
Journal of Automated Reasoning (2024) 68:6

https://doi.org/10.1007/s10817-023-09691-1

SAT Meets Tableaux for Linear Temporal Logic Satisfiability

Luca Geatti1 · Nicola Gigante2 · Angelo Montanari1 · Gabriele Venturato3

Received: 11 March 2022 / Accepted: 15 December 2023

© The Author(s) 2024

Abstract

Linear temporal logic (LTL) and its variant interpreted on finite traces (LTLf) are among the

most popular specification languages in the fields of formal verification, artificial intelligence,

and others. In this paper, we focus on the satisfiability problem for LTL and LTLf formulas, for

which many techniques have been devised during the last decades. Among these are tableau

systems, of which the most recent is Reynolds’ tree-shaped tableau. We provide a SAT-based

algorithm for LTL and LTLf satisfiability checking based on Reynolds’ tableau, proving its

correctness and discussing experimental results obtained through its implementation in the

BLACK satisfiability checker.

Keywords Linear temporal logic · SAT · Tableaux

Mathematics Subject Classification 68N30 · 68T15

1 Introduction

Linear temporal logic (LTL) [44] is the de-facto standard language for the specification of

system properties in the fields of formal verification and artificial intelligence. LTL is a modal

logic usually interpreted over infinite and discrete linear orders, but recently its variant inter-

preted over finite traces (LTLf) has gained traction, especially in the artificial intelligence

community [16, 18]. Satisfiability checking, that is, the problem of deciding whether a given

This work is an extended and improved version of [27] and [29].

B Nicola Gigante

nicola.gigante@unibz.it

Luca Geatti

luca.geatti@uniud.it

Angelo Montanari

angelo.montanari@uniud.it

Gabriele Venturato

gabriele.venturato@kuleuven.be

1 University of Udine, Udine, Italy
2 Free University of Bozen-Bolzano, Bolzano, Italy
3 KU Leuven, Leuven, Belgium

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09691-1&domain=pdf

 6 Page 2 of 32 L. Geatti et al.

formula admits a satisfying model, is one of the most important computational tasks associ-

ated with the logic, and one of the first that have been carefully studied [48]. Tableau systems

are among the first methods that have been proposed to solve the satisfiability checking prob-

lem for LTL [55]. Classic tableau systems for LTL [39, 55] are graph-shaped and two-passes,

that is, they build a graph structure, that represents all tentative paths of the transition system

described by the input formula, and then traverse it, in a second pass, to find a suitable model

for the formula. In contrast, the alternative tableau system recently devised by Reynolds [45]

is tree-shaped and one-pass, since it builds a tree structure where a single pass is required

to build a given branch and simultaneously decide whether it corresponds to a model for

the formula. Reports on early implementations of Reynolds tableau [4, 42] highlights how

propositional reasoning is the bottleneck for this kind of procedures, since the search for

solutions of the propositional part of temporal formulas is basically done by brute force.

To overcome this limitation, in this paper we join Reynolds’ tableau with Boolean satis-

fiability (SAT) solvers, by providing a SAT-based satisfiability checking procedure for LTL

and LTLf based on Reynolds’ tableau. In our procedure, the tableau is never built explicitly.

Instead, suitable SAT formulas representing all the branches of the tableau tree up to a given

depth k are solved, for increasing values of k. If a successful branch (i.e. a model for the for-

mula) is found within the given bound, the formula is satisfiable, otherwise k is incremented

and the procedure continues. In contrast to similar approaches à la bounded model checking,

our procedure guarantees completeness and termination both for satisfiable and unsatisfiable

formulas, without the need to precompute unsatisfiability thresholds, thanks to the pruning

rule of Reynolds’ tableau.

The modularity of Reynolds’ tableau and of its encoding allows our procedure to support

both future and past temporal modalities, interpreted on both finite and infinite traces. On

the one hand, past temporal modalities do not add expressive power to the logic, but do

increase its succinctness [41] and allow many properties to be expressed in a more natural

way [40]. Independently of the set of temporal modalities and the considered class of models,

our procedure is also able to output a model for satisfiable formulas.

We describe the procedure, prove its correctness, and evaluate its performance. To this aim,

the procedure has been implemented in the BLACK1 satisfiabilty checker, whose architecture

we describe here as well. To assess the performance of the tool, we compare it with several

state-of-the-art tools that support satisfiability checking for LTL over a benchmark set of

thousands of formulas gathered from various sources. The results show that our technique is

competitive for many classes of benchmark formulas.

The paper is structured as follows. After reviewing the relevant literature in Sect. 2, we

recall the needed background in Sect. 3, including Reynolds’ one-pass and tree-shaped

tableau. Then, in Sect. 4, we describe in detail our SAT-based procedure, including full

proofs of soundness, completeness, and termination. Section5 discusses the implementa-

tion of BLACK, with a particular attention to design choices. Finally, Sect. 6 experimentally

compares the tool with other state-of-the-art solvers. Section7 concludes with some final

remarks and a discussion of future developments.

2 RelatedWork

Shortly after its introduction [44], Linear Temporal Logic has become the de-facto standard

language for specification of temporal properties both in formal verification [15] and in

1 BLACK can be downloaded from https://github.com/black-sat/black.

123

https://github.com/black-sat/black

SAT Meets Tableaux for Linear Temporal… Page 3 of 32 6

artificial intelligence [2]. The satisfiability problem for LTL has been proved to be PSPACE-

complete [48]. Despite such a theoretically high computational complexity, many techniques

and tools have been developed to solve it, ranging from tableau systems [1, 4, 39, 45, 47,

54] to reduction to model checking [10], from temporal resolution [24, 25, 33], to labelled

superposition [51], to automata-theoretic techniques [36].

Tableau methods were among the first techniques to be proposed. Born in the context of

propositional and first-order logic [5], tableaux are quite easy to extend to the non-classical

setting. Most tableaux for LTL are graph-shaped [39, 55], as they build a graph structure which

is then traversed in a second pass to find a suitable model for the formula. Since in many

cases the built structure is really huge, various techniques have been proposed to improve

the efficiency of the procedure. As an example, in incremental tableaux [35], only those

parts of the graph that are actually involved in the search for the model are built. In contrast,

tree-shaped tableaux try to avoid building the entire structure altogether, focusing instead on

its paths. The first such tableau was proposed by Schwendimann [47], followed by Reynolds’

tableau [45]. In this paper, we focus on the latter. Even if both tableaux are tree-shaped and can

be regarded as being one-pass, Reynolds’ one has the advantage of expanding each branch of

the tree completely independently from the others, as each branch corresponds to a distinct

tentative model for the formula. In contrast, Schwendimann’s tableau needs to keep track

of multiple branches in order to accept or reject a given subtree. The possibility of such an

independent exploration of branches has been heavily exploited by an early implementation

of Reynolds’ tableau [4] and its later parallelization [42]. As a matter of fact, the SAT-based

procedure shown in this paper would not be possible for Schwendimann’s tableau exactly

because of this difference. In addition to that, the modular, rule-based structure of Reynolds’

tableau system allowed it to be extended to various logics beyond standard LTL. In particular,

support for past modalities has been added, as well as for more expressive logics like the

real-time Timed Propositional Temporal Logic (TPTL) [28].

An important property of LTL is that satisfiability checking can be easily reduced to

model checking: to establish whether a formula is satisfiable, its negation is model checked

against the complete transition system, with any counterexample being a model of the original

formula. Hence, any model checking technique can be seen as an alternative satisfiability

checking technique. In this perspective, the procedure presented here is similar in spirit to

bounded model checking techniques [6, 12]: a counterexample (here, a tableau branch) of

length (tree depth) up to k, for increasing values of k, is found by encoding the paths of

the structure (the branches of the tree) up to length (depth) k into a SAT formula. However,

bounded model checking techniques are usually incomplete, since the computation of the

diameter of the graph, which witnesses the exploration of all paths, is usually a very hard

task (requiring, e.g., to solve the satisfiability problem of a quantified Boolean formula

[6]). Here, instead, our algorithm is complete thanks to the encoding of the PRUNE rule of

Reynolds’ tableau (see Sect. 3). In addition to that, the encoding of past modalities, coming

from the tableau rules, is much simpler than the virtual unrollings technique used to support

past modalities in bounded model checking approaches [7]. In our encoding, support for

past modalities comes almost for free. This was surprising at first, since support for past

modalities (sketched by Gigante et al. [31] and finalized by Geatti et al. [28]) is a bit more

involved in the explicit construction of Reynolds’ tableau.

Although LTL has been historically defined over infinite traces, the finite-trace semantics

has recently gained popularity in the artificial intelligence [16] and business process modelling

fields [17]. Although the computational complexity of all the main problems remain the

same, the manipulation of finite state automata on finite words, instead of Büchi automata on

infinite words, guarantees a notable speed-up in practice. This led to much work revisiting,

123

 6 Page 4 of 32 L. Geatti et al.

for example, model checking and synthesis [18], and the use of LTL on finite traces as

specification language for non-Markovian rewards in Markov Decision Processes [9], for

restraining specifications in reinforcement learning applications [19], and for specifications

of temporally extended goals in fully observable nondeterministic planning [8].

The approach presented here would not be sensible without the use of efficient SAT

solvers as the backend. The satisfiability problem for propositional logic is the canonical NP-

complete problem and one of the most studied problems in computer science. For this reason,

the efficiency of modern SAT solvers has grown beyond the best expectations. BLACK , the tool

we developed to evaluate our procedure, supports different solvers as backend in order to be

able to exploit the advantages of each. In addition to the classic, but now outdated, MiniSAT

[21], we support CryptoMiniSAT [49], a modern, parallelized and very flexible SAT solver.

In addition to that, we support two Satisfiability Modulo Theories (SMT) solvers, Z3 [20],

cvc5 [3], and MathSAT [14]. For LTL satisfiability, we do not make use of any SMT feature,

but the two SMT solvers proved to be very competitive backends also for purely propositional

problems.

The present paper is an extension of previous work [27, 29], which presented the SAT-

based procedure and later extended it to past modalities. Support for finite-trace semantics

has never been presented before.

3 Reynolds’ One-Pass and Tree-Shaped Tableau System

In this section, we recall the syntax and semantics of LTL and of its extension with past

operators, LTL+Past. Then, we describe the rules of Reynolds’ tableau, that is the subject of

the encoding presented in Sect. 4.

3.1 Syntax and Semantics of LTL+Past

Let us consider an alphabet Σ of proposition letters (or propositions). Then, the syntax of

an LTL+Past formula φ over Σ can be defined as follows:

φ := p | ¬φ | φ1 ∨ φ2 | φ1 ∧ φ2 | Boolean connectives

Xφ | X̃φ | φ1 U φ2 | φ1 R φ2 | future temporal operators

Yφ | Zφ | φ1 S φ2 | φ1 T φ2 past temporal operators

where p ∈ Σ and φ, φ1, and φ2 are LTL+Past formulas. The (future-only) fragment LTL

only uses Boolean connectives and future operators. One can define the standard shorthands

and derived operators as usual, e.g., ⊤ ≡ p ∨ ¬p, for some p ∈ Σ , ⊥ ≡ ¬⊤, Fφ ≡ ⊤ U φ,

Gφ ≡ ¬F¬φ, Oφ ≡ ⊤ S φ, Hφ ≡ ¬O¬φ. Given a temporal operator op, a formula is an op

formula if the top-level operator of the formula is op (e.g. Xp is a tomorrow formula).

Given a set of symbols A, we denote as A∗ the set of finite words over A, and as Aω the set

of infinite words over A. Given a word w ∈ A∗, we denote as |w| the length of w, while we

set |w| = ω for w ∈ Aω. LTL+Past is interpreted over finite or infinite state sequences, i.e.

words σ ∈ (2Σ)∗ or σ ∈ (2Σ)ω. Given a (finite or infinite) state sequence σ = 〈σ0, σ1, . . .〉,

the satisfaction of a formula φ by σ at a time point i ≥ 0, denoted as σ, i |H φ, is defined as

follows:

1. σ, i |H p iff p ∈ σi ;

2. σ, i |H ¬φ iff σ, i 6|H φ;

123

SAT Meets Tableaux for Linear Temporal… Page 5 of 32 6

3. σ, i |H φ1 ∨ φ2 iff σ, i |H φ1 or σ, i |H φ2;

4. σ, i |H φ1 ∧ φ2 iff σ, i |H φ1 and σ , i |H φ2;

5. σ, i |H Xφ iff i + 1 < |σ | and σ , i + 1 |H φ;

6. σ, i |H X̃φ iff either i + 1 = |σ | or σ , i + 1 |H φ;

7. σ, i |H Yφ iff i > 0 and σ, i − 1 |H φ;

8. σ, i |H Zφ iff either i = 0 or σ, i − 1 |H φ;

9. σ, i |H φ1 U φ2 iff there exists i ≤ j < |σ | such that σ , j |H φ2,

and σ, k |H φ1 for all k, with i ≤ k < j ;

10. σ, i |H φ1 S φ2 iff there exists j ≤ i such that σ , j |H φ2,

and σ, k |H φ1 for all k, with j < k ≤ i;

11. σ, i |H φ1 R φ2 iff either σ , j |H φ2 for all i ≤ j < |σ |, or there

exists

k ≥ i such that σ, k |H φ1 and

σ, j |H φ2 for all i ≤ j ≤ k;

12. σ, i |H φ1 T φ2 iff either σ , j |H φ2 for all 0 ≤ j ≤ i, or there

exists

k ≤ i such that σ, k |H φ1 and

σ, j |H φ2 for all i ≥ j ≥ k

A state sequence σ satisfies φ, written σ |H φ, if σ, 0 |H φ. Observe that some operators

can be derived from a smaller set of so-called “primitive” ones. In particular, the ∧ connective,

the release operator (φ1 R φ2), the triggered operator (φ1 T φ2), and the weak yesterday

operator (Zφ) can be defined in terms of the ∨ connective, the until operator (φ1 U φ2), the

since operator (φ1 S φ2), and the yesterday operator (Yφ), respectively. However, here we

consider them as primitive operators as well, since this allows us to put any formula into

negation normal form (NNF), i.e. with the negations applied only to propositions, which will

be useful later. Moreover, note that state sequences have a definite starting point, hence the

past is bounded, and we need to distinguish between the yesterday operator Yφ (φ holds

at the previous state) and the weak yesterday operator Zφ (φ holds at the previous state,

if it exists). Similarly, when the logic is interpreted over finite state sequences, we have

to distinguish between the tomorrow operator Xφ (φ holds at the next state) and the weak

tomorrow operator X̃φ (φ holds at the next state, if it exists). When the logic is interpreted

over infinite state sequences, the semantics of the tomorrow and weak tomorrow operators

coincide. We nevertheless keep them separated for uniformity. When interpreted over finite

state sequences, the logic is often referred to as LTLf .

The notion of closure of a formula will be useful later. It is defined as follows.

Definition 1 (Closure of an LTL+Past formula) Let ψ be an LTL+Past formula built over Σ .

The closure of ψ is the smallest set of formulas C(ψ) satisfying the following properties:

1. ψ ∈ C(ψ);

2. for each sub-formula ψ ′ of ψ , ψ ′ ∈ C(ψ);

3. for each p ∈ Σ , p ∈ C(ψ) if and only if ¬p ∈ C(ψ);

4. if ψ1 U ψ2 ∈ C(ψ), then X(ψ1 U ψ2) ∈ C(ψ);

5. if φ1 R ψ2 ∈ C(ψ), then X̃(ψ1 R ψ2) ∈ C(ψ);

6. if ψ1 S ψ2 ∈ C(ψ), then Y(ψ1 S ψ2) ∈ C(ψ);

7. if ψ1 T ψ2 ∈ C(ψ), then Z(ψ1 T ψ2) ∈ C(ψ).

It is worth pointing out that Item 3 of Definition 1 only applies to proposition letters because

formulas will be assumed to be in NNF.

123

 6 Page 6 of 32 L. Geatti et al.

3.2 The One-Pass and Tree-Shaped Tableau for LTL+Past

In this subsection we will describe the tableau system for LTL+Past introduced by Geatti

et al. [28]. This extends the tableau system for LTL by Reynolds [45], and will be used as

the basis for the direct encoding discussed in Sect. 4. As presented by Geatti et al. [28], the

tableau rules only handle LTL+Past interpreted over infinite state sequences. However, the

modifications to support finite state sequences are straightforward, as will be shown in Sect. 4.

Every LTL+Past formula can be trivially transformed in NNF, therefore, for ease of expo-

sition, we will assume formulas to be in NNF. A tableau for a formula φ is a tree where each

node u is labeled by a set of formulas Γ (u), with the root u0 labeled by Γ (u0) = {φ}. This

tree is built step-wise: at each step, a set of rules is applied to a leaf, until all branches have

been either accepted or rejected. A tableau where this is the case is called complete.2 Each

rule either (i) adds one or more children to the current leaf or (ii) either accepts or rejects the

current branch. Given a branch u = 〈u0, . . . , un〉, the sequence of nodes 〈ui, . . . , uj 〉, for

some 0 ≤ i ≤ j ≤ n, is denoted by u[i,j].

One node is selected at each time step and it is subject to a number of expansion rules. These

rules select a formula of the node label and expand the tableau according to its semantics,

as shown in Table 1. Each expansion rule creates one or two children depending on the

selected formula. When a formula φ of one of the types shown in the table is found in the

label Γ of a node u, one or two children u′ and u′′ are created with the same label as u, but

replacing φ by the formulas from Γ1(φ) and Γ2(φ), respectively. Only one child is created

if Γ2(φ) is empty. An elementary formula is either a proposition, a negated proposition, or

a tomorrow, weak tomorrow, yesterday, or weak yesterday formula. The expansion rules in

Table 1 always decompose formulas into their subformulas or elementary formulas. Hence,

after repeated applications of the expansion rules, sooner or later a node that only contains

elementary formulas is obtained. We call such a node a poised node. Elementary formulas of

the form X(φ1 U φ2) are called X-eventualities. An X-eventuality is a formula that, intuitively,

requests something to be fulfilled later. Given an X-eventuality φ ≡ X(φ1 U φ2), φ is said to

be requested in a node u if φ ∈ Γ (u), and it is said to be fulfilled in a node u if φ2 ∈ Γ (u).

An X-eventuality is fulfilled in a subsequence of a branch is it is fulfilled in at least one node

of the subsequence.

The tableau advances through time by making temporal steps. To do that, the following

rules are applied to poised nodes un.

STEP A child un+1 is added to un, with:

Γ (un+1) = {α | Xα ∈ Γ (un) or X̃α ∈ Γ (un)}

FORECAST Let

Gn =

{
α ∈ C(φ)

∣∣∣∣
Yα ∈ C(ψ) or Zα ∈ C(ψ)

for some ψ ∈ Γ (un)

}

For each subset G′
n ⊆ Gn (including ∅), a child u′

n is added to un such that

Γ (u′
n) = Γ (un) ∪ G′

n. This is done once and only once before every application

of the STEP rule.

The STEP rule advances the construction of the current branch to the subsequent temporal

state. The FORECAST is essential to the well-functioning of the rule dealing with past, as it

2 Of course, when checking the satisfiability of a formula, the tableau construction can stop as soon as a single

accepted branch is found.

123

SAT Meets Tableaux for Linear Temporal… Page 7 of 32 6

Table 1 Tableau expansion rules
Rule φ ∈ Γ Γ1(φ) Γ2(φ)

Disjunction α ∨ β {α} {β}

Conjunction α ∧ β {α,β}

Until αUβ {β} {α,X(αUβ)}

Since αSβ {β} {α,Y (αSβ)}

Release αRβ {α,β} {β,wX(αRβ)}

Triggered αT β {α,β} {β,Z(αT β)}

adds a number of branches that nondeterministically guess formulas that may be needed to

fulfil past requests coming from future states. For details on the FORECAST rule, we refer the

reader to Geatti et al. [28].

Since the STEP rule is not applied to all the poised nodes (to some of which the FORECAST

rule is applied instead), we need the following definition.

Definition 2 (Step node) In a complete tableau for an LTL+Past formula, a poised node un

is a step node if it is either a poised leaf or a poised node to which the STEP rule was applied.

Before applying the STEP rule though, poised nodes are subject to the application of a few

termination rules, that is, rules that decide whether the construction has to continue or the

current branch has to be either rejected or accepted.

Let u be a node. We define u∗ as the closest ancestor of u that is a child of a step node, if

any. Γ ∗(u) is the union of the labels of the nodes from u to u∗ or to the root, if u∗ does not

exist. Given a branch u = 〈u0, . . . , un〉, with un a step node, the termination rules are the

following ones, which are checked in the following order.

CONTRADICTION If {p,¬p} ⊆ Γ (un), for some p ∈ Σ , then u is rejected.

EMPTY If Γ (un) does not contain tomorrow or weak tomorrow formulas, then u

is accepted.

YESTERDAY If Yα ∈ Γ (un), then the branch u is rejected if either u∗
n does not exist or

Yn * Γ ∗(u∗
n), where Yn = {ψ | Yψ ∈ Γ (un)}.

W-YESTERDAY If Zα ∈ Γ (un), then u is rejected if u∗
n exists and Zn * Γ ∗(u∗

n), where

Zn ={ψ |Zψ ∈Γ (un)}.

LOOP If there exists a position i < n such that Γ (ui) = Γ (un) and all the

X-eventualities requested in ui are fulfilled in u[i+1,n], then u is accepted.

PRUNE If there exist two positions i and j such that i < j < n, Γ (ui) = Γ (uj) =

Γ (un), and all the X-eventualities requested in these nodes which are ful-

filled in u[j+1,n] are also fulfilled in u[i+1,j], then u is rejected.

Intuitively, the CONTRADICTION, YESTERDAY, and W-YESTERDAY rules reject branches

that contain some contradiction, either a propositional one or because of some unfulfilled past

request. The EMPTY rule accepts a branch devoid of contradictions where there is nothing left

to do, while the LOOP one accepts a looping branch where all the X-eventualities are proposed

again and fulfilled at every repetition of the loop. This scenario can be seen in Fig. 1a, that

depicts the tableau for the satisfiable formula GF(p ∧ X¬p). Finally, the PRUNE rule, which

was the main novelty of the system when introduced by Reynolds [45], rejects a branch

that, otherwise, is going to be infinitely unrolled because of an X-eventuality impossible to

fulfil. This happens in the tableau of the formula G¬p ∧ q U p depicted in Fig. 1b, where the

X-eventuality q U p is never going to be fulfilled, hence the rightmost branch is closed by

the PRUNE rule.

123

 6 Page 8 of 32 L. Geatti et al.

Fig. 1 Example tableaux for two formulae, involving the LOOP and PRUNE rules. Dashed edges represent

subtrees collapsed to save space, bold arrows represent the application of a STEP rule to a poised label

The following has been proved to hold.

Proposition 1 (Termination, soundness and completeness of Reynolds’ tableau [28]) Let φ

be an LTL+Past formula. The complete tableau for φ is finite. Moreover, it contains an

accepted branch if and only if φ is satisfiable.

Besides what Proposition 1 states, it is useful to build an intuition of the correspondence

between accepted branches of the tableau and models of the formulas. In particular, the proof

of Proposition 1 [26] shows how to effectively build a model of the formula from an accepted

tableau. This is accomplished by simply stating that any proposition appearing in the label

of the i-th node of the branch holds at the i-th state of the model.

3.3 Adapting the LTL+Past Tableau to Finite Traces

We conclude the section by briefly discussing the finite-trace case. First of all, we observe

that Reynolds’ tableau, as presented above, assumes an infinite-trace semantics, and treats

tomorrow and weak tomorrow formulas exactly in the same way (as they have exactly the

same semantics in the infinite-trace case).

Adapting Reynolds’ tableau to the finite-trace semantics is done as follows:

1. Remove the LOOP rule;

2. Change the EMPTY rule as follows:

EMPTYFIN If Γ (un) does not contain tomorrow formulas, then u is accepted.

3. Optionally, change the PRUNE rule as follows:

PRUNEFIN If there is a j < n such that Γ (uj) = Γ (un), then u is rejected.

Intuitively, by removing the LOOP rule, we ignore infinite periodic models, which end up

being rejected by the PRUNE rule instead. In this way, we focus only on finite models accepted

by the EMPTY rule, which is changed to accept branches with pending weak tomorrow

requests, thus respecting the semantics of the weak tomorrow operator on finite traces. The

PRUNEFIN rule can optionally be used instead of the PRUNE one. Completeness is ensured

123

SAT Meets Tableaux for Linear Temporal… Page 9 of 32 6

in either case, but PRUNEFIN can amount to a considerable speedup, because it can prune

branches much earlier.

The proofs of termination, soundness and completeness of the tableau given in [28] (Propo-

sition 1) work pretty much unchanged in the finite-trace case with the above changes. In

particular:

1. termination is unaffected, since the same argument (see [28], Theorem 1) applies to both

the PRUNE and the PRUNEFIN rules: the number of labels is finite, and therefore, sooner

or later, a label will repeat in any long-enough branch. The PRUNE rule has to wait this

to happen twice, while the PRUNEFIN can reject the branch straightaway.

2. soundness is unaffected, since the same arguments that worked for the EMPTY and the

LOOP rule work now for the EMPTYFIN rule (see [28], Theorem 2);

3. the arguments required to show completeness are unaffected if the PRUNE rule is used

(see [28], Theorem 3). If the PRUNEFIN is used, completeness is much easier to show.

If a branch u = 〈u0, . . . , un〉 has a position j < n such that Γ (uj) = Γ (un), then the

whole subtree obtained by expanding un will also be found as the subtree of uj . Hence,

any successful branch obtained by expanding un can also be obtained by expanding uj ,

hence the search can stop at un and u can be rejected.

Note that the argument at Item 3 above does not work for infinite traces, i.e. PRUNEFIN
would break completeness in that setting, because infinite traces may have to periodically

fulfill multiple eventualities (e.g. Fα ∧Fβ), and partially fulfilling loops can still be valuable.

See the counterexample shown by Geatti et al. [26] in their Fig. 2.

In the following, we will assume to work with the PRUNEFIN rule when looking for finite

traces.

4 A SAT-Based Procedure Based on Reynolds’ Tableau

This section describes our SAT-based LTL satisfiability checking procedure based on

Reynolds’ tableau. The procedure exploits SAT solvers to find suitable branches of the tableau

tree without expanding the tableau nodes explicitly. This exploration is performed up to a

given depth k, for increasing values of k (bounded). The procedure is reported in Algorithm 1.

The five formulas JφKk , |φ|k, |φ|kfin, |φ|kT , and |φ|kT ,fin encode different rules of the tableau.

Note that, at Line 7 of Algorithm 1, |φ|k has to be used to solve the formula for the infinite-

trace semantics, while |φ|kfin has to be used for the finite-trace semantics. A similar distinction

applies to Line 10.

Let us start with some notation. Let φ be an LTL+Past formula in NNF over the alphabet

Σ . We define the following sets of formulas:

XR = {ψ ∈ C(φ) | ψ is a tomorrow formula}

X̃R = {ψ ∈ C(φ) | ψ is a weak tomorrow formula}

YR = {ψ ∈ C(φ) | ψ is a yesterday formula}

ZR = {ψ ∈ C(φ) | ψ is a weak yesterday formula}

XEV = {ψ ∈ C(φ) | ψ is an X-eventuality}

The encoding formulas are defined over an extended alphabet Σ , which includes:

123

 6 Page 10 of 32 L. Geatti et al.

Algorithm 1 Procedure for infinite (resp. finite) trace semantics

1: procedure IS-SAT(φ)

2: k ← 0

3: while True do

4: if JφKk is UNSAT then

5: return φ is UNSAT

6: end if

7: if |φ|k (resp. |φ|kfin) is SAT then

8: return φ is SAT

9: end if

10: if |φ|k
T

(resp. |φ|k
T ,fin

) is UNSAT then

11: return φ is UNSAT

12: end if

13: k ← k + 1

14: end while

15: end procedure

1. any proposition letter from the original alphabet Σ ;

2. the set {pψ | ψ ∈ XR, X̃R, YR,ZR} of propositions that are the surrogate version of the

corresponding X-, Y-, and Z-formulas;

3. a stepped version pk of all the proposition letters defined in items 1 and 2, with k ∈ N
and p0 identified as p.

Intuitively, different stepped versions of the same proposition letter p are used to represent

the value of p at different states. Thus, when pi holds, it means that p belongs to the label

of the i-th step node of the branch, i.e. the i-th state of the model.

Moreover, given ψ ∈ C(φ), we denote by ψS the formula where all the X-, X̃-, Y- and

Z-formulas are replaced by their surrogate version. Similarly, given ψ ∈ C(φ), we denote by

ψk the formula in which all proposition letters are replaced by their k stepped version. We

write ψk
S to denote (ψS)k .

The formula JφKk is called the k-unraveling of φ, and it encodes the expansion of the

tableau tree. To define it, we need an encoding of the expansion rules of Table 1.

Definition 3 (Stepped normal form) Let φ be an LTL+Past formula in NNF. Its stepped

normal form, denoted by snf(φ), is defined as follows:

snf(ℓ) = ℓ where ℓ ∈ {p,¬p}, for p ∈ Σ

snf(⊗φ1) = ⊗φ1 where ⊗ ∈ {̃X,X, Y,Z}

snf(φ1 ⊗ φ2) = snf(φ1) ⊗ snf(φ2) where ⊗ ∈ {∧,∨}

snf(φ1 U φ2) = snf(φ2) ∨ (snf(φ1) ∧ X(φ1 U φ2))

snf(φ1 R φ2) = snf(φ2) ∧ (snf(φ1) ∨ X̃(φ1 R φ2))

snf(φ1 S φ2) = snf(φ2) ∨ (snf(φ1) ∧ Y(φ1 S φ2))

snf(φ1 T φ2) = snf(φ2) ∧ (snf(φ1) ∨ Z(φ1 T φ2))

The stepped normal form is the extension to past operators of the next normal form used by

Geatti et al. [28]. It easily follows from the expansion rules of each operator in Table 1. We

can now define the k-unraveling of φ recursively as follows:

JφK0 = snf(φ)S ∧
∧

ψ∈YR

¬ψS ∧
∧

ψ∈ZR

ψS;

123

SAT Meets Tableaux for Linear Temporal… Page 11 of 32 6

JφKk+1 = JφKk ∧ Tk ∧ Yk ∧ Zk,

where

Tk ≡
∧

Xα∈XR

(
(Xα)kS ↔ snf(α)k+1

S

)
∧

∧

X̃α∈X̃R

(
(̃Xα)kS ↔ snf(α)k+1

S

)
,

Yk ≡
∧

Yα∈YR

(
(Yα)k+1

S ↔ snf(α)kS

)

Zk ≡
∧

Zα∈ZR

(
(Zα)k+1

S ↔ snf(α)kS

)
.

The Tk , Yk and Zk formulas encode, respectively, the STEP, YESTERDAY, and

W-YESTERDAY rules of the tableau, while the base case of the 0-unraveling ensures that

yesterday formulas are false and weak yesterday formulas are true at the first state. The

CONTRADICTION rule of the tableau is implicitly encoded by the fact that only satisfying

assignments of the formula are considered. Similarly, the FORECAST rule does not need to

be explicitly encoded: the intrinsic nondeterminism of the SAT solving process accounts for

the nondeterministic choices implemented by the rule.

Intuitively, if JφKk is unsatisfiable, all the branches of the tableau for φ (either the one for

finite or infinite traces) are rejected before k + 1 steps, as formally stated by the next lemma.

Lemma 1 Let φ be an LTL+Past formula. Then, JφKk is unsatisfiable if and only if all

the branches of the complete tableau for φ are rejected by the CONTRADICTION or

(W-)YESTERDAY rules and contain at most k + 1 step nodes.

Proof We prove the contrapositive, i.e. that JφKk is satisfiable if and only if the complete

tableau for φ has at least a branch that is either accepted, rejected by PRUNE or PRUNEFIN, or

longer than k+1 step nodes. To do that, we establish a connection between truth assignments

of JφKk and suitable branches of the tableau.

From branches to assignments. Let u = 〈u0, . . . , un〉 be a branch that is either accepted,

rejected by PRUNE (or PRUNEFIN), or longer than k + 1 step nodes. Let π = 〈π0, . . . , πm〉

be the sequence of its step nodes. We define a truth assignment ν for JφKk as follows. Since

JφKk contains stepped propositions from p0 until pk , for any given p, we need at most k + 1

step nodes from u, which, however, can be shorter if it is accepted or rejected by the PRUNE

or PRUNEFIN rules. Hence, let ℓ = min{m, k}. Moreover, let pU be p, if p ∈ Σ , and ψ , if

p = ψS , for some X-, X̃-, Y-, or Z-request ψ , i.e. (·)U is the inverse of the (·)S operation.

Then, for 0 ≤ i ≤ ℓ, we set ν(pi) = ⊤ if and only if pU ∈ Γ (πi). Then, we complete the

assignments for positions m < j ≤ k + 1 (if any) as follows:

1. if the branch has been accepted by the EMPTY or the EMPTYFIN rule, the evaluation of

any proposition pj with j > m can be chosen arbitrarily;

2. if the branch has been accepted by the LOOP rule or rejected by the PRUNE or PRUNEFIN
rules, then there is a position w such that Γ (πw) = Γ (πm), and we continue by filling

the truth assignment considering the successor of πw as a successor of πm.

It can be easily checked that the truth assignment built in this way satisfies JφKk .

From assignments to branches. Let ν be a truth assignment for JφKk. We use ν as a guide to

navigate the tableau tree to find a suitable branch which is either accepted, rejected by PRUNE

or PRUNEFIN, or has more than k + 1 step nodes. To do that, we build a sequence of branch

prefixes ui = 〈u0, . . . , ui〉 where at each step we obtain ui+1 by choosing ui+1 among the

children of ui , until we find a leaf or we reach k + 1 step nodes. During the descent, we build

123

 6 Page 12 of 32 L. Geatti et al.

a partial function J : N → N that maps positions j in ui to indexes J (j) such that, for all ψ ,

it holds that ψ ∈ Γ (uj) if and only if ν |H snf(ψ)
J(j)

S , i.e. we build a relationship between

positions in the branch and steps in ν. As the base case, we put u0 = 〈u0〉 and J (0) = 0 so

that the invariant holds since Γ (u0) = {φ} and ν |H snf(φ)0
S by the definition of JφKk . Then,

depending on the rule that was applied to ui , we choose ui+1 among its children as follows.

1. If the STEP rule has been applied to ui , then there is a unique child that we choose as

ui+1, and we define J (i + 1) = J (i) + 1. Now, for all Xα ∈ Γ (ui) or X̃α ∈ Γ (uj),

we have α ∈ Γ (ui+1) by construction of the tableau. Note that snf(Xα) = Xα and

snf (̃Xα) = X̃α, hence we know by construction that ν |H (Xα)
J(j)

S (or ν |H (̃Xα)
J(j)

S).

Then, by definition of JφKk , we know that ν |H snf(α)
J(j)+1
S , i.e. ν |H snf(α)

J(i+1)
S .

For the other direction, if ν |H snf(α)
J(i+1)
S , then by definition of JφKk we have both

ν |H (Xα)
J(i)
S and ν |H (̃Xα)

J(i)
S , hence ν |H snf(Xα)

J(i)
S and ν |H snf (̃Xα)

J(i)
S , and

thus Xα ∈ Γ (ui) and ν |H snf (̃Xα)
J(i)
S , so by construction of the tableau it holds that

α ∈ Γ (ui+1). Hence the invariant holds.

2. If the FORECAST rule has been applied to ui , then there are n children {u1
i , . . . , u

n
i } such

that Γ (ui) ⊆ Γ (um
i) for all 1 ≤ m ≤ n. Now, we set J (i + 1) = J (i) and we choose

ui+1 as a child um
i with a label Γ (um

i) such that, for any ψ , ψ ∈ Γ (ui+1) if and only if

ν |H snf(ψ)
J(i+1)
S . Note that at least one such child exists, because at least one child has

the same label as ui . Thus the invariant holds by construction.

3. If an expansion rule has been applied to ui , then there are one or two children. In both

cases, we set J (i + 1) = J (i). Then, we proceed as follows.

(a) If there is only one child, then it is chosen as ui+1. In such a case, the applied rule

is necessarily the CONJUNCTION one, applied to a formula ψ ≡ ψ1 ∧ ψ2, and thus

ψ1, ψ2 ∈ Γ (ui+1). By construction, ν |H snf(ψ)
J(i)
S , and thus ν |H snf(ψ)

J(i+1)
S .

Since snf(ψ1 ∧ ψ2) = snf(ψ1) ∧ snf(ψ2), it holds that ν |H snf(ψ1)
J(i+1)
S and

ν |H snf(ψ2)
J(i+1)
S . As for the other direction, if ν |H snf(ψ1)

J(i+1)
S and ν |H

snf(ψ2)
J(i+1)
S , then ν |H snf(ψ1 ∧ ψ2)

J(i+1)
S , and thus ν |H snf(ψ1 ∧ ψ2)

J(i)
S . Then,

by construction, it holds that ψ1 ∧ ψ2 ∈ Γ (ui), and thus ψ1, ψ2 ∈ Γ (ui). Hence,

the invariant holds.

(b) If there are two children u′
i and u′′

i , then let us suppose the applied rule is the

DISJUNCTION rule (similar arguments hold for the other rules). In this case, the

rule has been applied to a formula ψ ≡ ψ1 ∨ ψ2, and thus ψ1 ∈ Γ (u′
i) and

ψ2 ∈ Γ (u′′
i). We know that ν |H snf(ψ)

J(i)
S , and hence ν |H snf(ψ)

J(i+1)
S . Since

snf(ψ1 ∨ ψ2) = snf(ψ1) ∨ snf(ψ2), it holds that either ν |H snf(ψ1)
J(i+1)
S or

ν |H snf(ψ2)
J(i+1)
S . Now, we choose ui+1 accordingly, so to respect the invari-

ant. Note that if both nodes are eligible, which one is chosen does not matter. The

other direction of the invariant holds as well, since if either ν |H snf(ψ1)
J(i+1)
S

or ν |H snf(ψ2)
J(i+1)
S , then ν |H snf(ψ1)

J(i)
S or ν |H snf(ψ2)

J(i)
S , and thus

ν |H snf(ψ1 ∨ ψ2)
J(i)
S . Hence, ψ1 ∨ ψ2 ∈ Γ (ui), and then either ψ1 ∈ Γ (ui+1) or

ψ2 ∈ Γ (ui+1).

Let u = 〈u0, . . . , ui〉 be the branch prefix built as above explained, and let π = 〈π0, . . . , πn〉

be the sequence of its step nodes. As already pointed out, the descent stops when πn is a

leaf or when n = k + 1. Note that any leaf is a step node, so ui = πn. In case we find

a leaf, it is not possible that it has been rejected by the CONTRADICTION rule. Otherwise,

123

SAT Meets Tableaux for Linear Temporal… Page 13 of 32 6

we would have {p,¬p} ⊆ Γ (ui), which would mean ν |H pJ(i) and ν |H ¬pJ(i), which

is not possible. Moreover, it is not possible that it has been rejected by the YESTERDAY

rule, as that would mean there is some Yα ∈ Γ (πn), with α /∈ Γ ∗(πn−1), and we know

that ν |H snf(Yα)
J(i)
S , and then ν |H (Yα)

J(i)
S , since snf(Yα) = Yα. Then, by definition of

JφKk , we know that ν |H snf(α)
J(i)−1
S . Since ui = πn is a step node, J (i) − 1 = J (j), for

some j such that uj = πn−1, and thus ν |H snf(α)
J(j)

S , and by construction we know that

α ∈ Γ (uj), which conflicts with the hypothesis that the YESTERDAY rule rejected the branch.

By a similar argument, we can conclude that it is not possible that it has been rejected by the

W-YESTERDAY rule. Hence, we found a branch that either is longer than k + 1 step nodes, or

has been accepted, or has been rejected by the PRUNE or PRUNEFIN rules. ⊓⊔

The formulas |φ|k and |φ|kfin are called respectively the base encoding and the finite base

encoding of φ and, in addition to the k-unraveling, include the encoding of the EMPTY and

LOOP rules (in |φ|k), and of the EMPTYFIN rule (in |φ|kfin). These are the rules that accept the

branches. The two formulas are defined as follows:

|φ|k ≡ JφKk ∧ ((Ek ∧ Ẽk) ∨ Lk)

|φ|kfin ≡ JφKk ∧ Ek

where the formulas Ek and Ẽk , that together encode the EMPTY and EMPTYFIN rules, are

defined as follows:

Ek ≡
∧

ψ∈XR

¬ψk
S Ẽk ≡

∧

ψ∈X̃R

¬ψk
S

and the formula Lk , that encodes the LOOP rule, is defined as follows:

Lk ≡

k−1∨

l=0

(lRk ∧ lGk ∧ lFk) ,

where

lRk ≡
∧

ψ∈XR∪X̃R∪YR∪ZR

(ψ l
S ↔ ψk

S)

lGk ≡
∧

Yα∈YR

(Yα)l+1
S ↔ snf(α)kS ∧

∧

Zα∈ZR

(Zα)l+1
S ↔ snf(α)kS

lFk ≡
∧

ψ∈XEV
ψ≡X(ψ1Uψ2)

(
ψk

S →

k∨

i=l+1

snf(ψ2)
i
S

)
.

Intuitively, lRk encodes the presence of two nodes whose labels contain the same requests

for the next and the previous nodes. Note that the LOOP rule demands the two nodes to have

the same labels, while here we are checking something looser. Hence, we need lGk to be

sure that the two nodes can be used to loop, and in particular, that the past requests at the

step l + 1 are fulfilled at step k. This turns out to be sufficient (see Lemma 3 below). Then,

lFk checks that all the X-eventualities are fulfilled between those nodes. The following result

shows that |φ|k encodes tableau trees where at least one branch is accepted in k + 1 steps.

Lemma 2 Let φ be an LTL+Past formula. If the complete tableau for infinite-trace (resp. for

finite-trace) semantics for φ contains an accepted branch of k+1 step nodes, then |φ|k (resp.

|φ|kfin) is satisfiable.

123

 6 Page 14 of 32 L. Geatti et al.

Proof Suppose that the complete tableau (either for finite- or infinite-trace semantics) for φ

contains an accepted branch of k + 1 step nodes, so let u = 〈u0, . . . , un〉 be such a branch,

and let π = 〈π0, . . . , πk〉 be the sequence of its step nodes. By Lemma 1, JφKk is satisfiable.

We can then build a truth assignment ν, in the same way as in the proof of Lemma 1, such

that ν |H JφKk. Remember that this means that we set ν(pi) = ⊤ if and only if pU ∈ Γ (πi),

for all 0 ≤ i ≤ k. Thus, depending on the semantics we have to prove that ν satisfies either

Ek ∧ Ẽk or Lk (for the infinite-trace semantics) or just Ek (for the finite-trace semantics). To

this end, we need to preliminarily show that ψ ∈ Γ ∗(πi) if and only if ν |H snf(ψ)iS . Such

a statement can be proved by induction on the structure of ψ , by exploiting the definition of

the expansion rules of the tableau.

Now, we distinguish three cases, depending on which rule accepted the branch.

1. If, in the tableau for infinite-trace semantics, the branch was accepted by the EMPTY rule,

then Γ (πk) does not contain tomorrow or weak tomorrow formulas. By definition of ν,

it follows that ν |H ¬ψk
S , for any ψ ∈ XR ∪ X̃R, and thus Ek and Ẽk are satisfied.

2. If, in the tableau for finite-trace semantics, the branch was accepted by the EMPTYFIN
rule, a similar reasoning implies that Ek is satisfied.

3. If the branch was accepted by the LOOP rule, then there exists a node πl such that

Γ (πl) = Γ (πk). By definition of ν, it holds that ν |H ψ l
S if and only if ν |H ψk

S , for any

ψ ∈ XR∪ X̃R∪ YR∪ ZR, and thus lRk is satisfied. Moreover, since Γ (πl) = Γ (πk), any

past request Yα or Zα contained in Γ (πl+1), that by construction is fulfilled in πl , is also

fulfilled in πk , hence lGk is satisfied as well. Then, we know that for any X-eventuality

ψ ≡ X(ψ1 U ψ2) requested in Γ (πk), ψ has been fulfilled between πl and πk , i.e. there

exists l < j ≤ k such that ψ2 ∈ Γ ∗(πj). Hence, it holds that ν |H snf(ψ2)
j
S , and thus

lFk is satisfied. Then, lRk ∧ lGk ∧ lFk is satisfied for at least one l, so Lk is satisfied. ⊓⊔

Lemma 3 Let φ be an LTL+Past formula. If |φ|k (resp. |φ|kfin) is satisfiable, then the complete

tableau for φ for infinite-trace (resp. finite-trace) semantics contains an accepted branch.

Proof Suppose that |φ|k (resp. |φ|kfin) is satisfiable. Hence, there exists a truth assignment ν

such that ν |H |φ|k (resp. ν |H |φ|kfin). Then, JφKk is satisfiable, and we know from Lemma 1

that the complete tableau for φ has a branch that is either accepted, rejected by PRUNE (or

PRUNEFIN), or longer than k + 1 step nodes. Let u = 〈u0, . . . , un〉 be the branch prefix found

as shown in the proof of Lemma 1, and let π = 〈π0, . . . , πm〉 be the sequence of its step

nodes. By construction, there exists a function J : N → N fulfilling the invariant: ψ ∈ Γ (ui)

if and only if ν |H snf(ψ)
J(i)
S . We now show that indeed u is accepted or is the prefix of an

accepted branch. Now we distinguish whether we are talking about |φ|k or |φ|kfin:

1. If |φ|k is satisfiable, either Ek ∧ Ẽk or Lk are satisfiable as well. We distinguish the two

cases:

(a) If Ek ∧ Ẽk is satisfiable, then ν |H ¬ψk
S for each ψ ∈ XR ∪ X̃R. Since ψ is an X- or

X̃-request, snf(ψ) ≡ ψ , and thus ν 6|H snf(ψ)kS . Here, k = J (j), for some j , and,

from the invariant, it follows that ψ /∈ Γ (uj). Hence, uj does not contain any X- or

X̃-request, triggering the EMPTY rule that accepts the branch.

(b) If Lk is satisfiable, so are lRk , lGk and lFk , for some 0 ≤ l < k. From lRk , we

have that ν |H ψ l
S if and only if ν |H ψk

S for all ψ ∈ XR ∪ X̃R ∪ YR ∪ ZR, that is,

ν |H snf(ψ)lS if and only if ν |H snf(ψ)kS , because ψ is an X-, X̃-, Y-, or Z-request.

Here, l = J (i) and k = J (j), for some i and some j . Since the value of the function

J increments at each step node, w.l.o.g. we can assume that ui and uj are step nodes,

and by the invariant it holds that ψ ∈ Γ (ui) if and only if ψ ∈ Γ (uj), that is, ui

123

SAT Meets Tableaux for Linear Temporal… Page 15 of 32 6

and uj have the same X-, X̃-, Y-, and Z-requests. Similarly, the fact that ν |H lFk

tells us that all the X-eventualities requested in ui are fulfilled between ui+1 and uj .

The LOOP rule requires two identical labels in order to trigger, but ui and uj only

have the same requests. However, since they have the same X-requests, we know

that Γ (ui+1) = Γ (uj+1). Then, there is a step node uj ′ , grandchild of uj , such that

Γ (uj) = Γ (uj ′) and the segment of the branch between ui+1 and uj is equal to the

segment between uj+1 and uj ′ , hence all the X-eventualities requested in ui and uj ,

fulfilled between ui+1 and uj , are fulfilled between uj+1 and uj ′ as well, and the

LOOP rule can apply to uj ′ , accepting the branch.

2. If |φ|kfin is satisfiable, then Ek is satisfiable, and the same reasoning applied above for

Ek ∧ Ẽk applies, to conclude that the EMPTYFIN has accepted the branch. ⊓⊔

Finally, the formula |φ|kT and |φ|kT ,fin, called the termination encoding and the finite termi-

nation encoding, and encode the PRUNE and the PRUNEFIN rule, respectively. The formulas

are defined as follows:

|φ|kT ≡ JφKk ∧

k∧

i=0

¬P i

|φ|kT ,fin ≡ JφKk ∧

k∧

i=0

¬P i
fin

where

P k
fin ≡

k−1∨

j=0

jRk

P k ≡

k−2∨

l=0

k−1∨

j=l+1

(
lRj ∧ jRk ∧ lP

k
j

)
,

lP
k
j ≡

∧

ψ∈XEV
ψ≡X(ψ1Uψ2)

(
ψk

S ∧

k∨

i=j+1

snf(ψ2)
i
S →

j∨

i=l+1

snf(ψ2)
i
S

)
.

It can be shown that |φ|kT or |φ|kT ,fin are unsatisfiable if the tableau for φ, for infinite or finite

traces respectively, contains only rejected branches.

Lemma 4 Let φ be an LTL+Past formula. If |φ|kT (resp. |φ|k
T ,fin

) is unsatisfiable, then the

complete tableau for φ for infinite traces (resp. finite traces) contains only rejected branches.

Proof We prove the contrapositive, that is, if the complete tableau for φ contains an accepted

branch, then |φ|kT (or |φ|k
T ,fin

) is satisfiable. Let u = 〈u0, . . . , un〉 be such a branch, and

let π = 〈π0, . . . , πm〉 be the sequence of its step nodes. By Lemma 1, we know JφKk is

satisfiable, thus we can obtain a truth assignment ν such that ν |H JφKk . We can build ν

as in the proof of Lemma 1, that is, such that ν(pi) = ⊤ if and only if pU ∈ Γ (πi) for

all 0 ≤ i ≤ k. Similarly to the proof of Lemma 2, it holds that ψ ∈ Γ ∗(πi) if and only

if ν |H snf(ψ)iS . Now, since the branch is accepted, neither the PRUNE nor the PRUNEFIN
rule can be applied to it. This has the following consequences, depending on whether we are

dealing with infinite or finite traces:

123

 6 Page 16 of 32 L. Geatti et al.

1. for infinite traces, it means that either (i) there are no three nodes πu, πv , πw such that

Γ (πu) = Γ (πv) = Γ (πw), or (ii) these three nodes exist, but there is an X-eventuality

ψ , requested in Γ (πw), which is fulfilled between πu and πv and not between πv and

πw . In case (i), this means that uRv ∧ vRw does not hold for any u and v. In case (ii),

uRv ∧ vRw holds, but uP w
v does not. In both cases, it follows that ¬P i holds for any

0 ≤ i ≤ k, and thus |φ|kT is satisfied;

2. for finite traces, it means that there are no two nodes πu, πw such that Γ (πv) = Γ (πw).

A similar reasoning as above concludes that |φ|kT ,fin is satisfied. ⊓⊔

Together with the soundness and completeness results for the underlying tableau (Proposi-

tion 1), the above Lemmata allow us to prove the soundness and completeness of Algorithm 1.

Theorem 1 (Soundness and completeness) Let φ be an LTL+Past formula. Algorithm 1

always terminates and answers SAT on φ if and only if φ is satisfiable.

Proof As for the left-to-right direction, suppose that the procedure at Algorithm 1 answers

SAT on the formula φ. Then, it means there is a k ≥ 0 such that |φ|k is satisfiable. By

Lemma 3, the complete tableau for φ has an accepting branch. By the soundness of the

tableau, φ is satisfiable.

As for the right-to-left direction, suppose that the formula φ is satisfiable. By the com-

pleteness of the tableau, the complete tableau for φ has an accepting branch. Let us suppose

that such a branch has k + 1 step nodes, for some k ≥ 0. Then, we have to show that the

procedure eventually answers SAT. Let i < k be any earlier iteration of the main loop of the

algorithm. By Lemma 1, JφKi is satisfiable because there is a branch longer than i + 1 step

nodes. Similarly, by Lemma 4, |φ|iT (or |φ|iT ,fin) is satisfiable because not all the branches

of the tableau are rejected. Hence, the algorithm does not answer UNSAT at step i. At step

k, |φ|k is satisfiable by Lemma 2, because the tableau has an accepted branch of k + 1 step

nodes, and thus the algorithm answers SAT.

To see the guarantee of termination, consider that if the formula is satisfiable, then by the

above soundness argument we get a SAT answer, hence the algorithm terminates. Otherwise,

the termination argument for the tableau ensures us that at some depth k all the branches will

be closed by PRUNE (or PRUNEFIN), hence |φ|kT (or |φ|k
T ,fin

) will be unsatisfiable, and the

algorithm will return UNSAT. ⊓⊔

4.1 Incremental Algorithm

Algorithm 1 can be improved to better exploit the incrementality features of modern SAT

solvers. We describe here how to do that in the case of infinite traces. The finite-traces case

is very similar. Most solvers give the possibility to ask multiple related satisfiability queries

without discarding the learnt clauses between subsequent calls. Depending on the cases,

performance can dramatically increase in this way. Algorithm 2 is a variant of Algorithm 1

that shows how to exploit the incrementality of the underlying solver, making use of an

assumption-based interface. With such an interface, supported by all major SAT and SMT

solvers (see e.g. [21]), the satisfiability of multiple assertions can be asked, each time main-

taining the clauses learnt from older assertions. Moreover, the satisfiability of the current set

of assertions can be asked multiple times with a different set of assumptions, where learnt

clauses that follow from the current assumption are discarded at the following satisfiability

query. In this way, the procedure maintains learnt clauses in the SAT solvers between multiple

iteration steps, allowing the solver to build a rich understanding of the tableau tree that is

maintained step after step.

123

SAT Meets Tableaux for Linear Temporal… Page 17 of 32 6

Algorithm 2 LTL satisfiability procedure, incremental version

1: procedure IS-SAT(φ)

2: k ← 0

3: s ← new Solver

4: s.assert(JφK0)

5: while True do

6: if s.solve() = UNSAT then

7: return φ is UNSAT
8: end if

9: if s.solve-assuming((Ek ∧ Ẽk) ∨ Lk) = SAT then

10: return φ is SAT

11: end if

12: s.assert(¬P k)

13: if s.solve() = UNSAT then

14: return φ is UNSAT

15: end if

16: k ← k + 1

17: s.assert(Tk ∧ Yk ∧ Zk)

18: end while

19: end procedure

We will now define the assumption-based interface that we assume a SAT solver to support

in order to make Algorithm 2 work correctly. Many solvers support this style of interfacing.

An incremental solver supports these four operations:

1. Initialization The expression new Solver (used at Line 3 of Algorithm 2) returns a new

object, say s, that keeps track of the state of the solver, that includes A(s), a Boolean

formula called the current assertion of the solver. After the initialization, A(s) = ⊤,

initially.

2. Assertion Given a solver object s and a Boolean formula φ, a call to s.assert(φ) conjuncts

φ to the current assertion, i.e. A(s) ← A(s) ∧ φ.

3. Solving Given a solver object s, a call to s.solve() asks the solver to solve the satisfiability

problem for the current assertion. That is, the call returns SAT if A(s) is satisfiable, or

UNSAT otherwise.

4. Solving with assumptions Given a solver object s and a Boolean formula φ, a call to

s. solve-assuming (φ) asks the solver to solve the satisfiability problem for the current

assertion set conjuncted with φ. That is, the call returns SAT if A(s) ∧ φ is satisfiable, or

UNSAT otherwise. Note that the current assertion is not modified by the call.

The semantics of the above operations do not talk about what happens under the hood. In

practice, a solver implementing these operations will keep as much information as possible

between subsequent calls to solve() and solve-assuming(), to waste as little work as possible.

This can dramatically speed up SAT based algorithms in many cases [22, 43].

Assuming the underlying SAT solver correctly implements the above interface, we can

prove the correctness of Algorithm 2.

Theorem 2 (Incremental algorithm) Let φ be an LTL+Past formula. Algorithm 2 always

terminates and answers SAT if and only if φ is satisfiable.

Proof Let φ be an LTL formula. At first, let us track the evolution of A(s) through the execution

of the algorithm. We track the calls to s.assert(), which is called at Line 4 (i.e. before the

loop), at Line 12, and at Line 17 (at the end of the loop). It is easy to see that at each iteration

123

 6 Page 18 of 32 L. Geatti et al.

k, at the beginning of the loop (Line 6), the current assertion is as follows:

A(s) ≡ JφK0 ∧

k∧

i=1

(Ti ∧ Yi ∧ Zi) ∧

k−1∧

i=0

¬P i

≡ JφKk ∧

k−1∧

i=0

¬P i

Note, instead, that after Line 12, at each iteration k, the assertion is as follows:

A(s) ≡ JφKk ∧

k−1∧

i=0

¬P i ≡ |φ|kT

Now, suppose Algorithm 2 returns SAT at some iteration k ≥ 0. This can only happen

at Line 9. Then, the call to s.solve-assuming((Ek ∧ Ẽk) ∨ Lk) returned SAT. This means

A(s) ∧ ((Ek ∧ Ẽk) ∨ Lk) is satisfiable. Notice that this implies |φ|k is satisfiable, hence by

Lemma 3, φ is satisfiable.

Conversely, suppose φ is satisfiable. By the completeness of the tableau, the complete

tableau for φ has an accepting branch. Let us suppose that such a branch has k + 1 step

nodes, for some k ≥ 0. For all iterations i ≤ k, by Lemma 1, JφKi is satisfiable, and

by Lemma 4, |φ|kT is satisfiable. Hence, neither Line 7 nor Line 14 returns UNSAT at any

iterations i < k. Instead, by Lemma 2, we know |φ|k ≡ JφKk ∧ (Ek ∧ Ẽk)∨Lk is satisfiable,

hence Line 10 correctly returns SAT.

Termination is proved along the lines of Theorem 1, considering that Line 13 effectively

tests the satisfiability of |φ|kT at each iteration. ⊓⊔

4.2 Extraction of Models

We conclude the section by briefly describing an additional feature of the proposed encoding

and algorithm: they can be used not only to decide the satisfiability of LTL+Past formulas,

but also to extract a model for satisfiable ones.

Such an extraction consists of two steps. First of all, one has to ask the SAT solver to

return the values of the proposition letters pt from the assignment to |φ|k. These proposition

letters tell the truth value of the proposition p at each time step t .

Next, in the case of infinite-state semantics, one has to extract the starting state of the loop

of the periodic model identified by the LOOP rule, if any. To this end, a few propositions ℓl,k

are introduced, for some k and some l < k, and the formula Lk , which is used in the base

encoding |φ|k, is modified as follows:

Lk ≡

k−1∧

l=0

(ℓl,k ↔ (lRk ∧ lGk ∧ lFk)) ∧

k−1∨

l=0

ℓl,k

It is clear that this formulation of Lk is equisatisfiable to the formulation of Lk that has

been presented above. However, in this way, for a satisfiable formula ϕ, the first ℓl,k that

turns out to be true tells us that the loop starts at time t = l. If no one of them holds, the

branch was closed by the EMPTY rule and the model can be regarded as looping through its

last state (if we are looking for an infinite model).

123

SAT Meets Tableaux for Linear Temporal… Page 19 of 32 6

Fig. 2 High-level architecture of BLACK

5 Implementation

In order to perform the experimental evaluation described in the next section, the proposed

algorithm has been implemented in a tool that has been called BLACK (Bounded Ltl sAtisfi-

ability ChecKer). To ease reproducibility of the results, the tool is portable across all major

platforms and runs on Windows, Linux, and macOS, and easy-to-install binary packages are

provided for all the supported platforms. Developed over the course of a few years, BLACK

evolved beyond being a simple prototype to test our algorithm. For this reason, this section

describes BLACK’s internal architecture and its main features.

5.1 BLACK’s Library

An important feature of the tool is its embeddability into third-party applications: BLACK is

implemented as a shared library, written in C++20, that can be linked by any client application,

with a well-defined API that provides access to BLACK’s solver and more. The tool itself is

then just a thin command-line wrapper over the library. We will call BLACK’s library libblack,

and theBLACK toolblack, to distinguish them fromBLACK the project as a whole. A high-level

account of the architecture of BLACK is given in Fig. 2.

The libblack library provides several facilities besides the solver itself:

1. basic supporting data structures and metaprogramming utilities;

2. mechanisms to create, parse, and manipulate LTL and propositional formulas;

3. an abstraction layer over the supported SAT solver backends.

The mechanisms to handle LTL formulas inside the library merit their own discussion. To

ease memory management (one of the primary source of bugs in C++ programs), formulas

are represented by objects whose lifetime is exclusively handled by a central alphabet

object whose purpose is to create and keep track of created formulas. Formulas are created by

asking the alphabet object to create new (objects representing) propositional symbols, and

then combining such symbols with logical and temporal operators to obtain more complex

formulas. All formulas are destroyed when the lifetime of the parent alphabet object ends.

In order to save memory, equal formulas are reused. This means that creating twice the same

formula (say, p∧q), will not create two different objects, but the same object is returned. This

deduplicating mechanism, implemented through the use of an efficient hash table, ensures

that checking equality of formulas (for example to implement memoization of recursive

procedures) can be done in O(1) time with a simple and very fast pointer comparison. On

top of that, formulas can of course also be created by parsing strings or text files.

123

 6 Page 20 of 32 L. Geatti et al.

Fig. 3 How to compute the depth

of a formula with the libblack

API

The above structure is similar to the API of many SMT solvers (such as Z3 [20] or

MathSAT [14]), but there are two key differences. The first regards how propositional letters

are labelled. In similar APIs, the name of a propositional symbol or variable is usually a string

of some kind ("p", "q", etc.). Instead, libblack allows objects of any type to be used as

the label of propositional letters. This means that labels of such symbols can carry complex

information, and, in particular, propositional letters can be labelled by other formulas. Thanks

to this particular feature, the surrogating transformation of a formula φ into its corresponding

grounded symbol φS , used in the encoding described in Sect. 4, is essentially a no-op: the

object representing φS is just a propositional symbol whose label is φ.

The second key ingredient is how formulas can be handled once they are created. In

order to ease the implementation of several parts of the solver (the NNF, the stepped normal

form, the encoding, etc.) the libblack library provides facilities to manipulate formulas using

a functional-style pattern matching approach, instead of complex visitor patterns usually

required for such scenarios in classical object-oriented approaches. As an example, the snippet

of code shown in Fig. 3 computes the depth of a formula.

Besides the unavoidable noise introduced by the C++ syntax, the above snippet shows a

clear connection with the formal definition of depth of a formula (which we do not need to

recall here). Note that the burden of implementing this mechanism of formula manipulation is

on the library, since the language does not natively support functional-style pattern matching

on objects.

Thanks to these particular features, the whole encoding and solver algorithm are imple-

mented in just over 400 lines of readable source code. Note that this formula manipulation

layer works for both LTL and propositional formulas (which are just a subset of LTL formulas)

and is useful beyond its use of feeding formulas to the solver, making libblack a flexible basic

block for any application that needs to create, parse, and manipulate LTL formulas.

The second major purpose of the library is to provide access to the SAT solver backends. As

already mentioned, libblack supports MiniSAT [21], CryptoMiniSAT [49], Z3 [20], cvc5 [3],

and MathSAT [14] as backends. Supporting additional backends is a matter of implementing

a few functions to plug into the abstraction layer. Support for further backends is planned for

the future. The major difference in the API of MiniSAT and CryptoMiniSAT on one side,

and Z3 and MathSAT on the other, is that the former two solvers accept input in conjunctive

normal form (CNF), while the latter two accept free-form Boolean formulas. In order to

support the CNF-based solvers, libblack implements a CNF conversion utility based on

the classic Tseitin encoding. This is all hidden behind an abstraction layer that allows the

client application to just create a generic sat::solver object, feed it with propositional

formulas, and get the result of the SAT solving process.

123

SAT Meets Tableaux for Linear Temporal… Page 21 of 32 6

It is also worth mentioning that BLACK supports a first-order extension of LTLf called LTLf
modulo theories (LTLMT

f
). The description of this logic is beyond the scope of this paper, but

readers are redirected to the relevant literature [30].

6 Experimental Evaluation

In this section, we describe the experimental evaluation of BLACK against other state-of-the-

art tools for the satisfiability of LTL, LTL+Past, and LTLf formulas. Benchmarks consist of a

set of input formulas (see later for a detailed account) over which the different tools have been

run to measure their solving speed. All the benchmarks have been run on a 16-core AMD

EPYC 7281 processor with 64GB of RAM, with a timeout of five minutes and a memory

limit of 3GB for each formula. All the benchmark formulas and the supporting scripts are

available in BLACK’s source code repository.3 In all the tests described here, BLACK has been

run using the Z3 backend [20], which is the default backend included in BLACK’s binary

distributions.

6.1 LTL Over Infinite Traces

To evaluate BLACK’s performance on LTL over infinite traces, we compared it with the fol-

lowing tools:

1. the nuXmv [11] model checker, both in SBMC and K-Liveness modes4;

2. Aalta 2 [37], a tool based on an explicit graph-shaped tableau built with the help of a

SAT solver5;

3. ls4 [51], version 1.1,6 a solver based on labelled superposition; we used the ltl2snf

conversion tool to put the formulas in the required separated normal form [34]7;

4. pltl, a tableau-based tool that implements both a graph-shaped tableau [1] and a tree-

shaped tableau à la Schwendimann [47];

5. Leviathan [4], a tool that directly implements the construction of Reynolds’ tableau [45].8

Of these, nuXmv in SBMC mode and Leviathan are the most similar to BLACK, in dif-

ferent ways. The former implements an iterative model checking procedure that looks for

counter-examples to the specification of length at most k, for increasing values of k, with a

completeness check that ensures termination for unsatisfiable formulas [32]. Note that this

means we do not need to specify a maximum value for k in SBMC mode. The latter is the

first implementation of Reynolds’ tableau, which is the tableau underlying BLACK’s SAT

encoding and algorithm, that Leviathan constructs explicitly. All the tools are run with their

default options. In particular, they do not offer tuning options nor anything that can affect

the result of the evaluation except for the operating mode of nuXmv (SBMC vs. K-Liveness)

and pltl (graph- vs. tree-shaped tableau).

These tools have been tested on a total of 4181 formulas, which have been obtained from

two different sources:

3 https://github.com/black-sat/black.
4 https://nuxmv.fbk.eu.
5 https://github.com/lijwen2748/aalta.
6 https://github.com/quickbeam123/ls4.
7 https://nalon.org.

8 https://github.com/Corralx/leviathan.

123

https://github.com/black-sat/black
https://nuxmv.fbk.eu
https://github.com/lijwen2748/aalta
https://github.com/quickbeam123/ls4
https://nalon.org
https://github.com/Corralx/leviathan

 6 Page 22 of 32 L. Geatti et al.

Fig. 4 Scatter plots of running time of BLACK versus nuXmv in SBMC (top row), nuXmv in K-live (middle

row), and Aalta (bottom row) over LTL on infinite traces. The scale is in s. The colors distinguish different

formulas families

123

SAT Meets Tableaux for Linear Temporal… Page 23 of 32 6

Fig. 5 Scatter plots of the running time of BLACK versus pltl in graph (top row), pltl in tree (middle row), and

Leviathan (bottom row) over LTL on infinite traces. The scale is in s. The colors distinguish different formulas

families

123

 6 Page 24 of 32 L. Geatti et al.

Fig. 6 Scatter plots of the running time of BLACK versus ls4 over LTL on infinite traces. The scale is in s. The

colors distinguish different formulas families

1. the formulas collected by Schuppan and Darmawan [46], which include the acacia,

alaska, anzu, forobots, rozier, trp, and schuppan sets9;

2. a set of formulas coming from the LTL encoding of the temporal description logic TDL-

lite, as described by Tahrat et al. [52], which are referred to in the plots as the tdllite

set.

The results are shown in the scatter plots of Figs. 4, 5, 6, in the cactus plot of Fig. 9,

and in the bar charts of Fig. 10. In the comparison with nuXmv, it can be seen that BLACK

outperforms it in SBMC mode, which is the most similar approach to BLACK. With respect

to nuXmv in K-Liveness mode, BLACK performs better over satisfiable formulas and suffers

over unsatisfiable formulas. This is a pattern that repeats also in the comparison with Aalta.

This suffering in unsatisfiable formulas can be explained with the cubic growth in size of the

termination encoding |φ|kT at increasing values of k. On the other hand, in the comparison with

the tableau-based tools Leviathan and pltl, it can be seen that BLACK performs considerably

better both on satisfiable and unsatisfiable formulas. It is worthwhile to note that BLACK

performs particularly well on the tdllite set, followed by Aalta and ls4.

6.2 LTL+Past

To evaluate BLACK over LTL+Past formulas, we compared it with nuXmv [11] which, as far

as we know, is the only other tool available that directly supports past operators. As there

are no readily available benchmark sets for LTL+Past in the literature, we came up with our

own. The benchmark formulas consist of two sets:

1. the random set, which consists of 1300 randomly generated formulas of varying size,

generated in a straightforward way, similarly to what was shown by Tauriainen and

Heljanko [53] (269 UNSAT, 1011 SAT, 20 unknown);

9 The original set contained also the negations of all the formulas but the benchmark set we used was down-

loaded from the StarExec platform [50], where the negations are not included.

123

SAT Meets Tableaux for Linear Temporal… Page 25 of 32 6

Fig. 7 Scatter plots of BLACK versus nuXmv in SBMC (top) and K-Live (bottom) modes, over LTL+Past
formulas

2. the crscounter set, which consists of 240 formulas resulted from the adaptation to

the satisfiability problem of a benchmark set for model checking provided by Cimatti

et al. [13] (112 UNSAT, 101 SAT, 27 unknown).

The second family needs some explanations. In the original benchmark set for model

checking, a Kripke structure called Counter(N), where N is a power of two, is introduced.

Counter(N) works as follows: it starts at c = 0, counts up to c = N , jumps back to c = N/2,

and then loops, counting up to c = N and jumping back to c = N/2, forever. Afterwards,

they evaluated, on top of that Kripke structure, some parametric properties of the form:

P (i) ≡ ¬F
(
O((c = N

2
) ∧ O((c = N

2
+ 1) ∧ . . . ∧ O(c = N

2
+ i) . . .))

)
.

123

 6 Page 26 of 32 L. Geatti et al.

Fig. 8 Scatter plots of BLACK versus Aaltaf (top) and LTL2SAT (bottom) over LTL on finite traces

The value i identifies the number of nested once operators, while the structure of such

properties requires that the loop of length N/2 in the model is traversed backwards several

times in order to reach a counterexample.

Since these benchmarks were introduced in the context of model checking, we made a

reduction from the model checking problem to the satisfiability checking one for LTL+Past:

we built the LTL+Past formulas φCounter(N) and φP (i) encoding the above elements. In this

way, ¬(φCounter(N) → φP (i)) is UNSAT if and only if Counter(N) |H P (i). With this

framework, we were able to obtain both SAT (i ≤ N
2

) and UNSAT (i > N
2

) formulas.

Moreover, this family of formulas stresses the ability to process past operators and find short

counterexamples, and thus it specifically challenges BLACK’s performance.

The results are shown in the scatter plots of Fig. 7, in the cactus plot of Fig. 9, and in the

bar charts of Fig. 10. As can be seen, again BLACK outperforms nuXmv in SBMC mode,

123

SAT Meets Tableaux for Linear Temporal… Page 27 of 32 6

Fig. 9 Cactus plots for LTL over infinite traces (top row), LTL+Past (middle row), and LTL over finite traces

(bottom row). The total number of formulas in the third column is higher than the sum of SAT and UNSAT

formulas. This is because some formulas are not solved by any of the tools, i.e. we don’t know if they are SAT

or not. Therefore they are counted only when aggregating all the results

and is competitive with nuXmv in K-Liveness mode. The performance gain is more visible

in satisfiable formulas, as in the future-only formulas of the previous sections. In general,

BLACK’s performance is better on random formulas. Note that, while for LTL (finite or infinite

traces), most of the solvers solve most of the formulas in short time, general times needed to

solve LTL+Past formulas are higher. The reason for this behaviour is that for the LTL+Past

we have formulas (both the random and the crscounter sets) of increasing size. This translates

into a slightly more uniform distribution of formulas over time with respect to the other cases

where formulas tend to be fixed to a specific size.

123

 6 Page 28 of 32 L. Geatti et al.

Fig. 10 Bar charts for LTL over infinite traces (top row), LTL+Past (middle row), and LTL over finite traces

(bottom row)

6.3 LTL Over Finite Traces

Finally, we compared BLACK against two state-of-the-art tools for LTL over finite traces,

namely Aaltaf [38],10 which implements an algorithm, called Conflict-Driven LTLf Satisfia-

bility Checking, where a SAT-aided explicit tableau construction is paired with the extraction

of unsatisfiable cores to prune the search space, and LTL2SAT [23],11 a tool which employs

a SAT-based reduction, but with specific heuristics for particular classes of formulas.

We compared the tools against the following sets of formulas:

10 https://github.com/lijwen2748/aaltaf.

11 https://ltl2sat.wordpress.com.

123

https://github.com/lijwen2748/aaltaf
https://ltl2sat.wordpress.com

SAT Meets Tableaux for Linear Temporal… Page 29 of 32 6

1. all the formula sets from the infinite traces case as described above, but interpreted over

finite traces;

2. a set of 1875 formulas particularly crafted for finite traces, referred to as LiEtAl2020

in the plots, taken from Li et al. [38] (1301 UNSAT, 567 SAT, 7 unknown).

The results are shown in the scatter plots of Fig. 8, in the cactus plot of Fig. 9, and in the

bar charts of Fig. 10. The finite traces setting is the one where BLACK suffers the most. As

usual, the performance is better on satisfiable formulas. As in the infinite trace setting, it is

worthwhile to note that BLACK performs comparably particularly well on the tdllite set.

It is worthwhile to note that, even though LTL2SAT generally has very good performance, it

seems to suffer from some correctness problems since, in a non-negligible number of cases,12

it reports results different from those reported by BLACK and Aaltaf.

7 Conclusions

In this paper, we presented a new SAT-based satisfiability checking technique for LTL,

LTL+Past, and LTLf , inspired by the one-pass and tree-shaped tableau by Reynolds [45].

We provided full correctness proofs and an extensive experimental evaluation of the perfor-

mance of its implementation, included in the BLACK satisfiability checker, whose architecture

has also been described. Performance-wise, the evaluation shows that our implementation of

the technique is competitive with other state-of-the-art tools in most circumstances, especially

on satisfiable formulas.

Many future developments are possible. From the point of view of the performance, it

would be interesting to find heuristics to optimize the application of the PRUNE rule of the

tableau in order to speed up the execution on unsatisfiable formulas. In particular, a linear-size

encoding (similar to the ones for Bounded Model Checking introduced by Biere et al. [7])

would arguably provide a great speed-up in such cases.

Reynolds’ tableau has been extended to other logics beyond LTL, such as TPTL. A similar

SAT (or SMT) encoding for the TPTL tableau would allow BLACK to support this real-time

logic as well. Similar extensions are being investigated for first-order extensions of LTL, e.g.

LTL modulo theories [30].

As far as the tool itself is concerned, many improvements are possible, such as the support

of more SAT backends, the improvement of the efficiency of the current CNF translation,

the stabilization and documentation of the library API, the integration of more input and/or

output formats. Moreover, the modular structure of the tool and of the library is not at all tied

to the specific algorithm and encoding presented here, hence the implementation of different

satisfiability checking approaches is possible and would provide a nice portfolio-based solver

able to cope with even more application scenarios.

Author Contributions All authors contributed equally to the realisation of this manuscript.

Funding Open access funding provided by Libera Università di Bolzano within the CRUI-CARE Agreement.

Nicola Gigante acknowledges the support of the TOTA project (Temporal Ontologies and Tableau Algorithms)

funded by the Free University of Bozen-Bolzano. Luca Geatti, Nicola Gigante, and Angelo Montanari would

also like to acknowledge the support from the GNCS project: “Strategic reasoning and automatic synthesis of

multi-agent systems”. Gabriele Venturato acknowledges the partial support of the KU Leuven Research Fund

(C14/18/062).

12 Precisely, 468 formulas out of 6113.

123

 6 Page 30 of 32 L. Geatti et al.

Declarations

Competing Interests The authors declare no competing interests affecting this manuscript.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which

permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give

appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,

and indicate if changes were made. The images or other third party material in this article are included in the

article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is

not included in the article’s Creative Commons licence and your intended use is not permitted by statutory

regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abate, P., Goré, R., Widmann, F.: An on-the-fly tableau-based decision procedure for PDL-satisfiability.

Electron. Notes Theor. Comput. Sci. 231, 191–209 (2009). https://doi.org/10.1016/j.entcs.2009.02.036

2. Bacchus, F., Kabanza, F.: Planning for temporally extended goals. Ann. Math. Artif. Intell. 22(1–2), 5–27

(1998)

3. Barbosa, H., Barrett, C.W., Brain, M., Kremer, G., Lachnitt, H., Mann, M., Mohamed, A., Mohamed, M.,

Niemetz, A., Nötzli, A., Ozdemir, A., Preiner, M., Reynolds, A., Sheng, Y., Tinelli, C., Zohar, Y.: cvc5: a

versatile and industrial-strength SMT solver. In: Fisman, D., Rosu, G. (eds.) Tools and Algorithms for the

Construction and Analysis of Systems-28th International Conference, TACAS 2022, Held as Part of the

European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich, Germany, April

2-7, 2022, Proceedings, Part I, Lecture Notes in Computer Science, vol. 13243, pp. 415–442. Springer

(2022). https://doi.org/10.1007/978-3-030-99524-9_24

4. Bertello, M., Gigante, N., Montanari, A., Reynolds, M.: Leviathan: a new LTL satisfiability checking tool

based on a one-pass tree-shaped tableau. In: Proceedings of the 25th International Joint Conference on

Artificial Intelligence, pp. 950–956. IJCAI/AAAI Press (2016)

5. Beth, E.W.: Semantic entailment and formal derivability. Sapientia 14(54), 311 (1959)

6. Biere, A., Cimatti, A., Clarke, E.M., Strichman, O., Zhu, Y.: Bounded model checking. Adv. Comput.

58, 117–148 (2003). https://doi.org/10.1016/S0065-2458(03)58003-2

7. Biere, A., Heljanko, K., Junttila, T.A., Latvala, T., Schuppan, V.: Linear encodings of bounded LTL model

checking. Log. Methods Comput. Sci. (2006). https://doi.org/10.2168/LMCS-2(5:5)2006

8. Brafman, R.I., De Giacomo, G.: Planning for LTLf/LDLf goals in non-markovian fully observable nonde-

terministic domains. In: Kraus, S. (ed.) Proceedings of the Twenty-Eighth International Joint Conference

on Artificial Intelligence, pp. 1602–1608 (2019). https://doi.org/10.24963/ijcai.2019/222

9. Brafman, R.I., De Giacomo, G., Patrizi, F.: LTLf/LDLf non-markovian rewards. In: S.A. McIlraith, K.Q.

Weinberger (eds.) Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, pp.

1771–1778. AAAI Press (2018)

10. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M.,

Tonetta, S.: The nuXmv symbolic model checker. In: Computer Aided Verification, pp. 334–342. Springer

(2014). https://doi.org/10.1007/978-3-319-08867-9_22

11. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti, A., Micheli, A., Mover, S., Roveri, M.,

Tonetta, S.: The nuXmv symbolic model checker. In: Proceedings of the 26th International Conference

on Computer Aided Verification, pp. 334–342. Springer (2014)

12. Cimatti, A., Roveri, M., Sheridan, D.: Bounded verification of past LTL. In: Proceedings of the 5th

International Conference on Formal Methods in Computer-Aided Design, pp. 245–259. Springer (2004)

13. Cimatti, A., Roveri, M., Sheridan, D.: Bounded Verification of Past LTL. In: Formal Methods in Computer-

Aided Design, LNCS, pp. 245–259. Springer (2004). https://doi.org/10.1007/978-3-540-30494-4_18

14. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman,

N., Smolka, S.A. (eds.) Proceedings of the 19th International Conference on Tools and Algorithms for

the Construction and Analysis of Systems, Lecture Notes in Computer Science, vol. 7795, pp. 93–107.

Springer (2013). https://doi.org/10.1007/978-3-642-36742-7_7

15. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press, Cambridge (2001)

16. De Giacomo, G., Vardi, M.Y.: Linear temporal logic and linear dynamic logic on finite traces. In: Rossi,

F. (ed.) Proceedings of the 23rd International Joint Conference on Artificial Intelligence, pp. 854–860.

IJCAI/AAAI (2013)

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.entcs.2009.02.036
https://doi.org/10.1007/978-3-030-99524-9_24
https://doi.org/10.1016/S0065-2458(03)58003-2
https://doi.org/10.2168/LMCS-2(5:5)2006
https://doi.org/10.24963/ijcai.2019/222
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-540-30494-4_18
https://doi.org/10.1007/978-3-642-36742-7_7

SAT Meets Tableaux for Linear Temporal… Page 31 of 32 6

17. De Giacomo, G., De Masellis, R., Grasso, M., Maggi, F.M., Montali, M.: Monitoring business metacon-

straints based on LTL and LDL for finite traces. In: Sadiq, S.W., Soffer, P., Völzer, H. (eds.) Proceedings of

the 12th International Conference on Business Process Management, Lecture Notes in Computer Science,

vol. 8659, pp. 1–17. Springer (2014). https://doi.org/10.1007/978-3-319-10172-9_1

18. De Giacomo, G., Vardi, M.Y.: Synthesis for LTL and LDL on finite traces. In: Yang, Q., Wooldridge,

M.J. (eds.) Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence,

pp. 1558–1564. AAAI Press (2015)

19. De Giacomo, G., Iocchi, L., Favorito, M., Patrizi, F.: Foundations for restraining bolts: Reinforcement

learning with LTLf/LDLf restraining specifications. In: Benton, J., Lipovetzky, N., Onaindia, E., Smith,

D.E., Srivastava, S. (eds.) Proceedings of the Twenty-Ninth International Conference on Automated

Planning and Scheduling, pp. 128–136. AAAI Press (2019)

20. de Moura, L.M., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.)

Proceedings of the 14th International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, Lecture Notes in Computer Science, vol. 4963, pp. 337–340. Springer (2008).

https://doi.org/10.1007/978-3-540-78800-3_24

21. Eén, N., Sörensson, N.: An extensible sat-solver. In: Selected Revised Papers of the 6th International

Conference on Theory and Applications of Satisfiability Testing, pp. 502–518 (2003). https://doi.org/10.

1007/978-3-540-24605-3_37

22. Eén, N., Sörensson, N.: An extensible sat-solver. In: International conference on theory and applications

of satisfiability testing, pp. 502–518. Springer (2003)

23. Fionda, V., Greco, G.: LTL on finite and process traces: complexity results and a practical reasoner. J.

Artif. Intell. Res. 63, 557–623 (2018). https://doi.org/10.1613/jair.1.11256

24. Fisher, M.: A resolution method for temporal logic. In: Mylopoulos, J., Reiter, R. (eds.) Proceedings of

the 12th International Joint Conference on Artificial Intelligence, pp. 99–104. Morgan Kaufmann (1991)

25. Fisher, M.: A normal form for temporal logics and its applications in theorem-proving and execution. J.

Logic Comput. 7(4), 429–456 (1997). https://doi.org/10.1093/logcom/7.4.429

26. Geatti, L., Gigante, N., Montanari, A., Reynolds, M.: One-pass and tree-shaped tableau systems for TPTL

and TPTLb+Past. In: Orlandini, A., Zimmermann, M. (eds.) Proceedings 9th International Symposium

on Games, Automata, Logics, and Formal Verification, EPTCS, vol. 277, pp. 176–190 (2018). https://doi.

org/10.4204/EPTCS.277.13

27. Geatti, L., Gigante, N., Montanari, A.: A SAT-Based encoding of the one-pass and tree-shaped tableau

system for LTL. In: Cerrito, S., Popescu, A. (eds.) Proceedings of the 28th International Conference on

Automated Reasoning with Analytic Tableaux and Related Methods, Lecture Notes in Computer Science,

vol. 11714, pp. 3–20. Springer (2019). https://doi.org/10.1007/978-3-030-29026-9_1

28. Geatti, L., Gigante, N., Montanari, A., Reynolds, M.: One-pass and tree-shaped tableau systems for TPTL

and TPTLb Past. Inf. Comput. 278, 104599 (2021). https://doi.org/10.1016/j.ic.2020.104599

29. Geatti, L., Gigante, N., Montanari, A., Venturato, G.: Past matters: Supporting LTL+Past in the BLACK

satisfiability checker. In: Proceedings of the 28th International Symposium on Temporal Representation

and Reasoning (2021)

30. Geatti, L., Gianola, A., Gigante, N.: Linear temporal logic modulo theories over finite traces. In: L.D.

Raedt (ed.) Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence, IJCAI

2022, Vienna, Austria, 23–29 July 2022, pp. 2641–2647. ijcai.org (2022). https://doi.org/10.24963/ijcai.

2022/366

31. Gigante, N., Montanari, A., Reynolds, M.: A one-pass tree-shaped tableau for LTL+Past. In: Proc. of 21st

International Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series

in Computing, vol. 46, pp. 456–473 (2017)

32. Heljanko, K., Junttila, T., Latvala, T.: Incremental and complete bounded model checking for full PLTL. In:

Proceedings of the 17th International Conference on Computer Aided Verification, pp. 98–111. Springer

(2005)

33. Hustadt, U., Konev, B.: TRP++2.0: A temporal resolution prover. In: Proceedings of the 19th International

Conference on Automated Deduction, LNCS, vol. 2741, pp. 274–278. Springer (2003). https://doi.org/

10.1007/978-3-540-45085-6_21

34. Hustadt, U., Nalon, C., Dixon, C.: Evaluating pre-processing techniques for the separated normal form

for temporal logics. In: B. Konev, J. Urban, P. Rümmer (eds.) Proceedings of the 6th Workshop on

Practical Aspects of Automated Reasoning co-located with Federated Logic Conference 2018 (FLoC

2018), Oxford, UK, July 19th, 2018, CEUR Workshop Proceedings, vol. 2162, pp. 34–48. CEUR-WS.org

(2018)

35. Kesten, Y., Manna, Z., McGuire, H., Pnueli, A.: A decision algorithm for full propositional temporal

logic. In: Proc. of the 5th International Conference on Computer Aided Verification, LNCS, vol. 697, pp.

97–109. Springer (1993). https://doi.org/10.1007/3-540-56922-7_9

123

https://doi.org/10.1007/978-3-319-10172-9_1
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1613/jair.1.11256
https://doi.org/10.1093/logcom/7.4.429
https://doi.org/10.4204/EPTCS.277.13
https://doi.org/10.4204/EPTCS.277.13
https://doi.org/10.1007/978-3-030-29026-9_1
https://doi.org/10.1016/j.ic.2020.104599
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.24963/ijcai.2022/366
https://doi.org/10.1007/978-3-540-45085-6_21
https://doi.org/10.1007/978-3-540-45085-6_21
https://doi.org/10.1007/3-540-56922-7_9

 6 Page 32 of 32 L. Geatti et al.

36. Li, J., Yao, Y., Pu, G., Zhang, L., He, J.: Aalta: an LTL satisfiability checker over infinite/finite traces.

In: Cheung, S., Orso, A., Storey, M.D. (eds.) Proceedings of the 22nd ACM SIGSOFT International

Symposium on Foundations of Software Engineering, pp. 731–734. ACM (2014). https://doi.org/10.

1145/2635868.2661669

37. Li, J., Zhu, S., Pu, G., Zhang, L., Vardi, M.Y.: Sat-based explicit LTL reasoning and its application

to satisfiability checking. Formal Methods Syst. Des. 54(2), 164–190 (2019). https://doi.org/10.1007/

s10703-018-00326-5

38. Li, J., Pu, G., Zhang, Y., Vardi, M.Y., Rozier, K.Y.: Sat-based explicit LTLF satisfiability checking. Artif.

Intell. 289, 103369 (2020). https://doi.org/10.1016/j.artint.2020.103369

39. Lichtenstein, O., Pnueli, A.: Propositional temporal logics: decidability and completeness. Logic J. IGPL

8(1), 55–85 (2000). https://doi.org/10.1093/jigpal/8.1.55

40. Lichtenstein, O., Pnueli, A., Zuck, L.D.: The Glory of the Past. In: Procedings of the Logics of Programs

Conference, LNCS, vol. 193, pp. 196–218. Springer (1985). https://doi.org/10.1007/3-540-15648-8_16

41. Markey, N.: Temporal logic with past is exponentially more succinct. Bull. EATCS 79, 122–128 (2003)

42. McCabe-Dansted, J.C., Reynolds, M.: A parallel linear temporal logic tableau. In: Bouyer, P., Orlandini,

A., Pietro, P.S. (eds.) Proceedings of the 8th International Symposium on Games, Automata, Logics and

Formal Verification, EPTCS, vol. 256, pp. 166–179 (2017)

43. Moskewicz, M.W., Madigan, C.F., Zhao, Y., Zhang, L., Malik, S.: Chaff: Engineering an efficient sat

solver. In: Proceedings of the 38th annual Design Automation Conference, pp. 530–535 (2001)

44. Pnueli, A.: The Temporal Logic of Programs. In: Proceedings of the 18th Annual Symposium on Foun-

dations of Computer Science, pp. 46–57. IEEE Computer Society (1977). https://doi.org/10.1109/SFCS.

1977.32

45. Reynolds, M.: A New Rule for LTL Tableaux. In: Proceedings of the 7th International Symposium on

Games, Automata, Logics and Formal Verification, EPTCS, vol. 26, pp. 287–301 (2016). https://doi.org/

10.4204/EPTCS.226.20

46. Schuppan, V., Darmawan, L.: Evaluating LTL satisfiability solvers. In: Proceedings of the 9th International

Symposium on Automated Technology for Verification and Analysis, pp. 397–413 (2011)

47. Schwendimann, S.: A new one-pass tableau calculus for PLTL. In: Proceedings of the 7th International

Conference on Automated Reasoning with Analytic Tableaux and Related Methods, LNCS, vol. 1397,

pp. 277–292. Springer (1998). https://doi.org/10.1007/3-540-69778-0_28

48. Sistla, A.P., Clarke, E.M.: The complexity of propositional linear temporal logics. J. ACM 32(3), 733–749

(1985). https://doi.org/10.1145/3828.3837

49. Soos, M., Nohl, K., Castelluccia, C.: Extending SAT solvers to cryptographic problems. In: O. Kullmann

(ed.) Proceedings of the 12th International Conference on Theory and Applications of Satisfiability

Testing, Lecture Notes in Computer Science, vol. 5584, pp. 244–257. Springer (2009). https://doi.org/10.

1007/978-3-642-02777-2_24

50. Stump, A., Sutcliffe, G., Tinelli, C.: Starexec: A cross-community infrastructure for logic solving. In:

Demri, S., Kapur, D., Weidenbach, C. (eds.) Automated Reasoning—7th International Joint Conference,

IJCAR 2014, Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 19–22, 2014.

Proceedings, Lecture Notes in Computer Science, vol. 8562, pp. 367–373. Springer (2014). https://doi.

org/10.1007/978-3-319-08587-6_28

51. Suda, M., Weidenbach, C.: A PLTL-prover based on labelled superposition with partial model guidance.

In: Proceedings of the 6th International Joint Conference on Automated Reasoning, LNCS, vol. 7364, pp.

537–543. Springer (2012). https://doi.org/10.1007/978-3-642-31365-3_42

52. Tahrat, S., Braun, G., Artale, A., Ozaki, A.: Abstracting temporal aboxes in TDL-Lite. In: Proceedings

of the 34th International Workshop on Description Logics (2021)

53. Tauriainen, H., Heljanko, K.: Testing LTL formula translation into Büchi automata. Int. J. Softw. Tools

Technol. Transf. 4(1), 57–70 (2002). https://doi.org/10.1007/s100090200070

54. Wolper, P.: Temporal logic can be more expressive. Inf. Control 56(1/2), 72–99 (1983). https://doi.org/

10.1016/S0019-9958(83)80051-5

55. Wolper, P.: The tableau method for temporal logic: an overview. Logique et Analyse 28, 119–136 (1985)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

123

https://doi.org/10.1145/2635868.2661669
https://doi.org/10.1145/2635868.2661669
https://doi.org/10.1007/s10703-018-00326-5
https://doi.org/10.1007/s10703-018-00326-5
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.1093/jigpal/8.1.55
https://doi.org/10.1007/3-540-15648-8_16
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.4204/EPTCS.226.20
https://doi.org/10.4204/EPTCS.226.20
https://doi.org/10.1007/3-540-69778-0_28
https://doi.org/10.1145/3828.3837
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-642-02777-2_24
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-319-08587-6_28
https://doi.org/10.1007/978-3-642-31365-3_42
https://doi.org/10.1007/s100090200070
https://doi.org/10.1016/S0019-9958(83)80051-5
https://doi.org/10.1016/S0019-9958(83)80051-5

	SAT Meets Tableaux for Linear Temporal Logic Satisfiability
	Abstract
	1 Introduction
	2 Related Work
	3 Reynolds' One-Pass and Tree-Shaped Tableau System
	3.1 Syntax and Semantics of LTL+Past
	3.2 The One-Pass and Tree-Shaped Tableau for LTL+Past
	3.3 Adapting the LTL+Past Tableau to Finite Traces

	4 A SAT-Based Procedure Based on Reynolds' Tableau
	4.1 Incremental Algorithm
	4.2 Extraction of Models

	5 Implementation
	5.1 BLACK's Library

	6 Experimental Evaluation
	6.1 LTL Over Infinite Traces
	6.2 LTL+Past
	6.3 LTL Over Finite Traces

	7 Conclusions
	References

