no more uninterpreted function

symbols and the union over all K can be omitted.
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Fig. 2 Example SE Rules

For any number k ≤ 0, the formula i ≥ k is also a valid (though not inductive) loop

invariant. If k is strictly negative, the SES resulting after executing the loop has more than

one concretization. If we choose k:= − 1, for example, i can attain the values −1 or 0 after

the loop. Consequently, the concretizations for the final SES after the program comprise

some where i is increased by two, and some where it is only increased by one: we are in the

realm of overapproximating SE.

In this paper, an SE transition relation maps an SES to a non-empty set of successor SESs.1

The big-step extension δ∗ of SE transition relation is the reflexive and transitive closure.

Most practical SE transition relations can be defined as a set of schematic SE rules,

where each such rule represents a family of SE transitions (one transition for each consistent

instantiation of the contained schematic placeholders). We use sequent calculus notation: let

inp and o1, . . . , on, for n ≥ 0, be SESs. The SE rule

ruleName
o1 o2 · · · on

inp
(conditions)

represents all instances of the SE transitions (inp, {o1, . . . , on})) resulting from consistent

replacement of schematic placeholders in the input and output states. The rule is read bottom-

up, has a name (here “ruleName”) written on the left, and may have conditions written on

the right. In the following, we show two example SE rules.

Example 2 (SE Rules) Fig. 2 shows two SE rules for assignments and conditional statements.

Schematic placeholders are C, U, se, π , ω, etc. The schema variable U can be instantiated

to any update, πω to a Java context, se for a side effect-free expression, and so on. In the

Java context πω, π is an inactive prefix containing opening braces, labels, and the opening

of various scoping frames for methods, exceptions, etc. Scopes are created by SE rules on

the fly to ensure that only normally terminating programs ever need to be symbolically

executed. For example, try-catch statements are scoped inside a “try {”. Dually, ω

consists of closing braces, the remaining program to execute symbolically, and closings of

scopes such as catch/finally clauses. Together, πω constitute a valid Java program.

Let, for instance,

s := (

C
︷︸︸︷

∅ ,

U
︷ ︸︸ ︷

x := z,

π
︷ ︸︸ ︷

try { y=x;

ω
︷ ︸︸ ︷

z=x; } finally {})

s ′ := (∅, (x := z) ◦ (y := x),try { z=x; } finally {})

be two SESs. Then, the assignment rule covers the SE transition (s, {s ′}).

We define two aspects of the correctness of symbolic transition relations: Exhaustiveness

and precision. These properties are comparable to “recall” and “precision” in binary classi-

fication. Exhaustiveness is the property that during a symbolic transition, the set of concrete

states represented by an input state is not decreased, whereas precision is the property this

1 For simplicity, we do not introduce more general m-to-n transition relations as in [76].
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set is not increased. The definitions (called “strong” exhaustiveness and precision in [76])

fix the interpretations of uninterpreted function and predicate symbols across transitions. For

exhaustiveness, fresh symbols may be created by a transition. This is, for instance, needed

in loop invariant rules where assigned locations in loop bodies are anonymized using fresh

constants, see Example 1.

Definition 4 (Exhaustive SE Transition Relation) An SE transition relation δ ⊆ SSE ×2SSE is

called exhaustive iff for each transition (inp,O), structure K and concrete states σ, σ ′ ∈ S,

it holds that σ ′ ∈ concrK (inp, σ ) implies that there is (1) a “conservative extension” K ′ of

K interpreting all function and predicate symbols occurring in inp the same way as K (in

particular, concrK (inp, σ ) = concrK ′(inp, σ )), (2) an SES o ∈ O and (3) a concrete state

σ ′′ ∈ S s.t. σ ′ ∈ concrK ′(o, σ ′′).

Definition 5 (Precise SE Transition Relation) An SE transition relation δ ⊆ SSE × 2SSE

is called precise iff for each transition (inp,O), o ∈ O, structure K and concrete states

σ, σ ′ ∈ S, it holds that σ ′ ∈ concrK (o, σ ) implies that there is a concrete state σ ′′ ∈ S s.t.

σ ′ ∈ concrK (inp, σ ′′).

Exhaustiveness is a crucial property for SE used in program verification, whereas precision

is important for uncovering bugs and creating feasible test cases. Lems. 1 and 2 (proven

in [76]) below formalize this intuition. To express them, we first define the concept of labeled

SES. A labeled SES sϕ denotes the weakest precondition of s relative to postcondition ϕ. If

sϕ is true, the labeled SES is called valid.

Definition 6 (Labeled Symbolic Execution State) We write sϕ for the Labeled Symbolic Exe-

cution State s ∈ SSE with postcondition ϕ ∈ Fml. Its semantics val (K, σ |sϕ) is defined such

that for all formulas ψ , K,σ |H ψ implies K,σ |H sϕ if, and only if, it holds that K,σ |H ψ

and for all σ ′ ∈ concrK (s, σ ), K,σ ′ |H ϕ.

For example, the weakest precondition of SES s = ({x ≥ 0}, Skip,x--;) relative to

postcondition x ≥ 0 is x > 0. Consequently, K,σ |H sx≥0 iff σ(x) > 0.

Lemma 1 (Bugs discovered by precise SE are feasible) Let δ be a precise SE transition

relation and inp→δ∗ O. If a postcondition ϕ ∈ Fml is not true for a state o ∈ O, i.e., 2 oϕ , it

follows that 2 inpϕ .

Lemma 2 (A property proven by exhaustive SE holds for the inputs) Let δ be an exhaustive

SE transition relation and inp→δ∗ O. If a postcondition ϕ ∈ Fml, which only contains rigid

symbols already present in inp, holds for all states o ∈ O, i.e., |H oϕ , it follows that |H inpϕ

holds.

In Sect. 4, we devise SE rules for AE that are both precise and exhaustive with respect to

the semantics of AE defined in the following section.

3 Syntax and Semantics of Abstract Execution

In Sect. 1.2, we introduced the essentials of the concrete syntax of our specification framework

for abstract programs. Here, we explain features of the language that we omitted so far, define

its abstract syntax and give it a semantics. Finally, we introduce abstract updates, a syntactic

concept for second-order symbolic state changes.
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Listing 3 Example Program Demonstrating Additional Specification Language Features

1 /*@ ae_constraint

2 @ \disjoint (frameP, footprintP) &&

3 @ \subset(frameP, rel) &&

4 @ \disjoint (x, frameP) &&

5 @ \disjoint (x, footprintP);

6 @*/

7

8 if (

9 /*@ assignable \nothing;

10 @ accessible footprintP;

11 @ normal_behavior ensures \result <==> throwsExcP(\value(footprintP));

12 @ exceptional_behavior requires false ;

13 @*/

14 \abstract_expression boolean e

15 ) {

16 /*@ assignable frameP, \hasTo(x) ;

17 @ accessible footprintP;

18 @ normal_behavior ensures x >= 0;

19 @ exceptional_behavior

20 @ requires throwsExcP(\value(footprintP));

21 @ ensures x == -1;

22 @*/

23 \abstract_statement P;

24

25 //@ assert x >= 0 <==> !throwsExcP(\value(footprintP));

26 // ^-- true, yet unreachable

27 }

3.1 Specification Language

We demonstrate additional specification language features along the abstract example

program in Listing3 containing almost all features not yet mentioned in Sect. 1.2. Our spec-

ification syntax admits the notation \disjoint(x, frameP), where x is interpreted as the

singleton containing x. Intuitively, instantiations of this abstract program complete normally

without changing the state, or else they complete because an exception thrown by AS P. In

the resulting state after the thrown exception, the program variable x attains the final value

−1. Additionally, the locations to which the abstract location set frameP is instantiated might

be changed. One possible valid instance of the abstract program is

if (y == 0) { x = -1; z = w / y; x = 0; },

which instantiates frameP to {z} and footprintP to {w,y}.

Enforcing Assignments and Specifying “All” or “Nothing”

As a default, locations listed inassignable clauses are upper bounds: the set of represented

concrete programs includes programs not assigning anything. Yet, sometimes one wants

to enforce the assignment of a specific location. This can be done using the \hasTo(·)

keyword, which is a JML extension specific to AE. For example, line 16 in Listing3 imposes

that all instantiations of AS P assign the variable x. Additional keywords that can be used in

assignable and accessible clauses are “\nothing” (no location can be assigned,

used in line 9) and “\everything” (any location may be assigned, the default).

Notation We occasionally use a simplified syntax for APEs instead of the concrete syntax

with specification comments: the notations P(assignables: ≈ accessibles) and

e(assignables: ≈ accessibles) represent AS and AExp with identifier symbols P
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and e, respectively, both with frame assignables, footprint accessibles and, unless otherwise

stated, expected to complete normally. We generally use capital letters P, Q, … for AS

identifiers and lower case letters e, f, … for AExp identifiers. We distinguish \hasTo

locations by a superscript exclamation mark as in P(x!,y: ≈ accessibles).

The \hasTo specifier enables simplification steps that would not be possible otherwise.

Consider, for example, the following program, where an AS should operate on a (not “rele-

vant”) temporary variable tmp instead of the variable x and is therefore surrounded by a set

and reset statement as follows:

tmp=x; P(tmp!: ≈ tmp,y); x=tmp;

Since P has to assign tmp, we can drop the set statement after considering the assignment

of tmp in the footprint of P, without changing the semantics of the program, resulting in

“P(tmp!: ≈ x,y); x=tmp;”. Assuming that tmp is not read after this program frag-

ment, and again using the information that it has to be assigned by P, we can merge the

remaining statements and obtain “P(x!: ≈ x,y);”. These simplifications would not have

been possible without \hasTo. For instance, the set statement could not have been dropped

in the first simplification step without \hasTo because then, P also represented the empty

statement, and the set statement was still effective.

The order of frame and footprint specifications of APEs matters. The program Q(x,y: ≈

accessibles) has the same effect on x than Q(w,z: ≈ accessibles) has on w (since both AS

declarations have the same identifier); however, the effect of Q(y,x: ≈ accessibles) (with

frame elements swapped) on x will be different.

Additionally to \disjoint, which we used in Sect. 1.2 for declaring the disjointness of

location sets, the specification language supports the JML set operators for intersection, set

difference, set union, and subset (see also [5, Sect. 9.3]). In Listing3, we declare in line 3

that frameP is a subset of the set rel of all relevant locations.

In Sect. 1.2, we explained how to couple the abrupt completion behavior of APEs to

expressions built from abstract predicates. Listing3 likewise couples the exceptional behavior

of P to the abstract expression throwsExcP(value(footprintP)). In addition to

such preconditions, we can also specify functional postconditions, i.e., guarantees on the

state after execution of the APE. The specification in line 18 imposes that if P completes

normally, the variable x has to be nonnegative afterward; similarly, if it completes due to a

thrown exception, it has to equal −1 (line 21).

A noteworthy construction is used in the functional postcondition of AExp e in line 11:

this boolean expression has to evaluate to true (i.e., its “\result” is true) iff the expression

throwsExcP(value(footprintP)) also holds. Consequently, P always throws an

exception, since otherwise, the body of the if statement would not be executed. AExp e

always completes normally, since line 12 stipulates that it completes exceptionally iff false

holds—that is, never. The condition asserted in line 25 of the listing is true (even though the

assert statement is unreachable as P always completes exceptionally). This is because we

defined in lines 2 and 5 that all frame elements of P are disjoint from footprintP, which thus

retains its original value after execution of P.

AE supports additional specification cases for abrupt completion due to a (labeled)

continue or (labeled) break from a block or loop. In the implementation, these cases are

only considered if the specified APE occurs inside a loop (or labeled block). To specify

them, use the keywords “continue_behavior,” “continue_behavior (lbl),”

“break_behavior” or “break_behavior (lbl)” (where lbl is a label occurring in

the context) similarly as we used exceptional_behavior before.
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3.2 Abstract Syntax

Abstract Execution analyzes analyzes abstract program fragments. A program fragment

is a sequence of statements that could occur inside a method body. An abstract program

fragment contains at least one APE, as well as declarations of abstract location sets, function

and predicates symbols, and constraints on these elements.

We first extend the LocSet theory to accommodate the subsequent definitions, and then

formally define APEs and abstract program fragments.

3.2.1 Program Variable Locations

The LocSet theory in JavaDL has been designed to represent heap locations (o, f ). We extend

this to also represent program variable locations of a new type ProgVar. Please keep in mind

that these refer to program variable locations of a given name, not to the value of that variable

in some state. We extend the vocabulary of LocSet by

pv:PVSym → ProgVar singletonPV:ProgVar → LocSet

·!:LocSet → LocSet value:LocSet → Any

heapLocs:LocSet → LocSet pvLocs:LocSet → LocSet

anonPV:ProgVar × LocSet × ProgVar → ProgVar

Function pv is a constructor for program variable locations from a program variable sym-

bol; singletonPV is a LocSet constructor for program variable locations. If, for example, x

is a program variable, pv(x) maps to the corresponding location. The difference between

pv(x) and x is that the latter is affected by state changes, while the former is not: We have

({x := 17}x)
.
= 17, but ({x := 17}pv(x))

.
= pv(x). An expression set! represents the same

locations as set; its purpose is to mark locations that have to be overwritten in assignable

specifications. The semantics of a term value(set) are the values attained by the locations rep-

resented by the location set set. For instance, the meaning of value(singletonPV(pv(x))) is the

value of program variablex in the current state. The functions heapLocs and pvLocs are filters

for heap and program variable location sets, respectively. A term anonPV(pv(x), set, pv(x′))

(for conditional anonymization of program variables) evaluates to the program variable lo-

cation pv(x′) if singletonPV(pv(x)) is in set and to pv(x) otherwise.

For simplicity, we write x̊ for singletonPV(pv(x)), and use standard set notation for loca-

tion sets, e.g., loc ∈ set expresses that the location loc is in set. Dynamic frame specification

variables are encoded as uninterpreted constant symbols of type LocSet.

3.2.2 Abstract Program Elements and Fragments

APEs are tuples of (1) an identifier, (2) a type (ASs have the designated pseudo-type state-

ment), (3) a frame and (4) footprint specification, (5) a termination specifier, either partial

(APE has to terminate) or total (APE may diverge), and (6) a set of specifications especially

for sufficient and necessary preconditions of abrupt completion behavior. Specifications also

comprise postconditions. In relational verification, the postcondition is frequently omitted

and thus logically equals true. Normal completion does not have a precondition in AE; APE

completes normally iff it does not complete abruptly. We continue writing “APE P” short for

“the APE with identifier symbol P.” Subsequently, we formally define the abstract syntax of

APEs.

Definition 7 (Abstract Program Element) An Abstract Program Element is a tuple

(id, type, assignables, accessibles, term, specs)
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of an identifier id, a type type (type statement for statements), a frame specification

assignables and a footprint specification accessibles (both tuples of terms of type LocSet),

a termination specifier term ∈ {partial, total} and behavioral specifications specs. The latter

is a tuple of the form

(normalPost,

returnsSpec, excSpec, continuesSpec, breaksSpec,

continuesSpecLbl, breaksSpecLbl)

where (1) normalPost ∈ Fml, (2) returnsSpec, excSpec, continuesSpec, breaksSpec are pairs

(Pre, Post) of formulas defining pre- and postconditions for abrupt completion of the APE

due to a return, exception, continue, and break, respectively, (3) continuesSpecLbl,

breaksSpecLbl are partial functions from Java labels to pairs of pre- and postconditions for

abrupt completion due to a labeled continue or labeled break, (4) all preconditions are

mutually exclusive, (5) pre- and postconditions may contain local variables of the context,

and the special program variables heap, to access heap locations, heappre to access heap

locations in the state before the APE was executed, exc to refer to the exception in the case

that the APE completes abruptly due to a thrown exception (postcondition of excSpec only),

and res to refer to the result value returned by AS (postcondition of returnsSpec only).

Abstract Program Fragments (APFs) contain at least one APE, along with global dec-

larations of AE specification variables and constraints on them (ae_constraint). We

distinguish two types of specification variables: abstract location sets (for dynamic frames

and footprints), and abstract function and predicate symbols used in the abstract specifi-

cation of the behavior of APEs. APF defines the domains of the specification elements

continuesSpecLbl and breaksSpecLbl: APEs must supply pre- and postconditions for exactly

the labels in the context of their appearance in the APF. Constraints can also be declared

locally within APF to, e.g., refer to globally unavailable locations such as the exception

variable of a catch clause. They are w.l.o.g. treated globally in the following definition:

local constraints can be converted to global ones by interpreting them in the symbolic state

of their occurrence.

Definition 8 (Abstract Program Fragments) An Abstract Program Fragment is a tuple

(p, APEs, locSpecVars, funcAndPredSymbols, constraints), where (1) p is a sequence of

statements containing exactly the APEs in the non-empty set APEs, (2) locSpecVars is a set

of dynamic frame specification variables (LocSet constants), comprising the symbols used

in APEs, (3) funcAndPredSymbols is a set of abstract function and predicate symbols used

in pre- and postconditions of the APEs, and (5) constraints is a set of formulas constraining

the behavior of the APEs.

3.3 Semantics of Abstract Program Elements and Fragments

We define the semantics of the AE framework indirectly by reduction to JavaDL: A statement

or expression is an instance of AS or AExp if it satisfies a JavaDL formula that serves as its

logical representation. This approach results in longer definitions than for a direct model-

theoretic semantics, but has notable advantages:

(1) The translation to a formal program logic enforces the precise description of legal

instances and does not permit omitting important details.

(2) The semantics is constructive in the sense that it gives rise to a directly implementable

approach to verify that a given program fragment instantiates APF.
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(3) The previous two points facilitate validation, which, given the complex definition, is

an important aspect.

The logical representation of APF needs to cover the following aspects: (1) the frame

specification, including (2) the specific semantics of \hasTo (motivated in Sect. 3.1),

(3) the footprint specification, 2 (4) the termination condition, (5) the contract for nor-

mal completion, including return, and (6) the contract for the various cases of abrupt

completion. The following conjunction represents(ape, p) of formulas evaluates to tt iff the

program p is a legal instance of (is represented by) the APE ape. The first four conjuncts

correspond to cases (1)–(4) above. The next two conjuncts relate to case (5), and the re-

maining conjuncts to case (6), where the two formulas breaksForLbl(breaksSpecLbl, lb, p)

and continuesForLbl(continuesSpecLbl, lb, p) for labeled breaks and continues, respec-

tively, receive an additional parameter lb representing the specific label to be considered.

represents(ape, p):= frameFor(assignables, p)

∧ hasToFor(assignables, p)

∧ footprintFor(accessibles, assignables, p)

∧ terminationFor(term, p)

∧ normalCompletionFor(specs, p)

∧ returnsFor(returnsSpec, p)

∧ excFor(excSpec, p)

∧ breaksFor(breaksSpec, p)

∧ continuesFor(continuesSpec, p)

∧
∧

dom(breaksSpecLbl)

breaksForLbl(breaksSpecLbl, lb, p)

∧
∧

dom(continuesSpecLbl)

continuesForLbl(continuesSpecLbl, lb, p)

For the sake of readability, we moved the formal definitions to Appendix A. Based on

represents, we define the semantics of a single APE as follows:

Definition 9 (Semantics of APE) Let abstrStmt be AS. Its semantics JabstrStmtK is the set of

all concrete statements represented by it, formally:

JabstrStmtK:={stmt | |H represents(abstrStmt, stmt)}

The definition works accordingly for AExps.

Legal instantiations of Abstract Program Fragments first have to provide instantiations

of the APE specification variables (i.e., of abstract location sets, and function and predicate

symbols) satisfying the global constraints; second, they have to provide legal and consistent

instantiations of the APEs s.t. the resulting program is a legal concrete program fragment.

An instantiation of a set of APEs is consistent if two APEs with the same identifier are

instantiated by statements or expressions that are equal up to the renaming of used locations,

if the frame and footprint definitions of the APE occurrences they are instantiating differ.

2 The formula footprintFor asserts that executing p in two generic environments that agree only on the value
of p’s footprint locations, in each case has the same effect on all frame locations. This is the reason for the
presence of the assignables argument in footprintFor: Demanding that the two final states be equivalent for
all locations would be too strong.
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In our subsequent definition of the semantics of APFs, the notation S[subst] denominates

the result of applying the substitution subst on all elements of the set S; similarly for program

(elements) p instead of sets.

Definition 10 (Semantics of Abstract Program Fragment) Let

F = (p, APEs, locSpecVars, funcAndPredSymbols, constraints)

be APF. A program fragment p0 is a legal instantiation of F if it arises from a sub-

stitution substlocSpecVars of concrete locations for specification variables, a substitution

substfuncAndPredSymbols for abstract function and predicate symbols, as well as an instanti-

ation substAPEs of concrete statements and expressions for APEs such that:

(1) substlocSpecVars substitutes concrete heap locations or program variables for elements of

locSpecVars.

(2) substAPEs substitutes statements or expressions for elements of APEs.

(3) substfuncAndPredSymbols substitutes, for elements of funcAndPredSymbols, JavaDL terms

or formulas containing at most locations corresponding to the arguments passed to the

substituted symbol after applying substlocSpecVars.

(4) The formulas constraints[substfuncAndPredSymbols][substlocSpecVars] are valid (i.e., the

global constraints on AE specification variables are satisfied).

(5) p0 = p[substAPEs].

(6) Each instantiation in substAPEs is represented by the APE it instantiates, respecting the

instantiations of specification variables: For all ape ∈ APEs, it holds that

ape[substAPEs] ∈ Jape[substfuncAndPredSymbols][substlocSpecVars]K .

(7) Each instantiation in substAPEs is consistent: For all APEs ape1, ape2 ∈ APEs with

the same identifier symbol, it holds that ape1[substAPEs] and ape2[substAPEs] are equal

modulo renaming of elements in the frame and footprint specifications in ape1 and ape2

(after applying substlocSpecVars).

The semantics JFK of F is then defined as the set of its legal instantiations.

Example 3 (Instantiating APFs) The abstract program model in Listing 4, a simplified version

of Listing 1 from the introduction, represents a transformation rule swapping two statements

that are independent, i.e., cannot overwrite state changes nor interfere with the footprint of the

other statement. In addition, at most one statement may complete abruptly (we only consider

exceptions and returns in this example). We show that the concrete program fragment

p0:= x = y / z; a++; b = 2*a;

is an instance of the abstract model by constructing substitutions as required by Def. 10

that yield p0. Intuitively, the first assignment instantiates AS P, and the latter two AS Q.

First, we instantiate frameP with {x}, fpP with {y,z}, frameQ with {a,b} and fpQ with {a}.

This instantiation satisfies the constraints specified in lines 2–4 in the listing (required by

Condition (4) in Def. 10).

Our instantiation of ASP throws anArithmeticException ifz is zero; consequently,

we instantiate throwsExcP toz
.
= 0. Condition (3) requires that this instantiation uses at most

locations corresponding to the “footprint” of the occurrences of the symbol throwsExcP in

the abstract program, i.e., fpP, after substituting abstract location sets. Since we instantiate

fpP to {y,z}, the term z
.
= 0, which accesses only z, satisfies this condition. All other
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Listing 4 Abstract Program Model for Example 3

1 /*@ ae_constraint

2 @ \disjoint (frameP, frameQ) &&

3 @ \disjoint (frameP, fpQ) &&

4 @ \disjoint (frameQ, fpP) &&

5 @

6 @ \mutex (returnsP(\value (fpP)), returnsQ(\value (fpQ))) &&

7 @ \mutex (returnsP(\value (fpP)), throwsExcQ(\value (fpQ))) &&

8 @ \mutex (throwsExcP(\value (fpP)), throwsExcQ(\value (fpQ))) &&

9 @ \mutex (throwsExcP(\value (fpP)), returnsQ(\value (fpQ)));

10 @*/

11

12 //@ assignable frameP;

13 //@ accessible fpP;

14 //@ exceptional_behavior requires throwsExcP(\value (fpP));

15 //@ return_behavior requires returnsP(\value (fpP));

16 \abstract_statement P;

17

18 //@ assignable frameQ;

19 //@ accessible fpQ;

20 //@ exceptional_behavior requires throwsExcQ(\value (fpQ));

21 //@ return_behavior requires returnsQ(\value (fpQ));

22 \abstract_statement Q;

abstract predicates occurring in the program are instantiated to false, which trivially satisfies

the requirement on accessed locations.

With this instantiation of the abstract predicate symbols, Condition (4) is satisfied: since

only one abstract predicate is not instantiated to false, it is easy to see that mutual exclusion

of the abrupt completion conditions (lines 6–9 in the listing) is ensured.

By substituting AS P with “x = y / z;” and Q with “a++; b = 2*a;,” we obtain

p0 and the validity of Condition (5). Condition (6) refers to Def. 9. For example, we have to

show that “a++; b = 2*a;” is represented by the following result of instantiating abstract

location set and predicate symbols in AS Q:

//@ assignable a, b;

//@ accessible a;

//@ exceptional_behavior requires false;

//@ return_behavior requires false;

\abstract_statement Q;

We abstain to discuss the details of this condition for brevity. Intuitively, this partially in-

stantiated AS represents all normally completing statements assigning at most a and bwhile

accessing at most a, which comprises “a++; b = 2*a;.”

The instantiation trivially satisfies Condition (7) since there are not two APE occurrences

with the same identifier symbol.

3.4 Syntax and Semantics of Abstract Updates

Abstract updates are the main building block of the AE calculus. They represent syntacti-

cally unbounded many concrete state changes. Abstract Execution turns APEs P(assignables

: ≈ accessibles) into abstract updates UP(assignables: ≈ accessibles). While a concrete

update x := t assigns the value of a term t to a concrete variable x, an abstract update

UP(lhs1, . . . , lhsn: ≈ rhs1, . . . , rhsm) has multiple left-hand and right-hand slots. It repre-
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sents all state changes writing to any subset of the left-hand side locations, where the assigned

values may only be built from combinations of constants and the memory locations specified

on the right. Both, left- and right-hand may be empty, also the lhsi / rhsj may be abstract

location sets instead of concrete program variables. Like APEs, abstract updates have an

identifier symbol such as UP above, with the same semantic implication: abstract updates

with the same identifier represent the same state changes, parametric in the arguments they

are passed. We connect syntactically abstract updates and APEs by their names, as inUP for

AS P, but do not enforce a semantic connection.

We define the syntactic category of abstract update symbols. An abstract update symbol

is an operator with a name (such asUP), a list of parameters (the assignable locations), and

an arity. Abstract updates are created from the application of an abstract update symbol to

a list of terms (the right-hand sides, or “accessibles”). The length of the list has to match

the arity of the symbol. Abstract updates can be used in the construction of sequential and

parallel updates and update applications.

Definition 11 (Abstract Update Symbol) We define an abstract update symbol

UP(assignables) as an identifierUP, a n-tuple of LocSet parameter terms assignables, and an

arity m (with n,m ≥ 0). Each abstract update symbol with the same identifier has (1) the same

number n of assignable locations, and (2) the same arity m. The set of all abstract update sym-

bols is denoted by UpdA. To the set Upd of updates we add, forUP(assignables) ∈ UpdA,

abstract updates UP(assignables: ≈ accessibles), which may occur in compound update

constructions. The right-hand side accessibles is an m-tuple of argument terms, where m is

the arity of the abstract update symbol.

To define the semantics of abstract updates, we extend the interpretation function I of

Java DL Kripke structures such that I(UP(assignables)) returns a function (D)m → S→ S

that, depending on the values of the right-hand side of an abstract update, returns a state

transformer. We then extend the valuation function of dynamic logic accordingly. The in-

terpretation of an abstract update symbol has to respect its “frame” (i.e., assignables).

Furthermore, we have to ensure that the interpretation of abstract updates with the same

identifier is equivalent “modulo frame changes.” For instance, the abstract updateUP(x̊: ≈

accessibles) should have the same effect on x that UP(ẙ: ≈ accessibles) has on y: it has

to hold that x
.
= y → {UP(x̊: ≈ accessibles)}x

.
= {UP(ẙ: ≈ accessibles)}y. We need

the premise x
.
= y because the left-hand sides in the abstract updates are not declared as

“has-to:” they do not have to be written, in which case the variables have to be equal in the

pre-state for the equality to hold. Omitting the premise yields the constraint on the semantics

of has-to left-hand sides.

Definition 12 (Semantics of Abstract Update) An interpretation function I of a Java DL

Kripke structure (D, I ,S, ̺) assigns to a symbol UP(assignables) ∈ UpdA with arity m a

function (D)m → S→ S, such that:

(1) Frame Condition: Let accessibles ∈ (D)m and σ ∈ S. For all locations loc ∈ DLocSet,

it holds that either loc ∈ val (K, σ |assignables), or

σ(loc) = I(UP(assignables))(accessibles)(σ )(loc).

(2) State Transformers for Same Identifier Are Equivalent: Let, for any i = 1, . . . , n,

be U = UP(s1, . . . , si, . . . , sn) ∈ UpdA, accessibles ∈ (D)m and σ ∈ S. For
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all location set terms s ′
i representing the same number of concrete locations as si

(i.e., |val (K, σ |si)| = |val (K, σ |si
′)|), there has to be a bijective mapping ι between

val (K, σ |si) and val
(

K,σ |s ′
i

)

, such that for all loc ∈ val (K, σ |si), it holds that

I(U)(accessibles)(σ )(loc) = I(U′)(accessibles)(σ ′)(ι(loc)),

whereU′:=UP(s1, . . . , s
′
i , . . . , sn) and σ ′:=σ [ι(loc) 7→ σ(loc)].

(3) Has-To Condition: ForU = UP(s1, . . . , s
!
i , . . . , sn), the requirement of Condition (2)

has to hold for has-to locations s ′
i = (s ′′

i )! and σ ′:=σ .

The mapping ι in Condition (2) of Def. 12 is required because a single element of the

assignables of an abstract update symbol can be an abstract location set and therefore repre-

sent many concrete locations. The definition requires that state transformers created for the

two abstract updates with the same identifier and equal accessibles arguments transform a

pre-state σ , where a location loc has the same value as its corresponding location ι(loc), to a

state where they still have the same value (though potentially different from the value in σ ).

If loc is a “has-to” location, the value in the resulting state will be equal independent of the

value in the pre-state.

Extending the valuation function val (K, σ, β|·) is straightforward.

Definition 13 (Valuation of Abstract Update) We extend the JavaDL valuation function

val (K, σ, β|·) as follows, forUP(assignables) ∈ UpdA with arity m:

val (K, σ, β|UP(assignables: ≈ t1, . . . , tm)) =

I(UP(assignables))(val (K, σ, β|t1) , . . . , val (K, σ, β|tm))

Subsequently, we conclude the section on the syntax and semantics of Abstract Execution

by considering Abstract Symbolic Execution States.

3.5 Syntax and Semantics of Abstract Symbolic Execution States

We generalize the notion of SES from Sect. 2.2. The only changes are that due to Def. 11,

symbolic stores can also include abstract updates, and we use APFs instead of concrete

program fragments as program counters.

Definition 14 (Abstract Symbolic Execution State) An Abstract SES is a triple (C,U,F) of

(1) a set of closed formulas C ∈ 2Fml, the path condition, (2) a (potentially abstract) update

U ∈ Upd, the symbolic store, and (3) an Abstract Program FragmentF, the program counter.

We write S
A
SE for the set of all abstract SESs.

As in the concrete case, the semantics of abstract SESs is based on the concept of con-

cretization functions. The concretization function for abstract SESs takes a concrete program

fragment as additional argument: if a given concrete program is represented by the abstract

program counter, the concretization for this program is part of the semantics of the abstract

SES; otherwise, the result is the empty set. The semantics of the abstract SES is obtained by

constructing the union over the set Stmt of all concrete program fragments.

Definition 15 (Semantics of Abstract SES) The K-indexed abstract concretization function

concrAK :SASE × S × Stmt → 2S maps an abstract SES (C,U,F), a concrete state σ ∈ S

and concrete program element p either (1) to the empty set ∅ if p /∈ JFK, or (2) to the

set concrK (C,U, p) otherwise. The abstract concretization function concrA is defined as

concrA(s, σ, p):=
⋃

K (s, σ, p). The semantics JsK of an abstract SES s ∈ S
A
SE is defined as

JsK:=
⋃

σ∈S

⋃

p∈Stmt concrA(s, σ, p).
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4 Rules for Abstract Execution and Abstract Store Simplification

The fundamental idea of Abstract Execution is to perform second-order reasoning about

universal properties of program behavior by Symbolic Execution: Abstract Statements and

Abstract Expressions are translated into abstract updates; abrupt completion is taken into

account by explicit branches in the symbolic execution tree. Thus, the core constituents of

our reasoning system, presented in this section, are SE rules for APEs and simplification

rules for abstract stores containing abstract updates.

4.1 Symbolic Execution Rules for Abstract Program Elements

AE is necessarily less expressive and complete than full structural induction over program

syntax in higher-order logic, because it approximates induction with the fixed set of descrip-

tive elements contained in abstract updates obtained from APEs. The advantage is that the

resulting symbolic execution rules can be instantiated by matching, without having to guess

an induction hypothesis. This has a dramatic impact on the efficiency and automation of AE.

Nevertheless, because of the complications due to abrupt termination, the full AE rule for

ASs without any abbreviations is rather lengthy. Therefore, we begin with a concise AE rule

for the case of ASs (with frame frame and footprint footprint) that complete normally:

abstractStatementSimple

(C ∪ {{U ◦UP(frame: ≈ value(footprint))}(normalPost)},

U ◦UP(frame: ≈ value(footprint)),

π ω)

(C,U, π \abstract_statement P; ω)

The rule removes the AS P and appends to the symbolic store an abstract update. The

abstract update symbol UP is created fresh when first executing AS with identifier P, but

is reused for further executions of ASs with the same identifier to ensure that ASs with the

same identifier behave equivalently when executed with the same footprint values. The path

condition is extended by the postcondition of normal completion, normalPost, in the state

after execution of the AS. A precondition is not added, since it is not allowed for normal

completion. This rule is exhaustive and precise, since the semantics of the abstract update

symbolUP(frame) is aligned with the semantics of a normally completing AS with identifier

P. Only for ASs with non-trivial postconditions, the path condition has to be updated to

achieve precision.

Complexity is added by considering abrupt completion. We first discuss the complete

AE rule for AExps, depicted in Fig3. The statement in the program counter of the rule’s

conclusion is the assignment of AExp e to a variable v. The execution of e can either

complete normally, in which case an abstract value is assigned to v, or else because of

a thrown exception. In the latter case, the assignment to v must not happen. Instead, the

exception is thrown. Consequently, the active statement of the conclusion is not simply

removed from the program counter (as in abstractStatementSimple), but replaced with a

conditional throw of an abstract exception object exc if symbolic flag throwsExc is true,

and an assignment of a symbolic value res to v otherwise.

The generated symbolic store is more complex as in abstractStatementSimple, be-

cause the values of throwsExc, exc and res have to be suitably initialized. Variable

throwsExc refers to the pre-state before executing e. The corresponding state update,

throwsExc := throwsExce(value(footprint)), is therefore added to the symbolic store be-

fore the abstract update Ue(frame: ≈ value(footprint)). The values of exc and res are
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Fig. 3 Symbolic Execution Rule for AE of Abstract Expressions

interpreted in the post-state, and are set to exce(value(footprint)) and rese(value(footprint)),

respectively, The abstract functions throwsExce, exce, and rese of types boolean,

Throwable and T are, similar to the abstract update symbol Ue, created fresh when first

executing AExp with identifier e, but are reused for every further execution of AExp with

the same identifier.

The path condition is extended by two formulas. First, the value of the throwsExce expres-

sion is bound to the evaluation of the precondition for exceptional completion, pre(excSpec),

in the pre-state. Second, the assumptions concerning the postconditions for both completion

modes are evaluated in the whole new symbolic store, i.e., the post-state. If an exception is

thrown, i.e., throwsExc evaluates to TRUE, the exception object is assumed to be non-

null, and the postcondition post(excSpec) is assumed to hold. In the converse case for normal

completion, normalPost is assumed. These postconditions may contain the variables exc

(for exceptional completion) and res (for normal completion), see Def. 7.

If pre(excSpec) is satisfiable in the pre-state, subsequent symbolic execution after an

application of abstractExpression will result in two SE branches, one for normal completion,

and one for completion due to a thrown exception.

Figure. 4 shows the AE rule abstractStatment for ASs. It is in essence an extension of

abstractExpression with the additional cases for abrupt completion of a statement compared

to an expression (returns, (labeled) breaks, (labeled) continues). In each case, a

conditional in the program counter yields a separate SE branch. Since statements generally

do not evaluate to a value (with the exception of “expression statements”), the program

counter does not contain an assignment.

The labels lbb1 , . . . , lbbn are (distinct) loop or block labels declared in the prefix π ;

lbc1, . . . , lbcm are all loop labels only. The rule is only applicable in the context of a

non-void method (since we return a value in the program counter) and within a loop

(since we break and continue). For different contexts, we provide dedicated variants of

rule abstractExecution, which we do not detail here for brevity.
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Fig. 4 Symbolic Execution Rule for AE of Abstract Statements (abbreviations and label symbols are explained
in the text)

For readability, we use abbreviations in Fig. 4. The update Uinit initializes all boolean

flags such as throwsExc and returns, as in the case of abstractExpression:

Uinit:= throwsExc := throwsExcP(value(footprint)) ||

returns := returnsP(value(footprint)) ||

breaks := breaksP(value(footprint)) ||

continues := continuesP(value(footprint)) ||

breaks_lbb1 := breaksLbP(lbb1 , value(footprint)) || · · · ||

breaks_lbbn := breaksLbP(lbbn , value(footprint)) ||

continues_lbc1 := continuesLbP(lbc1, value(footprint)) || · · · ||

continues_lbcm := continuesLbP(lbcm , value(footprint))

The formula mutualExclusionFor declares mutual exclusion of all flags that appear inUinit

as left-hand sides, such that at most one of them can evaluate to TRUE. AS completes normally

iff it does not complete abruptly, i.e., if all abrupt completion flags evaluate to FALSE. This

is captured in the formula notAbruptly defined as throwsExc
.
= FALSE ∧returns

.
=

FALSE ∧ · · ·. The formula behavioralPreconds binds the values of the flags to the corre-

sponding preconditions defined by the AS. Since the specifications for labeled breaks and

continues are parametric in the label, the corresponding formulas are also passed the label
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as a parameter:

behavioralPreconds:=

(throwsExc
.
= TRUE ↔ pre(excSpec))∧

(returns
.
= TRUE ↔ pre(returnsSpec))∧

(breaks
.
= TRUE ↔ pre(breaksSpec))∧

(continues
.
= TRUE ↔ pre(continuesSpec))∧

(breaks_lbb1

.
= TRUE ↔ pre(breaksSpecLbl(lbb1))) ∧ · · · ∧

(breaks_lbbn

.
= TRUE ↔ pre(breaksSpecLbl(lbbn)))∧

(continues_lbc1

.
= TRUE ↔ pre(continuesSpecLbl(lbc1)) ∧ · · · ∧

(continues_lbcm

.
= TRUE ↔ pre(continuesSpecLbl(lbcm)))

Finally, behavioralPostconds adds the assumptions about all postconditions:

behavioralPostconds:=

(normal
.
= TRUE → post(normalSpec))∧

(throwsExc
.
= TRUE → post(excSpec) ∧ exc 6

.
= null)∧

(returns
.
= TRUE → post(returnsSpec))∧

(breaks
.
= TRUE → post(breaksSpec))∧

(continues
.
= TRUE → post(continuesSpec))∧

(breaks_lbb1

.
= TRUE → post(breaksSpecLbl(lbb1))) ∧ · · · ∧

(breaks_lbbn

.
= TRUE → post(breaksSpecLbl(lbbn )))∧

(continues_lbc1

.
= TRUE → post(continuesSpecLbl(lbc1)),∧ · · · ∧

(continues_lbcm

.
= TRUE → post(continuesSpecLbl(lbcm)))

Observe that according to Def. 7, preconditions are mutually exclusive, so we can connect

them to the Boolean flags with equivalence “↔” in behavioralPreconds. This requirement

does not, and usually will not, have to hold for postconditions, which is why we use impli-

cation “→” in behavioralPostconds.

The most important feature of our AE rules is that they are exhaustive because this implies

by Lem. 2 that we can soundly prove abstract program properties by using them. In addition,

they should be precise, such that they allow proving (modulo inherent incompleteness of

used theories like arithmetic) everything that is logically valid. Indeed, our rules satisfy both

properties. Subsequently, we state the corresponding theorems and provide proof sketches.

For full proofs, we refer to [76]. 3

Theorem 1 The rule abstractStatement (Fig.4) is exhaustive.

Proof Sketch We have to prove that for all instantiations of the conclusion SES in

abstractStatement, each concretization (concrete state represented by the SES) is also a

concretization of the premise SES. The core insights used in the proof are:

3 In [76], soundness and completeness for a validity calculus are proven instead of exhaustiveness and
precision of SE; the arguments are similar, though, since these notions are related.
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(1) We perform a case distinction over the reasons for (normal or abrupt) completion of

the AS instantiation. This is in the spirit of AE, which reasons about programs based

on their effect rather than their syntactic structure.

(2) We defined the semantics of APEs as a conjunction of JavaDL formulas. For a fixed,

but arbitrary instantiation of the AS in the conclusion, we can assume the validity of

this conjunction, and exploit the fact that it shares common elements with the premise

SES to perform strong, semantics-preserving simplifications.

(3) Re-using abstract updates and first-order symbols such as excP for APEs with the same

identifier is soundness-critical; however, it is admissible since this only happens in the

AE rules, and for equivalent APEs (modulo frame changes). Using truly fresh first-

order symbols every time would be sound, but either incomplete or require non-trivial

postconditions in the presence of multiple APEs with the same identifier symbol. The

usage of fresh abstract updates would even require specifying the whole framed post-

state for completeness. Note that all terms with such re-used symbols depend on the

current value of the relevant context (the footprint of the APE). The contrary would be

unsound. ⊓⊔

Introducing abstract updates and first-order symbols freshly upon the first encounter with

APE with a given identifier symbol, but re-using them later for APEs with this identifier is

soundness-critical, but greatly simplifies both symbolic reasoning and the required specifi-

cation effort in the presence of multiple APEs with the same identifier. While this calls for a

discussion as in Item (3) for exhaustiveness, it simplifies the argument for precision.

Theorem 2 The rule abstractStatement (Fig.4) is precise.

Proof Sketch We have to prove that for all instantiations of the premise SES inabstractStatement,

each concretization (concrete state represented by the SES) is also a concretization of the

conclusion SES. For a given structure and initial concrete state, we may assume the validity

of the path condition of the premise SES, since otherwise, no concretization is produced. It

follows that the formula imposing mutual exclusion of abrupt completion is valid, which is

why we can, as for exhaustiveness, proceed by case distinction over behavior. Because due

to the semantics of APFs, APEs with the same identifiers are behaviorally isomorphic, we

have to use the fact that logic symbols introduced for ASs with the same identifier symbols

are re-used (since fresh symbols would yield more concretizations). This argument is non-

standard: there is no formal connection between interpretations of abstract update symbols

and the ASs they have been introduced for, but since there is only one rule for executing

ASs and this rule always uses the same symbols for ASs with the same identifier symbol, we

narrow down the interpretations of introduced logic symbols to the feasible ones. ⊓⊔

The proofs for abstractExpression work analogously.

Theorem 3 The rule abstractExpression (Fig.3) is exhaustive.

Theorem 4 The rule abstractExpression (Fig.3) is precise.

The AE rules abstractStatement and abstractExpression transform APEs into second-

order abstract updates in the symbolic store. To facilitate further reasoning with the resulting

SESs, we have to provide sufficiently strong simplification rules for abstract updates, which

we present in the following section.
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4.2 Update Simplification Rules

We first provide an intuition of the mechanics of update simplification by discussing how

concrete updates are simplified. Afterward, we introduce our simplification rules for abstract

updates.

4.2.1 Concrete Update Simplification Rules

Symbolic execution transforms assignments to changes in the symbolic store. To evaluate a

postcondition in a symbolic store after the execution terminated, the store has to be applied to

the postcondition. Consider the program “x = 17; y = x; x = 42;.” The resulting

symbolic store for this program is {x := 17}{y := x}{x := 42}. To evaluate the postcondition

y > 0, we first have to simplify the store to a parallel normal form v1 := t1 || · · · ||vn := tn
with distinct left-hand sides vi and terms ti without updates. This is achieved by several

update simplification rules. Java DL provides suitable rules for concrete updates. For the

example above, we first apply the rule seqToPar twice to transform the sequential update

into a parallel update x := 17 || {x := 17}(y := x || {y := x}(x := 42)). Next, we turn

{y := x}(x := 42) into x := {y := x}42 using one of the applyOnRigid rules. Inside

the right-hand side of the resulting update, we can drop the update application {y := x}

using the dropUpdate2 rule since the variable y does not occur in the term 42. Formally,

this is captured by the condition y /∈ fpv(42), where the function fpv(t) returns the “free”

program variables in the term t . We continue by applying the update {x := 17}, which leads

to the update x := 17 ||y := {x := 17}x || {x := 17}(x := 42). The second application

of x := 17 can be dropped as before; the term {x := 17}x is simplified to 17 by applying

the update to the variable x using rule applyOnTarget. This results in the simplified update

x := 17 ||y := 17 ||x := 42. Using the rule dropUpdate1, we drop the update x := 17

since it is overwritten by a later update in the parallel construction, leading to the update y :=

17 ||x := 42, which is in parallel normal form. Applying that update to our postcondition

y > 0 yields the true formula 17 > 0.

4.2.2 Abstract Update Simplification Rules

For abstract updates, we can reuse most of the existing machinery. One must strengthen the

rule dropUpdate2, because the condition x /∈ fpv(t) is not sufficient if t contains \value

terms depending on dynamic frame specification variables. Consider, for instance, the formula

value(locs)
.
= {x := 17}value(locs), where locs is a dynamic frame variable of type LocSet.

This formula is only true, i.e., {x := 17} can only be dropped, if we know from the current

execution context that x is not in locs. Consequently, in addition to x /∈ fpv(t), we have to

ensure by checking the path condition that x /∈ locset for each dynamic frame variable locset

such that value(locset) occurs in t to be able to apply dropUpdate2.

The replacement dropUpdate′
2 for dropUpdate2, as well the other simplification rules

for abstract updates, therefore, not only depend on the term in focus, but also on the ex-

ecution context captured by the path condition C of a symbolic state. In analogy to the

condition x /∈ fpv(t), expressing that x is irrelevant for the term t , we formalize a predicate

irrelevant(C, locset, t) expressing that the location set locset is not relevant for the target

term t . It holds if the path condition implies locset ∩ {s}
.
= ∅ for each LocSet constant s such

that value(s) is a subterm of t . Additionally, there are some special cases: The simplification

rule contraction for abstract updates discussed below introduces placeholders “_” to frames

that are by definition “irrelevant,” and treated accordingly. For program variables, we assert

that the variable does not occur freely in the target, for heap locations that there is no free

occurrence of the heap variable. The latter is a safe overapproximation; fine-grained heap-
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related simplifications require dedicated rules (we explain an example further below). We

define irrelevant on tuples of locations.

Definition 16 (Location Set Irrelevance Checking) Let C ⊆ Fml be a path condition, locs

a tuple of locations (program variables, heap locations, and dynamic frame variables) and

t ∈ TrmA ∪ Fml ∪ Upd. We define irrelevant(C, locs, t) as

irrelevant(C, (s1, s2, . . . , sn), t):=∀i = 1, . . . , n; (si = _ ∨

(∀ value(s) in t ; C implies si ∩ s
.
= ∅) ∧

(si = x → x /∈ fpv(t)) ∧ (si = (o, f ) → heap /∈ fpv(t))) .

In addition to irrelevant, which tells us that assigning a location set has no effect on

the valuation of a target, we need a predicate overwrites(C, locs1, locs2) expressing that

assignment of all \hasTo locations in the location tuple locs1 will at least assign all locations

in the location tuple locs2. Depending on the type of a location in locs2, there are several

ways to conclude that the location is overwritten. In the simplest case, a location literally

occurs in locs1, as in overwrites(C,x!,x) or overwrites(C, abstrLocSet!, abstrLocSet); the

judgment is independent from C then. If the location tuple is a singleton (either a heap or

program variable location), we check whether a suitable expression (o, f ) ∈ s occurs in the

context. Otherwise, we have to find a combination of \hasTo locations in C such that the

union of these locations covers locs2.

Definition 17 (Location Set Overwrite Checking) Let C ⊆ Fml be a path condition, and

locs1 ∈ (TrmLocSet)
n, locs2 ∈ (TrmLocSet)

m tuples of location set terms, where n,m ∈ N.

The predicate overwrites(C, locs1, locs2) is defined as 4

overwrites(C, (s1
1 , s1

2 , . . . , s1
n), (s2

1 , s2
2 , . . . , s2

m)):=∀i = 1, . . . , m;
(

s2
i = _ or

∃s1
k = s!;

(

(s2
i = s) ∨ (s2

i = (o, f ) ∧ ((o, f ) ∈ s) ∈ C) ∨ (s2
i = x ∧ (x ∈ s) ∈ C)

)

∨

∃s1
k1

= (s ′
1)

!, . . . , s1
kl

= (s ′
l)

!;
(

(s2
i ⊆ (s ′

1 ∪ · · · ∪ s ′
l)) ∈ C

)
)

.

We subsequently discuss the “core” abstract update simplification rules in Fig. 5. In ad-

dition to those, we provide a second rule set dedicated to simplifying heap-related terms

that frequently arise in the context of AE proofs. Understanding these rules requires no new

insights or techniques. To make the paper self-contained, we include the heap-related abstract

update simplification rules in Appendix B.

In the rules we use the following tuple notation: If frame is an n-tuple, we write

value(frame) instead of (value(0), . . . , value(n)) and similarly for application of updates,

etc.

Rule dropUpdate′
2 was already discussed. Three further rules, dropUpdate3 to

dropUpdate5, for dropping updates. Rules dropUpdate3 and dropUpdate4 correspond to

the existing dropUpdate1 in Java DL, dropping an earlier update within a parallel compo-

sition if a later one dominates it. The first of these rules replaces an earlier concrete update

a := t ′ by Skip if a is overwritten by the frame of a later abstract update. The second rule

treats the case of an earlier abstract update that is dropped. This case is more complex due

to the nature of abstract updates. We can drop the abstract update UP(frame: ≈ footprint)

4 The notation “∃s1
k = s!;ϕ(s)” is short for “∃k ∈ 1, . . . , n;(s1

k is hasTo ∧ let s:=s1
k inϕ(s)).”
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Fig. 5 Abstract Update Simplification Rules

from a parallel update if there is a series of updates occurring later in the parallel scope that,

together, overwrite frame. A simple case would be to replaceUP(x: ≈ footprint) by Skip in

UP(x: ≈ footprint) ||x := t ′, but for more complicated frame expressions, it is not required

that a single update overwrites all contained locations at once. The rule dropUpdate5 corre-

sponds to dropUpdate2, handling the case of an (abstract) update that is dropped since the

locations it assigns are irrelevant for the target term.

If only some of an abstract update’s left-hand sides are ineffective and the rules

dropUpdate4 and dropUpdate5 are not available, we have to perform a more fine-grained
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simplification step than dropping the whole update. The formula

{UP(x,z: ≈ footprint)}z
.
= {UP(y,z: ≈ footprint)}z

is valid, but not provable with the rules discussed so far. In this situation, the rule contraction

is applicable. It replaces ineffective parts of an abstract update’s left-hand side with the “ir-

relevant” location “_.” For the example above, this results in

{UP(_,z: ≈ footprint)}z
.
= {UP(_,z: ≈ footprint)}z,

which is trivially provable. The symbol “_” receives special treatment in the definitions of

the relations irrelevant and overwrites as it is always considered to be irrelevant or overwrit-

ten, respectively. An abstract update with only “_” left-hand sides can be dropped by rules

dropUpdate4 and dropUpdate5 independently of their context.

In contrast to concrete updates, abstract updates cannot be applied to a target term by

performing a simple substitution. Generally, some abstract update applications cannot be

simplified away and remain in the final states resulting from symbolic execution. Especially

thinking of correctness proofs of transformations, where we compare the execution result

for two abstract programs, we need to establish a normal form to be able to compare the

results. Consider, for example, the Slide Statements refactoring from the introduction. In

the resulting symbolic store, the abstract updates occur in a different order and have to be

normalized to show equivalence. This normal form is established by the rules reorderUpdate1

and reorderUpdate2. Abstract updates are moved to the front of a parallel update as long as

this does not change the semantics. However, an abstract update may only be pushed past

another abstract update if it has a lexicographically smaller identifier symbol. If there are no

conflicts between the elementary abstract and concrete updates within a parallel update, it

is normalized to a block of abstract updates ordered according to the lexicographic order of

their identifiers, followed by a block of concrete elementary updates.

Even though it is generally impossible to apply abstract updates by performing a sub-

stitution in the target we can (1) apply updates on an abstract update, and (2) perform an

effective simplification for a special case, namely for program variables marked as \hasTo

in the left-hand side of an abstract update. The corresponding rules are applyOnRigid9 and

extractHasTo. The rule applyOnRigid9 belongs to a class of simplification rules pushing

update applications down into the term structure. It specifies that the application of an update

U to an abstract update is equal to the abstract update with the same left-hand side, but

U applied to the footprint. For situation (2), consider the formula {UP(x
!: ≈ footprint)}ϕ.

Since the update has to change the value of x (based on value of the term footprint), the

formula is equivalent to {x := f (footprint)}ϕ for a suitably chosen function symbol f .

“Suitably chosen,” in this case, means that the function has to be chosen dependently fresh

for the identifier symbol UP of the abstract update to conform to the semantics of abstract

updates (Def. 12). This is generalized to abstract updates with multiple left-hand sides by

using function symbols f P
k indexed not only with the identifier, but also with the index k

of the respective left-hand side. It is not always feasible to completely convert an abstract

update into a concrete one, as in the following example:

{UP(z,x!, locset: ≈ footprint)}ϕ

The assignable program variable location “z” is not marked as \hasTo, and the ab-

stract location set locset cannot be converted to a concrete update. Therefore, we extract

\hasTo program variable locations individually and replace their positions in the left-

hand side of the abstract update by the irrelevant location “_.” Our simplification rule
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extractHasTo incorporates these considerations. Applying extractHasTo to the example

above yields {UP(z, _, locset: ≈ footprint) ||x := f P
2 (footprint)}ϕ.

5 Applications of Abstract Execution

Abstract Execution has been applied in a variety of different scenarios: (1) Deriving precon-

ditions for the safe application of refactoring rules [76, 80], (2) analyzing the cost impact of

program transformation rules [7], (3) the parallelization of sequential code [33], (4) “Correct-

by-Construction” program development [89], (5) modular verification of software product

lines with delta-oriented programming [66], and (6) the correctness of rule-based compila-

tion [78]. Subsequently, we briefly overview all of these applications, discussing motivation,

approach and results for each.

5.1 Safe Refactoring

Refactoring is the process of changing code in such a way that it does not alter its exter-

nal behavior, yet improves its internal structure [22]. Careful refactoring can contribute to

the maintainability and reusability of code. Consequently, many actions performed during

software development are refactorings (ca. 30% as reported in [72]). While program-

mers still frequently manually refactor their code [57], most mainstream IDEs implement

(semi-)automated refactoring techniques. 5

Code refactoring is generally a complex activity, and it is easy to break the refactored

code accidentally [20]. The reason is that refactoring techniques come with preconditions

and constraints that have to be satisfied to ensure the preservation of program semantics. If

those are violated, the resulting program may not compile, or—which is worse—compile,

but expose a different behavior. IDEs automatically check some of these preconditions, but

not all [74]: Even refactoring with tool support does not exclude the possibility of unexpected

changes to a program’s behavior [17, 73]. With the help of AE we could show in our work on

correct refactoring [76, 79] that documentation of crucial preconditions in existing standard

literature (e.g., [21, 22]) is vastly incomplete for many refactoring techniques.

We used AE to model nine statement-level refactorings. 6 We extracted sufficient precon-

ditions ensuring their safety in a feedback loop driven by the interpretation of failed proof

goals, ultimately leading to a proof certificate for these preconditions. We chose six refactor-

ings from Fowler’s original book [21] and three from the second edition [22], which includes

two techniques with loops. For each technique, we created a model consisting of two abstract

programs, one representing the starting point, and one the result of the refactoring. Our proof

goal is behavioral equivalence; thus, we obtain preconditions for, e.g., Extract Method at the

same time as for its inverse Inline Method. For all refactoring techniques, we discovered new

preconditions that had not been mentioned in the literature. Subsequently, we explain how

we created proof obligations for proving behavioral equivalence (Sect. 5.1.1), discuss how

to prove transformations with loops (Sect. 5.1.2) and provide an overview of the discovered

preconditions (Sect. 5.1.3), including a description of four bugs we discovered in the im-

plementations of Extract Method in IntelliJ IDEA and Eclipse. For an extensive discussion

including full models for all refactoring techniques, we refer to [76, Chapter 6].

5 For the JVM ecosystem, for instance, IntelliJ IDEA, Eclipse and NetBeans together cover 92% of the IDE
market [87]. All of these implement automatic refactoring techniques.
6 Most practically applied refactorings are confined to method bodies [72]. However, existing work on the
correctness of code refactoring almost exclusively regards high-level techniques such as “move field” or “pull
up method.” We thus focus on a significant blind spot by addressing statement-level transformations.
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5.1.1 Proof Obligation for Behavioral Equivalence

A refactoring model includes (1) two abstract programs “left” and “right,” (2) a rela-

tional precondition “Pre,” (3) a set of relevant locations “relevant,” and (4) a postcondition

“Post(s1, s2),” where s1 is a sequence consisting of a possibly returned value, a possibly

thrown exception, and the values of the relevant locations for the left program, and similarly

s2 for the right program. From these constituents, we create a proof obligation collecting the

outcomes of the left and right program in two uninterpreted predicates P and Q. As a default,

we use a single abstract location set relevant for the relevant locations. Since this location set

may represent any set of locations (unless the model imposes more specific constraints), both

abstract programs have to coincide in their effects on the full program state. The resulting

proof goal follows the syntactic pattern

ϕleft ∧ ϕright ∧ Pre ∧ · · · ⊢ ∃ Seq s1, s2; (P (s1) ∧ Q(s2) ∧ Post(s1, s2)) , (1)

where formulas ϕleft and ϕright collect the results from executing the left and right pro-

grams in the predicates P and Q, respectively. Formulas ϕleft and ϕright follow the pattern

“{Uinit}¬〈· · ·left() · · · 〉¬P (. . . )” and “{Uinit}¬〈· · ·right() · · · 〉¬Q(. . . )”, respec-

tively. The double negations are a technical necessity to make use of the diamond modality

(enforcing termination of the left and right programs) in proof assumptions. The formulas

ϕleft and ϕright are defined as

ϕleft := {_result := null ||_exc := null}

¬〈try { _result=obj.left()@Problem; }

catch (Throwable t) { exc=t; }〉

¬P (_result,_exc, value(relevant))

ϕright := {_result := null ||_exc := null}

¬〈try { _result=obj.right()@Problem; }

catch (Throwable t) { exc=t; }〉

¬Q(_result,_exc, value(relevant))

where Problem is a Java class consisting of two methods left and right containing

the left and right abstract program of our model, respectively. After the successful execution

of both abstract programs, there will be exactly one instance of each of the uninterpreted

predicates P and Q, which makes instantiating the existential quantifier in the succedent of this

proof obligation trivial. This encoding is more efficient than the alternative of expressing the

problem using an equivalence “↔,” since the proof does not have to split, and, consequently,

about 50% of the proof steps are saved.

Example 4 (Proof Obligations) We instantiate proof obligation schema (1) to the model from

Example 3. Listing 4 shows the contents of the left() method except the “return

�

null;” statement at the end. The right() method contains the ASs in reverse order.

The precondition Pre is instantiated to the ae_constraint formula from Listing 4. We

instantiate the postcondition Post(s1, s2) to s1[2]
.
= s2[2], where si[2], the third component

of sequence si , contains the final value of the abstract location set relevant after symbolic

execution of left() and right(). We obtain:

ϕleft ∧ ϕright ∧ (frameP ∩ frameQ
.
= ∅) ∧ (frameP ∩ footprintQ

.
= ∅) ∧ · · · ⊢
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∃ Seq s1, s2;
(

P (s1) ∧ Q(s2) ∧ s1[2]
.
= s2[2]

)

The formulas ϕleft and ϕright have exactly the shape given above, if Problem is the

class that declares methods left() and right(). A proof of this obligation splits into

multiple subgoals. For example, there is one case, where P throws an exception and Q

returns. Subgoals of this kind are immediately discarded, because the precondition (part of

the ae_constraints in Listing 4) requires those cases to be mutually exclusive. We focus

now on the case where both ASs complete normally. The resulting proof obligation has the

following shape:

P (null,null,

{UP(frameP: ≈ footprintP)}

{UQ(frameQ: ≈ footprintQ)}value(relevant))∧

Q(null,null,

{UQ(frameQ: ≈ footprintQ)}

{UP(frameP: ≈ footprintP)}value(relevant))∧

(frameP ∩ frameQ
.
= ∅) ∧ (frameP ∩ footprintQ

.
= ∅) ∧ · · ·

⊢ ∃ Seq s1, s2;
(

P (s1) ∧ Q(s2) ∧ s1[2]
.
= s2[2]

)

The predicates P and Q are uninterpreted, so the only promising way to instantiate exis-

tentially P (s1) and Q(s2) in the conclusion, is to use the arguments of P and Q’s occurrence

in the premise. After eliminating the quantifier in this way, the P and Q terms in the conclu-

sion are identical to the instances in the premise and can be discharged. It remains to prove

the instantiated postcondition s1[2]
.
= s2[2]:

{UP(frameP: ≈ footprintP)}{UQ(frameQ: ≈ footprintQ)}value(relevant)
.
=

{UQ(frameQ: ≈ footprintQ)}{UP(frameP: ≈ footprintP)}value(relevant)

The disjointness assumptions in the precondition (for example, frameP∩frameQ
.
= ∅) permit

the (abstract) update simplification rules to close this proof goal.

Our graphical workbench REFINITY [77] automates the construction of such proof obli-

gations. We discuss REFINITY in Sect. 6.

5.1.2 Proving Transformations with Loops

Symbolic execution of loops requires advanced techniques: When loop guards are symbolic,

we cannot know the number of iterations after which the loop will terminate. Frequently,

loop invariants (see also Sect. 3), which are specifications respected by every loop iteration,

are employed to abstract loop behavior regardless of the number of iterations. Finding good

loop invariants is generally hard; indeed, coming up with sufficiently precise specifications

was identified as the “new bottleneck” of formal verification (for example, [5]). In program

equivalence proofs based on functional verification techniques, one even needs the strongest

possible invariant for each occurring loop ([12], [76, Sec. 5.4.2]). This notwithstanding, we

discovered a possibility to generically specify abstract strongest loop invariants for abstract

programs.

Consider a loop with guard g(x) operating on a single variable x. The formula Inv(x) is

a strongest loop invariant when it is (1) preserved by every run and (2) there is exactly one

value v such that Inv(v) holds and g(v) does not hold. Condition (2) means that there remains
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no degree of freedom in the choice of the value of x after loop termination: Inv describes the

exact, final value. We can formalize the condition as ∃v;∀x;((Inv(x) ∧ ¬g(x)) ↔ x = v).

Generalizing this to a loop with an abstract expression as guard and dynamic frame

specification variables as frame and footprint yields a condition constraining instantiations

of abstract invariant formulas to abstract strongest ones:

∃ _fr, _fp; ∀ fr, fp;
(

(Inv(fr, fp) ∧ ¬guardIsTrue(fr, fp)) ↔
(

_fr
.
= fr ∧ _fp

.
= fp

))

This assumes that fr and fp are the loop frame and footprint, and guardIsTrue is a predicate

that holds if the loop guard evaluates to true. We add this as a global precondition and use

guardIsTrue and Inv for the specifications inside our program.

As such, this only allows reasoning about normally completing loop bodies. Loop in-

variants are generally only required to hold before each further loop iteration; in particular,

they need not hold after abrupt completion due to a break or return. By generalizing

abstract strongest loop invariants to what we call strongest abstract strongest loop invariants—

strongest loop invariants that also need to be respected after abrupt completion—we can also

reason about abruptly completing loops. Assuming that breaksBody is a predicate that holds

if, and only if, the abstract statement in the loop body will complete abruptly because of a

break, our condition for abstract invariants Inv gets

∃ _fr, _fp; ∀ fr, fp;
( (

Inv(fr, fp) ∧
(

¬guardIsTrue(fr, fp) ∨ breaksBody(fp)
))

↔
(

_fr
.
= fr ∧ _fp

.
= fp

) )

Listing 5 shows an example of a fully abstract loop with specifications for abrupt com-

pletion. In lines 1–7, the strongest abstract strongest loop invariant condition is stated. In

lines 9–10 we assume the invariant initially. The postconditions for the abstract statement

Body ensure that the invariant is preserved and bind the predicates for abrupt completion.

Finally, Inv is used as a loop invariant in line 11.

Proving Validity of Instantiation for Models with Loops

Abstract loop invariants have a significant advantage over concrete ones: They are easy to

come up with. In Listing 5, annotating a loop with a strongest abstract strongest invariant

is a matter of introducing a fresh symbol (e.g., Inv) and using it at suitable positions. This

approach is a generic recipe that can be applied to various models.

But, of course, there is no free lunch: The complexity avoided by using generic abstract

functional invariants, instead of concrete coupling invariants [12], returns when one wants to

prove that a given concrete program with loops is a valid instance of a given abstract program.

In this case, not only one needs to discover a meaningful invariant for the loop of the concrete

program, which is difficult enough, but one has to discover the strongest loop invariant to

serve as an instance of its abstract counterpart. Even though strongest invariants always

exist for deterministic programs, they might be impossible to specify in a given specification

language (for example, JML).

On the other hand, for many applications of AE it is sufficient to stay at the abstract

level and avoid concrete strongest loop invariants altogether: For example, we show in the

subsequent Sect. 5.1.3 that the mechanics for the Remove Control Flag refactoring as de-

scribed in Fowler’s book [21] likely yields incorrect results. Furthermore, we show how this

can be mitigated. Such insights for schematic transformations can be obtained without ever

considering concrete instances.
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Listing 5 Abstract Strongest Loop Invariant with Abrupt Completion

1 /*@ ae_constraint

2 @ (\exists any _fr,_fp; (\forall any fr,fp; ((

3 @ Inv(fr, fp) &&

4 @ ( !guardIsTrue (fr, fp) || throwsExcBody (fp)

5 @ || returnsBody (fp) || breaksBody (fp))

6 @ ) <==> (fr == _fr && fp == _fp))

7 @ )); */

8

9 /*@ ae_constraint

10 @ Inv(\value(loopFrame ), \value(loopFootprint )); */

11 /*@ loop_invariant Inv(\value(loopFrame ), \value(loopFootprint ));

12 @ assignable loopFrame ;

13 @*/

14 while (

15 /*@ assignable \nothing;

16 @ accessible loopFrame, loopFootprint ;

17 @ normal_behavior ensures \result <==>

18 @ guardIsTrue (\value(loopFrame ), \value(loopFootprint ));

19 @ exceptional_behavior requires false; */

20 \abstract_expression boolean e

21 ) {

22 /*@ assignable loopFrame;

23 @ accessible loopFootprint ;

24 @ normal_behavior ensures

25 @ Inv(\value(loopFrame ), \value(loopFootprint ));

26 @ exceptional_behavior ensures

27 @ throwsExcBody (\value(loopFootprint )) &&

28 @ Inv(\value(loopFrame ), \value(loopFootprint ));

29 @ return_behavior ensures

30 @ returnsBody (\value(loopFootprint )) &&

31 @ Inv(\value(loopFrame ), \value(loopFootprint ));

32 @ break_behavior ensures

33 @ breaksBody (\value(loopFootprint )) &&

34 @ Inv(\value(loopFrame ), \value(loopFootprint ));

35 @ continue_behavior requires ensures

36 @ Inv(\value(loopFrame ), \value(loopFootprint )); */

37 \abstract_statement Body;

38 }

5.1.3 Preconditions for Safe Refactoring

Slide Statements

The idea behind the Slide Statements refactoring technique (see technique (see 1.2) is to

reorder statements to keep those together that have a common purpose [22]. Under the

assumption that both statements complete normally, the preconditions documented in [22]

are complete: Neither statement must write to the locations read by the other once, and they

must also not write to the same locations. However, no preconditions are mentioned for

abrupt completion. We inferred in addition that (1) at most one of A and B may complete

abruptly in any state and (2) if one statement completes abruptly, the other one must not write

to the relevant state.

The Consolidate Duplicate Conditional Fragments [21] technique is a special case of

Slide Statements for moving common statements in all branches of an if or try statement

to before or after that statement. For extracting a prefix of an if, the same preconditions as

for Slide Statements apply. Extracting a postfix from an if comes without preconditions.
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For try statements, the moved postfix must not throw an exception or access the caught

exception object. If the postfix is moved to a finally block, the remaining statement in

the try block must not return.

Slide Statements is implemented as a lightweight refactoring in IntelliJ IDEA 2021.1

(Eclipse 4.19 does not support it). The IntelliJ implementation permits to move single state-

ments (not separated by a “;”) one position up or down. No preconditions are checked, which

makes it easy to, for example, move a variable occurrence to a position before its definition.

We did not file a bug report for IntelliJ since we formed the impression that the lightweight

realization does not aim for correct results under all circumstances.

Consolidate Conditional Expression

For the case of sequential or nested conditionals with “the same result” [21], this refactoring

proposes to merge these conditionals into a single check to improve clarity. There are two

variants of this technique: (1) Transforming a sequence of if statements to a single one with

a disjunction as the guard, and (2) transforming a nested if statement to a single one with a

conjunction as the guard. Schematically:

(1) if (e1) { P } if (e2) { P }  if (e1 || e2) { P }

(2) if (e1) { if (e2) { P } }  if (e1 && e2) { P }

The crucial part of modeling this refactoring is the interpretation of having “the same

result.” In our opinion, supported by the examples supplied in [21], P should always either

return or throw an exception: it is never executed twice. Our analysis results in the conclusion

that under this assumption, both variants of the refactoring can be applied without additional

preconditions. This is notable, since Fowler mentions that conditionals must not have any

side effects, which is, however, only necessary if one uses Boolean connectives without

short-circuit evaluation (“|” and “&”). In the case of variant (2), P can furthermore complete

arbitrarily (i.e., also normally).

Extract Method, Decompose Conditional, and Move Statements to Callers

Method extraction is a well-known refactoring technique implemented in many IDEs.

Fowler [21] names as preconditions that the extracted code may not assign more than one

local variable referenced in the outside context. 7 We discovered two additional constraints:

(1) The extracted fragment must not return since this changes the control flow. (2) If the

extracted method assigns a local variable from the outside context, then it must not throw an

exception after that variable has been assigned a value. For the latter additional precondition,

consider the example in Fig. 6. For an empty intList, the division in line 4 completes

abruptly because of a 0 divisor. Then, the final value of avg is 0 before, but ERROR after the

transformation. While this can even be considered an improvement for the example scenario,

it changes the program’s semantics; besides, in the reverse direction corresponding to the In-

line Method refactoring, one would introduce a more obvious bug. Decompose Conditional

and Move Statements to Callers are variants of Extract Method. We modeled and verified

these, too. There were no additional insights compared to Extract Method.

Discovered Bugs for Extract Method in IntelliJ and Eclipse

Considering the implementation in IDEs, Eclipse 4.19 issues a warning when extracting a

fragment containing a return statement, while IntelliJ IDEA 2021.1 tries to work around

7 Assignment to more than one local variable requires to return (and decompose at the caller side) a complex
object, such as an array that holds the changed locals. This is possible, but it is not covered by the refactoring
technique considered here.
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Fig. 6 Wrong Extraction of a Query Method

Fig. 7 Wrong Application of “Extract Method” by IntelliJ IDEA

this problem: The extracted method returns null if no return occurred, which is checked

at the call site. If a non-null value is returned, the caller returns that value; otherwise, the

caller proceeds normally. We suspected that this approach by IntelliJ will not produce correct

results for all input programs, and indeed quickly discovered a counterexample where IntelliJ

produced uncompilable code without showing a previous warning. Consider the method m in

Listing6 of Fig. 7. Applying Extract Method in IntelliJ IDEA 2021.1 to the highlighted lines

yields the code in Listing7. This code does not compile since the second return statement in

the refactored version of m becomes unreachable, and, furthermore, the method extracted

misses a return statement. Getting around this issue is not trivial. One option is to return

a null value at the end of extracted and return from m if a non-null value was returned or

resuming execution in m otherwise (this is implemented in IntelliJ for different situations, for

example, if statements without else branches). It is, however, not the ultimate solution,

for instance, when the extracted fragment returns non-trivial types. We reported a bug to the

IntelliJ developers, who fixed the problem in later IDEA versions. 8

Precondition (2) in the previous paragraph is unchecked by either IDE for the Extract

Method direction. However, both IntelliJ and Eclipse produce a correct result for the inverse

Inline Method direction by replacing avg with a temporary variable avg1 that is only

assigned to avg at the end of the inlined method body. For the Extract Method direction,

we figured out a workaround for the problem related to exceptions and suggested it in a bug

reported to the IntelliJ developers. 9

Eclipse allows factoring out break and continue statements from within loops, which

immediately yields uncompilable code. We reported this bug to the Eclipse community. 10

8 “IDEA-271736 ‘Extract Method’ of ‘if-else if’ fragment with multiple returns yields uncompilable code
in IDEA 2021.01,” https://youtrack.jetbrains.com/issue/IDEA-271736, “major” priority. This bug report was
eventually classified as a duplicate of our report IDEA-271801 (see below), which was fixed in build 213.1344.
9 “IDEA-271752 ‘Extract Method’ yields semantically incorrect result in presence of runtime exceptions (can
be fixed!),” https://youtrack.jetbrains.com/issue/IDEA-271752, “normal” priority, fixed (with an unspecified
build number).
10 “Bug 574254 ‘Extract Method’ allows extraction of break and continue statements, yielding uncompilable
results,” https://bugs.eclipse.org/bugs/show_bug.cgi?id=574254, “major” priority, fixed in 4.21 M3.

123

https://youtrack.jetbrains.com/issue/IDEA-271736
https://youtrack.jetbrains.com/issue/IDEA-271752
https://bugs.eclipse.org/bugs/show_bug.cgi?id=574254


    7 Page 36 of 57 D. Steinhöfel, R. Hähnle

IntelliJ is more considerate in handling break and continue statements. In some cases,

it produces correct results. However, it is still easy to come up with examples where IntelliJ

produces uncompilable code or semantically incorrect results when factoring out conditionals

containing breaks or continues from within loops. Furthermore, the implementation is

inconsistent and produces correct or wrong results for the same input depending on the

surrounding code in the class. We filed another bug report for this issue. 11

Decompose Conditional [21] is a variant where condition and both branches of an if

statement are extracted to individual methods. For the branches, this is identical to Extract

Method; there is no precondition for the extracted condition.

Move Statements to Callers [22] is a variant of Inline Method where a prefix (and not the

whole body) of a method is moved to the callers. Conversely, Move Statements into Method

moves statements before an invocation to inside the called method. The same restrictions as

for Extract Method / Inline Method apply.

Replace Exception with Test

In our example in Fig. 6, we anticipated that a division by zero would raise an

ArithmeticException and used a try statement to react accordingly. Fowler mo-

tivates the Replace Exception with Test refactoring [21] by declaring this procedure a code

smell that should be avoided. Rather, we should check the problematic condition in case of

the example intList.size() == 0) beforehand in an if/else statement replacing

the try/catch. Note that then, method extraction in Fig. 6 would have been safe. Yet,

this also demonstrates that Replace Exception with Test is generally unsafe, even though no

preconditions are mentioned in [21]. Schematically, this refactoring can be written as

try { P } catch (. . .) { Q }  if (!cond) { P } else { Q }

where cond is the condition under which P will throw an exception. The general problem

with this refactoring is that whenever P throws an exception, it might have changed the

relevant state before completing abruptly. After the refactoring, P is not executed at all. The

refactoring can be safely applied if P neither assigns any “relevant” location nor the locations

assigned by Q, or if both P and Q do not assign any relevant location, and, furthermore, Q

always completes normally.

Since these situations are unlikely in practice, we came up with a workaround that always

ensures the safety of the refactoring technique: If Q contains a prefix resetting all locations

assigned by P to default values that are independent of P ’s assignments, then intermediate

changes by P are neutralized, resulting in the same effect before and after the refactoring.

This situation can always be achieved by adding suitable reset statements to the catch

clause directly before Q.

To the best of our knowledge, Replace Exception with Test is not implemented in any

major Java IDE.

Split Loop

Splitting a loop, where this is possible, contributes to readability by dividing loops with

separate concerns. It can also make sense to split a loop to prepare for code parallelization

(see Sect. 5.3). As we showed in our work on the cost impact of transformations (Sect. 5.2),

the performance impact of this transformation is minor. This might be counterintuitive, but

11 “IDEA-271801 ‘Extract Method’ of conditional with break inside loop yields semantically incorrect OR
UNCOMPILABLE result in some cases,” https://youtrack.jetbrains.com/issue/IDEA-271801, “major” prior-
ity, fixed in build 213.1344.
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the only overhead introduced by dividing a loop is the double evaluation of the loop guard,

which is usually insignificant. The schematic representation of Split Loop is

Init while (g) { Upd P Q }  

Init while (g) { Upd P }

Init while (g) { Upd Q }

We extracted the following preconditions: (1) The guard g must not have any side effects

and P , Q must not write to the footprint of g, (2) the initialization statement Init and the

loop update statement Upd must write (initialize/update) g’s footprint and must complete

normally, Init’s footprint must be empty, and Upd’s footprint equals g’s footprint, (3) the

frames and footprints of P and Q must be independent in the sense of Slide Statements,

i.e., not overwrite each other and not influence each other’s evaluations, (4) P must not

complete abruptly, (5) Q must not complete abruptly before P committed its final result (i.e.,

established its invariant). All these preconditions are undocumented in [21, 22].

Observe that loops over an iterator (with a guard like “it.hasNext()”) do not satisfy

these preconditions: a call to “it.next()” in P or Q changes the state on which the

evaluation of g depends, which is not allowed due to condition 5.1.3. Therefore, it is unsafe

to apply Split Loop to such loops.

Remove Control Flag

A “control flag” in a loop determines when the loop should terminate. The Remove Control

Flag refactoring [21] suggests to resort to break or continue statements instead to better

communicate the control flow. Schematically:

while (!done && g) { if (cond) { P done=true; } Q }

 while ( g) { if (cond) { P break; } Q }

We found that the shortcut introduced by the abrupt completion, however, generally breaks

semantic equivalence. Any code that would have been executed after setting the control flag

(Q in the schema) is now skipped by the shortcut, and must thus not have effects visible

outside of the loop. Otherwise, we have to duplicate Q:

while (!done && g) { if (cond) { P done=true; } Q }

 while ( g) { if (cond) { P Q break; } Q }

Following the mechanics described in [21] likely yields incorrect results.

For the proofs of Split Loop and Remove Control Flag, we used abstract strongest abstract

loop invariants, as described in Sect. 5.1.2.

Discussion: Inadequate Refactoring Support in IDEs

Most statement-level refactoring techniques discussed by Fowler [21, 22] are not supported

in mainstream IDEs. Indeed, only variable or method extraction or inlining are implemented

in IntelliJ IDEA and Eclipse, apart from renaming or class-level refactorings. We consider

this problematic, as automated code refactoring can prevent many coding errors. In addition,

even an imperfect implementation is a step forward, enabling users to submit bug reports and

gradually improve the implementation.

5.2 Performance Impact of Transformations

Refactoring, as described above, changes a program without affecting its functionality to opti-

mize “soft” properties, such as readability or maintainability. When refactoring, programmers
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Fig. 8 specification lines are model for Code Motion. Lighter gray specification lines are manually anno-

tated, darker gray gray lines are inferred automatically

are encouraged to disregard the manipulated program’s performance (e.g., runtime), this be-

ing an orthogonal aspect. Still, it is certainly worthwhile to know that, for example, Split

Loop does not affect performance up to a constant factor.

In [7], we apply Quantitative Abstract Execution (QAE) to statically derive the cost effect

of program transformation schemas. In contrast to existing relational cost analysis approaches

(e.g., [63, 64]) that work by first applying a transformation—say, Split Loop—and analyzing

performance after the fact, QAE obtains abstract cost bounds of transformations before they

are even applied. Using these bounds, one can reason about the cost effect of a transformation

in general, or obtain a concrete cost effect for a given target program by instantiating an

abstract bound for that program.

Compared to standard AE models, their quantitative counterparts contain specifications

of accessible locations of APE that are relevant for its execution cost, the so-called cost

footprint. The total execution cost of an abstract program is tracked in a special variable

\cost (cf. the \result variable for a method’s returned result). Loop invariants are split

into functional invariants, which, for the purpose of cost analysis, only need to be strong

enough to prove termination (the decreases clause), and cost invariants capturing the

value of the \cost variable throughout loop execution.

Fig. 8 shows the QAE models for Code Motion, a standard optimization implemented in

compilers [4], where a loop-invariant statement is moved to before a loop. QAE allows to

prove that the execution cost is not increased by the transformation (and decreased if the cost

of AS P is nonzero and the loop is executed at least once).

Frame, footprint, and cost footprint of the involved ASs are manually specified; the loop

invariants and decreases terms are automatically inferred. The QAE toolchain consists of a

cost analyzer, which infers these additional annotations, and a verifier, which proves them

correct. The approach is parametric in a cost model: In particular, one can analyze (abstract)

execution time and memory consumption in the heap. Thanks to the automatic inference of

loop invariants and optimized proof strategies, the whole inference and certification process
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works fully automatically and does not require auxiliary specifications. The analysis results

in abstract cost bounds parametric in the execution cost of the involved APEs, and a proof

certificate for their correctness.

QAE has been evaluated with seven optimization techniques, comprising, e.g., Split Loop

and Loop Tiling. All models contain loops, for which the cost analyzer was able to automat-

ically infer sufficiently strong invariants and postconditions.

5.3 Safe Code Parallelization

Parallelization of sequential code is one the most important approaches, sometimes the only

available one, to improve time performance. For this reason, code parallelization is one

of the central research topics in the area of high-performance computing (HPC). In this

community, design patterns are an established and powerful method to parallelize sequential

programs [35, 51]. It makes sense to start with sequential programs, because these already

serve their intended purpose, also one avoids loss of domain knowledge, documentation,

and previous investments. In addition, patterns embody best practices, as well as correct

and efficient usage of parallelization interfaces—knowledge that many programmers lack.

Therefore, a pattern-based approach to parallelization constitutes a safe, efficient and even

semi-automatic [60] migration path from sequential to parallel code.

Unfortunately, pattern-based parallelization suffers from a severe practical limitation:

sequential legacy code typically does not exactly have the form that allows immediate ap-

plication of a pattern. Hence a certain amount of code restructuring is unavoidable in most

cases before pattern-based parallelization becomes applicable. The DiscoPoP parallelization

framework [60] developed a small number of code transformation schemata [52] that in

many cases are sufficient to bring sequential code into the form required for pattern-based

parallelization to succeed, i.e. these restructuring schemata prepare code for parallelization,

but they still work on sequential code.

Consider, for example, the for-loop in Listing 10, where stmt2 depends on the result of

stmt1 and stmt1 depends on the result of stmt3 (across iterations). At first sight, the code might

seem not parallelizable because of a forward-dependency among loop iterations. However,

an astute programmer might find a case where it is possible to successfully parallelize the

code by just reordering the statements, placing stmt3 before stmt1, as depicted in Listing 11.

Such a transformation preserves the semantics of the original code and makes it parallelizable

using the pipeline pattern that achieves functional parallelism, similar to an assembly line.

The pipeline consists of various stages that process data concurrently as it passes through the

pipeline. It can be used to parallelize the body of a loop if the loop cannot be parallelized in

the conventional way by simply dividing the iteration space (the do-all pattern). The pipeline

pattern assigns each computational unit to a processor and provides a mechanism for passing

on data elements to the next unit. Then it runs the computational units in parallel. In the

example, the execution of different loop iterations can overlap as long as stmt3 is completed

in iteration i before stmt1 and stmt2 start in iteration i + 1. This was not possible before

because stmt3 came last.

The code transformation required to make the pipeline pattern applicable is called Com-

putational Unit Repositioning in [52]. It is an instance of the Slide Statement refactoring

technique mentioned in Sect. 5.1.3. Consequently, the preconditions for a safe application

of the transformation are the same as for Slide Statements: Neither statement depends on the

output of the other one, and cannot overwrite state changes of the other. The fully automatic

proof in REFINITY for this simple transformation technique consists of ca. 1,000 nodes and

takes less than 7 seconds.
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Fig. 9 A rudimentary sample code parallelizable using the pipeline pattern

In [33] we formalized and verified in addition two more complex transformation schemata

from [52] called Loop Splitting and Geometric Decomposition. These proofs were not fully

automatic and required a number of user interactions. The formalization also required the

concept of strongest loop invariant introduced in Sect. 5.1.2.

In addition, it was necessary to extend the AE framework with the possibility to specify

and reason about families of abstract location sets. This extension allows for versatile speci-

fications, but is a challenge for the prover. Still, we reached a degree of automation of 99.7%

even for the most complex loop transformation.

Our formal models cover not merely necessary criteria for proving the correctness of (se-

quential) program transformations, but also stronger constraints for the subsequent addition

of parallelization directives. Crucial preconditions on memory access should be automati-

cally checkable by parallelization tools, or can at least be closely approximated. By precisely

stating these requirements explicitly, we hope we cleared the way to safer parallelization.

One obvious future work direction is the generalization of AE to parallel programs. This

would allow us to go one step further: To mechanically prove that the constraints in our

models are sufficiently strong to ensure the preservation of the sequential program semantics

after parallelization.

5.4 Correctness-by-Construction

A posteriori verification (also called post hoc verification) designates the approach to deduc-

tive verification, whereby a program is verified after it has been constructed and, possibly,

even deployed. This is by far the most common approach today, even though it is acknowl-

edged that developing specifications post hoc for a program that was not designed with

verification in mind makes the task of specification and verification considerably harder than

necessary [11, 30].

Interestingly, early work in formal software development often argued for a different,

a constructive approach, often termed correctness-by-construction [19, 29, 90]. Its starting

point is not the program code, but a mathematical formalization of a program’s intended

behavior (a specification), from which, in a series of refinement steps, a correctness proof

together with executable code is gradually developed. The success of the B method [1, 2]

notwithstanding, correctness-by-construction was never realized for an industrial program-

ming language. One of the problems was the lack of tool support, but in the past years there

has been a renewed interest [44, 45].

In traditional correctness-by-construction the refinement rules are directly derived from

the axiomatic program semantics. For example, Hoare’s rule for sequential composition [34]

{P }S1{I } {I }S2{Q}

{P }S1; S2{Q}
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Fig. 10 Dual SE rule for translating an if statement to LLVM IR

gives rise to a refinement rule, whereby a specification {P }S{Q} of an as yet unknown

program S is refined into a program in the shape of a sequential composition. Its specification

is extended with an intermediate assertion I that must hold in between S1 and S2. There are

at two main issues with this refinement approach: (1) the number of refinement rules is small

and fixed, which results in a large number of fine-grained refinement steps; (2) refinement

rules for complex language constructs (for example, aliasing, exception handling, dynamic

dispatch, etc.) are complicated and need to be proven correct.

Based on the observation that S, S1, and S2 are APEs, it is possible to re-formulate a

refinement rule as a program transformation rule (Sect. 5.1) in the AE framework. Therefore,

AE has the potential to overcome the mentioned limitations: since AE was developed in the

context of a deductive verification tool for Java, complex language constructs are supported,

specifically, exceptions and framing. A tool such as REFINITY (Sect. 6) lets one prove

problem-specific refinement rules on the fly and could even provide immediate feedback on

incorrect refinement attempts. A first proof-of-concept has been given in [89], but the full

potential of AE for correctness-by-construction remains to be explored.

5.5 Sound Rule-Based Compilation

The principles underlying Abstract Execution, that is, the transformation of APEs to ab-

stract updates and distinguishing different completion modes in different symbolic execution

branches, do not only apply to Java. If we permit abstract programs in the source and target

languages of a compiler, we can reason about the compiler’s correctness. We investigated

this idea based on the example of a rule-based compiler from Java to LLVM IR [78]. The

compiler consists of translation rules for each syntactic element of the Java source language.

We express these rules as schematic SE rules, only that we use dual SE states over program

pairs. A dual SE state has the shape (C,U, p1 ⊣⊢ p2)@(obs), where C and U are a path

condition and an update, respectively, p1, p2 are programs in the source and target language

of the rule-based compiler, and obs is a set of observable locations. Intuitively, a dual SE

state expresses the judgment that executing the two programs pi in the state determined by

C and U has the same effect on the locations in obs. We restrict the set of locations to the

“observable” ones to enable the introduction of intermediate assignments to registers by the

compiler.

Based on this formalism, we can express the compilation of a Java if statement to LLVM

IR as the dual SE rule depicted in Fig. 10. In the rule, P1 and P ′
1 are abstract Java statements,

and P2 and P ′
2 are abstract LLVM IR statements. An LLVM IR statement p⪦nq is the

statement arising from inserting the statement q into the statement p at position n such that

in the resulting statement, the temporary registers %1, %2, etc., are assigned in sequential

order as required by LLVM IR.
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The attractive feature of this AE-based compiler is that we can automatically reason about

the correctness of the translation rules. To that end, we define the validity of a dual SE state

(C,U, p1 ⊣⊢ p2)@(obs) as the validity of the following justifying formula:

{U}
( ∧

C
)

→
(

{U}[p](obs′) ↔ {U}[q](n)(obs′)
)

,

As usual in sequent calculi, a dual SE rule is sound if we can conclude the conclusion’s

validity from the premises’ validity. In other words, we can prove the correctness of the

compiler by discharging proof obligations for each translation rule in our AE framework. As

a trust anchor, we assume that the implementations of AE for the source and target languages

are sound. This requirement corresponds to formalizing the semantics for those languages

in proven-correct compilers written (and proved) in interactive proof assistants (e.g., the

CompCert [48], Jinja [42], or CakeML [81] verified compilers). The difference is that our

proofs are highly automated as we can rely on the AE framework. In contrast, interactive

proofs require substantial manual work: The CompCert code, for example, consists of 44%

proof scripts [48].

5.6 Verification of Software Product Lines

A software product line (SPL, also called product family) [62] is a set of related programs, so-

called product variants that exhibit commonality as well as variability. Commonality typically

manifests itself in terms of common core functionality and a code base shared by all variants.

Variability derives from the need to support a possibly large number of different feature

combinations (or products). The main argument for family-based software development is

the possibility to factor out the commonalities and thus avoid having to develop and maintain

a large number of variants in isolation. It is also much faster to realize a new product as

a variant than developing it from scratch. Family-based development is most productive in

variant-rich application areas, such as consumer products, embedded (IoT) devices, but also

operating systems.

Regarding analysis, specification, and verification of software, the quest to lift single

product-based approaches to feature- and family-oriented [83] approaches resulted in var-

ious proposals [31, 32, 43, 84–86]. The fundamental design space of SPL verification is

demarcated by two extremes: In the ideal scenario for feature-oriented verification, one veri-

fies the core code and family-specific code separately for each feature. A suitable composition

mechanism then guarantees the correctness of each valid variant. The main drawback is that

compositionality requires serious constraints on the admissibility of contracts and feature

implementation. For example, Hähnle & Schaefer [31] proposed an adaptation of Liskov’s

Substitution Principle (LSP) [49] in the context of delta-oriented programming [67]. Further

contract composition principles are discussed by Thüm et al. [84]. The problem with con-

straints on contract admissibility is that it often imposes too severe restrictions on software

design to be of practical use. On the other end of the design space lies product-based verifica-

tion, where each valid product is specified and verified in isolation. This is usually prohibitive

in cost, particularly, with respect to specification [11]. Besides, it excludes systematic reuse,

the purported main advantage of software product lines.

It turns out that AE is the basis of an interesting trade-off [66] between the two extremes

in terms of a fully compositional verification approach without too restrictive constraints that

would render it impractical. The underlying variability principle is delta-oriented program-

ming (DOP) [67], where each feature is implemented by one or more delta modules (deltas,

for short) that are applied successively to a core variant. In DOP one specifies incremental

code transformations at the granularity of a method declaration with code deltas. This aligns
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with contract-based specification. Hence, each modification of a method in a delta is assumed

to be specified with a contract. Moreover, a delta for a method can be declared relative to a

previous version of that method that is called using the keyword original in the delta’s

code.

The new idea of [66], compared to the cited earlier work, is to impose relatively liberal

constraints on deltas and contracts that permit overriding of behavior and are not composi-

tional in the general case. Compositionality is regained by imposing a normal form on the

code declared in a delta. The obvious drawback is that legacy code generally does not follow

this normal form, but [66] showed that a small number of behavior-preserving program trans-

formations are sufficient to achieve normal form in practice for several case studies involving

legacy code (only in one instance limited remodeling was needed). It was possible to use the

Safe Refactoring approach described in Sect. 5.1 with minor modifications.

Because the LSP is broken by overriding, unlike in [31, 84], correctness of calls to

original is no longer guaranteed by a general composition principle (plus the correct-

ness of original-free methods). In addition, the correctness of contracts with calls to

original must be established with the help of the constraints implied by normal form.

However, since calls to original can be seen as an AS, this can be directly modeled

and proven with AE. For the case studies in [66] all necessary transformation schemata and

contracts were proven fully automatic.

6 Implementation

We implemented Abstract Execution on top of the SE engine of the deductive program

verifier KeY [5]. Deviating from the uniform representation in Sect 4, there exist dedicated

AS execution rules tailored to different contexts. For instance, if AS is executed outside of

a loop, continues and unlabeled breaks are omitted. This saves one having to exclude

behavior that cannot occur explicitly.

AE Rules as Taclets

Most SE rules in KeY are implemented as so-called taclets [65]. Taclets provide a textbook-

like notation for schematic sequent calculus rules with side conditions and, in particular, for

KeY’s Java DL calculus. The taclet syntax is easy to learn and even easier to read. The taclet

semantics is formally defined relative to possible external application-specific conditions

and transformers. Derivable taclets, not part of the axiomatic basis of Java DL, can be

automatically proven correct within KeY itself [14].

Except few complex SE rules requiring complex program transformations implemented

directly in Java, all of KeY’s Java DL rules are expressed in taclet notation. To extend

rule coverage as much as possible, the taclet language offers two extension points: variable

conditions to answer complex queries about the proof environment and to initialize custom

data structures, as well as transformers to create terms and program elements or perform

complex transformations on existing ones. An implementation of a rule set based solely on

extended taclets imposes certain overhead compared to a pure Java implementation, because

of a necessarily more fine-grained decomposition into conditions and transformers, as well

as a higher amount of parsing. Extension points also hide part of taclet semantics and hinder

fully automatic proofs of derived taclets. Nevertheless, we decided to implement the abstract

execution rules as extended taclets, because the advantages far outweigh the problems: (1)

A taclet specification, even with extensions backed by custom Java code, is still less opaque

and better maintainable than a pure Java implementation. (2) The AE rules are considered to

be axioms, which is why they are anyhow not derivable.
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We defined four rules for ASs (for different contexts) and one for AExps (only one context

needed) as extended taclets. We make use of 11 new variable conditions and transformers.

Each of these is realized as a simple, stand-alone Java class with clear responsibility, exposing

as many details as possible in the textual representation of the taclet itself. As a representative

example, one of extensions concerns a “for-each” construct for iterating over schema variables

of list type. The following taclet code handles the case that AS completes abruptly due to

a labeled break. It occurs in the SE rules for ASs, specifically, in the part describing the

shape of the code resulting from the execution:

#foreach (#v1 , #label in #vars , #labels ) {

if (#v1) {

break #label ;

}

}

Implementing the for-each construct is more difficult than simply implementing a Java

class for a transformer like “#handle-labeled-breaks(#vars, #labels)” that

could replace the code above, but the result is more transparent and reusable, and comes

close to the description of the rule in textbook-style.

Due to the complexity inherent to abstract statements, including completion modes and

framing, the AE taclets implementing AS are, to the best of our knowledge, the most

complex ones ever implemented. The longest taclet for ASs has 19 variable conditions,

a “\replacewith” clause (the premises of the rule) of 68 lines and it extends to 79 lines

of code in total.

Appendix C shows the AE taclet for AExps. The AS taclets have a similar shape but are

even more lengthy since more abrupt completion possibilities must be considered.

Built-In Rules for Abstract Update Simplification

We had to realize a number of abstract update simplification rules as “built-in” rules directly

in Java instead of as taclets. The main reason is that these rules depend on a variable number of

premises in a context that is initially unknown. For instance, to implement rule dropUpdate6

in Fig. 11, we found no straightforward way to extend the taclet mechanism to allow for a more

flexible specification of premises without the risk of breaking the existing implementation.

To realize the AS implementation as a pure extension of the KeY system without modifying

the latter was an important design constraint that greatly improves maintainability of the AS

functionality in future versions of KeY.

7 RelatedWork

Schematic programs are a natural way to describe program transformations declaratively

in a modular way: One describes how to transform, for example, an if statement, while

delegating the transformation of the then and else clauses to separate rules. The contents of

these clauses are represented as placeholders.

One of the first applications of AE, and its original motivation, was the design of a mod-

ular, rule-based compiler with automatically proven-correct transformation rules [78] (see

Sect. 5.5). Compilers are program transformers; in the area of proven-correct program trans-

formations, the application to mechanically verified compilers gained significant interest.

Compilers such as CompCert [48], CakeML [81] and Jinja [42] provide strong correctness

guarantees. They all have in common that the source and target languages, correctness proper-

ties, and proofs are mechanized in interactive proof assistants such as Coq [82], Isabelle [59],

or Lean [56]. These systems rely on expressive logical frameworks. In contrast, the scope of
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AE is restricted to universal, behavioral program properties: AE abstracts away from the in-

ner structure of the programs being proven. Conversely, this restriction is also a selling point

of AE. We demonstrated that our framework is expressive enough to be applied to refac-

toring, cost analysis of transformations, code parallelization, correctness-by-construction,

software product line engineering, and rule-based compilation (see Sect. 5). In almost all of

these cases, the AE-KeY system found correctness proofs fully automatically. In contrast,

interactive proof assistants require the user to write proof scripts manually: The CompCert

code consists of 44% proof scripts [48].

In the context of the KeY system, Ahrendt et al. [6] and Bubel et al. [14] addressed

automatic correctness proofs of Java DL program transformation rules. The former work

projects rules to an executable semantics in the rewriting logic of the Maude system [55];

the latter one validates the correctness of derived SE rules in the KeY system itself. Both

approaches are less expressive compared to AE. For example, Ahrendt et al. only support

schematic expressions and Bubel et al. only schematic statements; we have both. The rewriting

logic of Ahrendt et al. does not model abrupt completion. Neither of them admits constraints

on frames and footprints or the specification of pre- and postconditions for APEs.

Abstract Execution completely decouples reasoning over abstract programs from the

problem of checking whether a given concrete instance of an AS is valid. We discuss two

approaches that, vice versa, check “eagerly” for instance validity. The first is the calculus

for the differential dynamic logic dL of the KeYmaera X system [61]. It is based on uniform

substitution of function, predicate, and program symbols. The calculus’ axiomatic core is a

set of concrete formulas with uninterpreted function/predicate/program symbols that may

be instantiated to further concrete functions/predicates/programs via uniform substitution.

Substitutions are sound provided that they do not clash, for example, substituting a term

with a free variable for another term at a position where that variable is bound is forbidden.

Uninterpreted symbols can be viewed as abstract, hence it is possible to express and to derive

formulas over AS in the dL calculus. Consider the dL formula

[?q;(a;b)∪ ?¬q;(a;c)]ϕ ↔ [a;(?q;b ∪ ?¬q;c)]ϕ

that represents the Consolidate Duplicate Conditional Fragments refactoring (see

Sect. 5.1.3), where a, b, c, q, and ϕ are arbitrary programs, conditions, and formulas, re-

spectively. Its validity in dL is provable. The drawback is that the conditions under which

substitutions are sound, i.e., when no clash occurs, become rather complex. For example, one

must implement the uniform substitution operator such that it avoids the case that an instance

of q uses a variable assigned by an instance of a, etc. While manageable for the modeling lan-

guage used in dL, it becomes extremely complex as soon as programming language features

such as reference types, scopes, visibility rules, exceptions, etc., are introduced.

The most ambitious attempt at a substitution-centric approach so far is partial evaluation

[23]. Given a program p with parameters, one considers a subset e of its parameters to

have static values e at compile time. Viewed from an AE perspective, partial evaluation

instantiates every occurrence of e in the abstract program p(e) with concrete e, followed

by simplification of the resulting concrete program using e. The idea is to obtain a more

efficient program than the original p under the assumption that part of the input is static. Like

in uniform substitution, the main technical challenge is to find syntactic conditions to avoid

clashes that would admit invalid substitutions [70]. For realistic functional or imperative

programming language this is so complex that it became a main research direction in partial

evaluation, known as binding-time analysis [38]. As far as we know, it was never fully

axiomatized in a calculus.
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In a program repair scenario, Mechtaev et al. [54] use abstract programs with parametric

schematic expressions. Their goal is to synthesize witnesses for these expressions satisfying

a postcondition. Compared to our work, Mechtaev et al. (1) address existential second-order

program proofs, (2) do not consider abrupt completion, and (3) have no concept of abstract

statement.

Godlin and Strichman [26] perform regression verification of closely related program

versions. To automate the proofs in the presence of recursive functions, they replace recursive

calls with uninterpreted function symbols; loops are transformed into recursive functions.

Although AExps are related to uninterpreted functions, the latter are pure. The approach

does not need, and consequently does not support, ASs.

The PEC system [46] uses meta variables for expressions, variables, and statements to

prove correct compiler optimizations. Similarly to the other approaches discussed, PEC does

not support additional specifications to constrain the behavior of placeholders, and its “meta

statements” can only complete normally. Alive [50] has a more restricted scope: It automat-

ically proves the correctness of peephole optimizations for LLVM. Those optimizations are

expressed in a restricted DSL less general than the AE framework. For example, only register

names can be abstract, and programs cannot contain loops.

Several works address the correctness of refactoring. We distinguish methods statically

verifying refactoring techniques, including the extraction of preconditions using formal meth-

ods and static enforcement of safe refactoring, as well as dynamic techniques using testing

and runtime assertions.

Garrido and Meseguer [24] formalized the Java refactoring techniques Pull Up / Push

Down Field, Pull Up / Push Down Method, and Rename Temporary in Maude’s rewrite

logic. They prove the correctness of two refactoring techniques using a mixture of Maude

evaluation and pen-and-paper proofs. Our AE-based proofs are fully mechanized and were

derived by automatic proof search.

Using dynamic frames, AE abstracts away from concrete variable or field names. Schäfer

et al. [68] address the problem of preventing naming and accessibility problems during code

refactoring. For example, their framework ensures that a moved reference is still bound

to the same declaration. For a safe application of refactoring techniques in practice, the

behavioral guarantees from AE should be combined with a framework aware of names and

bindings. Silva et al. [71] use Alloy [36] models to verify the type correctness of Java code

transformations. They claim that they cover everything except behavioral issues—precisely

what is handled by AE.

The design of the REFINITY system (see Sect. 5.1) favors the formalization of statement-

level refactoring techniques. Recent work by Abusdal et al. [3] demonstrates that as well

class-level refactoring techniques can be modeled and proven in our framework. The authors

verified Hide Delegate, a technique involving multiple classes.

Regarding dynamic techniques, Soares et al. [74] automatically generate test suites for

detecting behavioral changes caused by code refactoring using static analysis. Eilertsen et

al. [20] add correctness assertions in the course of refactoring applications. The related work

by Namjoshi and Zuck [58] generates witnesses during program transformation that guarantee

the equivalence of the source and target programs.

8 Conclusion and FutureWork

We presented the theory, implementation, and known applications of Abstract Execution

(AE), a specification and semi-automated verification framework for behavioral, univer-

sal second-order program properties of schematic programs. In AE, programs may contain
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schematic placeholders for both statements and expressions. The behavior of instantiations

of these placeholders can be constrained by fine-grained, yet abstract, specifications. Com-

pared to our previous conference publication [79], we (1) extended our framework with

abstract expressions and set-valued specification variables for assigned and used locations,

(2) provided a precise, formal semantics of abstract programs, (3) detailed our extended set

of abstract update simplification rules, (4) described our implementation, and (5) discussed

recent applications of the AE framework. In the context of our flagship application to verified

code refactoring, we report on our discovered bugs in the refactoring engines of popular Java

IDEs.

There are many ways to connect to this work. Our present work demonstrates that AE

can be useful in different application scenarios. For example, one might analyze compiler

optimizations beyond the “peephole” level targeted by frameworks such as Alive [50], or

equivalence-preserving transformations for metamorphic testing [16] of compilers.

Going in a different direction, one could generalize concrete programs causing a specific

behavior in program transformers (e.g., a crash or non-compiling output) to abstract versions

describing the class of behavior-triggering inputs. Such an abstraction represents a hypoth-

esis about the origins of the failure for debugging, in the spirit of Delta Debugging [92],

DDSet [27], and the Alhazen tool [39]. This gives rise to another idea: Given an abstract pro-

gram that forms a hypothesis about a class of behavior-inducing programs, one might help

developers by creating concrete instances from this schematic one for further testing and

validation. In our bug report to the IntelliJ developers, for instance, we could then not only

have submitted a single, failing example but an abstract program from which the developers

could generate myriads of further tests fully automatically by themselves.

Similar in spirit is instance checking: Is this concrete program fragment likely to trigger

a known bug described by an abstract one? Or might it be an admissible input to a Extract

Method refactoring? Such an instance checker, for which we have developed an early proto-

type, is the first ingredient for deriving a transformer from an input-output pair of schematic

programs that detects possible input fragments in a larger context and transforms them into

an optimized version.

Static instance checking is, in general, expensive: We might have to come up with strong

loop invariants where we used abstract invariants in models; instantiating concrete, pre-

cise frames is another, non-trivial task. Instead, we could follow the approach of Eilertsen

et al. [20] and derive safety assertions from transformation models checking runtime-

enforceable properties of the models. Combined with test generation and the value of derived

safety preconditions as a means of documentation, we can get the most out of an existing

model even without static instance proofs.

While one can define separate precise pre- and postconditions for all completion modes of

APE specification (for example, normal completion versus completion caused by break),

the AE framework currently allows merely a single frame and footprint specification. The

possibility to devise mode-dependent frames and footprints for each completion mode would

enable more precise specifications and thus a broader set of represented concrete instances.

Related to this, we extended the specification language to support parametric location sets

in our application to code parallelization (Sect. 5.3). As a result, however, this application is

the only one where the proof search required human interaction. Improving automation for

such language extensions is essential for the attractiveness and acceptance of AE.

Automation can also be improved for our relational transformation proofs in general.RE-

FINITY reduces a relational problem to the functional verification of individual programs,

which works reasonably well with strong, but abstract, loop invariants. Using techniques

from relational verification such as relational invariants [12], it might be possible to work
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around strongest invariants, simplifying static instance checking and making AE ready for

larger transformation proofs. Complicated, realistic transformation proofs might also re-

quire stronger support of heap-related properties. Compared to our earlier work [79], we

significantly improved our abstract update simplification rules for heaps (Sect. 4.2.2); yet,

more complex case studies will likely bring up situations demanding additional strategies for

completeness and automation.

Abstract Execution is a promising and practically useful technique for proving properties

of infinitely many programs in a single proof, with most applications residing in the area of

program transformations. In this work, we have provided a complete account of the current

state of the theory behind AE and its applications so far. We believe that this overview will

provide a fruitful basis for a plethora of interesting follow-up work on the rigorous verification

of program transformations.
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Appendix A: Representation Formulas for Semantics of Abstract State-
ments

We define necessary and sufficient conditions for all aspects of the property of being an

instance of APE or APF. For brevity, we only consider statements. The definitions apply to

expressions e of type T by wrapping them inside statements T x=e; for a fresh variable x

that is added to the frame specification. AExps can only be instantiated by expressions of a

subtype of their own type.

(1) Frame Condition A statement p satisfies the frame specification of AS iff it assigns at most

locations in the assignables set of the AS. This holds if the following formula is valid, where

x1, . . . ,xn are all program variables assigned, but not declared, in p, and x
pre
1 , . . . ,x

pre
n as

well as heappre are fresh program variables of suitable types:

frameFor(assignables, p):=

{heappre := heap ||x
pre
1 := x1 || . . . ||x

pre
n := xn}

[p′]
(

(∀f :Field;∀o:Object;

o.created@heappre .
= FALSE ∨ o.f

.
= o.f @heappre

∨ (o, f ) ∈ assignables)∧

(x1
.
= x

pre

1 ∨ x̊1 ∈ assignables) ∧ · · · ∧ (xn
.
= x

pre
n ∨ x̊n ∈ assignables)

)
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Intuitively, this formula permitsp to create new objects or assign locally declared variables,

but otherwise only change locations that are declared assignable. The program p′ encapsulates

p inside an exec statement to catch abrupt completion: inside a box modality, an abruptly

completing program yields a trivially valid formula, while inside a diamond modality, the

formula is unsatisfiable regardless of the postcondition:

p′:= exec {p}

ccatch (\Return) {}

ccatch (\Return Object v) {}
...

ccatch (Throwable t) {}

(2) Has-To Condition Standard JavaDL is not capable of recording memory access: a pro-

gram variable that is assigned its original value as in x = x; is indistinguishable from the

empty statement. A recent extension of JavaDL tracks read and written memory locations in a

global history [13]. We refrain from introducing this theory here, and conservatively overap-

proximate the has-to condition by a static check: let the predicate hasToFor(assignables, p)

evaluate to tt if each location in assignables designated as a has-to location occurs syntac-

tically on the left-hand side of at least one assignment statement (including pre-increments,

etc.) along any path of the program’s CFG.

(3) Footprint Specification A program satisfies the footprint (accessibles) specification of

APE if the evaluation in two arbitrary environments—which, however, agree on the values

of the accessible locations—yields the same effects on the assignable locations. The condition

we define is inspired by dependency contracts [69], with the difference that we are interested

in the effect on a set of locations, not merely the \result variable of a method:

where

– Post is a fresh predicate of suitable type and arity,

– the x1, . . . ,xn are all program variables occurring in p,

– h is a fresh Heap symbol and xa
i are fresh program variables of the types of xi ,

– and p′ is defined as above.

(4) Termination AnAPE specifies whether instances must terminate or may diverge depending

on the value of the term field (where total stands for termination). We can express this with

the diamond modality of JavaDL: Even the trivial postcondition “true” only holds in the

scope of a diamond modality if the enclosed program terminates normally. As above we

catch termination by abrupt completion by using p′ instead of p.

terminationFor(term, p):=term
.
= total → 〈p′〉 true

(5) Normal Completion An instance of APE has to complete normally when none of the

preconditions for abrupt completion is met. In this case, it also has to satisfy the postcondition
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Fig. 11 Heap-Related Abstract Update Simplification Rules

for normal completion. We first define the precondition normal for normal completion as

the conjunction of the negations of all abrupt completion preconditions (pre extracts the

precondition of a pre- and postcondition pair):

normal:=¬pre(returnsSpec) ∧ ¬pre(returnsValSpec) ∧ ¬pre(excSpec)

∧ ¬pre(continuesSpec) ∧ ¬pre(breaksSpec)

∧
∧

l∈dom(continuesSpecLbl)

¬pre(continuesSpecLbl(l)) ∧
∧

l∈dom(breaksSpecLbl)

¬pre(breaksSpecLbl(l))

In the following formalization of the normal completion requirement, we use a labeled

break with a fresh label l which is only reached if p completed normally. A fresh boolean

variable _normal, initialized to false, is set to true inside an exec statement if the

labeled break was reached, which is required by the postcondition.

normalCompletionFor(specs, p):=normal →

[_normal=false;
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exec {p break l;} ccatch (\Break l) {_normal=true;}]

(_normal
.
= TRUE ∧ normalPost)

(6) Abrupt Completion The formalization of the requirements imposed on abrupt completion

work analogously to normal completion, but are simpler, since no labeled break is needed.

We consider in detail the (most complex) case of completion due to a return of a value

(similar to pre, post extracts the postcondition of a pre- and postcondition pair):

returnsFor(returnsSpec, p):=pre(returnsSpec) →

[_returned=false;

exec {p}

ccatch (\Return) {_returned=true;}]

ccatch (\Return Object val) {res=val; _returned=true;}]

(_returned
.
= TRUE ∧ post(returnsSpec))

Recall that res is a special program variable for accessing the returned value in the post-

condition of the specification of abrupt completion due to a return.

The remaining definitions of excFor(excSpec, p), breaksFor(breaksSpec, p) due to a

break, and continuesFor(continuesSpec, p) for abrupt completion due to a continue,

are defined analogously. For the latter two, we do not need an assignment to a variable

like res, while for exceptional completion, the variable exc exposing the thrown excep-

tion object is assigned. Furthermore, only one ccatch clause is required. The formulas

breaksForLbl(breaksSpecLbl, lb, p) and continuesForLbl(continuesSpecLbl, lb, p) for la-

beled breaks and continues receive an additional parameter lb representing the specific

label which should be considered, and are defined analogously otherwise. We omit these

cases for brevity.

Appendix B: Heap-Related Abstract Update Rules

The heap-related abstract update simplification rules are given in Fig. 11.

Rule abstractHeapUpdate transforms an abstract update UP(frame: ≈ footprint) to

a variable h of sort Heap into an anon term anon(h, frame, anonHeapP(footprint)). Both

expressions are equivalent: Changing heap locations in frame depending on locations in

footprint is the same as anonymizing those locations with a heap term anonHeapP(footprint),

where anonHeapP is a function symbol created fresh for the APE P. The transformation

allows us to reuse the existing Java DL machinery for heaps and location sets in proofs (by

using the anon function) instead of producing further AE-specific simplification rules.

The next five rules allow to drop abstract updates, anon applications, or store ap-

plications. Rule dropUpdate6 matches an abstract update selectA({. . . ||UP(frame: ≈

footprint) || . . .}heap, o, f ) inside a select expression. If the selected location is not in

the frame of the abstract update, i.e., (o, f ) /∈ fri is in the context for all parts fri of frame,

we can remove the abstract update. Rule dropAnonInUpdate, not containing an abstract

update, simplifies heap anonymizations that have no effect since the masked part of the heap

is not accessed in subsequent expressions. This situation frequently occurs in abstract con-

texts. Since the irrelevant predicate does not apply if the heap variable occurs freely in

the target expression, e.g., if there is a modality in the target, “conventional” non-abstract

contexts are unaffected. The rules dropAbstractAnonInSelect and dropAbstractAnon also

allow dropping anon applications: When selecting a field from an anon term, the anon can

be removed if the field is not contained in the anonymized heap portion. Furthermore, we

can drop an inner of two nested anons if the outer one overwrites a larger memory portion
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and the outer anonymizing heap term is not affected by the inner anon. The final “drop” rule,

dropStoreToValue, removes a store application in a heap update to a value term value(frame)

if the target field of the store is irrelevant to frame.

The remaining three rules are normalization rules in the spirit of the reorderUpdate

rules from Fig. 5. They bring heap updates to a normal form, which facilitates relational

transformation proofs where abstract heap updates cannot be applied to target terms and thus

be removed. Rule flattenAbstractHeapUpdate simplifies a nested heap update containing an

abstract update. The rule pushHeapUpdateToEnd pushes an update to the heap variable to

the end of a parallel update. Finally, reorderAbstractAnon reorders nested anon applications

by ordering them lexicographically if they are independent.

Appendix C: Taclet Code for Abstract Expressions

1 abstractExpression {

2 \schemaVar \update U;

3

4 \find (\modality{#allmodal }{..#v = #aexp;...}\ endmodality (post))

5

6 \varcond(\new(#normal , boolean))

7 \varcond(\new(#throwsExc , boolean))

8 \varcond(\new(#exc , java.lang.Throwable))

9 \varcond(\new(#returns , boolean))

10 \varcond(\new(#result , \typeof(#v)))

11 \varcond(\new(#h, Heap))

12 \varcond(\ initializeParametricSkolemUpdate(U, #aexp))

13

14 \replacewith (

15 { #normal:=#abstrPrecond (#aexp , "normal")

16 || #throwsExc := #abstrPrecond (#aexp , "throwsExc ")

17 || #h:=heap} (

18 ( (#normal = TRUE <-> !# throwsExc = TRUE)

19 & (#excPrecondition(#aexp , #throwsExc ))

20 & (# throwsExc = TRUE -> !#exc = null)) ->

21 {U}{

22 #exc:=#abstrPrecond (#aexp , "exceptionObject") ||

23 #result:= #addCast(#abstrPrecond (#aexp , "resultObject "), #v)

24 }(

25 (( #throwsExc = TRUE -> !#exc = null &

26 #postCondAE (

27 #aexp , "throwsExc", #returns , #result , #exc)) &

28 (!# throwsExc = TRUE ->

29 #postCondAE (

30 #aexp , "normal", #returns , #result , #exc)) &

31 (\forall f; \forall o;

32 ( elementOf (o,f,#getFrame (#aexp))

33 | !o=null &

34 !boolean::select(

35 #h,o,java.lang.Object::<created >)=TRUE

36 | any::select(heap ,o,f) = any::select(#h,o,f)))) ->

37 \modality{#allmodal }{

38 ..

39 if (#throwsExc ) { throw #exc; }

40 #v = #result;

41 ...

42 }\endmodality (post)

43 )))

44

45 \heuristics (abstractExecution , simplify_prog )

46 };
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