
Journal of Automated Reasoning (2023) 67:39
https://doi.org/10.1007/s10817-023-09687-x

Saturation-Based Boolean Conjunctive Query Answering and
Rewriting for the Guarded Quantification Fragments

Sen Zheng1 · Renate A. Schmidt1

Received: 19 August 2021 / Accepted: 13 September 2023 / Published online: 23 November 2023
© The Author(s) 2023

Abstract
Query answering is an important problem in AI, database and knowledge representation. In
this paper, we develop saturation-based Boolean conjunctive query answering and rewrit-
ing procedures for the guarded, the loosely guarded and the clique-guarded fragments. Our
query answering procedure improves existing resolution-based decision procedures for the
guarded and the loosely guarded fragments and this procedure solves Boolean conjunctive
query answering problems for the guarded, the loosely guarded and the clique-guarded frag-
ments. Based on this query answering procedure, we also introduce a novel saturation-based
query rewriting procedure for these guarded fragments. Unlike mainstream query answering
and rewriting methods, our procedures derive a compact and reusable saturation, namely a
closure of formulas, to handle the challenge of querying for distributed datasets. This paper
lays the theoretical foundations for the first automated deduction decision procedures for
Boolean conjunctive query answering and the first saturation-based Boolean conjunctive
query rewriting in the guarded, the loosely guarded and the clique-guarded fragments.

Keywords Saturation-based decision procedure · Saturation-based query rewriting ·
Boolean conjunctive query · Unskolemisation · Guarded fragment · Loosely guarded
fragment · Clique-guarded fragment

1 Introduction

The problem of answering conjunctive queries [1, 90] over logical constraints is at the heart
of knowledge representation and database research. This problem can be reduced to that of
Boolean conjunctive query (BCQ) answering by instantiating free variables in conjunctive
queries with facts from databases. Problems in many fields of computer science such as con-
straint satisfaction problems [34, 63], homomorphism problems [26] and query evaluation
and containment problems [26] can be recast as Boolean conjunctive query answering prob-
lems [91]. Our interest in this paper is to develop practical methods and inference systems
that can provide the basis for the following problems:

B Sen Zheng
sen.zheng@manchester.ac.uk

1 Department of Computer Science, University of Manchester, Manchester, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09687-x&domain=pdf
http://orcid.org/0000-0003-4415-811X
http://orcid.org/0000-0002-6673-3333

39 Page 2 of 68 S. Zheng, R. A. Schmidt

Fig. 1 The relationship of the guarded quantification fragments, (negated) BCQs and first-order logic

– answering BCQs for the guarded, the loosely guarded and the clique-guarded fragments,
and

– saturation-based rewriting of BCQs for these guarded fragments.

The guarded fragment (GF) and the loosely guarded fragment (LGF) are introduced in [3,
97] as generalised modal fragments of first-order logic (FOL). In a guarded formula the free
variables of quantified formulas are ‘guarded’ by an atom. Strictly extended from GF, the
loosely guarded fragment LGF, which is also known as the pairwise guarded fragment [4,
97], pairwise ‘guards’ the free variables of quantified formulas using a conjunction of atoms.
This conjunction is called a loose guard where the variables form a ‘clique’. Further LGF has
been extended to the clique-guarded fragment (CGF) [45], in which the ‘cliques’ are extended
with branches. In [55, 65] CGF is called the packed fragment. A common characteristic of GF,
LGF and CGF is that the free variables of quantified formulas need to be guarded; therefore we
collectively refer to these fragments as the guarded quantification fragments. These fragments
are decidable and have well-behaved computational properties [3, 28, 45, 46, 55, 56, 65, 97].
Figure 1 shows the relationship between the guarded quantification fragments, (negated)
BCQs targeted in this paper and FOL.

The computational complexity of the BCQ answering problem for GF is 2ExpTime-
complete [12]. For LGF and CGF the complexity of the BCQ answering problem is also
2ExpTime-complete, as in both cases the problem is reducible to the satisfiability checking
problem of the clique-guarded negation fragment [11].1 Figure 2 lists important known prop-
erties of the guarded quantification fragments where✓ and ✗ respectively denote positive and
negative results. In the Satisfiability checking column of Fig. 2, we assume that the fragments
have a fixed signature.

Resolution-based procedures have been devised for deciding satisfiability in GF in [29,
39] and for LGF in [29, 39, 98]. Tableau-based procedures have been devised for deciding sat-
isfiability in GF [54] and CGF [53]. However, querying poses a major problem, since neither
BCQ nor its negation belongs to the guarded quantification fragments (see Fig. 1). Indeed, so
far it appears that there has been no effort to extend these methods to solving the BCQ answer-
ing problems for any of the guarded quantification fragments, even if the aforementioned
complexity results mean that in theory, these querying problems are decidable. Introducing
new techniques, this paper develops decision procedures to answer BCQs for all the guarded
quantification fragments. Our initial work for solving the BCQ answering problem for Horn
LGF was published in [98] and for GF was published in [99].

1 This paper does not consider the clique-guarded negation fragment.

123

Saturation-Based Boolean Conjunctive … Page 3 of 68 39

Fig. 2 Known properties of the guarded quantification fragments

Fig. 3 Saturation-based BCQ answering processing of a set of guarded quantification formulas Σ , a dataset
D and a BCQ q

Figure 3 illustrates the idea of our query answering procedure. Given a set Σ of rules, a
dataset D and a BCQq , checkingwhetherΣ∪D |� q is equivalent to checking unsatisfiability
of {¬q}∪Σ∪D. To decide {¬q}∪Σ∪D, we transform it into a clausal form. In particular,Σ
and D are mapped to loosely guarded clauses and ¬q to query clauses. To perform the
saturation process we develop a novel top-variable inference system. This system ensures
termination when we perform resolution inferences on loosely guarded clauses and query
clauses.

Conventional BCQ rewriting tasks aim to reduce a BCQ entailment problem to a model
checking problem: one first compiles a BCQ q and a set Σ of formulas into a (function-free)
first-order formulaΣq , and then applies a model checking algorithm toΣq over datasets [24,
32, 48]. If this reduction is possible, then q and Σ are called first-order (FO) rewritable.
Counter-examples in [13, 14] imply that this property does not hold for BCQs for any of
the guarded quantification fragments. To address this problem, we introduce a new setting
of saturation-based query rewriting. This rewriting reduces the query answering problem
Σ ∪ D |� q to the entailment problem D |� Σq , where Σq is a first-order formula. Our
query rewriting method pre-saturates the clausal form of {¬q} ∪ Σ and does it in such a
way that this pre-saturation can be restored to a first-order formula Σq . Using our method,
any dataset D can be tested against the pre-saturation, but it is also possible to use other
reasoning methods such as the chase algorithm [2, 64] to solve the entailment checking of
D |� Σq . Figure 4 outlines our saturation-based query rewriting procedure, which applies
the saturation process to the rules and the query but not the dataset, and back-translates the
saturation to a first-order formula Σq .

This result is of independent interest to automated reasoning, as back-translating a clausal
set that includes inferred conclusions, to a first-order formula typically fails, as in general this
problem is undecidable [37]. Using results established in [33] that a clausal set can be back-

123

39 Page 4 of 68 S. Zheng, R. A. Schmidt

Fig. 4 Saturation-based BCQ rewriting processing of a set of guarded quantification formulas Σ and a BCQ q

translated into a first-order formula if the clausal set satisfies certain properties, we devise a
query rewriting procedure that ensures a successful back-translation. To distinguish our query
rewriting setting from the traditional ones, we refer to our approach as saturation-based query
rewriting.

To provide a basis for implementation, our query answering and rewriting approaches are
devised in line with the resolution framework of [8], which provides the basis for powerful
saturation-based theorem provers such as E [83], SPASS [95], Vampire [75] and Zipperpo-
sition [27] and a lot of work in automated reasoning [31, 73, 81, 84, 93].

In a nutshell, the contributions of this paper are:

– Inference systems for deciding BCQ answering for GF, LGF and CGF, dedicated to provide
the basis for practical decision procedures.

– A novel saturation-based BCQ rewriting approach for GF, LGF and CGF.
– Improvements on existing resolution-based decision approaches for GF and LGF, and the

first resolution-based approach for deciding CGF.
– Novel saturation-based resolution inference systems, namely a partial selection-based

resolution system and a top-variable resolution system, with formal soundness and refu-
tational completeness proofs for first-order clausal logic.

– Our procedures are applicable to answer and rewrite BCQs for real-world ontologi-
cal languages such as guarded, loosely guarded, and clique-guarded Datalog± and the
description logicALCHOI.

– Novel aspects of our approach include but are not limited to: the separation rules, the
partial selection-based and top-variable resolution rules, the clausification processes
and the back-translation procedure. These techniques may allow decision and querying
problems for other fragments to be solved in the future.

The remainder of this paper is organised as follows. Section 2 formally defines basic
notions of first-order logic, the guarded quantification fragments and the research questions.
Section 3 reduces the BCQ answering problem for the targeted guarded fragments to an
unsatisfiability checking problem of loosely guarded clauses and query clauses. Section 4
presents the partial selection-based resolution system and the top-variable resolution sys-
tem. Section 5 then proves that the top-variable system decides satisfiability of the class of
loosely guarded clauses. Section 6 tackles query clauses by introducing the separation rules
and formula renaming. Combining the results from the previous sections, Sect. 7 devises
a BCQ answering procedure for the guarded quantification fragments. Section 8 develops a

123

Saturation-Based Boolean Conjunctive … Page 5 of 68 39

saturation-based BCQ rewriting procedure for these guarded fragments. Sections 9 and 10
discuss related work and conclude the paper, respectively.

2 Basic Notions, Guarded Fragments and the Querying Problems

Basic Notions

Let C, F and P be countably infinite sets that are pairwise disjoint. The elements in C, F and
P are constant symbols (or constants), function symbols and predicate symbols. A predicate
symbol of arity zero is a propositional variable. We refer the triple (C,F,P) as a signature. A
term is either a constant, or a variable, or it has the form of f (t1, . . . , tn) if i) f is a function
symbol of arity n and ii) t1, . . . , tn are terms. A compound term is a term that is neither a
constant nor a variable. An atom is an expression P(t1, . . . , tn), where P is a n-ary predicate
symbol distinct from≈ and t1, . . . , tn are terms. A literal is an atom A or a negated atom¬A.
Given two terms (or atoms) E1 = A(. . . , t, . . .) and E2 = B(. . . , s, . . .), we say t pairs s
if the argument position of t in E1 is the same as that of s in E2. If a signature allows the
special predicate symbols ≈ and �≈, then the setting is first-order logic with equality. We use
infix notation for positive and negative equational atoms: s ≈ t and s �≈ t .

In a quantified first-order formula ∀x F or ∃x F , x is the quantified variable and F is the
scope of the quantified variable x . An occurrence of a variable x in a first-order formula F is
a free variable of F if and only if x is not within the scope of quantified variables. A sentence
(or closed formula) is a first-order formula without free variables. A first-order clause (or
clause) is a multiset of literals, interpreted as a disjunction of literals. A positive (negative)
clause is a clause that contains only positive (negative) literals. An expression can be a term,
an atom, a literal, or a clause. The set of variables that occur in an expression E is denoted as
var(E). A variable-free expression is a ground expression. A clause is decomposable if it can
be partitioned into two variable-disjoint subclauses, otherwise, the clause is indecomposable.

The depth of a term t is denoted dep(t) and defined as: i) if t is a variable or a constant, then
dep(t) = 0, ii) if t is a compound term f (t1, . . . , tn), then dep(t) = 1+max({dep(ti) | 1 ≤
i ≤ n}). The depth of an expression E is the depth of the deepest term in E , denoted as dep(E).
The width of an expression E is the number of distinct variables in E . If an expression E
does not contain any term, then dep(E) = 0 and the width of E is 0.

A substitution of terms for variables is a set {x1 	→ t1, . . . , xn 	→ tn} where each xi is a
distinct variable and each ti is a term, which is not identical to the respective variable xi . We
use lower-case Greek letters σ, θ, η to denote substitutions. We use Eσ to denote the result
of the application of a substitution σ to the expression E . It is also said to be an instance
of E . A variable renaming is a substitution σ such that σ = {x1 	→ y1, . . . , xn 	→ yn}
where x1, . . . , xn, y1, . . . , yn are variables and σ is bijective. An expression E1 is a variant
of an expression E if there exists a variable renaming σ such that E1 = Eσ . We consider
two clauses C1 and C2 to be identical if C1 is a variant of C2. Given substitutions σ and
θ , the composition σθ denotes that for each variable x , xσθ = (xσ)θ . A substitution σ

is a unifier of a set {E1, . . . , En} of expressions if and only if E1σ = . . . = Enσ . The set
{E1, . . . , En} is said to be unifiable if there is a unifier for it. A unifier σ of a set {E1, . . . , En}
of expressions is amost general unifier (mgu) if and only if for each unifier θ of the set, there
is a substitution η such that σ = θη. A unifier σ is a simultaneous mgu of two sequences
E1, . . . , En and E ′

1, . . . , E
′
n of expressions where n > 1, if σ is an mgu for each pair Ei and

E ′
i . By σ = mgu(E

.= E ′), we mean that σ is an mgu of expressions E and E ′. By

123

39 Page 6 of 68 S. Zheng, R. A. Schmidt

σ = mgu(E1
.= E ′

1, . . . , En
.= E ′

n) where n > 1, we mean that σ is a simultaneous mgu of
two sequences E1, . . . , En and E ′

1, . . . , E
′
n of expressions.

We distinguish rules in our paper in two types: i) the rules that are applied to a clausal set,
and they are framed using bold lines; ii) the rules that are applies to clauses, namely inference
rules, and they are framed using non-bold lines.Whenwe refer to function symbols, wemean
non-constant ones. In the rest of the paper, we use the following notational convention:

• x, y, z, u, v, x1, . . . for variables • a, b, c, a1, . . . for constant symbols
• f , g, h, . . . for function symbols • P, P1, A, B, . . . for predicate symbols
• p, p1, . . . for propositional variables • F, F1, . . . for formulas
• C, D, Q,C1, . . . for clauses • s, t, u, . . . for terms
• L, L1, . . . for literals • A, B,G,G1, . . . for atoms

Guarded Quantification Fragments

In the following definitions, constants are allowed but not equality.

Definition 1 The guarded fragment (GF) is a fragment of first-order logic without function
symbols, inductively defined as follows:

1. � and ⊥ belong to GF.
2. If A is an atom, then A belongs to GF.
3. GF is closed under Boolean connectives.
4. Let F be a guarded formula and G an atom. Then ∃x(G ∧ F) and ∀x(G → F) belong

to GF if all free variables of F occur in G.

Definition 2 The loosely guarded fragment (LGF) is a fragment of first-order logic without
function symbols, inductively defined as follows:

1. � and ⊥ belong to LGF.
2. If A is an atom, then A belongs to LGF.
3. LGF is closed under Boolean connectives.
4. Let F be a loosely guarded formula and G a conjunction of atoms. Then ∀x(G → F)

and ∃x(G ∧ F) belong to LGF if

(a) all free variables of F occur in G, and
(b) for each variable x in x and each variable y occurring in G that is distinct from x , x

and y co-occur in an atom of G.

Definition 3 The clique-guarded fragment (CGF) is a fragment of first-order logic without
function symbols, inductively defined as follows:

1. � and ⊥ belong to CGF.
2. If A is an atom, then A belongs to CGF.
3. CGF is closed under Boolean connectives.
4. Let F be a clique-guarded formula and G(x, y) a conjunction of atoms. Then

∀z(∃xG(x, y) → F) and ∃z(∃xG(x, y) ∧ F) belong to CGF, if

(a) all free variables of F occur in y, and
(b) each variable in x occurs in only one atom of G(x, y), and
(c) for each variable z in z and each variable y occurring in G(x, y) that is distinct from

z, z and y co-occur in an atom of ∃xG(x, y).

123

Saturation-Based Boolean Conjunctive … Page 7 of 68 39

In 4. of Definitions 1–3, the atom G, the conjunctions of atoms G and ∃x(G(x, y)) are,
respectively, the guard, the loose guard and the clique-guard for F . We say a formula is
a guarded quantification formula if it belongs to either GF, or LGF and CGF. Definition 1
defines GF in the same way as [29, Definition 2.1] and [39, Definition 2.1] modulo equality.
Definition 2 improves the previous definitions of LGF in [29, 39]: [29, Definition 4.1] misses
Condition 4(a) of Definition 2, and Condition (ii) in the definition of LGF in [39] is amended
in Condition 4(b) of Definition 2. Unlike the definitions of CGF in [53, 65], Definition 3 is
defined in accordance with Definitions 1–2 and disallows equality symbols.

Among the following formulas, F1, F2, F4, F6 and F7 are guarded formulas, but not
the rest. The formula F7 is the standard translation [18, chapter 2] of the modal formula
P → ♦�P and the description logic axiom P � ∃R.∀R.P . For the relationship between GF
and modal logic see [18, Sect. 7.4], and for that between GF and description logic see [80].

F1 = A(x) F2 = ∀x[A(x, y) → B(x, y)] F3 = ∀x[A(x)]
F4 = ∀x[A(x, y) → ⊥] F5 = ∀x[A(x, y) → ∃y(B(y, z))]
F6 = ∃x[A(x, y) ∧ ∀z(B(x, z) → ∃u(R(z, u)))]
F7 = ∀x[P(x) → ∃y(R(x, y) ∧ ∀z(R(y, z) → P(z))))]

Extended from GF, LGF allows a restricted form of a conjunction of atoms in the guard
positions. For example, ∀z[(R(x, z) ∧ R(z, y)) → P(z)] and the first-order translation of a
temporal logic formula A until B:

∃y[R(x, y) ∧ B(y) ∧ ∀z((R(x, z) ∧ R(z, y)) → A(z)))],
are loosely guarded formulas, but are not guarded. Extended from LGF, CGF allows existen-
tially quantified variables in loose guards. In the clique-guarded formula

F = ∀x1x2
⎡
⎣
G(x1, x2) → ∀x3(

(∃x4x5(A(x1, x3, x4) ∧ B(x2, x3, x5))) →
(∃x6D(x1, x6) ∧ �))

⎤
⎦ ,

∃x6D(x1, x6),∃x4x5(A(x1, x3, x4)∧B(x2, x3, x5)) andG(x1, x2) are respectively the clique-
guards of ∃x6D(x1, x6) ∧ �,

∀x3(∃x4x5(A(x1, x3, x4) ∧ B(x2, x3, x5)) → (∃x6D(x1, x6) ∧ �)) and F .

The transitivity formula ∀xyz[(R(x, y) ∧ R(y, z)) → R(x, z)] is neither a guarded nor a
loosely guarded nor a clique-guarded formula.

BCQ Answering and Saturation-Based BCQ Rewriting Problems

First, we give the formal definition of BCQs and unions thereof.

Definition 4 ABoolean conjunctive query (BCQ) is a first-order sentence of the form ∃xϕ(x),
where ϕ(x) is a conjunction of atoms containing only constants and variables as arguments.
A union of BCQs is a disjunction of BCQs.

This paper aims to answer the following question.

Question 1 Given a set Σ of formulas in GF, LGF and CGF, a set D of ground atoms and a
union q of BCQs, can we devise a practical decision procedure to check whetherΣ ∪D |� q?

123

39 Page 8 of 68 S. Zheng, R. A. Schmidt

In this paper, the above question is reduced to check whether Σ |� q , since ground atoms
D belong to the guarded quantification fragments Σ . To answer this question, we use a
saturation-based method, which computes the closure of a given set of formulas under a set
of inference rules.

If we answer Question 1 positively, then we consider a follow-up question:

Question 2 SupposeΣ is a set of formulas inGF, LGF and CGF, D is a set of ground atoms and
q is a union of BCQs. Further, suppose N is the saturation obtained by applying the procedure
devised for Question 1 to {¬q} ∪ Σ . Can N be back-translated to a (Skolem-symbol-free)
first-order formula Σq such that Σ ∪ D |� q if and only if D |� Σq?

3 From Formulas to Clausal Sets

In this section, we formally define a clausal class to which the considered problems can be
reduced, and then define our clausal normal form translation.

Loosely Guarded Clauses and Query Clauses

It is helpful to use the flatness, simpleness, compatibility and covering properties to formally
define our clausal forms, namely loosely guarded clauses and query clauses.

A compound term is flat if each argument in it is either a constant or a variable. A literal is
flat if each argument in it is either a constant or a variable. A clause is flat if the literals in it are
flat.A clause is simple if each argument in it is either a variable or a constant or a flat compound
term.A simple compound-term literal (clause), or plainly a compound-term literal (clause), is
a simple literal (clause) containing at least oneflat compound term.For example,¬A(f (x, y))
is a compound-term literal, but not ¬A(f (g(x), y)) because of the presence of the nested
compound term f (g(x), y). A clause C is covering if each compound term t in it satisfies
var(t) = var(C). Two compound terms t and s are compatible if the argument sequences of
t and s are identical. A clause C is compatible if in C , compound terms that are under the
same function symbol are compatible. A clause is strongly compatible if all compound terms
in it are compatible. For example, A1(f (x, y)) ∨ ¬A2(g(x, y)) ∨ A3(y, x) is covering and
strongly compatible, and A1(f (x, y)) ∨ ¬A2(g(y, x)) is covering and compatible, but not
strongly compatible.

Definition 5 A query clause is a flat negative clause.

Definition 6 A loosely guarded clauseC is a simple, covering and strongly compatible clause,
satisfying the following conditions:

1. C is either ground, or
2. C contains a set of negative flat literals ¬G1, . . . ,¬Gn such that each pair of distinct

variable in C co-occurs in at least one literal of ¬G1, . . . ,¬Gn .

In 2. of Definition 6,¬G1, . . . ,¬Gn is called a loose guard of C . When a clause contains
only one variable, then it is a loosely guarded clause if it is simple, covering, strongly
compatible, and it contains a flat negative literal that contains its variable. A loosely guarded
clause is a guarded clause if its loose guards contain only one literal, which we call a guard
of this clause. A Horn guarded clause is a guarded clause containing at most one positive
literal. A clause is (loosely) guarded if it contains at least one (loose) guard.

123

Saturation-Based Boolean Conjunctive … Page 9 of 68 39

Fig. 5 Relationships between the
investigated clausal classes and
fragments

Consider the clauses

C1 = ¬A1(x, y) ∨ ¬A2(y, z) ∨ ¬A3(z, x),

C2 = ¬B1(x, y, a) ∨ ¬B2(y, z, b) ∨ ¬B3(z, x, w),

C3 = ¬A1(x, y) ∨ A2(f (y, x), f (x, y)).

The clause C1 is a loosely guarded clause; C2 is not as w and y do not co-occur in any
negative flat literal; C3 is not a loosely guarded clause either since f (y, x) and f (x, y) are
not compatible. A query clause is not necessarily loosely guarded or vice-versa. For example,
C1 is a query clause; ¬A(x, y) ∨ B(f (x, y)) is a (loosely) guarded clause but not a query
clause; and ¬A1(x, y) ∨ ¬A2(y, z) is a query clause, but not (loosely) guarded.

We use LG to denote the class of loosely guarded clauses, and LGQ to denote the class
of both query and LG clauses. The class of LG clauses is more expressive than the guarded
quantification fragments. For example,¬G(x)∨A(f (x)) is an LG clause but it does not belong
to the guarded quantification fragments. Figure 5 summarises the relationships betweenBCQs,
the guarded quantification fragments and the considered clausal classes. In Fig. 5, an upper
node is more expressive than the one linked below it.

Clausal Normal FormTranslation

We use the formula renaming technique [69, Sect. 4] in our clausification processes. Let
F[F1(x)] denote a first-order formula F in which F1 is a subformula of F and x are the
free variables in F1. Using a predicate symbol P , say, not occurring in F[F1(x)], formula
renaming with positive literals transforms F[F1(x)] to

F[P(x)] ∧ ∀x(¬P(x) ∨ F1(x))

and formula renaming with negative literals transforms F[F1(x)] to
F[¬P(x)] ∧ ∀x(P(x) ∨ F1(x)),

where every occurrence of F1(x) in F[F1(x)] are replaced by P(x) and¬P(x), respectively.
In the above formula renaming with positive literals, F[P(x)] and ∀x(¬P(x) ∨ F1(x)) are
called the replacement of F[F1(x)] and the definition of P , respectively. In the above formula
renaming with negative literals, F[¬P(x)] and ∀x(P(x)∨F1(x)) are called the replacement
of F[F1(x)] and the definition of P , respectively. If a formula F is the definition of a predicate
symbol P , we say P defines F . For a comprehensive description of clausification techniques,
we refer the reader to [6, 69].

123

39 Page 10 of 68 S. Zheng, R. A. Schmidt

Given a union q1 ∨ . . . ∨ qn of BCQs and a set Σ guarded quantification formulas, we
reduce the entailment checking problem of Σ |� q1 ∨ . . . ∨ qn to the problem of checking
unsatisfiability of {¬q1 ∧ . . .∧¬qn}∪Σ . We assume that all free variables in Σ are existen-
tially quantified as we are interested in satisfiability checking. We use Trans to denote our
clausification process, detailed below.

1. Negate the union of BCQs to obtain a set of query clauses.
2. Clausify loosely guarded formulas following the steps below, illustrated on

F = ∃y[R(x, y) ∧ B(y) ∧ ∀z((R(x, z) ∧ R(z, y)) → A(z)))].
(a) Add existential quantifiers to all free variables, equivalently express (double) impli-

cations as disjunctions and then perform negation normal form translation. From F
we obtain

F1 = ∃xy[R(x, y) ∧ B(y) ∧ ∀z(¬R(x, z) ∨ ¬R(z, y) ∨ A(z))].
(b) Use formula renamingwith positive literals for all universally quantified subformulas

in the formula obtained in 2(a). From F1 we obtain

F2 =
[∃xy(R(x, y) ∧ B(y) ∧ P1(x, y))∧

∀xy(¬P1(x, y) ∨ ∀z(¬R(x, z) ∨ ¬R(z, y) ∨ A(z)))

]
,

where P1 is a fresh predicate symbol. We say that

∃xy(R(x, y) ∧ B(y) ∧ P1(x, y)) is the replacement of F1, and

∀xy(¬P1(x, y) ∨ ∀z(¬R(x, z) ∨ ¬R(z, y) ∨ A(z)) is the de f ini tion of P1.

(c) Transform immediate subformulas of the formulas obtained in 2(b) that are connected
by conjunctions to prenex normal form and then apply Skolemisation. By introducing
Skolem constants a and b, from F2 we obtain

F3 =
[

R(a, b) ∧ B(b) ∧ P1(a, b) ∧
∀xyz(¬P1(x, y) ∨ ¬R(x, z) ∨ ¬R(z, y) ∨ A(z))

]
.

(d) Drop universal quantifiers and then perform conjunctive normal form transformation
to formulas obtained in 2(c). From F3 we obtain a set of LG clauses:

R(a, b), B(b), P1(a, b) and ¬P1(x, y) ∨ ¬R(x, z) ∨ ¬R(z, y) ∨ A(z).

3. Clausify clique-guarded formula following the steps below, illustrated on

F ′ = ∀x1x2
⎡
⎣
G(x1, x2) → ∀x3(

(∃x4x5(A(x1, x3, x4) ∧ B(x2, x3, x5))) →
(∃x6D(x1, x6) ∧ �))

⎤
⎦ .

(a) Add existential quantification for all free variables and simplify � and ⊥. Unlike
2(a) we first apply the miniscoping rule [69] to existential quantified variables in
clique-guards, and then perform the negation normal form transformation. From F ′
we obtain

F ′
1 = ∀x1x2

⎡
⎣
G(x1, x2) → ∀x3(

(∃x4A(x1, x3, x4) ∧ ∃x5B(x2, x3, x5)) →
(∃x6D(x1, x6) ∧ �))

⎤
⎦ .

123

Saturation-Based Boolean Conjunctive … Page 11 of 68 39

Then transform F ′
1 to negation normal form and drop �, obtaining

F ′
2 = ∀x1x2

⎡
⎣

¬G(x1, x2) ∨ ∀x3(
(∀x4(¬A(x1, x3, x4)) ∨ ∀x5(¬B(x2, x3, x5))) ∨
∃x6D(x1, x6))

⎤
⎦ ,

(b1) Apply formula renaming to all universally quantified subformulas in the formula
obtained in 3(a). For universally quantified subformulas in the clique-guards, namely
∀x4(¬A(x1, x3, x4)) and ∀x5(¬B(x2, x3, x5)), we apply formula renaming with neg-
ative literals to them. From F ′

2 we obtain an intermediate formula

F ′
3 =

⎡
⎣

∀x1x3(P1(x1, x3) ∨ ∀x4(¬A(x1, x3, x4)))∧
∀x2x3(P2(x2, x3) ∨ ∀x5(¬B(x2, x3, x5)))∧
∀x1x2(¬G(x1, x2) ∨ ∀x3(¬P1(x1, x3) ∨ ¬P2(x2, x3) ∨ ∃x6D(x1, x6)))

⎤
⎦ ,

where P1 and P2 are the fresh predicate symbols.
(b2) For the remaining universally quantified subformulas in the formula obtained in 3(a)

and 3(b1), we apply formula renaming with positive literals. From F ′
3 we eventually

obtain

F ′
4 =

⎡
⎢⎢⎢⎢⎣

p1∧
(¬p1 ∨ ∀x1x2(¬G(x1, x2) ∨ P3(x1, x2)))∧
∀x1x3(P1(x1, x3) ∨ ∀x4(¬A(x1, x3, x4)))∧
∀x2x3(P2(x2, x3) ∨ ∀x5(¬B(x2, x3, x5)))∧
∀x1x2(¬P3(x1, x2) ∨ ∀x3(¬P1(x1, x3) ∨ ¬P2(x2, x3) ∨ ∃x6D(x1, x6)))

⎤
⎥⎥⎥⎥⎦

,

where p1 and P3 are the fresh predicate symbols. In F ′
4, p1 is the replacement of F

′
2

and the remaining four conjuncts respectively defines p1, P1, P2 and P3.
(c) Transform immediate subformulas of the formulas obtained in 3(b2) that are con-

nected by conjunctions to prenex normal form and then apply Skolemisation. Using
a Skolem function symbol f , F ′

4 is transformed into

F ′
5 =

⎡
⎢⎢⎢⎢⎣

p1∧
(¬p1 ∨ ∀x1x2(¬G(x1, x2) ∨ P3(x1, x2)))∧
∀x1x3x4(P1(x1, x3) ∨ ¬A(x1, x3, x4))∧
∀x2x3x5(P2(x2, x3) ∨ ¬B(x2, x3, x5))∧
∀x1x2x3(¬P3(x1, x2) ∨ ¬P1(x1, x3) ∨ ¬P2(x2, x3) ∨ D(x1, f (x1, x2, x3)))

⎤
⎥⎥⎥⎥⎦

.

(d) Transform the formula obtained in 3(c) to conjunctive normal form and then drop
universal quantifiers. From F ′

5 we obtain a set of LG clauses:

p1, ¬p1 ∨ ¬G(x1, x2) ∨ P3(x1, x2),

P1(x1, x3) ∨ ¬A(x1, x3, x4), P2(x2, x3) ∨ ¬B(x2, x3, x5),

¬P3(x1, x2) ∨ ¬P1(x1, x3) ∨ ¬P2(x2, x3) ∨ D(x1, f (x1, x2, x3)).

To sum up, theTrans process transforms unions of BCQs to query clauses, clausifies guarded
formulas to a set of guarded clauses, and loosely guarded and clique-guarded formulas to a
set of LG clauses.

By i) renaming universally quantified subformulas and ii) applying prenex normal form
transformation and then Skolemisation to each conjunctively connected immediate subfor-
mulas, the Trans process intentionally introduces Skolem functions of a higher arity. More
specifically, i)–ii) ensure that LG clauses have the covering and the strong compatibility
properties. The covering property is essential to guarantee termination in our BCQ answering

123

39 Page 12 of 68 S. Zheng, R. A. Schmidt

procedures, and the strong compatibility property makes the back-translation from an LG
clausal set to a first-order formula possible.

The Trans process provides the most general and crucial clausification steps, but this can
be further optimised in implementation. For example, in 3(c) of the Trans process, renam-
ing the top-most formula ∀x1x2(¬G(x1, x2) ∨ P1(x1, x2)) is not critical. Another possible
optimisation is using formula renaming to avoid the exponential blow-up of distributing
disjunctions over conjunctions.

Lemma 7 i) Applying the Trans process to a (loosely) guarded formula transforms it into
a set of (loosely) guarded clauses, and ii) applying the Trans process to a clique-guarded
formula transforms it into a set of loosely guarded clauses.

Proof i): Suppose F is a loosely guarded formula. Suppose F2 is a result of applying 2(a)–2(b)
of Trans to F , and further suppose P1, . . . , Pn are the fresh predicate symbols introduced in
2(b). W.l.o.g. we say F2 = F2,1 ∧ . . .∧ F2,n ∧ F2,r where F2,1, . . . , F2,n are respectively the
definitions of P1, . . . , Pn and F2,r is the replacement of F2. We prove that Trans clausifies
every conjunct of F2 to a set of LG clauses.

Consider F2,r . By 2(b), no universally quantified subformulas occur in F2,r , therefore F2,r
is a closed existentially quantified formula. The fact that F2,r contains no compound terms
implies that 2(c)–2(d) clausify F2,r to a set of flat ground clauses, which are LG clauses.

Consider F2,1, . . . , F2,n . W.l.o.g. we take F2,1. By 2(b), F2,1 can be represented as

∀x(¬P1(x) ∨ ∀y(¬G1(x1, y1) ∨ . . . ∨ ¬Gr (xk, yk) ∨ Fa))

where ∀y(¬G1(x1, y1) ∨ . . . ∨ ¬Gr (xk, yk) ∨ Fa) is a loosely guarded formula, Fa is a
loosely guarded formula where all universal quantified formulas are abstracted (hence Fa is
a formula containing no universal quantification but may contain existential quantifications),
x1, . . . , xk ⊆ x and y1, . . . , yk ⊆ y. By 2(c), F2,1 is converted to

∀x y(¬P1(x) ∨ ¬G1(x1, y1) ∨ . . . ∨ ¬Gr (xk, yk) ∨ Fa).

If Fa contains conjunctions, 2(c)–2(d) clausify F2,1 to a set of clauses, otherwise F2,1 is
clausified to one clause. Suppose C is a clause obtained by applying 2(c)–2(d) to F2,1. We
use C1 to denote the subclause ¬P1(x) ∨ ¬G1(x1, y1) ∨ . . . ∨ ¬Gr (xk, yk). First, we prove
that C1 is a loose guard of C . By the fact var(F2,1) = x y, var(C) = x y. By 4 of Definition
2, C1 is flat and var(C1) = x y. By 4(b) of Definition 2 and the fact that the free variables of
∀y(¬G1(x1, y1) ∨ . . . ∨ ¬Gr (xk, yk) ∨ Fa) are x , each pair of variables in x y co-occurs in
at least one literal of C1. Hence C1 is a loose guard of C . Next, we prove that C satisfies the
other properties of LG clauses. We distinguish two cases of whether Fa contains existential
quantifications. Suppose Fa contains existential quantifications and suppose the existentially
quantified variables in Fa are Skolemised to Skolem functions f1, . . . , fk . W.l.o.g. suppose
f1 and f2 are two Skolem symbols occurring inC . By prenex normal form transformation, all
compound terms inC that are under neither f1 or f2 have the same sequence of arguments x y,
thereforeC is covering and strongly compatible. As no function symbol occurs in Fa , no term
inC is nested, andC is simple. Then,C is an LG clause. Suppose Fa contains no existentially
quantified formulas. Immediately C is flat. Since we previously proved that C1 is a loose
guard of C , C is an LG clause. That Trans converts guarded formulas to a set of guarded
clauses is immediate since this is the case that a loose guard contains only one literal.

ii): Now we consider the clique-guarded formula. Unlike the clausification for loosely
guarded formulas, the existentially quantified variables in clique-guards, mentioned in Con-
dition 4(b) in the CGF definition, need to be handled. Suppose F ′ is a clique-guarded formula,

123

Saturation-Based Boolean Conjunctive … Page 13 of 68 39

and w.l.o.g. suppose F ′
2 is a result of applying 3(a) to F ′. Further, suppose F ′

3 is the result
of applying 3(b1) to F ′

2. Using the fresh predicate symbols P3,1, . . . , P3,n , we say F ′
3 =

F ′
3,1∧ . . .∧F ′

3,n∧F ′
3,r where F

′
3,1, . . . , F

′
3,n are respectively the definitions of P3,1, . . . , P3,n

and F ′
3,r is the replacement of F

′
3. Assume that F ′

4 is the result of applying 3(b2) to F
′
3,r . Using

fresh predicate symbols P4,1, . . . , P4,m , we say F ′
4 = F ′

3,1∧. . .∧F ′
3,n∧F ′

4,1∧. . .∧F ′
4,m∧F ′

4,r
where F ′

4,1, . . . , F
′
4,m are respectively thedefinitionsof P4,1, . . . , P4,m and F ′

4,r is the replace-
ment of F ′

4. We prove that by Trans every conjunct of F ′
4 is clausified as a set of LG clauses.

Consider applying 3(b1) to F ′
2, deriving F ′

3, viz., F
′
3,1 ∧ . . . ∧ F ′

3,n ∧ F ′
3,r . Suppose F ′

2,1
is a subformula in F ′

2 that contains universally quantified subformulas occurring in clique-
guards. W.l.o.g. we assume that F ′

3,1 ∧ . . . ∧ F ′
3,n ∧ F ′

3,r is obtained by applying 3(b1) to
F ′
2,1 and w.l.o.g. we present F

′
2,1 as

∀z(∀x1¬G1(x1, y1) ∨ . . . ∨ ∀xk¬Gt (xk, yk) ∨ F ′
a)

where x1, . . . , xk respectively onlyoccur in¬G1(x1, y1), . . . ,¬Gt (xk, yk) and F ′
a is a clique-

guarded formula. W.l.o.g. we use P3,1, . . . , P3t such that t ≤ n to apply 3(b1) to F ′
2,1,

obtaining

∀z(¬P3,1(y1) ∨ . . . ∨ ¬P3,r (yk) ∨ F ′′
a)∧

∀y1(P3,1(y1) ∨ ∀x1¬G1(x1, y1)) ∧ . . . ∧ ∀yk(P3t (yk) ∨ ∀xn¬Gt (xk, yk))

where F ′′
a is a clique-guarded formula and no universal quantification occurs in its clique-

guards (since 3(b1) abstracts universal quantified formulas in clique-guards). The subformula
∀z(¬P3,1(y1)∨. . .∨¬P3,r (yk)∨F ′′

a) is the replacement of F ′
2,1. This replacement represents

a conjunct in F ′
3,r and we consider F ′

3,r in the next paragraph. The subformulas

∀y1(P3,1(y1) ∨ ∀x1¬G1(x1, y1)), . . . , ∀yk(P3t (yk) ∨ ∀xn¬Gt (xk, yk)).

are thedefinitions of P3,1, . . . , P3t such that t ≤ n, respectively.By3(c)–3(d) these definitions
are clausified to flat LG clauses consisting of two literals. Hence, 3(c)–3(d) clausify F ′

3,1 ∧
. . . ∧ F ′

3,n to a set of LG clauses.
Next consider F ′

3,r . Since F ′
3,r contains no quantification in its clique-guard, by the defi-

nitions of LGF and CGF, F ′
3,r is a loosely guarded formula. Suppose applying 3(b2) to F ′

3,r
derives F ′

4 = F ′
4,1 ∧ . . . ∧ F ′

4,m ∧ F ′
4,r . W.l.o.g. we discuss F ′

4,1. The fact that no universal
quantification occurs in clique-guards of F ′

3,r implies that F ′
4,1 can be presented as

∀x(¬P4,1(x) ∨ ∀y(¬G1(x1, y1) ∨ . . . ∨ ¬Gl(xk, yk) ∨ F ′′′
a)

where ∀y(¬G1(x1, y1) ∨ . . . ∨ ¬Gl(xk, yk) ∨ F ′′′
a) is a loosely guarded formula, F ′′′

a is a
loosely guarded formula where all universal quantified formulas are abstracted (hence it is
a formula containing no universal quantification but may contain existential quantifications)
and x1, . . . , xk ⊆ x and y1, . . . , yk ⊆ y. Note that F ′′

a is obtained by abstracting universally
quantified subformulas in clique-guards in F ′

2,1, and F ′′′
a is obtained by abstracting all uni-

versally quantified formulas in F ′
3,r . By the result established in applying 2(c)–2(d) of Trans

to F2,1, . . . , F2,n , 3(c)–3(d) of Trans clausify F ′
4,1 to an LG clause or a set of LG clauses if

F ′′′
a contains conjunctions. Finally consider F ′

4,r . By the result established in applying 2(b)
of Trans to F2,r , 3(c)–3(d) clausify F ′

4,r to a set of flat ground clauses, viz., LG clauses. ��

Theorem 8 The Trans process reduces the problem of BCQ answering for GF, LGF and CGF
to that of deciding satisfiability of a set of LGQ clauses.

123

39 Page 14 of 68 S. Zheng, R. A. Schmidt

Proof Suppose q1 ∨ . . . ∨ qn is a union of BCQs, Σ is a set of guarded quantification
formulas and D is a set of ground atoms. Since ground atoms D belong to GF, LGF and CGF,
it suffices to reduce checking entailment of Σ |� q1 ∨ . . . ∨ qn to checking unsatisfiability
of {¬q1, . . . ,¬qn} ∪ Σ . By the definition of BCQ, {¬q1, . . . ,¬qn} is a set of query clauses.
By Lemma 7, Σ is clausified to a set of LG clauses. ��

4 Top-Variable Inference System

In this section, we present three systems: a basic selection-based resolution system, a partial
selection-based resolution system and a top-variable resolution system.

Basic Notions in the Saturation-Based Resolution Framework

In our systems, admissible orderings and selection functions are the two main parameters to
refine and guide the inference process. The following notions are standard in the resolution
framework of [8].

Let� be a strict ordering, called a precedence, on the symbols inC,F andP. An ordering�
on expressions is liftable if E1 � E2 implies E1σ � E2σ for any expressions E1, E2 and
substitutionσ . Anordering�on literals isadmissible, if the following conditions are satisfied.

– It is liftable, well-founded and total on ground literals,
– ¬A � A for all ground atoms A,
– if B � A, then B � ¬A for all ground atoms A and B.

Let � be an ordering and C a ground clause. A literal L in C is (strictly) maximal with
respect to the ground clause C if and only if for all L ′ in C , L � L ′ (L � L ′). A non-ground
literal L is (strictly) maximal with respect to a clause C if and only if there exist some ground
substitutions σ such that Lσ is (strictly) maximal with respect to Cσ , that is, for all L ′ in
C , Lσ � L ′σ (Lσ � L ′σ). A selection function maps a clause C to a multiset of negative
literals inC . The literals in the range of selection functions are said to be selected. An eligible
literal with respect to a clause is either a (strictly) maximal literal or a selected literal.

A ground clause C is redundant with respect to a ground clausal set N if there exist
C1, . . . ,Cn in N such that C1, . . . ,Cn |� C and C � Ci for each i with 1 ≤ i ≤ n. Let N
be a clausal set. Then a ground clause C is redundant with respect to N if there exists ground
instances C1σ, . . . ,Cnσ of clauses C1, . . . ,Cn in N such that C1σ, . . . ,Cnσ |� C and C �
Ciσ for each i with 1 ≤ i ≤ n. A non-ground clauseC is redundant with respect to N if every
ground instance ofC is redundantwith respect to N . LetC andC1, . . . ,Cn be premises and D
a conclusion in an inference I. Then the inference I is redundantwith respect to N if there exist
clauses D1, . . . , Dk in N that are smaller than C such that C1, . . . ,Cn, D1, . . . , Dk |� D.
A non-ground inference I is redundant with respect to N if every ground instance of I is
redundant in the ground instances of the clauses of N . A clausal set N is saturated up to
redundancy with respect to an inference system R if all inferences in R with non-redundant
premises in N are redundant with respect to N .

The S-Res System

In this section, we fine a selection-based resolution system, referred to as the S-Res system.
This is a standard instance of the resolution framework in [8].

123

Saturation-Based Boolean Conjunctive … Page 15 of 68 39

The S-Res system consists of two types of rules: the Deduce and Delete rules. New
conclusions are derived using the Deduce rule.

N
Deduce:

N ∪ {C}
if C is a conclusion of applying resolution or positive factoring rules to N .

To ensure decidability, we minimally need the following Delete rule.

N ∪ {C}
Delete:

N

if C is a tautology, or N contains a variant of C .

The Factor rule is the positive factoring rule, defined by:

C ∨ A1 ∨ A2Factor:
(C ∨ A1)σ

if the following conditions are satisfied.
1. Nothing is selected in C ∨ A1 ∨ A2.
2. A1σ is �-maximal with respect to Cσ .
3. σ = mgu(A1

.= A2)

The S-Res rule is the selection-based resolution rule defined by

B1 ∨ D1, . . . , Bn ∨ Dn ¬A1 ∨ . . . ∨ ¬An ∨ D
S-Res:

(D1 ∨ . . . ∨ Dn ∨ D)σ

if the following conditions are satisfied.
1. No literal is selected in D1, . . . , Dn, D and B1σ, . . . , Bnσ are strictly �-maximal

with respect to D1σ, . . . , Dnσ , respectively.
2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨ D and

¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1
.= B1) or

2b. if n > 1, then¬A1, . . . ,¬An are selected andσ = mgu(A1
.= B1, . . . , An

.= Bn).
3. All premises are variable disjoint.

In the S-Res rule, the right-most premise is the main premise and the others are the side
premises. Unlike the standard hyperresolution rule [76] (like the hyperresolution rule in [92]),
the S-Res rule does not require the side premises to be positive and all negative literals in the
main premise to be selected, e.g., D in the main premise is not nessarily positive. Standard
hyperresolution is only applied when the selection function selects all negative literals in the

123

39 Page 16 of 68 S. Zheng, R. A. Schmidt

premises of the S-Res rule. The binary resolution rule [8] is an instance of the S-Res rule
whenever it only has one selected literal in the main premise.

The S-Res system is defined in the spirit of the resolution framework of [8], therefore,
more sophisticated simplification and redundant elimination techniques, such as forward and
backward subsumption elimination and condensation in [8, Sect. 4.3], can be freely added
to the system.

Theorem 9 The S-Res system is sound and refutationally complete for general first-order
clausal logic.

Proof By the fact that the S-Res system strictly follows the principles of the resolution
framework in [8]. ��

The P-Res System

Next, we describe a new partial selection-based resolution inference system, denoted as P-
Res. This system is built on the top of the S-Res system, but the S-Res rule is replaced by
the following partial selection-based resolution rule.

B1 ∨ D1,. . . ,Bm ∨ Dm, . . . , Bn ∨ Dn ¬A1 ∨. . .∨ ¬Am ∨. . .∨ ¬An ∨ D
P-Res:

(D1 ∨. . .∨ Dm ∨ ¬Am+1 ∨. . .∨ ¬An ∨ D)σ

if the following conditions are satisfied.
1. No literal is selected in D1, . . . , Dn, D and B1σ, . . . , Bnσ are strictly �-maximal

with respect to D1σ, . . . , Dnσ , respectively.
2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨ D and

¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1
.= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.= B1, . . . , An

.= Bn), then the
mgu used to perform the inference is σ = mgu(A1

.= B1, . . . , Am
.= Bm) where

1 ≤ m ≤ n.
3. All premises are variable disjoint.

TheP-Res rule is not a selection-based resolution rulewhere a sub-multiset of the negative
literals in the main premise is selected. The literals ¬A1, . . . ,¬Am are resolved not because
they are selected, but because the application of the S-Res rule makes the inference on a
sub-multiset of the S-Res side premises and the S-Res main premise possible. Condition
2b. stipulates the existence of an mgu between A1, . . . , An and B1, . . . , Bn as a pre-requisite
for the application of the P-Res rule. This means that whenever the S-Res rule applies to

C1 = B1 ∨ D1, . . . , Cn = Bn ∨ Dn and C = ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D

with ¬A1, . . . ,¬An selected, one can apply the P-Res rule with m of the side premises
where 1 ≤ m ≤ n. We say that ¬A1, . . . ,¬Am are the P-Res eligible literals with respect
to an S-Res inference.

Unlike the S-Res rule, Condition 2b. in the P-Res rule includes the case of n = 1,
meaning that the pre-requisites forConditions 2a. and 2b. are not exclusive. Thoughwhen n =
1, using either Condition 2a. or 2b. to the main premise derives the same conclusion, the
mechanism is different: Condition 2a. considers the situation when the P-Res rule is reduced
to a binary S-Res rule, but Condition 2b. considers the partial inferences when the main

123

Saturation-Based Boolean Conjunctive … Page 17 of 68 39

premise contains only one P-Res eligible literal. Both mechanisms are useful in practice: for
example, Condition 2a. is used when a main premise contains only one negative literal, but
when a main premise contains multiple negative literals, Condition 2b. allows us to decide
that among all these negative literals, the one we want to resolve, to derive a partial resolvent.
This partial resolvent can have properties that the resolvent, when we resolve all the negative
literals, does not have.

Although the S-Res rule has the advantage of avoiding intermediate resolvents that are
derived by binary resolution rules, the S-Res resolvents can be difficult to tame as the rule
is performed on a macro level. The P-Res rule, on the other hand, amends the S-Res rule by
allowing one to resolve any non-empty and non-strict sub-multiset of the S-Res side premises
with the S-Res main premise. This means that the P-Res rule provides new flexibility to
capture the S-Res resolvents and thus generalises the S-Res rule. This flexibility is important
to tame (and decide) the clausal class we consider.

Next, we show soundness and refutational completeness of the P-Res system. A P-Res
inference with the main premiseC and a sub-multiset of the side premisesC1, . . . ,Cn makes
the S-Res inference on C and C1, . . . ,Cn redundant. We first consider the ground case.

Lemma 10 Suppose N is a clausal set andC1, . . . ,Cn,C are ground clauses occurring in N.
Suppose I is an S-Res inference with C1, . . . ,Cn the side premises and C the main premise.
Further suppose Rp is the P-Res resolvent of applying the P-Res rule to a sub-multiset of
C1, . . . ,Cn and C. Then, I is redundant with respect to N ∪ {Rp}.
Proof Suppose R is the resolvent of I and� is the applied admissible ordering. By the notion
of redundant inferences for ground clauses, we prove thatC � Rp andC1, . . . ,Cn, Rp |� R.
W.l.o.g. suppose

C1 = A1 ∨ D1, . . . ,Cn = An ∨ Dn and C = ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D

where 1 ≤ m ≤ n. Further suppose a P-Res inference is performed on C and C1, . . . ,Cm .
By the definitions of the S-Res and P-Res rules,

R = D1 ∨ . . . ∨ Dn ∨ D and Rp = ¬Am+1 ∨ . . . ∨ ¬An ∨ D1 ∨ . . . ∨ Dm ∨ D.

By Condition 1. of the S-Res and P-Res rules, A1 � D1, . . . , Am � Dm , hence C � Rp .
Next, we prove C1, . . . ,Cn, Rp |� R by contradiction. Let I be an arbitrary interpretation
satisfying that

I |� A1 ∨ D1, . . . , An ∨ Dn,¬Am+1 ∨ . . . ∨ ¬An ∨ D1 ∨ . . . ∨ Dm ∨ D, (1)

but I �|� D1 ∨ . . . ∨ Dn ∨ D. (2)

(2) implies I �|� D1, . . . , I �|� Dn , therefore, considering (1) we get that

I |� A1, . . . , An,¬Am+1 ∨ . . . ∨ ¬An ∨ D1 ∨ . . . ∨ Dm ∨ D. (3)

(3) implies that I |� D1 ∨ . . . ∨ Dm ∨ D. As D1 ∨ . . . ∨ Dm ∨ D is a subclause of
D1 ∨ . . .∨ Dn ∨ D, I |� D1 ∨ . . .∨ Dn ∨ D, which refutes (2). Then, C1, . . . ,Cn, Rp |� R.
By the facts that C � Rp and C1, . . . ,Cn, Rp |� R, I is redundant with respect to N ∪{Rp}.

��
Lemma 10 shows that given an S-Res inference I on ground clauses of a clausal set N ,

computing a P-Res resolvent Rp with respect to Imakes I redundantwith respect to N∪{Rp}.
Similar justifications can be found in [8, pp. 53–54] and [7, p. 28] described as ‘partial
replacement strategy’.

Next, we generalise Lemma 10 to non-ground inferences.

123

39 Page 18 of 68 S. Zheng, R. A. Schmidt

Lemma 11 Suppose N is a clausal set and C1, . . . ,Cn,C are general clauses occurring
in N. Suppose I is an S-Res inference where C1, . . . ,Cn are the side premises and C is the
main premise. Further suppose Rp is the P-Res resolvent of applying the P-Res rule to a
sub-multiset of C1, . . . ,Cn and C. Then, every ground instance of I is redundant with respect
to the ground instances of the clauses in N ∪ {Rp}.
Proof Suppose R is the S-Res resolvent in I. W.l.o.g. suppose C1, . . . ,Cm are side premises
of applying the P-Res rule to C and C1, . . . ,Cm and Rp is the resolvent, where 1 ≤ m ≤ n.
Suppose σ is a ground substitution satisfying that applying the S-Res rule to C1σ, . . . ,Cnσ

as the side premises and Cσ as the main premise derives Rσ . We use Ignd to denote this
ground S-Res inference. Since the P-Res rule only requires a sub-multiset of the S-Res
side premises, the P-Res rule is applicable to C1σ, . . . ,Cmσ as the side premises and Cσ

as the main premise, deriving Rpσ . By Lemma 10, Ignd is redundant with respect to the
ground instances C1σ, . . . ,Cnσ, Rpσ of the clauses in N ∪ {Rp}. Hence, every ground S-
Res inference is redundant with respect to the ground instances of the clauses in N ∪ {Rp}.

��
The main result of this section is then as follows.

Theorem 12 The P-Res system is sound and refutationally complete for general first-order
clausal logic.

Proof By Lemma 10 and Theorem 9, the P-Res system is sound and complete for ground
clauses. By the fact that the Factor rule is the positive factoring rule in the resolution frame-
work of [8] and Lemma 11, the P-Res system is sound and refutational complete for general
first-order clauses. ��

The T-Res System

Finally, we present the top-variable resolution inference system, referred to as the T-Res sys-
tem. As a special case of the P-Res system, the T-Res system uses the customised admissible
orderings, selection functions and a specific version of the P-Res rule, i.e., the top-variable
resolution rule T-Res, particularly devised for deciding satisfiability of the LGQ clausal class.

First, we give the top-variable resolution rule T-Res. Suppose in an S-Res inference with
C1 = B1 ∨ D1, . . . ,Cn = Bn ∨ Dn the side premises and C = ¬A1 ∨ . . . ∨ ¬An ∨ D
the main premise with ¬A1, . . . ,¬An selected. The top-variable technique is applied to this
inference by the following steps.

1. Without producing or adding the resolvent, compute an mgu σ ′ for C1, . . . ,Cn and C
such that σ ′ = mgu(A1

.= B1, . . . , An
.= Bn).

2. Compute the variable ordering >v and =v over the variables of ¬A1 ∨ . . . ∨ ¬An .
By definition, x >v y and x =v y with respect to σ ′, if dep(xσ ′) > dep(yσ ′) and
dep(xσ ′) = dep(yσ ′), respectively.

3. Based on>v and=v , themaximal variables in¬A1∨. . .∨¬An are the top variables. The
sub-multiset¬A1, . . . ,¬Am of¬A1, . . . ,¬An (1 ≤ m ≤ n) are the top-variable literals
if each literal in ¬A1, . . . ,¬Am contains at least one top variable, and¬A1 ∨ . . .∨¬Am

is the top-variable subclause of C .

The top-variable resolution rule is defined by

123

Saturation-Based Boolean Conjunctive … Page 19 of 68 39

B1 ∨ D1, . . . , Bm ∨ Dm, . . . , Bn ∨ Dn ¬A1 ∨. . .∨ ¬Am ∨. . .∨ ¬An ∨ D
T-Res:

(D1 ∨. . .∨ Dm ∨ ¬Am+1 ∨. . .∨ ¬An ∨ D)σ

if the following conditions are satisfied.
1. No literal is selected in D1, . . . , Dn, D and B1σ, . . . , Bnσ are strictly �-maximal

with respect to D1σ, . . . , Dnσ , respectively.
2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨ D and

¬A1σ is �-maximal with respect to Dσ , and ii) σ = mgu(A1
.= B1) or

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.= B1, . . . , An

.= Bn), then
¬A1, . . . ,¬Am are the top-variable literals of¬A1 ∨ . . .∨¬Am ∨ . . .∨¬An ∨D
and σ = mgu(A1

.= B1, . . . , Am
.= Bm) where 1 ≤ m ≤ n.

3. All premises are variable disjoint.

Top variables, top-variable literals and top-variable subclauses are only in effect with
respect to an S-Res inference, since the T-Res rule is a very specific application of the P-Res
rule, built on the top of the S-Res rule. Suppose I is an S-Res inference with C1, . . . ,Cn

the side premises and C the main premise. As shown in the previous section, the P-Res rule
allows one to perform an inference on C and any sub-multiset of C1, . . . ,Cn . Suppose I′ is a
P-Res inference based on I. Then, in the computation of I′, the T-Res rule further specifies
the sub-multiset N of C1, . . . ,Cn by the top-variable technique. Let I′′ be a T-Res inference
based on I′ in which C is the main premise and the side premises are clauses in N . To ensure
that the clauses in N are the P-Res side premises in I′′, we use the complementary literals
of the eligible literals of N to restrict the inference and name these literals the top-variable
literals. Therefore, although the T-Res rule identifies the top-variable literals as per S-Res
inference, the top-variable literals are not determined by a dynamic selection function, but by
the presence of S-Res side premises. This top-variable technique provides the basis for our
decision procedures discussed later. Since a T-Res inference is based on the existence of an
S-Res inference, the mgu for the T-Res inference is ensured to exist, hence the top-variable
literals in T-Res inferences can always be identified. To distinguish the mgus of the T-Res
and the S-Res rules, we use σ and σ ′ to denote them, respectively.

Now we provide the customised admissible orderings and selection functions. As admis-
sible orderings, we choose to use any lexicographic path ordering �lpo with a precedence in
which function symbols are larger than constants, which are larger than predicate symbols.
This is a requirement also for any admissible ordering with the same precedence restriction.
For selection functions, we require the selection function SelectNC to select one of the nega-
tive compound-term literals in LGQ clauses containing negatively occurring compound-term
literals.

Algorithm 1 details how the admissible ordering�lpo, the selection function SelectNC and
the T-Res rule are applied to LGQ clauses. The algorithm contains the following functions:

– Max(C) returns a (strictly) �lpo-maximal literal with respect to the clause C .
– SelectNC(C) returns one of the negative compound-term literals in the clause C .
– TRes(N ,C) performs a T-Res inference with clauses in N the side premises and C the

main premise, returning

1. either all negative literals of the clause C , or
2. the top-variable literals of the clause C (with respect to this T-Res inference).

123

39 Page 20 of 68 S. Zheng, R. A. Schmidt

Algorithm 1: Find the eligible or the top-variable literals for LGQ clauses

Input: An LGQ clausal set N and a clause C in N
Output: The eligible or the top-variable literals in C

1 if C is ground then
2 return Max(C)

3 else if C has negatively occurring compound-term literals then
4 return SelectNC(C)

5 else if C has positively occurring compound-term literals then
6 return Max(C)

7 else return TRes(N ,C) // C is a non-ground flat clause

Algorithm 2 specifies the TRes(N ,C) function, describing the application of the T-Res
rule to a non-ground flat LGQ clause C as the main premise and C1, . . . ,Cn occurring in
N as the side premises. In Algorithm 2, the ComT(C1, . . . ,Cn,C) function finds the top-
variable literals in C with respect to the S-Res inference when C1, . . . ,Cn are the side
premises and C is the main premise. Algorithm 2 first tries to perform an S-Res inference
on C1, . . . ,Cn and C , and if it is possible, the S-Res inference is immediately replaced
by a T-Res inference. In the algorithm Lines 2–3 check whether the S-Res rule applies to
C1, . . . ,Cn as the side premises andC as the main premise with all negative literals selected.
If so, Line 5 uses the ComT(C1, . . . ,Cn,C) function to compute the top-variable literals
in C with respect to this S-Res inference, ensuring that the T-Res rule is applicable to C
and the sub-multiset of C1, . . . ,Cn mapping to the top-variable literals in C . Otherwise,
Line 6 returns all negative literals of C , meaning that no S-Res inference, hence no T-Res
inference, is possible for C1, . . . ,Cn and C . Though the T-Res rule does not require one to
select all negative literals in the S-Res main premise, the TRes function requires it because
it is essential for deciding satisfiability of the LGQ clausal class.

The following sample derivation shows how the T-Res system decides an unsatisfiable
set of LG clauses. Consider an unsatisfiable set N of LG clauses C1, . . . ,C9:

C1 = ¬A1(x, y) ∨ ¬A2(y, z) ∨ ¬A3(z, x) ∨ B(x, y, b),

C2 = A3(x, f (x)) ∨ ¬G3(x), C3 = A2(f (x), f (x)) ∨ ¬G2(x),

C4 = A1(f (x), x) ∨ D(g(x)) ∨ ¬G1(x), C5 = ¬B(x, y, b),

Algorithm 2: The TRes function
Input: An LGQ clausal set N and a non-ground flat clause C in N
Output: The eligible or the top-variable literals in C

1 Function TRes(N ,C):
2 Select all negative literals in C
3 Find some clauses C1, . . . ,Cn in N so that an S-Res inference is possible when

C is the main premise and C1, . . . ,Cn are the side premises
4 if C1, . . . ,Cn exist then
5 return ComT(C1, . . . ,Cn,C)

6 else return all negative literals in C

123

Saturation-Based Boolean Conjunctive … Page 21 of 68 39

C6 = ¬D(x), C7 = G1(f (a)), C8 = G3(f (a)), C9 = G2(a).

Suppose the precedence on which �lpo is based is f > g > a > b > B > A1 > A2 >

A3 > D > G1 > G2 > G3. By L or L∗ we mean that L is selected or L is a (strictly)
maximal literal, respectively. In the T-Res system, C1, . . . ,C9 are presented as:

C1 = ¬A1(x, y) ∨ ¬A2(y, z) ∨ ¬A3(z, x) ∨ B(x, y, b),

C2 = A3(x, f (x))∗ ∨ ¬G3(x), C3 = A2(f (x), f (x))∗ ∨ ¬G2(x),

C4 = A1(f (x), x)
∗ ∨ D(g(x)) ∨ ¬G1(x), C5 = ¬B(x, y, b) ,

C6 = ¬D(x) , C7 = G1(f (a))∗, C8 = G3(f (a))∗, C9 = G2(a)∗.

One can use any clause to start a derivation, w.l.o.g. we begin with C1. For each newly
derived clause, Algorithm 1 is applied to determine the eligible or the top-variable literals of
the clause.

1. By Algorithm 1 and the fact that C1 is a non-ground flat LG clause, the TRes function is
applied to C1 and clauses in N . In Algorithm 2, all negative literals in C1 are temporarily
selected to check if the S-Res rule is applicable to C1.

2. As an S-Res inference step is applicable to C2,C3,C4 as the side premises and C1 as
the main premise, the ComT(C2,C3,C4,C1) function computes an mgu

σ ′ = {x 	→ f (f (x ′)), y 	→ f (x ′), z 	→ f (x ′)}
for variables of C1. Hence x is the only top variable in C1 and therefore ¬A1(x, y) and
¬A3(z, x) are the top-variable literals. This means that based on the S-Res inference
on C and C2,C3,C4, we intend to perform a special P-Res inference, viz., a T-Res
inference, with C the main premise and C2 and C4 the side premises.

3. The T-Res rule is applied to C2 and C4 as the side premises and C1 as the main premise
with an mgu σ = {x 	→ f (x ′), y 	→ x ′, z 	→ x ′}, deriving

C10 = ¬A2(x, x) ∨ B(f (x), x, b)∗ ∨ D(g(x)) ∨ ¬G1(x) ∨ ¬G3(x),

with x ′ renamed as x . No resolution step can be performed on C3 and C10 for the lack of
complementary eligible literals, nonetheless a resolution inference step can be performed
between C5 and C10.

4. By Algorithm 2, the S-Res rule is applicable to C5 as the main premise and C10 as the
side premise. Since C5 contains only one negative literal, the literal is the top-variable
literal in C5. Then applying the T-Res rule to C10 and C5 derives

C11 = ¬A2(x, x) ∨ D(g(x))∗ ∨ ¬G1(x) ∨ ¬G3(x).

5. By Algorithm 2, the T-Res rule is applicable to C11 as the side premise and C6 as the
main premise with ¬D(x) the top-variable literal, deriving

C12 = ¬A2(x, x) ∨ ¬G1(x) ∨ ¬G3(x) .

6. Due to the presence of C3,C7,C8 and C12 satisfy conditions of the TRes function, the
ComT(C3,C7,C8,C12) function finds that x is the only top variable in C12 with an
mgu σ ′ = {x 	→ f (a)}. Hence all negative literals in C12 are the top-variable literals.
Applying the T-Res rule to C3,C7,C8 as the side premises and C12 as the main premise
derives C13 = ¬G2(a) .

123

39 Page 22 of 68 S. Zheng, R. A. Schmidt

7. Applying the T-Res rule to C9 and C13 derives ⊥.

Recall that by the term depth of a clause, we mean the depth of the deepest term in
that clause. As shown by the above example, the T-Res rule avoids term depth increase in
resolvents of LGQ clauses. Suppose the ComT(C1, . . . ,Cn,C) function takes LGQ clauses
C1, . . . ,Cn andC as input andC is a non-ground flat LGQ clause. In the application of the top-
variable technique to C1, . . . ,Cn and C , Step 1. first computes an S-Resmgu of C1, . . . ,Cn

and C , and Steps 2.–3. then find the variable x in C that is unified to be the deepest term
xσ ′ in Cσ ′ as the top variable. As xσ ′ may become a nested term in the S-Res resolvent, the
T-Res rule computes a partial resolvent, by only resolving the top-variable literals of C , to
avoid this potential term depth increase caused by xσ ′. In the previous example, if an S-Res
inference is computed on C1 as the main premise and C2,C3,C4 as the side premises, a
nested compound term f (f (x)) will occur in the S-Res resolvent.

Now we give the main result of this section.

Theorem 13 The T-Res system is sound and refutationally complete for general first-order
clausal logic.

Proof By Theorem 12 and since T-Res is a special case of the P-Res system. ��
The definitions in the resolution framework of [8] and most resolution-based decision

procedures [35] stipulate that eligibility, in particular (strict) maximality, of literals is deter-
mined on the instantiated premises with themgus, i.e., a-posteriori eligibility is used. Instead,
a-priori eligibility determines eligibility, in particular (strict) maximality, of literals on the
non-instantiated premises. A-posteriori eligibility is more general and stronger than a-priori
eligibility. However, a-priori eligibility is possible is more efficient, due to the overhead of
pre-computing unifications.

The T-Res system uses a-posteriori eligibility, however, thanks to the covering and strong
compatibility properties of the LGQ clausal class, one can use a-priori eligibility. This is
briefly mentioned in deciding satisfiability of guarded clauses with equality in [39]. We now
formally prove this claim.

Lemma 14 Let a covering clause C contain a compound-term literal L1 and a non-
compound-term literal L2. Then L1 �lpo L2.

Proof We distinguish two cases: i) Suppose L1 contains a ground compound term. By the
covering property,C is ground. Then L1 �lpo L2 as L1 contains at least one function symbol
but L2 does not.

ii) Suppose L1 contains a non-ground compound term t . By the covering property, var(t) =
var(L1) = var(C). By the facts that var(L2) ⊆ var(L1) and L1 contains at least one function
symbol but L2 does not, L1 �lpo L2. ��

By the covering and the strong compatibility properties of LGQ clauses, a literal identified
as eligible by a-posteriori eligibility is the same as the one identified by a-priori eligibility.
This is formally stated as:

Lemma 15 When applying the refinement of the T-Res system to an LGQ clause C, if a literal
L is (strictly)�lpo-maximal with respect to C, then Lσ is (strictly)�lpo-maximal with respect
to Cσ , for any substitution σ .

Proof In Algorithm 1, the maximality checking is done in either Lines 1–2 or 5–6.

123

Saturation-Based Boolean Conjunctive … Page 23 of 68 39

For the case in Lines 1–2 the claim trivially holds as C is ground. Lines 5–6 mean that
C contains compound-term literals. By Lemma 14, L is a compound-term literal. Suppose
L ′ is a literal in C distinct from L . First, suppose L ′ is not a compound-term literal. By the
covering property, L �lpo L ′ implies Lσ �lpo L ′σ for any substitution σ . Next, suppose
L ′ is a compound-term literal. By the fact that C is strongly compatible, L �lpo L ′ implies
Lσ �lpo L ′σ for any substitution σ . Thus, Lσ is (strictly) maximal with respect to Cσ . ��

Lemma 15 is generalisable to any covering and strongly compatible clause, as it is these
properties that make a-priori eligibility determination possible. From now on we assume the
use of a-priori eligibility to determine (strictly) maximal literals in the T-Res system. This
also streamlines the discussions and simplifies proofs.

5 Deciding Satisfiability of the LG Clausal Class

Having shown in the previous section that the T-Res system is sound and refutational com-
plete, now we prove the system decides the LG clausal class. Our goal is to show: given a
finite signature, applying the conclusion-deriving Deduce rules in the T-Res system to a set
of LG clauses only derives LG clauses that are of bounded depth and width. This claim is
achieved by restricting that in an LG clause C , the eligible literals or the top-variable literals

1. have the same variables set as C , and
2. are the deepest literals in C .

First, we show 1.

Lemma 16 By the T-Res system, the eligible literals or the top-variable literals in an LG
clause C have the same variable set as C.

Proof Being led by Algorithm 1, we distinguish three cases:
Lines 1–2: When C is ground the statement trivially holds.
Lines 3–6: SupposeC is a non-ground compound-term LG clause and L is an eligible literal

in C . Suppose L is positive. By the Max function and �lpo, L is a positive compound-term
literal. Next, suppose L is negative. By the SelectNC function, L is a negative compound-term
literal. In either case, by the covering property of LG clauses, var(L) = var(C).

Lines 7: Suppose C is a non-ground flat LG clause and L are the top-variable literals in
C . Suppose x is a top variable in C . By 2. of Definition 6 and the definition of top-variable
literals, x co-occurs with all other variables of C in L, therefore var(L) = var(C). ��

For 2, the T-Res system ensures that the deepest literals in LG clauses are eligible.
Specifically Lines 3–6 of Algorithm 1 ensure that when an LG clause contains non-ground
compound-terms, one of the compound-term literals is eligible.

Compound-term covering clauses have the following property.

Remark 17 Suppose C is a covering clause and contains ground compound terms. Then, C
is ground.

Proof By the definition of the covering property. ��
Next, we look at the unification for the eligible literals of LG clauses. We first investigate

the pairing property of compound-term eligible literals. Recall the definition of pairing from
Sect. 2: Given two atoms A(. . . , s, . . .) and B(. . . , t, . . .) with terms s and t , we say s pairs
t if the argument position of s in A(. . . , s, . . .) is the same as that of t in B(. . . , t, . . .).

123

39 Page 24 of 68 S. Zheng, R. A. Schmidt

Lemma 18 Let A1 and A2 be two simple and covering compound-term atoms, and suppose
A1 and A2 are unifiable using an mgu σ . Then, compound terms in A1 pair only compound
terms in A2 and vice-versa.

Proof We distinguish three cases: i) The statement trivially holds when both A1 and A2 are
ground atoms.

ii) Suppose one of A1 and A2 is a ground atom and the other one is a non-ground atom.
By Remark 17, the non-ground atom in A1 and A2 contains no ground compound terms.
Hence, in this case, a non-ground compound term pairs either a ground compound term
or a constant. As unifying a non-ground compound term with a constant is not possible, a
non-ground compound term must pair a ground compound term.

iii) Suppose both A1 and A2 are non-ground. W.l.o.g., A1 and A2 are represented as
A1(t, t ′, . . .) and A2(u, u′, . . .), respectively. By Remark 17 and the fact that A1 and A2

are non-ground atoms, if any of t , t ′, u and u′ is a compound term, then it is a non-ground
compound term.

Suppose t is a compound term.We prove that u is a compound term by contradiction. Then
u can be either a constant or a variable. The case that u is a constant prevents the unification
of tσ = uσ . Now suppose u is a variable. As A2 is a compound-term literal, w.l.o.g., suppose
u′ is a compound term in A2. Then t ′ is not a constant as it prevents the unification of u′
and t ′, therefore, t ′ is a variable or a compound term. We distinguish the two cases of t ′: 1)
Suppose t ′ is a variable. By the covering property, w.l.o.g., we use f (. . . , x, . . .), x , y and
g(. . . , y, . . .) to represent t , t ′, u and u′ respectively. Then A1(t, t ′, . . .) and A2(u, u′, . . .)
are represented as A1(f (. . . , x, . . .), x, . . .) and A2(y, g(. . . , y, . . .), . . .), respectively. The
unification between these two atoms is impossible due to occur-check failure.

2) Suppose t ′ is a compound term. By the covering property, w.l.o.g., we use f (x), g(x), y
and g(. . . , y, . . .) to represent t , t ′, u and u′ respectively. Then A1(t, t ′, . . .) and A2(u, u′, . . .)
are represented as A1(f (x), g(x), . . .) and A2(y, g(. . . , y, . . .), . . .), respectively. Then there
exists no unifier for these two atoms again due to occur-check failure. The fact that u is neither
a constant nor a variable implies that u is a compound term. ��

The loose guard in the premise of Factor inferences or the loose guard in the side premise
of T-Res inferences act as the loose guard of the conclusion. Formally:

Lemma 19 Let A1 and A2 be two simple and covering atoms, and suppose A1 and A2 are
unifiable using an mgu σ . Further suppose G is a set of flat literals satisfying var(A1) =
var(G). Then, if A1 is a compound-term atom, var(A1σ) = var(Gσ) and all literals in Gσ

are flat.

Proof Since var(A1) = var(G), it is immediate that var(A1σ) = var(Gσ).
We prove that Gσ is a set of flat literals by distinguishing two cases: i) Assume that A2 is

flat. This implies that σ substitutes variables in A1 with either variables or constants. By the
facts that G is a set of flat literals and var(A1) = var(G), all literals in Gσ are flat.

ii) Assume that A2 is a compound-term literal. By Lemma 18, compound terms in A1 pair
compound terms in A2 and vice-versa. Since A1 and A2 are simple, the mgu σ substitutes
variables in A1 with either variables or constants. SinceG is a set of flat literals and var(A1) =
var(G), all literals in Gσ are flat. ��

Lemmas 20–21 below consider non-loose-guard literals in the conclusions of LG clauses.
A similar result to Lemma 20 is Lemma 4.6 in [39], but a key ‘covering’ condition is not
considered. First, we look at the depth of eligible literals.

123

Saturation-Based Boolean Conjunctive … Page 25 of 68 39

Lemma 20 Suppose A1 and A2 are two simple and covering atoms, and they are unifiable
using an mgu σ . Then, A1σ is simple.

Proof If either of A1 and A2 is ground, or either of A1 and A2 is non-ground and flat, then
immediately A1σ is simple.

Let both A1 and A2 be compound-term atoms. By Lemma 18 and since A1 and A2 are
simple, the mgu σ substitutes variables with either constants or variables. Then, the fact that
A1 is simple implies that A1σ is simple. ��

Next we study the depth and width of non-eligible literals in conclusions.

Lemma 21 Let A1 and A2 be two simple atoms satisfying var(A2) ⊆ var(A1). Then given
an arbitrary substitution σ , these properties hold:

1. If A1σ is simple, then A2σ is simple.
2. var(A2σ) ⊆ var(A1σ).

Further suppose that t and u are, respectively, compound terms occurring in A1 and A2

satisfying var(t) = var(u) = var(A1). Then, var(tσ) = var(uσ) = var(A1σ).

Proof By the assumption that A1 and A1σ are simple, σ does not cause term depth increase
in A1σ . By the facts that var(A2) ⊆ var(A1) and A2 is simple, A2σ is simple.

By the facts that var(A2) ⊆ var(A1) and var(t) = var(u) = var(A1), it is immediate that
var(A2σ) ⊆ var(A1σ) and var(tσ) = var(uσ) = var(A1σ), respectively. ��

Recall that a flat compound term is a compound term containing only variables and
constants as arguments. We consider how the strong compatibility property holds in the
conclusions.

Lemma 22 Let s, s′, t and t ′ be flat compound terms. Suppose s and t are compatible with
s′ and t ′, respectively. Then, if sσ .= tσ with an arbitrary substitution σ , the following
conditions are satisfied.

1. sσ and s′σ are compatible, and tσ and t ′σ are compatible.
2. s and t are compatible, and sσ and tσ are compatible.
3. s′σ and t ′σ are compatible.

Proof Since s and t are, respectively, compatible with s′ and t ′, sσ and tσ are compatible
with s′σ and t ′σ , respectively. Since s and t are unifiable by σ , sσ and tσ are compatible.
Then, 1. implies that s′σ and t ′σ are compatible. ��

A compound-term LG clause with a compound-term literal removed is still an LG clause.
We generalise this claim with applications of substitutions.

Lemma 23 Suppose C = D ∨ B is an LG clause with B a compound-term literal. Fur-
ther, suppose σ is a substitution that substitutes all variables in C with either constants or
variables. Then, Dσ is an LG clause.

Proof If σ is a ground substitution, the lemma trivially holds. Suppose σ is a non-ground
substitution. We prove that Dσ is simple, covering, strongly compatible and contains a
loose guard. Since C is an LG clause and D is a subclause of C , D is simple. Because σ

substitutes variables with either constants or variables, Dσ is simple. Let s and t be two
arbitrary compound terms in D. That C is covering implies that var(t) = var(C), hence

123

39 Page 26 of 68 S. Zheng, R. A. Schmidt

var(t) = var(D), and therefore var(tσ) = var(Dσ). Then Dσ is covering. Since C is
strongly compatible, s and t are compatible. By 2. of Lemma 22, sσ and tσ are compatible,
hence Dσ is strongly compatible. Suppose G is a set of flat literals that acts as a loose guard
of C . Then G is a loose guard of D. Since σ substitutes variables with either constants or
variables and all literals inG are flat, all literals inGσ are flat. Since var(G) = var(C) and D
is a subclause ofC , var(Gσ) = var(Dσ). By the facts that σ substitutes variables with either
constants or variables and G is a loose guard of D, each pair of variables of Dσ co-occurs
in a literal of Gσ . Hence Gσ is a loose guard of Dσ . Therefore, Dσ is an LG clause. ��

We establish properties of applying the T-Res rule to a flat clause and LG clauses.

Lemma 24 Suppose a T-Res inference happens to LG clauses as the side premises and a
non-ground flat clause as the main premise, with Condition 2b. of the T-Res rule satisfied.
Then, the top variables in the main premise pair constants or compound terms in the side
premises, and the non-top variables in the main premise pair constants or variables in the
side premises.

Proof Assuming that a-priori eligibility is applied, the T-Res rule is simplified to:

B1 ∨ D1, . . . , Bm ∨ Dm, . . . , Bn ∨ Dn ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D
T-Res:

(D1 ∨ . . . ∨ Dm ∨ ¬Am+1 ∨ . . . ∨ ¬An ∨ D)σ

provided the following conditions are satisfied.

1. No literal is selected in D1, . . . , Dn, D and B1, . . . , Bn are strictly �lpo-maximal with
respect to D1, . . . , Dn , respectively.

2a. If n = 1, then i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨ D and ¬A1 is
�lpo-maximal with respect to D, and ii) σ = mgu(A1

.= B1) or
2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1

.= B1, . . . , An
.= Bn), then

¬A1, . . . ,¬Am are the top-variable literals of ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D
and σ = mgu(A1

.= B1, . . . , Am
.= Bm) where 1 ≤ m ≤ n.

3. All premises are variable disjoint.

W.l.o.g. suppose ¬At (. . . , x, . . . , y, . . .) is a literal in ¬A1, . . . ,¬Am , x is a top variable
and y is a non-top variable (if it exists). Further suppose σ ′ is the S-Res mgu that σ ′ =
mgu(A1

.= B1, . . . , An
.= Bn). Suppose Ct = Bt (. . . , t1, . . . , t2, . . .) ∨ Dt is the side

premise such that At (. . . , x, . . . , y, . . .)σ ′ = Bt (. . . , t1, . . . , t2, . . .)σ ′, and t1 and t2 pair x
and y, respectively.

We prove that t1 is either a constant or a compound term and t2 is either a constant or a
variable by distinguishing two cases of Ct . i) Suppose Ct is ground. Then, immediately t1 is
either a constant or a ground compound term. We prove that t2 is a constant by contradiction.
Assume that t2 is a ground compound term. The fact that Ct is simple implies dep(t2) ≥
dep(t1). Since t1 and t2 are ground, dep(t2σ ′) ≥ dep(t1σ ′), and dep(yσ ′) ≥ dep(xσ ′), which
contradicts that y is not a top variable. Therefore, t2 is a constant.

ii) Suppose Ct is non-ground. Then Lines 3–7 in Algorithm 1 are used to check eligibility
in Ct . By the fact that the eligible literal in Ct is positive, Lines 5–6 are applied to Ct , hence
Ct is a non-ground compound-term clause and Bt (. . . , t1, . . . , t2, . . .) is the �lpo-strictly
maximal with respect to Ct . By Lemma 14, Bt is a compound-term literal. We prove that
t1 is a compound term by contradiction. Assume t1 is either a variable or a constant. Since
Bt is a compound-term literal, there exists a compound term in Bt . W.l.o.g., we suppose
t is a compound term in Bt and suppose z is the variable in At that t pairs. The covering
property of Ct implies var(t1) ⊆ var(t). The fact that dep(t1) < dep(t) implies dep(t1σ ′) <

123

Saturation-Based Boolean Conjunctive … Page 27 of 68 39

dep(tσ ′), therefore dep(xσ ′) < dep(zσ ′), which contradicts that x is a top variable. Then,
t1 is a compound term. Next, we prove that t2 is either a constant or a variable again by
contradiction. Assume t2 is a compound term. Since Ct is covering, var(t1) = var(t2). Since
dep(t1) = dep(t2), dep(t1σ ′) = dep(t2σ ′), and therefore dep(xσ ′) = dep(yσ ′), which
contradicts that y is not a top variable. Hence, t2 is either a variable or a constant. ��

Lemma 24 allows us to analyse unification in T-Res inferences, formally stated in the
following corollary.

Corollary 25 In an application of the T-Res rule to LG clauses as the side premises and a
non-ground flat clause as the main premise, with Condition 2b. of the T-Res rule satisfied,
the following conditions hold.

1. An mgu σ substitutes top variables x with either constants or the compound term pairing
x modulo variable renaming and grounding, and substitutes non-top variables with either
constants or variables.

2. An mgu σ substitutes variables in the eligible literals of the side premises with either
constants or variables.

Proof 1: By the pairing property established in Lemma 24.
2: Suppose B(. . . , x, . . .) is an eligible literal in one of the side premises, and suppose x

is a variable argument in B(. . . , x, . . .). By Lemma 24 and the fact that the main premise
is a non-ground flat clause, x pairs either a constant or a variable, therefore σ substitutes x
with either a constant or a variable. ��

If a top-variable pairs a constant, the way a T-Res inference is performed is clear.

Lemma 26 Suppose a T-Res inference happens to LG clauses as the side premises and a
non-ground flat clause as the main premise, with Condition 2b. of the T-Res rule satisfied.
Then, if a top variable x pairs a constant, then i) all negative literals in the main premise
are selected and ii) the mgu is a ground substitution instantiating all variables in the eligible
literals and the top-variable literals with only constants.

Proof Suppose σ ′ is the mgu of the S-Res inference that ensures this application of theT-Res
rule. By the definition of the top-variable technique, for any non-top variable y in the main
premise, dep(xσ ′) > dep(yσ ′). The fact that x pairs a constant indicates that dep(xσ ′) = 0,
therefore dep(yσ ′) = 0. Then, all variables in the main premise are top variables and they
pair either constants or variables. By Lemma 24, these top variables pair constants. Hence,
σ ′ is a ground substitution that substitutes all variables with only constants. ��

Next, we formally show that the T-Res rule prevents term depth increase in the T-Res
resolvents of a non-ground flat clause and LG clauses.

Lemma 27 In an application of the T-Res rule to LG clauses as the side premises and a
non-ground flat clause as the main premise, with Condition 2b. of the T-Res rule satisfied,
the T-Res resolvent is no deeper than at least one of its premises.

Proof By 1.–2. of Corollary 25. ��
Finally, we investigate the applications of the Factor and T-Res rules to LG clauses,

starting with the Factor rule.

123

39 Page 28 of 68 S. Zheng, R. A. Schmidt

Lemma 28 In the application of theFactor rule in the T-Res system to LG clauses, the factors
are LG clauses.

Proof Assuming a-priori eligibility, the Factor rule simplifies to:

C ∨ A1 ∨ A2Factor:
(C ∨ A1)σ

if the following conditions are satisfied.

1. Nothing is selected in C ∨ A1 ∨ A2.
2. A1 is �lpo-maximal with respect to C .
3. σ = mgu(A1

.= A2).

Suppose C ′ = C ∨ A1 ∨ A2 and the premise C ′ is an LG clause. By the definition of
the Factor rule, A1 is the eligible literal and it is positive. Since Lines 3–4 and Line 7 in
Algorithm 1 select negative literals of LG clauses as the eligible or the top-variable literals,
either Lines 1–2 or Lines 5–6 in Algorithm 1 are applicable toC ′. We distinguish these cases:

Suppose C ′ satisfies Lines 1–2. Then the premise C ′ is a ground LG clause, and it is
immediate that the factor (C ∨ A1)σ is a ground LG clause.

Suppose C ′ satisfies Lines 5–6. Then C ′ is a non-ground LG clause containing positive
compound-term literals, but no negative compound-term literals. By Lemma 14 and the
fact that C ′ is covering, A1 is a compound-term literal. By Remark 17 and the fact that
C ′ is not ground, A1 is a non-ground compound-term literal. By the covering property of
C ′, var(A2) ⊆ var(A1). We prove that A2 is a compound-term literal by contradiction.
Suppose A2 is a flat literal. Because var(A2) ⊆ var(A1) and A1 is a compound-term literal,
a compound term t in A1 pairs either a variable that occurs in t , or a constant. Due to occur-
check failure, in neither case A1 and A2 are unifiable, which refutes the fact that A1 and A2

are unifiable. Hence, A2 is a compound-term literal. The fact that C ′ is covering implies that
var(A2) = var(A1). By Lemma 18 and the fact that C ′ is covering, the mgu σ substitutes
variables with either variables or constants. By Lemma 23 and since C ′ is a compound-term
LG clause, the factor (C ∨ A1)σ is an LG clause. ��
Lemma 29 In the application of the T-Res rule to LG clauses, the resolvents are LG clauses.

Proof We consider T-Res inferences by distinguishing all possible cases of themain premise.
Suppose an LG clause C = ¬A1 ∨ D is the T-Res main premise. In Algorithm 1, C satisfies
either Lines 1–4 or Line 7.

First, we consider the cases where the main premise satisfies either Lines 1–2 or Lines
3–4 in Algorithm 1. In these cases, the eligible literal in the main premise C is either selected
or is maximal with respect to C . Then Condition 2a. of the T-Res rule is applied to the main
premise and the T-Res inference is reduced to a binary T-Res inference without using the
top-variable technique. W.l.o.g., suppose in a T-Res inference, an LG clauseC1 = B1∨D1 is
the side premise and the resolvent R = (D1 ∨ D)σ where σ the mgu of B1 and A1. Further,
suppose C satisfies either Lines 1–2 or Lines 3–4 in Algorithm 1. Since the eligible literal
in C1 is positive, C1 satisfies either Lines 1–2 or Lines 5–6 in Algorithm 1.

Suppose C satisfies Lines 1–2. Then C is a ground LG clause. We distinguish the cases of
¬A1.

1) Suppose ¬A1 is a ground flat literal. The fact that no selection function in the T-Res
system selects negative ground literals implies that the eligibility of ¬A1, because ¬A1 is
maximal with respect to C , therefore C is a flat clause. The facts that A1 and B1 are unifiable

123

Saturation-Based Boolean Conjunctive … Page 29 of 68 39

and A1 is a flat ground literal imply that B1 is a flat literal. The fact that B1 is strictly �lpo-
maximal with respect to C1 implies that C1 is a flat clause. Since the eligible literal B1 in the
flat LG clause C1 is a flat literal, C1 is a ground clause satisfying Lines 1–2 in Algorithm 1.
Since both C and C2 are flat ground clauses, the resolvent R is a flat ground clause. Hence,
R is an LG clause.

2) Next, suppose ¬A1 is a ground compound-term literal. By Remark 17, C is a ground
compound-term LG clause. SinceC1 is an LG clause, B1 is either a compound-term literal or a
flat literal. Since B1 is maximal with respect to C1, the assumption that B1 is flat implies that
B1 is ground, otherwise, negative literals inC1 will be selected. However, if B1 is ground, the
unification between A1 and B1 is impossible due to a clash. Then, B1 is a compound-term
literal. Suppose B1 is ground. By Remark 17, C1 is a ground compound-term LG clause.
The fact that C and C1 are both ground compound-term LG clauses implies that applying
the T-Res rule to C and C1 derives a ground LG clause. Next, suppose B1 is a non-ground
compound-term literal. By Lemma 18 and since A1 and B1 are unifiable by the mgu σ , the
mgu σ substitutes the variables in B1 with constants. By Lemma 16 and because B1 is the
eligible literal in C1, σ substitutes all variables in C1 with constants, therefore C1σ is a
ground compound-term LG clause. Since C is ground, applying the T-Res rule to C and C1

derives the same resolvent as applying the T-Res rule toC andC1σ . The fact thatC andC1σ

are ground compound-term LG clauses implies that applying the T-Res rule to C and C1σ

derives a ground LG clause. Hence, the resolvent R is an LG clause.
Suppose C satisfies Lines 3–4. Then C contains negative compound-term literals. By

Remark 17 and since C is not ground, the literal ¬A1 contains non-ground compound terms,
and therefore ¬A1 is selected by the SelectNC function. We now distinguish the possible
cases of B1.

i) Suppose B1 is a flat literal. Similar to the proof in 2) that B1 cannot be a flat literal, the
assumption that B1 is flat implies that B1 is ground. This makes the unification between A1

and B1 impossible due to a clash. Hence, B1 cannot be flat.
ii) Suppose B1 is a compound-term literal. We distinguish two cases of B1.
ii)-i) First, consider B1 as a ground compound-term literal. By Lemma 18 and the fact

that A1 and B1 are unifiable, the mgu σ substitutes all variables in A1 with constants. By the
fact that A1 is a compound-term literal of C1 and the covering property of the LG clauses, σ
substitutes all variables in C1 with constants, therefore C1σ is a ground compound-term LG
clause. As C is ground, applying the T-Res rule to C and C1 derives the same resolvent as
the one when applying the T-Res rule to C and C1σ . The fact that C and C1σ are ground
compound-term LG clauses implies that applying the T-Res rule to C and C1σ derives a
ground LG clause. Hence, the resolvent R is an LG clause.

ii)-ii) Next, suppose B1 is a non-ground compound-term literal. By Lemma 18 and the
fact that A1 and B1 are two unifiable simple compound-term literals, the σ substitutes the
variables in A1 and B1 with variables or constants. By Lemma 16, σ substitutes the variables
in C and C1 with variables or constants. If the mgu σ is a ground substitution, then both Cσ

and C1σ are ground LG clauses, therefore applying the T-Res rule to Cσ and C1σ derives
a ground LG clause. Suppose σ is a non-ground substitution. First, we prove that there is a
loose guard in the resolvent R. Suppose G is a set of flat literals that act as a loose guard
of C1. By Lemma 19 and because A1 and B1 are covering, simple and unifiable by the mgu
σ , var(A1σ) = var(Gσ). By Lemma 16, var(A1σ) = var(Cσ) and var(B1σ) = var(C1σ),
therefore, var(Gσ) = var(C1σ) = var(Cσ). Then var(Gσ) = var(R). By the variable co-
occurrence property of LG clauses and becauseG is a loose guard ofC1, each pair of variables
in C1 co-occurs in a literal of G. Since var(Gσ) = var(C1σ) = var(R) and σ substitutes the
variables in C1 and C with variables and constants, each pair of variables in R co-occurs in

123

39 Page 30 of 68 S. Zheng, R. A. Schmidt

a literal of Gσ and all literals in Gσ are flat. Hence, Gσ is a loose guard of the resolvent R.
Next, we prove that R is simple. Suppose L is a literal in eitherC orC1. By Lemma 16, either
var(L) ⊆ var(A1) or var(L) ⊆ var(B1). Because σ substitutes the variables in either A1 or
B1 with either variables or constants, A1σ and B1σ are simple. By 1. in Lemma 21, Lσ is
simple. Hence, the resolvent R is simple. Next, we prove that R is covering. Because the mgu
σ substitutes the variables inC1 andC with variables and constants, the compound terms in R
come from compound terms in eitherC1 orC . Suppose t is a compound term in eitherC orC1.
By Remark 17 and since both C and C1 are non-ground, t is a non-ground compound term
literal. By Lemma 21 and the covering property of LG clauses, either var(tσ) = var(A1σ) or
var(tσ) = var(B1σ). The fact that either var(A1σ) = var(R) or var(B1σ) = var(R) implies
that var(tσ) = var(R), therefore the resolvent R is covering. Finally, we prove that R is
strongly compatible. By the fact that σ substitutes the variables in C and C1 with variables
and constants, the compound terms in the resolvent R are inherited from compound terms
that exist in C or C1. W.l.o.g. suppose s and t are respectively compound terms in A1 and
B1, and s pairs t . Further, suppose s1 is a compound term in C that is distinct from s, and t1
is a compound term in C1 that is distinct from t . By 3. of Lemma 22 and the fact that s and
t are unifiable by the mgu σ , s1σ is compatible with t1σ . Then all compound terms in the
resolvent R are compatible. Hence, R is strongly compatible. Because R is simple, covering,
strongly compatible and R contains a loose guard, R is an LG clause.

Next, we consider the case when a T-Res main premise satisfies Line 7. This means that
the premise is a non-ground flat LG clause. These T-Res inferences happen when the main
premise satisfies Condition 2b. and hence the top-variable technique is applied. Assume that
in anT-Res inference, LG clausesC1 = B1∨D1, . . . ,Cn = Bn∨Dn are the side premises, an
LG clauseC = ¬A1∨. . .∨¬Am∨. . .∨¬An∨D is themain premisewith¬A1∨. . .∨¬Am the
top-variable subclause and the resolvent is R = (D1∨ . . .∨Dm ∨¬Am+1∨ . . .∨¬An∨D)σ ,
where σ is the the mgu such that σ = mgu(A1

.= B1, . . . , Am
.= Bm) where 1 ≤ m ≤ n.

Suppose C is a non-ground flat LG clause. By Corollary 25, the mgu σ substitutes the top
variables in C with constants or compound terms, it substitutes non-top variables in C with
constants or variables and it substitutes all variables inC1, . . . ,Cm with constants or variables.
We distinguish two possible cases of the mgu σ :

1. Suppose σ substitutes a top variable with a constant. By Lemma 26, all variables in the
top-variable subclause ¬A1 ∨ . . . ∨ ¬Am are substituted with constants. Hence, B1, . . . , Bn

are flat literals. Since the strictly �lpo-maximal literal Bi with respect to Ci is flat, Ci is a flat
ground clause, for each i such that 1 ≤ i ≤ n. By Lemma 16 and since C is an LG clause, σ
substitutes all variables inC with constants. Applying theT-Res rule to flat ground LG clauses
C1, . . . ,Cm and C derives the same conclusions as applying the T-Res rule to C1, . . . ,Cm

and Cσ . Since applying the T-Res rule to C1, . . . ,Cm and Cσ derive a flat ground clause,
applying the T-Res rule to C1, . . . ,Cm and C also derives flat ground clauses. Hence, the
resolvent R is an LG clause.

2. Next, suppose the mgu σ substitutes no top variables with constants. First, we establish
intermediate results of unification on top variables. Suppose x is a top variable and¬At is the
literal in ¬A1, . . . ¬Am where x occurs. Further, suppose Bt is a literal in the side premises
satisfying Btσ

.= Atσ .W.l.o.g. supposeCt is a side premise inC1, . . . ,Cm andCt = Bt∨Dt .
By the assumption that the mgu σ substitutes no top variables with constants and Bt pairs
the top-variable literal At , Bt is a compound-term literal. Suppose t is the compound term
in Bt that pairs x . The fact that Btσ

.= Atσ implies that var(Btσ) = var(Atσ). By the
covering property of LG clauses and the fact that t is a compound term, var(t) = var(Bt),
therefore var(tσ) = var(Btσ). The fact that x pairs t implies that var(xσ) = var(tσ),
therefore var(xσ) = var(Btσ). Since var(Btσ) = var(Atσ), var(xσ) = var(Atσ). By the

123

Saturation-Based Boolean Conjunctive … Page 31 of 68 39

variable co-occurrence property of LG clauses, x co-occurs with all other variables in C .
Because x is a top-variable, in the literals of ¬A1, . . . ,¬Am , x co-occurs with all other
variables in C . Suppose y is a variable in ¬A1, . . . ,¬Am , and w.l.o.g. suppose x and y co-
occurs in A1. The fact that var(xσ) = var(Atσ) implies that var(xσ) = var(A1σ), therefore
var(yσ) ⊆ var(xσ). Hence for each variable y in ¬A1, . . . ,¬Am , var(yσ) ⊆ var(xσ).
Then, for each Ai in A1, . . . , Am , var(Aiσ) = var(xσ). By the covering property of the
LG clauses, for each Bi in B1, . . . , Bm , var(Bi) = var(Di). Since Ai and Bi are unifiable
using the mgu σ , var(Aiσ) = var(Biσ) for each i such that 1 ≤ i ≤ m. Then var(xσ) =
var(Biσ), and therefore var(xσ) = var(Diσ) for each i such that 1 ≤ i ≤ m. By Lemma
16, var(¬A1 ∨ . . .∨¬Am) = var(C). Hence, var(xσ) = var((¬Am+1 ∨ . . .∨¬An ∨ D)σ).
Then, var(xσ) = var(tσ) = var(R).

Following 2. we also need to prove that the resolvent R contains a loose guard. Sup-
pose Ci = Bi ∨ Di is a side premise in C1, . . . ,Cm , t is a compound term in Bi , x is
the top-variable that t pairs. Further, suppose G is a set of negative flat literals acting as
a loose guard of Ci . By 2. of Corollary 25, all literals in G are flat. By the definition of
LG clauses, var(G) = var(t). By the result established in the previous paragraph and as
var(Gσ) = var(tσ), var(Gσ) = var(R). By the variable co-occurrence property of LG
clauses, each pair of variables in Gσ co-occurs in a literal of Gσ , therefore each pair of
variables in Gσ co-occurs in a literal of R. The fact that all literals in Gσ are flat implies
that Gσ act as a loose guard of the resolvent R. Next, we prove that R is covering. The fact
that C is a flat clause implies that all compound terms in R come from the side premises.
Suppose Ci = Bi ∨ Di is a side premise in C1, . . . ,Cm and t is a compound term in Bi .
W.l.o.g. further suppose s is a compound term in Di . By the covering property of LG clauses,
var(s) = var(t) and var(sσ) = var(tσ) with σ as the mgu. By the result established in the
previous paragraph, var(sσ) = var(R). Then, the resolvent R is covering. Next, we prove
that R is strongly compatible. Again, we consider compound terms in the side premises
since all compound terms in R come from the side premises. Suppose t1 and t2 are two
flat compound terms in D1, . . . , Dm . We prove that R is strongly compatible by showing
that t1σ and t2σ are compatible. Suppose C1 = B1 ∨ D1 and C2 = B2 ∨ D2 are two side
premises in C1, . . . ,Cm and w.l.o.g. suppose t1 and t2 occur in D1 and D2, respectively. By
the assumption that the mgu σ substitutes no top variables with constants and the fact that B1

and B2 pair the top-variable literals, B1 and B2 are compound-term literals. W.l.o.g. suppose
s1 and s2 are two flat compound terms in B1 and B2, respectively. Further suppose s1 and
s2 pair top variables x1 and x2, respectively. By the variable co-occurrence property of LG
clauses, x1 and x2 co-occur in at least one literal in ¬A1, . . . ,¬Am . W.l.o.g. suppose ¬A3 is
a literal where‘x1 and x2 co-occur. SupposeC3 = B3∨D3 is a side premise and A3σ

.= B3σ .
Further suppose u1 and u2 are flat compound terms in B3 that pair x1 and x2, respectively.
By the strong compatibility property of LG clauses, u1σ is compatible with u2σ , therefore,
x1σ is compatible with x2σ . Since x1 pairs s1 and x2 pairs s2, s1σ is compatible with s2σ .
By the strong compatibility property of LG clauses, s1 and s2 are compatible with t1 and t2,
respectively. Hence s1σ and s2σ are compatible with t1σ and t2σ , respectively. By the fact
that s1σ is compatible with s2σ , t1σ is compatible with t2σ , therefore all compound terms
in the resolvent R are compatible. Then, R is strongly compatible. Finally, we prove that the
resolvent R is a simple clause. By 1. of Corollary 25, the mgu σ substitutes the variables in
¬Am+1 ∨ . . . ∨ ¬An ∨ D with either variables, constants or flat compound terms. By 2. of
Corollary 25, the mgu σ substitutes the variables in D1, . . . , Dm with either variables or
constants. Because ¬Am+1 ∨ . . . ∨ ¬An ∨ D is a flat clause and D1, . . . , Dm are simple
clauses, the resolvent (D1 ∨ . . .∨ Dm ∨¬Am+1 ∨ . . .∨¬An ∨ D)σ is a simple clause. Then,
the resolvent R is an LG clause. ��

123

39 Page 32 of 68 S. Zheng, R. A. Schmidt

Lemmas 28–29 prove that applying the Factor and T-Res rules to LG clauses derive LG
clauses. The derived LG clauses are of bounded depth as the clauses are simple. We now
investigate the width of the derived clauses. Recall that by the width of a clause, we mean
the number of distinct variables in the clause.

Lemma 30 In applications of the T-Res system to LG clauses, the derived LG clause is no
wider than at least one of its premises.

Proof We distinguish the applications of the Factor rule and the T-Res rule: i) By Lemma
28, the conclusions of applying Factor to LG clauses are LG clauses. The proof in Lemma
28 shows that the loose guard of the factor is from the loose guard of the premise (modulo
variable renaming and ground instantiations). The fact that a loose guard contains all variables
of an LG clause implies that the factor of an LG clause is no wider than its premise.

ii) By Lemma 29, the conclusions of applying T-Res to LG clauses are LG clauses. The
proof in Lemma 29 shows that the loose guard of the derived LG clauses is inherited from one
of the T-Res side premises (modulo variable renaming and ground instantiation), therefore
any derived LG clause is no wider than at least one of its T-Res side premises. ��

Finally, we give the main result of this section.

Theorem 31 The T-Res system decides satisfiability of the LG clausal class.

Proof By Lemmas 28–29, applying the T-Res system to LG clauses derives LG clauses with
bounded depth. By Lemma 30, the derived LG clauses have bounded width. As no fresh
symbols are introduced in the derivation, the T-Res system decides the LG clausal class. ��

6 Handling Query Clauses

Basic Notions of Query Clauses

Recall that a query clause is a negative flat clause. Since there is no restriction on the
occurrences of the variables in query clauses, analysing the conclusions of these clauses
is non-trivial. To better manipulate and study query clauses, we introduce the notions of
surface literal, chained variables and isolated variables.

Definition 32 Let Q be a query clause. Then, a literal L is a surface literal in Q if there
exists no distinct literal L ′ in Q such that var(L) ⊂ var(L ′). Let L1 and L2 be two surface
literals in Q such that var(L1) �= var(L2). Then, x is a chained variable in Q if x belongs to
var(L1) ∩ var(L2). The other non-chained variables are the isolated variables in Q.

For example, the literals ¬A1(x1, x2),¬A2(x2, x3),¬A3(x3, x4, x5),¬A4(x5, x6) in

Q1 = ¬A1(x1, x2) ∨ ¬A2(x2, x3) ∨ ¬A3(x3, x4, x5) ∨ ¬A4(x5, x6) ∨ ¬A5(x3, x4),

are surface literals, but the literal ¬A5(x3, x4) is not as var(A5) ⊂ var(A3). Then, the
variables x2, x3, x5 are the chained variables and x1, x4, x6 are the isolated variables in Q1.
In

Q2 = ¬A1(x1, x2, x3) ∨ ¬A2(x3, x4, x5) ∨ ¬A3(x5, x6, x7)∨
¬A4(x1, x7, x8) ∨ ¬A5(x3, x4, x9),

123

Saturation-Based Boolean Conjunctive … Page 33 of 68 39

Fig. 6 Hypergraphs associated with of Q1 and Q2

all literals are surface literals, therefore, the variables x1, x3, x4, x5, x7 are the chained vari-
ables and x2, x6, x8, x9 are the isolated variables in Q2.

A hypergraph is used to represent a flat clause, formally defined as follows.

Definition 33 Suppose C is a flat clause, and H(V , E) is a hypergraph which consists of a
set V of vertices and a set E of hyperedges. Then H(V , E) is the hypergraph associated
with C if the set V of vertices consists of all variables in C , and the set E of hyperedges
contains, for each literal L in C , the set of variables that appear in L .

We use rectangles and variable symbols to represent the hyperedges and the vertices of
the hypergraph associated with a flat clause, respectively. Dotted-line and solid-line rectan-
gles respectively represent positive and negative literals and negation symbols are omitted.
Figure 6 displays the hypergraphs associated with the query clauses Q1 and Q2 above.

Definition 34 A chained-only query clause and an isolated-only query clause are respectively
query clauses containing only chained and only isolated variables.

For example, the query clause¬A(x1, x2)∨¬A2(x2, x3)∨¬A3(x3, x1) is a chained-only
query clause and ¬A1(x1) ∨ ¬A2(x1, x2, x3) is an isolated-only query clause.

The Separation Rules

We define the separation rules we need and prove their soundness.
The separation rule Sep replaces a clause C ∨ D by two clauses in which the subclauses

C and D have been separated by a fresh predicate symbol [82], formally:

N ∪ {C ∨ D}
Sep:

N ∪ {C ∨ P(x),¬P(x) ∨ D}
if the following conditions are satisfied.
1. C and D are non-empty subclauses of C ∨ D.
2. var(C) � var(D) and var(D) � var(C).
3. var(C) ∩ var(D) = x .
4. P is a predicate symbol that does not occur in N ∪ {C ∨ D}.

The Sep rule is introduced in [82] to decide satisfiability of fluted logic, and the rule is
referred to as ‘splitting through new predicate symbols’ in [60, Sect. 3.5.6].

The Sep rule preserves satisfiability equivalence. This proof can be found in Theorem 3
of the technical report version of [82]. Formally:

123

39 Page 34 of 68 S. Zheng, R. A. Schmidt

Lemma 35 The Sep premise N ∪ {C ∨ D} is satisfiable if and only if the Sep conclusion
N ∪ {C ∨ P(x),¬P(x) ∨ D} is satisfiable.

The following are separation rules, customised for separating decomposable and inde-
composable query clauses. Recall that a clause is decomposable if it can be partitioned into
two variable-disjoint subclauses, otherwise, the clause is indecomposable.

N ∪ {C ∨ D}
SepDeQ:

N ∪ {C ∨ ¬p1,¬p2 ∨ D, p1 ∨ p2}
if the following conditions are satisfied.
1. C ∨ D is a decomposable query clause.
2. C and D are non-empty subclauses of C ∨ D.
3. var(C) ∩ var(D) = ∅.
4. p1 and p2 are propositional variables that do not occur in N ∪ {C ∨ D}.

N ∪ {C ∨ ¬A(x, y) ∨ D}
SepIndeQ:

N ∪ {C ∨ ¬A(x, y) ∨ P(x),¬P(x) ∨ D}
if the following conditions are satisfied.
1. C ∨ ¬A(x, y) ∨ D is an indecomposable query clause, and x �= ∅ and y �= ∅.
2. ¬A(x, y) is a surface literal and var(C) ⊆ x ∪ y.
3. x are chained variables and x ⊆ var(D).
4. y are isolated variables and y ∩ var(D) = ∅.
5. P is a predicate symbol that does not occur in N ∪ {C ∨ ¬A(x, y) ∨ D}.

The SepDeQ rule can be seen as either a form of formula renaming with positive literals
introduced in Sect. 3 or a form of the splitting rule with propositional symbols [68, 74].
Unlike splitting [94], the SepDeQ rule does not create a new branch in the derivation, thus
no back-tracking is needed. Due to the introduction of the fresh predicate symbols in the
SepDeQ conclusions, one cannot use the subsumption elimination technique to eliminate
the SepDeQ premise by the SepDeQ conclusions, whereas splitting can take the advantage
of the subsumption elimination technique as no fresh predicate symbols are needed in the
splitting process.

Inspired by the Sep rule, the SepDeQ and SepIndeQ rules are specifically developed for
separating query clauses. For example, in applications of the SepDeQ and SepIndeQ rules
to query clauses, the polarity of the literals using the fresh predicate symbol is assigned in a
way such that the SepDeQ and SepIndeQ conclusions are either query clauses or guarded
clauses. The Sep rule is stronger than the SepDeQ and SepIndeQ rules with respect to
separating query clauses. Given a query clause

Q = ¬A(z, x1) ∨ ¬A(x1, x2) ∨ ¬A(x2, x3) ∨ ¬A(x3, z)∨
¬B(z, y1) ∨ ¬B(y1, y2) ∨ ¬B(y2, y3) ∨ ¬B(y3, z),

the Sep rule separates it into

¬A(z, x1) ∨ ¬A(x1, x2) ∨ ¬A(x2, x3) ∨ ¬A(x3, z) ∨ P(z),

¬B(z, y1) ∨ ¬B(y1, y2) ∨ ¬B(y2, y3) ∨ ¬B(y3, z) ∨ ¬P(z)

123

Saturation-Based Boolean Conjunctive … Page 35 of 68 39

using a fresh predicate symbol P . Yet neither SepDeQ nor SepIndeQ is applicable to Q as
Q is an indecomposable chained-only query clause.

Though the Sep rule is stronger and more general than the SepDeQ and SepIndeQ rules,
our separation rules provide a clear view of how a query clause is separated in a goal-oriented
way. Consider the SepIndeQ rule. Each application of the SepIndeQ rule removes a surface
literal and the subclause it guards, viz., C ∨ ¬A(x, y), from the premise C ∨ ¬A(x, y) ∨ D.
On the other hand, the application of the Sep rule to query clauses is complicated and difficult
to analyse. Most importantly, applying the Sep rule to query clauses can derive conclusions
that do not belong to the LGQ clausal class, making the conclusions difficult to handle. For
example, applying the Sep rule to the above query clause Q guarantees deriving a non-LGQ
clause ¬A(z, x1) ∨ ¬A(x1, x2) ∨ ¬A(x2, x3) ∨ ¬A(x3, z) ∨ P(z).

Now we prove the soundness of the SepIndeQ rule by showing the connection between
the rule and the Sep rule, formally stated as:

Lemma 36 Suppose N ∪{C∨¬A(x, y)∨D} is a SepIndeQ premise. Then, applying the Sep
rule can derive N ∪ {C ∨ ¬A(x, y) ∨ P(x),¬P(x) ∨ D} using a fresh predicate symbol P.

Proof First, we prove that theSep rule is applicable to N∪{C∨¬A(x, y)∨D}.We distinguish
four conditions of the Sep rule.

1) We prove that both C ∨ ¬A(x, y) and D are non-empty subclauses. The case when
C∨¬A(x, y) is emptymakes the application of the SepIndeQ rule to N∪{C∨¬A(x, y)∨D}
void. We prove that D is not empty by contradiction. Suppose D is empty. By the fact that
var(C) ⊆ x ∪ y, all variables inC∨¬A(x, y) are isolated variables, therefore the SepIndeQ
rule is not applicable to C ∨ ¬A(x, y). Hence, D is a non-empty subclause.

2) We prove that var(C ∨ ¬A(x, y)) � var(D) and var(D) � var(C ∨ ¬A(x, y)). The
fact that y∩var(D) = ∅ implies var(C∨¬A(x, y)) � var(D). We prove var(D) � var(C∨
¬A(x, y)) by contradiction. Suppose var(D) ⊆ var(C ∨ ¬A(x, y)). As var(C) ⊆ x ∪ y, we
also have var(D) ⊆ x∪ y. Then {x∪ y} = var(C∨¬A(x, y)∨D) = var(¬A(x, y)). Hence,
¬A(x, y) is a surface literal of C ∨¬A(x, y)∨ D, and therefore for any other surface literals
L inC∨¬A(x, y)∨D, var(L) = var(¬A(x, y)). Then all variables inC∨¬A(x, y)∨D are
isolated variables, which contradicts that x are the chained variables of C ∨ ¬A(x, y) ∨ D.

3) By the result established in 2) and the fact that the chained variables x occur in both
subclauses C ∨ ¬A(x, y) and D, x = var(C ∨ ¬A(x, y)) ∩ var(D).

4) This is the same condition as 5. of the SepIndeQ rule.
By the results established in 1)–4), applying the Sep rule to N ∪ {C ∨ ¬A(x, y) ∨ D}

derives either

N ∪ {C ∨ ¬A(x, y) ∨ P(x),¬P(x) ∨ D} or N ∪ {C ∨ ¬A(x, y) ∨ ¬P(x), P(x) ∨ D}.
using a fresh predicate symbol P . ��

The SepDeQ and SepIndeQ rules are sound, formally stated as:

Lemma 37 The SepDeQ and SepIndeQ premises are satisfiable if and only if the SepDeQ
and SepIndeQ conclusions are satisfiable, respectively.

Proof It is immediate that the statement holds for the SepDeQ rule since the rule performs
formula renaming. By Lemma 36, applying the SepIndeQ rule or the Sep rule to the same
premise derives the same conclusions. Hence, each application of the SepIndeQ rule can be
seen as an application of the Sep rule. By Lemma 35, the SepIndeQ rule is sound. ��

123

39 Page 36 of 68 S. Zheng, R. A. Schmidt

Now we extend the T-Res system with the SepDeQ and SepIndeQ rules. Resolution
systems in line with the framework of [8] follow the principle that a conclusion is always
smaller than the premises. To satisfy this condition, we make the fresh predicate symbols
introduced in the applications of the SepDeQ and SepIndeQ rules �lpo-smaller than the
predicate symbols in the SepDeQ and SepIndeQ premises. With this restriction and the fact
that the SepDeQ and SepIndeQ rules are replacement rules, we regard the SepDeQ and
SepIndeQ rules as the simplification rules in the T-Res system. We use T-Res+ to denote
the T-Res system combined with the SepDeQ and SepIndeQ rules.

When infinitely many fresh predicate symbols are introduced in the saturation process of
the T-Res+ system, the system may lose refutational completeness. Hence, the main result
of this section is formulated as follows.

Theorem 38 Provided that the SepDeQ and SepIndeQ rules introduce finitely many fresh
predicate symbols, the T-Res+ system is sound and refutationally complete for first-order
clausal logic.

Proof By Theorem 13, Lemma 37 and the assumption that the fresh predicate symbols
introduced in the applications of the SepDeQ and SepIndeQ rules are �lpo-smaller than the
predicate symbols in the SepDeQ and SepIndeQ premises. ��

Separating Query Clauses

In this section, we investigate application of the SepDeQ and SepIndeQ rules to query
clauses. We start with the SepDeQ rule.

Lemma 39 Suppose Q is a decomposable query clause. Then, the SepDeQ rule separates Q
into narrower query clauses and narrower guarded clauses.

Proof By the definitions of query clauses and guarded clauses. ��
Next, we consider the SepIndeQ rule.

Remark 40 Suppose Q is an indecomposable query clause. Then, the SepIndeQ rule applies
to Q if and only if there exists a surface literal in Q containing both isolated variables and
chained variables.

Proof By the definition of the SepIndeQ rule. ��
Based on the observation of Remark 40, we look at how the SepIndeQ rule is applied to

indecomposable query clauses.

Lemma 41 Suppose Q is an indecomposable query clause, and Q has a surface literal
containing both chained variables and isolated variables. Then, SepIndeQ can separate Q
into narrower query clauses and narrower Horn guarded clauses.

Proof Suppose C1 = C ∨ ¬A(x, y) ∨ D is an indecomposable query clause, and suppose
¬P(x) ∨ D and C ∨ ¬A(x, y) ∨ P(x) are the SepIndeQ conclusions of C1.

First, consider ¬P(x) ∨ D. As D is a query clause, ¬P(x) ∨ D is a query clause. By the
facts that all variables in ¬P(x) ∨ D occur in C ∨ ¬A(x, y) ∨ D and ¬P(x) ∨ D does not
contain y, ¬P(x) ∨ D is narrower than C ∨ ¬A(x, y) ∨ D.

Next consider C ∨ ¬A(x, y) ∨ P(x). The fact that var(C) ⊆ var(¬A(x, y)) implies
var(¬A(x, y)) = var(C ∨ ¬A(x, y) ∨ P(x)). By the fact that all literals in C ∨ ¬A(x, y) ∨

123

Saturation-Based Boolean Conjunctive … Page 37 of 68 39

P(x) are flat,¬A(x, y) is a guard forC∨¬A(x, y)∨P(x), thereforeC∨¬A(x, y)∨P(x) is a
guarded clause. Because P(x) is the only positive literal inC∨¬A(x, y)∨P(x), the clause is
aHorn guarded clause.We prove thatC∨¬A(x, y)∨P(x) is narrower thanC∨¬A(x, y)∨D
by contradiction. Suppose var(C ∨ ¬A(x, y) ∨ D) ⊆ var(C ∨ ¬A(x, y) ∨ P(x)). The fact
that var(D) ∩ y = ∅ implies var(D) ⊆ x , which contradicts that x are chained variables in
C ∨ ¬A(x, y) ∨ D. Hence, C ∨ ¬A(x, y) ∨ P(x) is narrower than C ∨ ¬A(x, y) ∨ D. ��

TheSepIndeQ rule is devised to remove the isolated variables froma query clause through
separating i) the surface literal containing both the isolated variables and chained variables
and ii) the literals guarded by this surface literal from the query clause. By ‘a literal L1 is
guarded by a literal L’, we mean that L acts as a guard of L1, viz., the literal L is a negative
flat literal and var(L1) ⊆ var(L).

An isolated variable satisfies the following condition:

Remark 42 Suppose Q is a query clause, and x is an isolated variable in Q. Further suppose
L1 and L2 are x-occurring surface literals in Q. Then, var(L1) = var(L2).

Proof We prove the claim by contradiction. Suppose var(L1) �= var(L2). The facts that
x ∈ var(L1) ∩ var(L2) and L1 and L2 are surface literals imply that x is a chained variable,
which contradicts the assumption that x is an isolated variable. ��

Lemmas 39 and 41 claim that applying the SepDeQ and SepIndeQ rules to a query clause
derives new query clauses, therefore the separation rules can be recursively applied to query
clauses. We use Q-Sep to denote the procedure of recursively applying the SepDeQ and
SepIndeQ rules to a query clause.

Consider an application of the Q-Sep procedure to the query clause

Q1 = ¬A1(x1, x2) ∨ ¬A2(x2, x3) ∨ ¬A3(x3, x4, x5) ∨ ¬A4(x5, x6) ∨ ¬A5(x3, x4).

Since Q1 is indecomposable and contains surface literals where both isolated variables and
chainedvariables occur, theSepIndeQ rule is applicable to the clause.All literals inQ1 are the
surface literals containing both isolated variables and chained variables, except¬A2(x2, x3).
To better show how the SepIndeQ rule separates a query clause, we colour the isolated
variables red and the surface literal and the literals guarded by it blue.

The Q-Sep procedure separates Q1 by the following steps:

1. W.l.o.g.we beginwith removing the isolated variable x1 from Q1. Thismeanswe separate
the surface literal ¬A1(x1, x2) from Q1. Using a fresh predicate symbol P1, applying
the SepIndeQ rule to Q1 derives:

C1 = ¬A1(x1, x2) ∨ P1(x2) and

Q′
1 = ¬P1(x2) ∨ ¬A2(x2, x3) ∨ ¬A3(x3, x4, x5) ∨ ¬A4(x5, x6) ∨ ¬A5(x3, x4).

2. AsC1 is a guarded clause, it is not separable. In Q′
1 the surface literal¬A2(x2, x3) guards

the literal ¬P1(x2). To remove the isolated variable x2 from Q′
1, we use the SepIndeQ

rule to separate ¬P1(x2) ∨ ¬A2(x2, x3) from Q′
1. Using a fresh predicate symbol P2,

Q′
1 is separated into:

C2 = ¬P1(x2) ∨ ¬A2(x2, x3) ∨ P2(x3) and

Q′
2 = ¬P2(x3) ∨ ¬A3(x3, x4, x5) ∨ ¬A4(x5, x6) ∨ ¬A5(x3, x4).

123

39 Page 38 of 68 S. Zheng, R. A. Schmidt

Fig. 7 The Q-Sep procedure separates Q1 into Horn guarded clauses C1,C2,C3 and an indecomposable
isolated-only query clause Q′

3. The removed isolated variables are red and the separated surface literal and
the literals guarded by it are blue

3. No separation rule is applicable toC2. We separate the isolated variable x3 from Q′
2: find

that¬A3(x3, x4, x5) is the x3-occurring surface literal in Q′
2, and then separate this literal

and the literals guarded by it, viz., ¬P2(x3) and ¬A5(x3, x4). Using a fresh predicate
symbol P3, Q′

2 is separated into:

C3 = ¬P2(x3) ∨ ¬A3(x3, x4, x5) ∨ ¬A5(x3, x4) ∨ P3(x5) and

Q′
3 = ¬A4(x5, x6) ∨ ¬P3(x5).

4. The conclusionsC3 and Q′
3 are not separable. Finally, Q1 is replaced by theHorn guarded

clauses C1,C2,C3 and the indecomposable isolated-only query clause Q′
3.

Though Step 3. aims to remove the isolated variable x3 from Q′
2, it turns out that both the

isolated variables x3 and x4 are removed from Q′
2. This is because x4 occurs in the x3-

occurring surface literal ¬A3(x3, x4, x5), therefore by Remark 40, Step 3. also removes all
x4-occurring literals from Q′

2. Figure 7 shows how the Q-Sep procedure separates Q1 into
C1,C2,C3 and Q′

3, framed in the green box.
The indecomposable isolated-only query clauses, for example, Q′

3 from the previous
example, are indeed Horn guarded clauses. Analysis of these two clausal classes reveals the
following property:

Lemma 43 An indecomposable isolated-only query clause is a Horn guarded clause.

Proof Suppose Q is an indecomposable isolated-only query clause. Recall that if Q contains
two surface literals L1 and L2 such that var(L1) �= var(L2) and x ∈ var(L1)∩var(L2), then
x is a chained variable in Q. Since Q contains no chained variables, it is the case that either
i) Q contains only one surface literal, or ii) Q contains multiple surface literals and each pair
L1 and L2 of surface literals satisfies either var(L1) = var(L2) or var(L1) ∩ var(L2) = ∅.
We distinguish these two cases:

i) The indecomposable isolated-only query clause Q is flat, negative and contains only
one surface literal L . By the definition of surface literals, var(L) = var(Q). Then, Q is a
Horn guarded clause with a guard L .

ii) If any pair L1 and L2 of surface literals in Q satisfies var(L1) = var(L2), then it is the
same case as i) but L1 and L2 are both guards of Q. If there exists a pair L1 and L2 of surface

123

Saturation-Based Boolean Conjunctive … Page 39 of 68 39

literals satisfying var(L1) ∩ var(L2) = ∅, then Q is decomposable, which contradicts the
assumption. ��

A chained variable in the SepIndeQ premise may become an isolated variable in the
SepIndeQ conclusion, but not vice-versa. For example, in Step 1. of the previous example, the
chained variable x2 in Q1 becomes isolated in Q′

1, due to the removal of the isolated variable
x1 in Q1. However, since the SepIndeQ rule does not introduce new connections between
variables in the conclusions, an isolated variable in the SepIndeQ premise cannot turn into
a chained variable in the SepIndeQ conclusion. Since the Q-Sep procedure continuously
removes isolated variables in the SepIndeQ conclusions, the procedure handles the freshly
converted isolated variables.

Next, we look at another query clause

Q2 = ¬A1(x1, x2, x3) ∨ ¬A2(x3, x4, x5) ∨ ¬A3(x5, x6, x7)∨
¬A4(x1, x7, x8) ∨ ¬A5(x3, x4, x9).

To remove the isolated variables x2, x4, x6, x8 and x9 from Q2, we apply the SepIndeQ rule
to Q2 five times. Using fresh predicate symbols P4, P5, P6, P7 and P8, theQ-Sep procedure
separates Q2 into Horn guarded clauses

¬A1(x1, x2, x3) ∨ P4(x1, x3), ¬A4(x1, x7, x8) ∨ P5(x1, x7),

¬A3(x5, x6, x7) ∨ P6(x5, x7), ¬A5(x3, x4, x9) ∨ P7(x3, x4),

¬A2(x3, x4, x5) ∨ ¬P7(x3, x4) ∨ P8(x3, x5),

and an indecomposable chained-only query clause

Q3 = ¬P4(x1, x3) ∨ ¬P8(x3, x5) ∨ ¬P6(x5, x7) ∨ ¬P5(x1, x7).

Figure 8 shows how theQ-Sep procedure separates Q2 into the above Horn guarded clauses
and the above indecomposable chained-only query clause. We see that each application of
the SepIndeQ rule separates a coloured surface literal.

Unlike the Q-Sep conclusions of Q1, applying the Q-Sep procedure to Q2 derives the
indecomposable chained-only query clause, c.f. Q3. By Remark 40, the procedure of recur-
sively applying the SepIndeQ rule to an indecomposable query clause terminates if either an
indecomposable chained-only query clause or an indecomposable isolated-only query clause
is derived. We use the notion of ICQ to denote indecomposable chained-only query clauses.

The main result of this section is given as follows.

Lemma 44 Applying the Q-Sep procedure to a query clause replaces it with narrower
guarded clauses and optionally narrower ICQ clauses.

Proof i) By Lemma 39, recursively applying the SepDeQ rule to a decomposable query
clause replaces it with narrower guarded clauses and narrower indecomposable query clauses.
ii) By Remark 40 and Lemmas 41 and 43, recursively applying the SepIndeQ rule to an
indecomposable query clause, in which a surface literal contains both isolated variables and
chained variables, replaces it by narrower Horn guarded clauses and narrower ICQ clauses.
iii) Suppose Q an indecomposable query clause that the SepIndeQ rule cannot separate. By
Remark 40, Q is an indecomposable query clause containing either only chained variables
or only isolated variables. Then Q is either an indecomposable chained-only query clause,
viz., an ICQ clause, or an indecomposable isolated-only query clause, viz., a Horn guarded
clause, thanks to Lemma 43. By i)–iii), the claim holds. ��

123

39 Page 40 of 68 S. Zheng, R. A. Schmidt

Fig. 8 The Q-Sep procedure separates Q2 into Horn guarded clauses and an indecomposable chained-only
query clause

Following Lemma 44, we analyse the number of fresh predicate symbols that may be
introduced in an application of the Q-Sep procedure to a query clause.

Lemma 45 In the application of the Q-Sep procedure to a query clause, finitely many fresh
predicate symbols are introduced.

Proof Suppose Q is a query clause and n is the width, viz., the number of distinct variables,
in Q. By Lemma 39, recursively applying the SepDeQ rule to Q terminates in at most n − 1
steps. The fact that each application of the SepDeQ rule to Q introduces two fresh predicate
symbols implies that at most 2 ∗ (n − 1) fresh predicate symbols are needed. Similarly, by
Lemma41, recursively applying theSepIndeQ rule to Q requires atmost n−1 fresh predicate
symbols. In total at most 3 ∗ (n − 1) fresh predicate symbols are needed in separating Q. ��

Depending on the surface literal one picks, applying the Q-Sep procedure to a query
clause may derive distinct sets of guarded clauses and ICQ clauses.

Regarding a query clause as a hypergraph, the Q-Sep procedure is a process of ‘cutting
the branches off’ the hypergraph. Interestingly, this procedure handles query clauses like the
GYO-reduction in [41, 47, 96]. Using the notion of cyclic queries [16], the GYO-reduction
identifies cyclic conjunctive queries by recursively removing branches, viz., ‘ears’ in the
hypergraph of the queries. This method reduces a conjunctive query to an empty formula if
the query is acyclic, otherwise, the query is cyclic. In our definition, an ‘ear’ is the surface
literal containing both isolated variables and chained variables, and it is separated from the
query clause using the Q-Sep procedure. Hence, the Q-Sep procedure can be regarded as
an implementation of the GYO-reduction: if a query clause can be separated into guarded
clauses, then, that query clause is acyclic, otherwise it is cyclic. However, the Sep rule,
which is the basis of the Q-Sep procedure, is more general than the GYO-reduction as
its applicability is for any first-order clause. The fact that an acyclic conjunctive query is
expressible as a guarded formula is also reflected in [36, 42].

Handling Indecomposable Chained-Only Query Clauses

In this section, we show how the term depth increase problem is avoided when the T-Res rule
is performed on ICQ clauses and LG clauses, and we devise a formula renaming technique to
manage the T-Res resolvents, which are not necessarily in the LGQ clausal class.

123

Saturation-Based Boolean Conjunctive … Page 41 of 68 39

In an ICQ clause

Q3 = ¬P4(x1, x3) ∨ ¬P8(x3, x5) ∨ ¬P6(x5, x7) ∨ ¬P5(x1, x7),

the chained variables x1, x3, x5 and x7 form a ‘cycle’ through the literals P4, P5, P6 and P8, as
shownby the hypergraph representation given in the top-right corner in Fig. 8. The application
of the S-Res rule can lead to nested compound terms in the resolvents. Consider a set N of
the LGQ clause Q3 and the following LG clauses:

C1 = P4(x, g(x, y, z1, z2))
∗ ∨ ¬G1(x, y, z1, z2),

C2 = ¬G2(x, y, z1, z2) ∨ P8(g(x, y, z1, z2), x)
∗ ∨ A(h(x, y, z1, z2)),

C3 = P6(f (x), x)
∗ ∨ ¬G3(x) and C4 = P5(f (x), x)

∗ ∨ ¬G4(x).

Applying the S-Res rule to C1, . . . ,C4 as the side premises and Q3 as the main premise with
all negative literals selected derives the S-Res resolvent:

R1 = ¬G3(x) ∨ ¬G4(x) ∨ ¬G1(f (x), y, z1, z2)∨
¬G2(f (x), y, z1, z2) ∨ A(h(f (x), y, z1, z2)).

The nested compound term in the literal A(h(f (x), y, z1, z2)) occurs in R1. Applying the
binary S-Res rule to C3 and Q3 with ¬P6(x5, x7) selected derives

R2 = ¬P4(x1, x3) ∨ ¬P8(x3, f (x)) ∨ ¬G3(x) ∨ ¬P5(x1, x).

Then applying the binary S-Res rule to C2 and R2 with ¬P8(x3, f (x)) selected derives

R3 = ¬P4(x1, x3) ∨ ¬G3(x) ∨ ¬P5(x1, x) ∨ ¬G2(f (x), y, z1, z2) ∨ A(h(f (x), y, z1, z2)),

inwhich, again, a nested compound-termoccurs in the literal A(h(f (x), y, z1, z2)). The result
is predictable since an application of the S-Res rule can be seen as successive applications
of the binary S-Res rule.

Now we show how the top-variable technique handles this term depth increase. In Algo-
rithms 1–2, the T-Res rule is applied to Q3 and C1 . . . ,C4 as follows.

1. The T-Res(N , Q3) function first selects all negative literals in Q3, and then seeks the
S-Res side premises for Q3, which are C1, . . . ,C4.

2. The S-Res mgu of C1, . . . ,C4 and Q3 is

{x1 	→ f (x), x5 	→ f (x), x7 	→ x, x3 	→ g(f (x), y, z1, z2)}
for the variables in Q3. Hence x3 is the only top variable in Q3.

3. The literals ¬P4(x1, x3) and ¬P8(x3, x5) in Q3 are therefore the top-variable literals. A
T-Res inference is performed on C1, C2 and Q3, deriving:

R = ¬G1(x, y, z1, z2) ∨ ¬G2(x, y, z1, z2) ∨ A(h(x, y, z1, z2))
∗∨

¬P6(x, x7) ∨ ¬P5(x, x7),

Notice that R contains no nested compound terms.
4. No further inference is possible for N ∪ {R}, hence N ∪ {R} is saturated.

123

39 Page 42 of 68 S. Zheng, R. A. Schmidt

Fig. 9 Applying the Q-Sep
procedure to Q4 separates it into
Horn guarded clauses. The
removed isolated variables are
coloured in red and the separated
literals are coloured in blue

Though the T-Res resolvent R is free of nested compound terms, it is wider than any of its
premises; moreover, it is neither a query clause due to the occurrence of the compound term
h(x, y, z1, z2) nor an LG clause since R contains no loose guard. The resolvent R is formed
with the remainders of C1, C2 and Q3 coloured in red, blue and brown above, respectively.
Observe that: i) the remainders ofC1 andC2 are LG clauses and the remainder of Q3 is a query
clause, and ii) due to the covering property of LG clauses, after unification, the remainders of
C1 and C2 form an LG clause in R. Based on this observation, we devise a formula renaming
technique which introduces a fresh predicate symbol P9 to abstract the remainders of C1 and
C2 from R and replaces R by its equisatisfiable set of LGQ clauses:

C5 = ¬G1(x, y, z1, z2) ∨ ¬G2(x, y, z1, z2) ∨ A(h(x, y, z1, z2)) ∨ P9(x, y, z1, z2),

Q4 = ¬P7(x, x7) ∨ ¬P6(x, x7) ∨ ¬P9(x, y, z1, z2)

where C5 is an LG clause and Q4 is an indecomposable query clause. Since the SepIndeQ
rule is applicable to Q4, one can remove the isolated variable x7 from Q4 via separating
the literals ¬P7(x, x7) and ¬P6(x, x7) from Q4. Using a new predicate symbol P10, one
separates Q4 into the Horn guarded clauses:

C6 = ¬P7(x, x7) ∨ ¬P6(x, x7) ∨ ¬P10(x) and C7 = ¬P9(x, y, z1, z2) ∨ P10(x).

Figure 9 shows how the Q-Sep procedure separates Q4 into C6 and C7. Then, the T-Res
resolvent R is replaced by the LG clauses C5,C6 and C7. To sum up, i) given an LGQ clausal
set {Q3,C1, . . . ,C4}, a saturated LGQ clausal set {Q3,C1, . . . ,C7} is derived, and ii) the
newly derived clauses C5,C6 and C7 are no wider than the T-Res side premises C1 and C2.

The other challenge in applying the T-Res rule to an ICQ clause and LG clauses is that the
T-Res resolvents may have awider variable cycle than theT-Resmain premise. For example,
applying the T-Res rule to the LG clauses

C ′
1 =¬A1(x1, x2) ∨ ¬A1(x2, x3) ∨ ¬A1(x3, x1) ∨ P4(x1, x3),

C ′
2 =¬A1(x3, x4) ∨ ¬A1(x4, x5) ∨ ¬A1(x5, x3) ∨ P8(x3, x5),

C ′
3 =¬A1(x5, x6) ∨ ¬A1(x6, x7) ∨ ¬A1(x7, x5) ∨ P6(x5, x7),

C ′
4 =¬A1(x1, x4) ∨ ¬A1(x4, x7) ∨ ¬A1(x7, x1) ∨ P5(x1, x7)

as the side premises and Q3 as the main premise derives the ICQ clause

¬A1(x1, x2) ∨ ¬A1(x2, x3) ∨ ¬A1(x3, x1) ∨ ¬A1(x3, x4) ∨ ¬A1(x4, x5) ∨ ¬A1(x5, x3)∨
¬A1(x5, x6) ∨ ¬A1(x6, x7) ∨ ¬A1(x7, x5) ∨ ¬A1(x1, x4) ∨ ¬A1(x4, x7) ∨ ¬A1(x7, x1)

123

Saturation-Based Boolean Conjunctive … Page 43 of 68 39

in which the variable cycle is significantly wider than the one in the query clause Q3.
However, the T-Res system avoids this T-Res inference by selecting all negative literals
in C ′

1,C
′
2,C

′
3 and C ′

4, forcing these clauses to act as the main premises in the resolution
inferences. Specifically, the T-Res system restricts that only ground simple clauses and non-
ground compound-term clauses can be side premises for ICQ clauses. Without introducing
wider variable cycles, the application of the T-Res rule to Q3 and C1, . . . ,C4 breaks the
variable cycle in Q3. This is due to the covering property of the LG clauses in the T-Res
side premises, ensuring that the variables in the side premises are simultaneously unified,
therefore the new variable relations in the remainders of the side premises, occurring in the
T-Res resolvent, remain controlled by the loose guards of the LG side premises.

Transforming the T-Res resolvent of an ICQ clause and LG clauses to the smallest number
of LGQ clauses is not straightforward. We use the notions of connected top variables and
closed top-variable subclauses to identify the LG subclauses in the T-Res resolvents.

Definition 46 In aT-Res inference on an ICQ clause as themain premisewith the top-variable
subclause C , and LG clauses as the side premises,

1. top variables xi and x j are connected in C if there exists a sequence of top variables
xi , . . . , x j in C such that each pair of adjacent variables co-occurs in a top-variable
literal, and

2. the clause C ′ is a closed top-variable subclause of C if

(a) each pair of top variables in C ′ are connected, and
(b) the top variables in C ′ do not connect to the top variables that are in C but not in C ′.

Suppose Qicq is an ICQ clause and Nlg are LG clauses. Further, suppose Qicq is the main
premise and Nlg are the side premises in a T-Res inference. Then, each closed top-variable
subclause in Qicq is resolved with a subset N ′

lg of Nlg , and the disjunction of the remainders
of all clauses in N ′

lg forms an LG clause in the T-Res resolvent. In the previous example,
the top-variable subclause ¬P5(x1, x3) ∨ ¬P9(x3, x5) in Q3 is the only closed top-variable
subclause in Q3, since x3 is the only top variable in Q3. The fact that theT-Res side premises
of ¬P5(x1, x3) and ¬P9(x3, x5) are C1 and C2 implies that the disjunction of remainders of
C1 and C2 forms an LG clause

C ′
lg = ¬G1(x, y, z1, z2) ∨ ¬G2(x, y, z1, z2) ∨ A(h(x, y, z1, z2))

in the T-Res resolvent

R = ¬G1(x, y, z1, z2) ∨ ¬G2(x, y, z1, z2) ∨ A(h(x, y, z1, z2))
∗ ∨ ¬P7(x, x7) ∨ ¬P6(x, x7).

In the previous example, we abstracted C ′
lg from R by introducing a fresh predicate symbol

P9, obtaining an LG clause C5 and a query clause Q4.
The T-Res resolvents of an ICQ clause and LG clauses is handled by the following formula

renaming:

123

39 Page 44 of 68 S. Zheng, R. A. Schmidt

Given an ICQ clause Q = ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An and LG clauses C1 =
B1 ∨ D1, . . . ,Cn = Bn ∨ Dn , applying the T-Res rule to Q as the main premise and
C1, . . . ,Cn as the side premises derives the T-Res resolvent

R = (¬Am+1 ∨ . . . ∨ ¬An)σ ∨ D1σ ∨ . . . ∨ Dmσ

where σ = mgu(A1
.= B1, . . . , Am

.= Bm) and the top-variable subclause is ¬A1 ∨
. . . ∨ ¬Am in Q where 1 ≤ m ≤ n.

Suppose ¬A1 ∨ . . . ∨ ¬Am is partitioned into the closed top-variable subclauses
C ′
1, . . . ,C

′
t . Then, we can represent R as

R = (¬Am+1 ∨ . . . ∨ ¬An)σ ∨ D′
1(x1σ) ∨ . . . ∨ D′

t (xtσ),

where xi are the variables occurring in D′
i for all i such that 1 ≤ i ≤ t . Then, R is

transformed using the following rule:

T-Trans:
N ∪ {(¬Am+1 ∨ . . . ∨ ¬An)σ ∨ D′

1(x1σ) ∨ . . . ∨ D′
t (xtσ)}

N ∪ {P1(x1σ) ∨ D′
1(x1σ), . . . , Pt (xtσ) ∨ D′

t (xtσ),

(¬Am+1 ∨ . . . ¬An)σ ∨ ¬P1(x1σ) ∨ . . . ∨ ¬Pt (xtσ)}
where P1, . . . , Pt are the fresh predicate symbols.

Applying the T-Trans rule to a T-Res resolvent of an ICQ clause and LG clause replaces
it with a set of LGQ clauses and preserves satisfiability equivalence. Formally:

Lemma 47 Let R be a T-Res resolvent of an ICQ clause Qicq as the main premise and LG
clauses Nlg as the side premises. Then, the following properties hold.

1. Applying the T-Trans rule to R replaces it by a set N ′
lg of LG clauses and a query clause

Qr .
2. Applying the Q-Sep procedure to Qr separates it into a set Ng of guarded clauses and

optionally a set Nicq of ICQ clauses.
3. For each clause C ′ in N ′

lg, there exists a clause C in Nlg such that C ′ is no wider than C.
4. For each clause C ′ in Ng, it is the case that either C ′ is narrower than Qicq , or there

exists a clause C in Nlg such that C ′ is not wider than C.
5. For each clause Q′

icq in Nicq , Q′
icq is narrower than Qicq .

6. Suppose N is a clausal set. Then, N ∪{R} is satisfiable if and only if N ∪N ′
lg ∪Ng ∪Nicq

is satisfiable.

Proof Recall the T-Res rule with a-priori eligibility.

B1 ∨ D1, . . . , Bm ∨ Dm, . . . , Bn ∨ Dn ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D
T-Res:

(D1 ∨ . . . ∨ Dm ∨ ¬Am+1 ∨ . . . ∨ ¬An ∨ D)σ

if the following conditions are satisfied.

1. No literal is selected in D1, . . . , Dn, D and B1, . . . , Bn are strictly �lpo-maximal with
respect to D1, . . . , Dn , respectively.

2a. If n = 1, i) either ¬A1 is selected, or nothing is selected in ¬A1 ∨ D and ¬A1 is
�lpo-maximal with respect to D, and ii) σ = mgu(A1

.= B1) or

123

Saturation-Based Boolean Conjunctive … Page 45 of 68 39

2b. there must exist an mgu σ ′ such that σ ′ = mgu(A1
.= B1, . . . , An

.= Bn), then
¬A1, . . . ,¬Am are the top-variable literals of ¬A1 ∨ . . . ∨ ¬Am ∨ . . . ∨ ¬An ∨ D
and σ = mgu(A1

.= B1, . . . , Am
.= Bm) where 1 ≤ m ≤ n.

3. All premises are variable disjoint.

Suppose Qicq = ¬A1∨ . . .∨¬Am ∨ . . .∨¬An is theT-Resmain premise and an ICQ clause,
andC1 = B1∨D1, . . . ,Cm = Bm∨Dm, . . . ,Cn = Bn∨Dn are theT-Res side premises and
LG clauses. Further suppose R is theT-Res resolvent (D1∨ . . .∨Dm ∨¬Am+1∨ . . .∨¬An)σ

of C1, . . . ,Cn and C . The variables occurring in the T-Trans rule are omitted in this proof.
Suppose Ci is a clause in C1, . . . ,Cm . By Algorithm 1, Ci is either a ground flat clause or

a compound-term clause. Suppose Ci is a ground flat clause. This means that a top variable
in Qicq pairs a constant in Ci . By Lemma 26, C1, . . . ,Cm are ground flat clauses and all
negative literals in Qicq are selected. Hence, the T-Res resolvent R is a ground flat clause,
viz., an LG clause, and the case of applying theT-Trans rule to R is trivial. Hence,C1, . . . ,Cm

are compound-term clauses. We now prove 1.–6. by in sequential order.
1.-1: We first prove that (¬Am+1 ∨ . . . ∨ ¬An)σ is a query clause. By 1. of Corollary 25,

the mgu σ substitutes all variables in ¬Am+1 ∨ . . .∨¬An with either variables or constants.
Then, (¬Am+1 ∨ . . . ∨ ¬An)σ is a query clause. When m = n the statement trivially holds.

1.-2: We prove that (D1 ∨ . . . ∨ Dm)σ is a disjunction of LG clauses, and each disjunct
maps to a closed top-variable subclause. This is done by proving:

i The subclause Diσ is an LG clause for each i such that 1 ≤ i ≤ m.
ii Suppose¬Ai and¬A j are two distinct literals containing connected top variables where

1 ≤ i ≤ m and 1 ≤ j ≤ m. Then, (Di ∨ Dj)σ is an LG clause.
iii Suppose ¬Ai1 ∨ . . . ∨ ¬Aik is a closed top-variable subclause of ¬A1 ∨ . . . ∨ ¬Am , and

suppose D′
i represents Di1 ∨ . . . ∨ Dik . Then, (D1 ∨ . . . ∨ Dm)σ can be represented as

(D′
1 ∨ . . . ∨ D′

t)σ where 1 ≤ t ≤ m.

1.-2-i: By Lemma 14 and the fact thatCi is a compound-term clause, the eligible literal Bi
inCi is a compound-term literal. By the covering property of LG clauses, var(Bi) = var(Ci).
By 2. of Corollary 25, the mgu σ substitutes variables in Ci with variables and constants. By
the fact that Ci is an LG clause and Lemma 23, Diσ is an LG clause.

1.-2-ii: Suppose x and y are top variables in ¬Ai and ¬A j , respectively. Further suppose
x and y are connected. By the definition of connected top variables, there exists a sequence of
top variables x, . . . , y inC such that each pair of adjacent variables co-occurs in a top-variable
literal. By Lemma 24, x, . . . , y only pair compound terms. Suppose x ′ and y′ are two adjacent
top variables in x, . . . , y.W.l.o.g. suppose¬At is a top-variable literal inC where x ′ and y′ co-
occur. Suppose Bt is the compound-term literal in the T-Res side premises that resolves¬At ,
satisfying that Atσ

.= Btσ . Further suppose s′ and t ′ are the compound terms in Bt that x ′
and y′ pair, respectively. By 1. of Corollary 25 and the covering property of LG clauses,
var(s′σ) = var(t ′σ), therefore var(x ′σ) = var(y′σ). Hence, var(xσ) = var(yσ). By the
strong compatibility of LG clauses, s′σ is compatible with t ′σ , therefore x ′σ is compatible
with y′σ . Hence, xσ is compatible with yσ . W.l.o.g. suppose x pairs a compound term t in Bi
and y pairs a compound term s in Bj . By the result established in 1.-2-ii, Diσ and Djσ are
LG clauses, The fact that var(xσ) = var(yσ) implies var(sσ) = var(tσ). By the covering
property of LG clauses, var(Diσ) = var(Djσ), therefore Diσ ∨ Djσ is covering. Since xσ
is compatible with yσ , sσ is compatible with tσ . By the strong compatibility property of
LG clauses, the compound terms in Diσ and Djσ are compatible, therefore Diσ ∨ Djσ are
strongly compatible. The fact that Diσ and Djσ are LG clauses implies that Diσ ∨ Djσ

is a simple clause. Since Diσ is an LG clause, Diσ contains a loose guard. By the fact that

123

39 Page 46 of 68 S. Zheng, R. A. Schmidt

var(Diσ) = var(Djσ), Diσ ∨ Djσ contains a loose guard. Hence, Diσ ∨ Djσ is an LG
clause.

1.-2-iii: Suppose¬Ai1 ∨. . .∨¬Aik is a closed top-variable subclause of¬A1∨. . .∨¬Am .
Further suppose D′

i represents Di1 ∨ . . . ∨ Dik where σ = mgu(Ai1
.= Bi1 , . . . , Aik

.= Bik).
We first prove that D′

i is an LG clause. Suppose C ′ is the top-variable subclause ¬A1 ∨
. . . ∨ ¬Am . By the fact that each literal in C ′ contains at least one top variable, and 2b. of
Definition 46 that each pair of closed top-variable subclauses of C ′ has no connected top
variables, one can partitionC ′ into a set of closed top-variable subclauses.We useC ′

1, . . . ,C
′
t

to denote this set of subclauses. W.l.o.g. we use C ′
i to represent ¬Ai1 ∨ . . .∨¬Aik . By 2a. of

Definition 46, each pair of top variables inC ′
i is connected. By the result established in 1.-2-ii,

(Di1∨. . .∨Dik)σ is an LG clause, therefore D′
i is an LG clause.We represent (D1∨. . .∨Dm)σ

as (D′
1∨. . .∨D′

t)σ where each D′
i in D′

1, . . . , D
′
t maps to a closed top-variable subclauseC ′

i .
Now we can present the T-Res resolvent as follows.

R = (D′
1 ∨ . . . ∨ D′

t ∨ ¬Am+1 ∨ . . . ∨ ¬An)σ

Applying the T-Trans rule to R transforms it into

D′
1σ ∨ P1, . . . , D′

tσ ∨ Pt , Qr = (¬Am+1 ∨ . . . ∨ ¬An)σ ∨ ¬P1 ∨ . . . ∨ ¬Pt .

We prove that D′
iσ ∨ Pi is an LG clause for all i such that 1 ≤ i ≤ t . The case is trivial when

D′
iσ is ground. Now assume that D′

iσ is non-ground. By 1.-2-iii, D′
iσ is an LG clause. By the

definition of the T-Trans rule, Pi is a flat literal and var(D′
iσ) = var(Pi), hence D′

iσ ∨ Pi
is an LG clause. Next, we prove that Qr is a query clause. By the definition of the T-Trans
rule, ¬P1 ∨ . . .∨¬Pt is a negative flat clause. By the result established in 1.-1, Qr is a query
clause.

2.: This is a consequence of Lemma 44.
3.: We prove that for each clause D′

iσ ∨ Pi in D′
1σ ∨ P1, . . . , D′

tσ ∨ Pt , there exists a
T-Res side premise C in C1, . . . ,Cm such that D′

iσ ∨ Pi is no wider than C . By 1.-2-i, the
loose guard Gσ in D′

iσ is inherited from a loose guard G in C1, . . . ,Cm . W.l.o.g. suppose a
side premise C contains the loose guard G. The fact that a loose guard contains all variables
of an LG clause implies that var(D′

iσ ∨ Pi) = var(Gσ) and var(C) = var(G). Then,
var(D′

iσ ∨ Pi) = var(Cσ). By 2. of Corollary 25, the mgu σ substitutes all variables in G

with either constants or variables, thereforeC contains no less distinct variables than D′
iσ∨Pi .

4.: Suppose C ′ is a guarded clause obtained by applying the Q-Sep procedure to

Qr = ¬Am+1σ ∨ . . . ∨ ¬Anσ ∨ ¬P1 ∨ . . . ∨ ¬Pt .

Then, C ′ can only be derived due to the fact that a surface literal in Qr is separated by the
Q-Sep procedure. We prove that

1 if the separated surface literal belongs to ¬Am+1σ, . . . ,¬Anσ , then C ′ is narrower
than Qicq , or

2 if the separated surface literal belongs to ¬P1, . . . ,¬Pt , then there exists a T-Res side
premise C in C1, . . . ,Cm such that C ′ is no wider than C .

4.-1: Suppose C ′ is a guarded clause that is obtained by separating a surface literal in Qr

belonging to ¬Am+1σ, . . . ,¬Anσ . The fact that ¬Am+1 ∨ . . . ∨¬An contains only non-top
variables implies that ¬Am+1 ∨ . . . ∨ ¬An is narrower than Qicq . By 1. of Corollary 25, the
mgu σ substitutes the variables in ¬Am+1 ∨ . . . ∨ ¬An with either variables or constants,
hence ¬Am+1σ ∨ . . . ∨ ¬Anσ is narrower than Qicq . By Lemma 44, C ′ is narrower than
¬Am+1σ ∨ . . . ∨ ¬Anσ , hence C ′ is narrower than Qicq .

123

Saturation-Based Boolean Conjunctive … Page 47 of 68 39

4.-2: W.l.o.g. suppose ¬P1 is a surface literal in ¬P1, . . . ,¬Pt that is separated from Qr

and suppose D′
1σ is the subclause that P1 defines. Further, suppose C ′ is the guarded clause

obtained by separating ¬P1 from Qr . By the definition of the T-Trans rule, var(P1) =
var(D′

1σ). By 1.-2-iii, D′
1σ is a disjunction of the remainders from the T-Res side premises

that map to a closed top-variable clause. W.l.o.g. suppose D1 is one of those remainders and
D1σ is a disjunct in D′

1σ . Suppose C is the T-Res side premise where D1 occurs. By 2. of
Corollary 25, the mgu σ substitutes variables in the T-Res side premises with variables and
constants, therefore D1σ is no wider than D1. By 1.-2-ii, var(D1σ) = var(D′

1σ). Hence,
D′
1σ is no wider than D1, thus D′

1σ is no wider than C . The fact that var(P1) = var(D′
1σ)

implies that P1 is no wider than C . Since the guarded clause C ′ is obtained by separating the
surface literal ¬P1 from Qr , ¬P1 acts as a guard in C ′, hence var(P1) = var(C ′). Then, C ′
is no wider than C .

5.: Suppose applying the Q-Sep procedure to

Qr = ¬Am+1σ ∨ . . . ∨ ¬Anσ ∨ ¬P1 ∨ . . . ∨ ¬Pt

derives a set Nicq of ICQ clauses, and Q′
icq is an ICQ clause in Nicq . W.l.o.g. we assume that

the mgu σ substitutes the variable arguments in the T-Res side premises C1, . . . ,Cm with
the variable arguments in the T-Resmain premise Qicq . We prove that Q′

icq is narrower than
Qicq by showing that Q′

icq contains only the non-top-variables from Qicq . The following
three steps prove this claim.

5.-1: First we prove that the chained variables (in Qr) occurring in ¬P1, . . . ,¬Pt belong
to the non-top-variables from Qicq . W.l.o.g. suppose ¬P1 and ¬P2 are two surface literals
in Qr that have common variables. Suppose D′

1σ and D′
2σ are the subclauses that P1 and P2

define, respectively. Further suppose D1 is a disjunct in D′
1 and D2 is a disjunct in D′

2. Suppose
C1 = B1∨D1 andC2 = B2∨D2 areT-Res side premises. By 1.-2-ii, var(D1σ) = var(D′

1σ)

and var(D2σ) = var(D′
2σ). By the definition of the T-Trans rule, var(P1) = var(D′

1σ) and
var(P2) = var(D′

2σ), therefore var(P1) = var(D1σ) and var(P2) = var(D2σ). Hence,
the overlapping variables between ¬P1 and ¬P2 are the same as those of D1σ and D2σ .
Now we consider how the mgu σ substitutes the variables in D1 and D2. W.l.o.g suppose
¬A1 and ¬A2 are top-variable literals in Qicq satisfying A1σ = B1σ and A2σ = B2σ . To
understand how the mgu σ substitutes the variables in D1 and D2 is to understand how σ ,
respectively, unifies the pair A1 and B1 and the pair A2 and B2. By 2. in Corollary 25 and
the assumption that the mgu σ substitutes the variable arguments in Bi with that in Ai , σ

substitutes all variable arguments in B1 and B2 with either non-top-variables or constants from
Qicq . Hence, the overlapping variables between B1σ and B2σ are non-top-variables in Qicq .
Then, the overlapping variables between D1σ and D2σ , and the ones between P1 and P2,
are non-top-variables from Qicq . By the definition of chained variables and the assumption
that ¬P1 and ¬P2 are the surface literals in Qr , the overlapping variables of P1 and P2 are
the chained variables in Qr . Hence, the chained variables occurring in ¬P1, . . . ,¬Pt come
from the non-top variables in Qicq .

5.-2: Next we prove that the chained variables occurring in¬Am+1σ ∨ . . .∨¬Anσ are the
non-top-variables from Qicq . By 1. in Corollary 25, the fact that¬Am+1∨. . .∨¬An contains
only non-top-variables and the assumption that the mgu σ substitutes the variable arguments
in C1, . . . ,Cm with the variable arguments in Qicq , the variables in ¬Am+1σ ∨ . . . ∨ ¬Anσ

are the non-top-variables in Qicq . Hence, the chained variables in ¬Am+1σ ∨ . . . ∨ ¬Anσ

belong to the non-top-variables in Qicq .
5.-3: By 5.-1 and 5.-2 and the fact that applying theQ-Sep procedure to a query clause does

not introduce new chained variables to the query clause in the conclusions, Q′
icq contains no

123

39 Page 48 of 68 S. Zheng, R. A. Schmidt

Fig. 10 Overview of handling query clauses

more distinct variables than the non-top-variables in Qicq . Since the top variables in Qicq

do not occur in Q′
icq , Q

′
icq is narrower than Qicq .

6.: By Lemma 37, theQ-Sep procedure is sound. The fact that the T-Trans rule is formula
renaming implies that the rule itself is sound. Hence, satisfiability equivalence is preserved.��

We useQ-IC to denote the procedure of applying our rules to ICQ clauses. This procedure
consists of the following steps:

1. Apply the T-Res rule to an ICQ clause as the main premise and LG clauses as the side
premises, deriving the T-Res resolvent R.

2. Apply the T-Trans rule to R, deriving a query clause Q and LG clauses.
3. Apply the Q-Sep procedure to Q, deriving guarded clauses and optionally ICQ clauses.

Figure 10 gives an overview of the query handling process for LG clauses presented in this
section.

The idea behind theQ-IC procedure is: whenever the T-Res resolvent R of an ICQ clause
Q and LG clauses C1, . . . ,Cn is derived, we use the T-Trans rule and the Q-Sep procedure
to replace R by a set N of LGQ clauses, which can be decided by the T-Res+ system
that we introduced above Theorem 38. Most importantly, for each clause C in N , there
exists a clause C ′ in Q,C1, . . . ,Cn satisfying that C is no wider than C ′. Another optional
implementation for 2.–3. of the Q-IC procedure is to devise a customised separation rule
that separates the T-Res resolvent R into LGQ clauses in one step. This implementation is
feasible due to the analysis of the variable relations of R, as explored in Lemma 47.

The main result of this section is given as follows.

Lemma 48 In the application of the Q-IC procedure to an ICQ clause Qicq and LG clauses
Nlg, the Q-IC conclusions satisfy the following conditions.

1. They are a set N ′
lg of LG clauses and optionally a set Nicq of ICQ clauses.

2. For each clause C ′ in N ′
lg, it is the case that either C

′ is narrower than Qicq , or there
exists a clause C in Nlg such that C ′ is no wider than C.

3. For each clause Q′
icq in Nicq , Q′

icq is narrower than Qicq .
4. The replacement of {Qicq} ∪ Nlg by N ′

lg ∪ Nicq preserves satisfiability equivalence.

Proof By Lemma 47 and the fact that the guarded clauses are LG clausal clauses. ��

123

Saturation-Based Boolean Conjunctive … Page 49 of 68 39

7 Answering BCQs for the Guarded Quantification Fragments

In Sect. 4 we introduce the top-variable inference system, in Sect. 5 we show that this system
decides loosely guarded clauses, and in Sect. 6 we show how we handle query clauses.
Now we combine the results from these sections and we are ready to describe a concrete
saturation-based procedure for answering BCQs for the guarded quantification fragments.

We use the notation Q-Ans to denote this procedure. To show that the Q-Ans procedure
is suitable for implementation in modern saturation-based first-order theorem provers, we
devise the procedure in accordance with the given-clause algorithm [66, 94] in Algorithm 3.

Algorithm 3: TheQ-Ans algorithm for answering BCQs for the guarded quantification
fragments

Input: A union q of BCQs and a set Σ of the guarded quantification formulas
Output: ‘Yes’ or ‘No’

1 workedOff ← ∅
2 Nlg, Nq ← Trans(Σ, q)

3 usable ← Nlg

4 foreach Q in Nq do
5 Ng, Nicq ← Sep(Q)

6 usable ← usable ∪ Nicq ∪ Ng

7 usable ← Smp(usable, usable)
8
9 while (usable �= ∅ and ⊥ /∈ usable) do

10 given ← Pick(usable)
11 workedOff ← workedOff ∪ {given}
12 if (given is an ICQ clause) then
13 Rtres ← T-Res(given, workedOff)
14 Nlg, Q ← T-Trans(Rtres)

15 Ng, Nicq ← Sep(Q)

16 new ← Nlg ∪ Ng ∪ Nicq

17 else
18 new ← T-Res(given, workedOff) ∪ Factor(given)

19 new ← Smp(new, new)

20 new ← Smp(Smp(new, workedOff), usable)
21 workedOff ← Smp(workedOff, new)

22 usable ← Smp(usable, new) ∪ new

23
24 if usable = ∅ then Print ‘No’
25 if ⊥ ∈ usable then Print ‘Yes’

The functions in Algorithm 3 are listed below.

1. Trans(Σ, q) applies the Trans process to a setΣ of guarded quantification formulas and
a union q of BCQs, returning a set Nlg of LG clauses and a set Nq of query clauses.

2. Sep(Q) applies theQ-Sep procedure to a query clause Q, and returns a set Ng of guarded
clauses and optionally a set Nicq of ICQ clause.

123

39 Page 50 of 68 S. Zheng, R. A. Schmidt

3. Pick(N) picks and then removes a clause from a clausal set N .
4. T-Res(C, N) eagerly applies the T-Res rule to a clause C and clauses in N , and returns

the T-Res resolvent Rtres .
5. T-Trans(Rtres) applies the T-Trans rule to the T-Res resolvents Rtres , returning a set

Nlg of LG clauses and a query clause Q.
6. Factor(C) applies the Factor rule (of the T-Res system) to a clause C , and returns the

factor of C .
7. Smp(N1, N2) returns all clauses from N1 that are not redundant with respect to clauses

in N2.

The derivation in Algorithm 3 needs to guarantee fairness. Let N be a set of clauses. Then,
a derivation N = N0, N1, . . ., with limit N∞ = ⋃

j
⋂

k≥ j Nk is fair if the conclusion of
the non-redundant premises in N∞ is contained in

⋃
j N j . Intuitively fairness means that no

inference in the derivation is delayed indefinitely. To ensure fairness, the Pick(N) function
should guarantee that every clause in N will eventually be picked. We refer the reader to [8,
p. 36] for a precise definition of fairness.

As a given-clause algorithm, Algorithm 3 splits input clauses into a worked-off clausal set
workedOff storing the clauses that have already been picked as given clauses, and a clausal
set usable with clauses needed to be considered for further inferences. For each clause C in
usable, we remove it from usable, and then add C , all non-redundant conclusions for C and
the non-redundant clauses in workedOff to usable. In the inference loop, reduction rules are
applied to guarantee termination.

Algorithm 3 consists of the following stages.

– Lines 1–7 transform a union of BCQs, guarded quantification formulas into a set of LG
clauses and ICQ clauses.

– Lines 9–22 saturate the class of LG clauses and ICQ clauses.
– Lines 24–25 output the answer to the given BCQs.

Lines 1–3 initialise the workedOff and usable clausal sets. Lines 4–6 transform a union of
BCQ into a set of ICQ and guarded clauses, and then add these clauses to the usable clausal
set. Line 7 performs the input reduction that removes redundancy in usable.

The while-loop in Lines 9–22 terminates if either usable is empty or it contains an empty
clause ⊥. Lines 10–11 pick a clause, namely given, from the usable causal set and then
add given to the workdedOffs causal set. Lines 12–18 derive new conclusions. Lines 12–16
say that if given is an ICQ clause, then the Q-IC procedure is applied to this ICQ clause
and LG clauses in the workedOff clausal set, deriving a set of ICQ clauses and LG clauses.
These newly derived clauses are denoted as new. As ICQ clauses are negative clauses, the
positive factoring rule Factor does not apply to them. Lines 17–18 say that if given is an LG
clause, then the T-Res or the Factor rules are applied to that clause, deriving new LG clauses,
denoted as new. Finally Lines 19–22 are the inter-reduction steps that removes redundancy
in the new, the workdedOff and the usable clausal sets.

Lines 24–25 output the answer to the given BCQ. Suppose q = q1 ∨ . . . ∨ qn is a union
of BCQs and Σ is a set of the guarded quantification formulas. An empty usable clausal set
implies that {¬q1, . . . ,¬qn} ∪ Σ is satisfiable. Hence, the answer to q is ‘No’. If the usable
clausal set contains an empty clause, then {¬q1, . . . ,¬qn} ∪ Σ is unsatisfiable. In this case,
the answer to q is ‘Yes’.

Since new predicate symbols are iteratively introduced in the derivation, one needs to
ensure that only finitely many new predicate symbols are required. The introduced new
predicate symbol will be reused whenever one needs to define a clause that has been defined
before. This approach is formally stated as:

123

Saturation-Based Boolean Conjunctive … Page 51 of 68 39

Remark 49 In the Q-Ans procedure, suppose a predicate symbol P is used to define an LGQ
clause C at one step in the derivation. Then, in any further step whenever a predicate symbol
is needed for defining C , we reuse the symbol P .

We show that for the fragments we consider theQ-Ans procedure requires a finite number
of predicate symbols.

Lemma 50 In the application of theQ-Ans procedure to the BCQ answering problem for GF,
LGF and CGF, only finitely many predicate symbols are introduced.

Proof In the Q-Ans procedure, new predicate symbols are introduced in Line 2, Lines 4–6
and Lines 14–15 in Algorithm 3. We distinguish these cases:

Line 2: Since the Trans process is applied to formulas before the saturation process, this
introduces finitely many new predicate symbols.

Lines 4–6: A union of BCQs is transformed into a finite number of query clauses. By
Lemma 45, only finitely many new predicate symbols are needed for separating the input
query clauses.

Lines 14–15: This step uses new predicate symbols to transform the T-Res resolvents R
of an ICQ clause and LG clauses by a set of LGQ clauses. Since we reuse the introduced
predicate symbols (Remark 49), we need to prove that given an LGQ clausal set, the number
of different T-Res resolvents R is finitely bounded, and therefore the number of predicate
symbols needed to transform the T-Res resolvents R to LGQ clauses is finitely bounded.

W.l.o.g. suppose the T-Res rule is applied to an ICQ clause Qicq = ¬A1 ∨ . . . ∨ ¬Am ∨
. . . ∨ ¬An as the main premise and LG clauses C1 = B1 ∨ D1, . . . ,Cm = Bm ∨ Dm as the
side premises, deriving the T-Res resolvent

R = D1σ ∨ . . . ∨ Dmσ ∨ ¬Am+1σ ∨ . . . ∨ ¬Anσ,

where σ = mgu(A1
.= B1, . . . , Am

.= Bm). By 1. of Lemma 47, D1σ, . . . , Dmσ are LG
clauses and ¬Am+1σ ∨ . . .∨¬Anσ is a query clause. By 1. of Corollary 25 and the fact that
the variables in ¬Am+1σ ∨ . . . ∨ ¬Anσ are the non-top variables from Qicq , ¬Am+1σ ∨
. . .∨¬Anσ is narrower than Qicq . By 3. of Lemma 47, the clauses in D1σ, . . . , Dmσ are no
wider than the clauses in C1, . . . ,Cm . Hence the T-Res resolvent R is indeed a disjunction
of a query clause (narrower than the query clause in the T-Resmain premise) and LG clauses
(that are no wider than the LG clauses in the T-Res side premises). We use the terminology
R-type clauses to refer to the T-Res resolvents of an ICQ clause and LG clauses.

We first prove that in the application of the Q-Abs procedure to LGQ clauses, the number
of R-type clauses is finite. Suppose N is an LGQ clausal set. Then, by applying the Q-Sep
procedure to the query clauses in N , as shown in Lines 4–6 of Algorithm 3, N is transformed
into a set of LG clauses and a set of ICQ clauses. Suppose N1 and N2 are sets of LG and
ICQ clauses, respectively. W.l.o.g. suppose N = N1 ∪ N2. We distinguish the inferences
performed on N1 and N2.

i: Suppose N ′
1 is the union of N1 and the LG clauses derived by applying theT-Res+ system

to N . By Lemma 30 and the property that LG clauses contain no nested compound terms, N ′
1

consists of finitely many clauses. Suppose N ′′
1 is the set of LG clauses (after condensation and

modulo variable renaming) built using the signature of N ′
1, and no clause N ′′

1 is wider than
the maximal width of the clauses in N ′

1. By the fact that the clauses in N ′′
1 are of bounded

depth and width, the number of clauses in N ′′
1 is finitely bounded. Suppose C is an LG clause

that is a subclause in the R-type clause when applying the T-Res rule to N . By 3. of Lemma
47, C is no wider than the clauses in N ′

1, therefore C belongs to N ′′
1 . By the fact that the

number of clauses in N ′′
1 is bounded, the number of clauses that are built using LG subclauses

123

39 Page 52 of 68 S. Zheng, R. A. Schmidt

is bounded, hence, using the signature in N1, there are finitely many D1σ ∨ . . . ∨ Dmσ

clauses.
ii: Suppose N ′

2 is the set of query clauses (after condensation and modulo variable renam-
ing) built using the signature of N2, and the clauses in N ′

2 are narrower than the maximal
width of the clauses in N2. Since clauses in N ′

2 are of bounded depth and width, there are
finitely many clauses in N ′

2. Suppose Qr is the query clause occurring in the R-type clause in
applying the T-Res rule to N . Then, Qr is narrower than the clauses in N ′

2, hence Qr belongs
to N ′

2. Hence, using the signature in N2, there are finitely many ¬Am+1σ ∨ . . . ∨ ¬Anσ

clauses.
By the results established in i and ii, given an LGQ clausal set N , the number of R-type

clauses that can be derived from N is finitely bounded. Then, for each R-type clause, only a
finite number of new predicate symbols is needed. Since we reuse the introduced predicate
symbols as stated in Remark 49, the total number of new predicate symbols for transforming
R-type clauses is finitely bounded. Then, Lines 14–15 only require a finitely bounded number
of new predicate symbols. ��

Next, we prove that the Q-Ans procedure guarantees termination.

Theorem 51 The Q-Ans procedure guarantees termination of deciding satisfiability for the
LGQ clausal class.

Proof By Theorem 31, the Q-Ans procedure is guaranteed to terminate on the LG clausal
class. By Lemmas 44 and 48, applying theQ-Ans procedure to query clauses and LG clauses
derives LGQ clauses that are no wider and no deeper than the premises. By Lemma 50,
applying theQ-Ans procedure to LGQ clauses requires finitely many new predicate symbols.
Therefor, the Q-Ans procedure decides satisfiability of the LGQ clausal class. ��

Finally, the next theorem positively answers Question 1.

Theorem 52 The Q-Ans procedure is a decision procedure for answering BCQs for GF, LGF
and CGF.

Proof By Theorems 8, 38 and 51. ��

8 Saturation-Based BCQ Rewriting for the Guarded Quantification
Fragments

In this section, we turn our attention to investigating the saturation-based BCQ rewriting
problem for the guarded quantification fragments.

Question 2 SupposeΣ is a set of formulas inGF, LGF and CGF, D is a set of ground atoms and
q is a union of BCQs. Further, suppose N is the saturation obtained by applying the procedure
devised for Question 1 to {¬q} ∪ Σ . Can N be back-translated to a (Skolem-symbol-free)
first-order formula Σq such that Σ ∪ D |� q if and only if D |� Σq?

Unlike the previous setting of BCQ answering, the BCQ rewriting problem depends only
on the rules Σ and the query q . As guarded quantification formulas are free of function
symbols, the function symbols in the saturation of {¬q} ∪ Σ are Skolem symbols, hence the
obtained formula Σq should also be function-free.

123

Saturation-Based Boolean Conjunctive … Page 53 of 68 39

Basic Notions and Rules for Back-Translation

That a clausal set N canbeback-translated into afirst-order formula if N isglobally consistent,
globally linear, normal and unique is shown in [33, chapter 5]. To avoid ambiguity, we replace
the word consistency with compatibility in this paper.

Now we formally define the above notions, starting with global compatibility. The com-
patibility property of a clause in Sect. 3 is extended to that of a clausal set. Recall that two
compound terms t and s are compatible if the argument sequences of t and s are identical.
A clause C is compatible if, in C , compound terms that are under the same function symbol
are compatible.

Definition 53 (Compatibility) A clausal set N is locally compatible if all clauses in N are
compatible. A clausal set N is globally compatible if compound terms in N that are under
the same function symbol are compatible.

Definition 54 (Linearity) A pair of compound terms t and s is linear if the set of arguments
in t is a subset of that in s or vice-versa. A clause C is linear if in C , each pair of compound
terms that are under different function symbols, is linear.

A clausal set N is locally linear if all clauses in N are linear. A clausal set N is globally
linear if each pair of compound terms in N that are under different function symbols is linear.

Definition 55 (Normality) A clause is normal if the compound terms in it contain only vari-
ables as arguments. A clausal set is normal if each clause in it is normal.

Definition 56 (Uniqueness)A compound term f (t1, . . . , tn) is unique if t1, . . . , tn are distinct
variables. A clausal set N is unique if every compound term in N is unique.

A first-order clausal set N can be back-translated into a first-order formula if N satisfies
all the aforementioned properties.

Theorem 57 ([33, chapter 5]) Suppose N is a normal, unique, globally linear and globally
compatible first-order clausal set. Then, N can be back-translated into a first-order formula
without Skolem symbols.

Next, we introduce the basic rules for back-translation.We use the notationC(t) to denote
that C(t) is a clause and t is a term that possibly occurs in C(t). We use Cn(f (xnm)) to denote
that f (xnm) is a flat compound term and xnm is a variable sequence x1, . . . , xm occurring in
the clause Cn .

A term is abstracted from a clause using:

N ∪ {C(t)}
Abs:

N ∪ {C(y) ∨ t �≈ y}
if t is a term and the variable y does not occur in C(t).

Variables are renamed using:

123

39 Page 54 of 68 S. Zheng, R. A. Schmidt

N ∪ {C(x)}
Rena:

N ∪ {C(y)}
if every occurrence of the variable x in C(x) is replaced by the variable y and y does
not occur in C(x).

A clausal set is unskolemised to a first-order formula using:

Suppose N ′ is a first-order clausal set
{C1(. . . , f (x1, . . . , xn), . . . , a, . . . , z),

. . . ,

Cm(. . . , g(x1, . . . , xn), . . . , b, . . .)

}
,

where a and b represent the Skolem and the non-Skolem constants in N ′, respectively,
f and g represent the Skolem function symbols in N ′, and z represents the variables
that are not under Skolem functions in N ′.

Let F be a Skolem-symbol-free first-order formula

∃y∀x1 . . . xn∃y1 . . . yk∀z
⎡
⎣
C1(. . . , y1, . . . , y, . . . , z)∧

. . .

Cm(. . . , yk, . . . , b, . . .)

⎤
⎦ ,

where the variables y, y1, . . . , yk do not occur in N ′. Then, N ′ is unskolemised by the
following rule:

N ∪ N ′
Unsko:

N ∪ {F}
if N ′ is normal, unique, globally linear and globally compatible.

The challenge of applying the Unsko rule to a clausal set N is not only about computing
a correct result, but it is about ensuring that N is normal, unique, globally linear and globally
compatible.Given a clausal set N that is obtained by saturating a set of clausified formulas, the
Unsko rule restores first-order quantifications for N by eliminating the Skolem symbols in N .
We refer the reader to [33, chapter 5] and [37, pp. 63–69] formore details on unskolemisation.

Lemma 58 ([37, Sect. 5]) The Abs, the Rena and the Unsko rules preserve logical equiva-
lence.

Next, we devise a back-translation procedure for LGQ clausal sets. This procedure first
transforms an LGQ clausal set N to a normal, unique, globally linear and globally compatible
clausal set N1, and then unskolemises N1 into a Skolem-symbol-free first-order formula. The
following LGQ clausal set

N =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬G1(x1, a) ∨ A1(f (x1, a), x1) ∨ A2(g(x1, a), x1),
¬G2(x2, x3) ∨ A3(f (x2, x3), x2) ∨ A4(g(x2, x3), x2),
¬G3(b, x4) ∨ A5(g(b, x4), b)
¬G4(x5, c, c) ∨ A6(h(c, c, x5)) ∨ A7(h(c, c, x5))
¬B1(x8, x6) ∨ ¬B2(x6, x7) ∨ ¬B3(x7, x8)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

123

Saturation-Based Boolean Conjunctive … Page 55 of 68 39

will be used as a running example, in which a and c are non-Skolem constants and b is a
Skolem constant.

Transforming LGQ Clausal Sets to Normal and Unique Clausal Sets

In this section, we transform an LGQ clausal set into a normal, unique, locally linear and
locally compatible clausal set. First, we introduce two variations of the Abs rule.

Constants in compound terms are abstracted using:

N ∪ {C(f (. . . , a, . . .))}
ConAbs:

N ∪ {C(f (. . . , x, . . .)) ∨ x �≈ a}
if the following conditions are satisfied.
1. C(f (. . . , a, . . .)) is a compound-term clause.
2. The variable x does not occur in C(f (. . . , a, . . .)).
3. All occurrences of a in C(f (. . . , a, . . .)) are simultaneously replaced by x .

Duplicate variables in compound terms are abstracted using:

N ∪ {C(f (. . . , x, . . . , x, . . .)}
VarAbs:

N ∪ {C(f (. . . , x, . . . , y, . . .) ∨ y �≈ x}
if the following conditions are satisfied.
1. C(f (. . . , x, . . . , x, . . .)) is a compound-term clause.
2. The variable y does not occur in C(f (. . . , x, . . . , x, . . .)).
3. Let the second variable x in f (. . . , x, . . . , x, . . .) occur at the position i in

f (. . . , x, . . . , x, . . .). Then, all occurrence of x in position i in all compound
terms in C(f (. . . , x, . . . , x, . . .)) are simultaneously replaced by y.

We use Q-Abs to denote the procedure of applying the ConAbs and the VarAbs rules
to an LGQ clausal set. The Q-Abs procedure ensures that an LGQ clausal set is transformed
into a normal and unique clausal set. Using the LGQ clausal set N as an example, theQ-Abs
procedure is applied to N by the following steps.

1. Recursively apply the ConAbs rule to each clause in an LGQ clausal set. From N we
obtain

N1 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬G1(x1, y1) ∨ A1(f (x1, y1), x1) ∨ A2(g(x1, y1), x1) ∨ y1 �≈ a,

¬G2(x2, x3) ∨ A3(f (x2, x3), x2) ∨ A4(g(x2, x3), x2),
¬G3(y2, x4) ∨ A5(g(y2, x4), y2) ∨ y2 �≈ b,
¬G4(x5, y3, y3) ∨ A6(h(y3, y3, x5)) ∨ A7(h(y3, y3, x5)) ∨ y3 �≈ c
¬B1(x8, x6) ∨ ¬B2(x6, x7) ∨ ¬B3(x7, x8)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

123

39 Page 56 of 68 S. Zheng, R. A. Schmidt

2. For each clause in the clausal set obtained in 1., recursively apply the VarAbs rule to it.
From N1 we obtain

N2 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

¬G1(x1, y1) ∨ A1(f (x1, y1), x1) ∨ A2(g(x1, y1), x1) ∨ y1 �≈ a,

¬G2(x2, x3) ∨ A3(f (x2, x3), x2) ∨ A4(g(x2, x3), x2),
¬G3(y2, x4) ∨ A5(g(y2, x4), y2) ∨ y2 �≈ b,
¬G4(x5, y3, y4) ∨ A6(h(y3, y4, x5)) ∨ A7(h(y3, y4, x5)) ∨ y3 �≈ c ∨ y4 �≈ y3
¬B1(x8, x6) ∨ ¬B2(x6, x7) ∨ ¬B3(x7, x8)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

We use the notation LGQnu to denote the clausal set obtained by applying the Q-Abs
procedure to an LGQ clausal set.

Lemma 59 Let N be a set of LGQnu clauses. Then, i) all clauses in N are strongly compatible,
and ii) N is normal, unique, locally compatible and locally linear.

Proof W.l.o.g. suppose N1 is an LGQ clausal set satisfying such that applyingQ-Abs proce-
dure to N1 derives N . Further, suppose C is a clause in N1.

By the strong compatible property of LGQ clauses and the fact that the ConAbs and the
VarAbs rules simultaneously abstract variables or constants from C , applying the Q-Abs
procedure to C derives a strongly compatible clause. Hence, the clauses in N are strongly
compatible, therefore N is locally compatible and locally linear.

That C is simple implies that the arguments in compound terms of C are either variables
or constants. Suppose C ′ is the clause obtained by recursively applying the ConAbs rule
to C . Since each application of the ConAbs rule to C abstracts a constant occurring in the
compound terms of C , no constants occur in compound terms in C ′, hence C ′ is normal.
Suppose C ′′ is the clause obtained by recursively applying theVarAbs rule to C ′. Since each
application of theVarAbs rule toC ′ abstracts a duplicate variable occurring in the compound
terms of C ′, no duplicate variables occur in compound terms in C ′′, therefore C ′′ is unique.
The fact that C ′ is normal implies that C ′′ is normal. Then, N is normal and unique. ��
Note that an LGQnu clause may not belong to the LGQ clausal class due to the presence of
equality literals.

Renaming LGQnu Clausal Sets for Unskolemisation

In this section, we transform an LGQnu clausal set into a normal, unique, globally compatible
and globally linear clausal set, preparing the set for unskolemisation.

Given an LGQnu clausal set N , one needs to locate the LGQnu clauses in N that have
common Skolem function symbols, so that we can simultaneously unskolemise these clauses.
We introduce the notions of connectedness, inter-connectedness and closed clausal set to
define clauses that have identical function symbols.

Definition 60 (Inter-connected clausal set) Two clauses are connected if they contain at least
one common function symbol. Two clausal sets are connected if they contain at least one
common function symbol, otherwise, they are unconnected.

A clausal set N is an inter-connected clausal set if for any pair of clauses C and C ′ in
N , there exists a sequence of clauses C,C1, . . . ,Cn,C ′ in N such that each pair of adjacent
clauses in C,C1, . . . ,Cn,C ′ is connected.

Recall that a flat clause is a clause containing no function symbols. We say that a clausal
set is flat if the set contains only flat clauses. We partition an LGQnu clausal set N into clausal

123

Saturation-Based Boolean Conjunctive … Page 57 of 68 39

sets N1, . . . , Nn such that i) each Ni is either an inter-connected clausal set or a flat clausal
set, and ii) each pair of clausal sets in N1, . . . , Nn are unconnected. Then, N1, . . . , Nn are
closed clausal sets in N .

An inter-connected LGQnu clausal set has the following useful property.

Lemma 61 Let N be an inter-connected LGQnu clausal set. Then, all compound terms in N
have the same arity.

Proof In a clausal set, compound terms that are under the same function symbol have the
same arity. By i) of Lemma 59, the compound terms in an LGQnu clause have the same arity.
Hence, all compound terms in an inter-connected LGQnu clausal set have the same arity. ��

Given a closed LGQnu clausal set N , theRena rule does not apply to it if N is a flat clausal
set. Variables in an inter-connected LGQnu clausal set are renamed using the following rule:

N ∪ {C1(f (x1m)), . . . ,Cn(g(xnm)))}
VarRe:

N ∪ {C1(f (ym)), . . . ,Cn(g(ym)))}
if the following conditions are satisfied.
1. {C1(f (x1m)), . . . ,Cn(g(xnm)))} is an inter-connected LGQnu clausal set.

2. For variable sequences x1m, . . . , xnm occurring in all compound terms of

{C1(f (x1m)), . . . ,Cn(g(xnm)))}, each of x1m, . . . , xnm is renamed with ym .

3. The variable sequence ym does not occur in {C1(f (x1m)), . . . ,Cn(g(xnm))}.

We useQ-Rena to denote the procedure of applying theVarRe rule to an inter-connected
LGQnu clausal set. The Q-Rena procedure transforms an LGQnu clausal set to a normal,
unique, globally compatible and globally linear clausal set, detailed below.

1. Partition an LGQnu clausal set to closed LGQnu clausal sets. We use the LGQnu clausal
set N2 from the previous section as an example. Partition N2 into closed LGQnu clausal
sets

N ′
2 =

⎧⎨
⎩

¬G1(x1, y1) ∨ A1(f (x1, y1), x1) ∨ A2(g(x1, y1), x1) ∨ y1 �≈ a,

¬G2(x2, x3) ∨ A3(f (x2, x3), x2) ∨ A4(g(x2, x3), x2),
¬G3(y2, x4) ∨ A5(g(y2, x4), b) ∨ y2 �≈ b

⎫⎬
⎭ ,

N ′′
2 = {¬G4(x5, y3, y4) ∨ A6(h(y3, y4, x5)) ∨ A7(h(y3, y4, x5)) ∨ y3 �≈ c ∨ y4 �≈ y3

}
,

and N ′′′
2 = {¬B1(x8, x6) ∨ ¬B2(x6, x7) ∨ ¬B3(x7, x8)}.

2. Apply the VarRe rule to the inter-connected LGQnu clausal sets obtained in 1. Using a
sequence of new variables x and y, applying the VarRe rule to N ′

2 derives

N ′
3 =

⎧⎨
⎩

¬G1(x, y) ∨ A1(f (x, y), x) ∨ A2(g(x, y), x) ∨ y �≈ a,

¬G2(x, y) ∨ A3(f (x, y), x) ∨ A4(g(x, y), x),
¬G3(x, y) ∨ A5(g(x, y), x) ∨ x �≈ b

⎫⎬
⎭ .

Using new variables x1, y1, z1, applying the VarRe rule to N ′′
2 transforms it into

N ′′
3 = {¬G4(x1, y1, z1) ∨ A6(h(y1, z1, x1)) ∨ A7(h(y1, z1, x1)) ∨ y1 �≈ c ∨ z1 �≈ y1

}
.

Finally, from N2 we obtain the clausal set N ′
3 ∪ N ′′

3 ∪ N ′′′
2 .

123

39 Page 58 of 68 S. Zheng, R. A. Schmidt

We use the notation of LGQnucl to denote the clausal set obtained by applying theQ-Rena
procedure to an LGQnu clausal set.

Lemma 62 Let N be an LGQnucl clausal set. Then, N is normal, unique, globally compatible
and globally linear.

Proof Suppose N1 is an inter-connected LGQnu clausal set, and N2 is a flat LGQnu clausal set.
As N2 is a flat clausal set, it is trivially is normal, unique, globally compatible and globally
linear.

We prove that applying the Q-Rena procedure to N1 transforms it to a normal, unique,
globally compatible and globally linear clausal set. Suppose N ′

1 is the clausal set obtained by
applying the Q-Rena procedure to N1. By Lemma 59, N ′

1 is normal and unique. By Lemma
61, the Q-Rena procedure renames the variables in N1 so that the variable arguments in all
compound terms of N1 are renamed with an identical variable sequence. Then, N ′

1 is globally
compatible and globally linear. Since N2 is normal, unique, globally compatible and globally
linear, N is normal, unique, globally compatible and globally linear. ��

Unskolemising LGQnucl Clausal Sets

In this section, we unskolemise an LGQnucl clausal set to a first-order formula without Skolem
symbols. Two variations of the Unsko rule, respectively, are devised for inter-connected
LGQnucl clausal sets and flat LGQnucl clausal sets.

An inter-connected LGQnucl clausal set is unskolemised using:

Suppose N ′ is an inter-connected LGQnucl clausal set

{C1(x1, . . . , xn, f (x1, . . . , xn), z1, a),

. . .

Cn(x1, . . . , xn, g(x1, . . . , xn), zt , b)

}
,

where a, b, x1, . . . , xn and z1, . . . , zt represent the Skolem constants, the non-Skolem
constants and the variables introduced by theQ-Rena and Q-Abs procedures, respec-
tively. Suppose F is the Skolem-symbol-free first-order formula

∃y∀x1 . . . xn∃y1 . . . ym∀z1, . . . , zt
⎡
⎣
C1(x1, . . . , xn, y1, z1, y)∧

. . .

Cn(x1, . . . , xn, ym, zt , b)

⎤
⎦ ,

where the variables y, y1, . . . , ym do not occur in N ′.
Then, N ′ is unskolemised by the following rule:

N ∪ N ′
UnSkI:

N ∪ {F} .

123

Saturation-Based Boolean Conjunctive … Page 59 of 68 39

A flat LGQnucl clausal set is unskolemised using:

N ∪ {C1(x, a), . . . ,Cn(y, b)}UnSkF:
N ∪ {∃z∀xy(C1(x, z) ∧ . . . ∧ Cn(y, b))}

if the following conditions are satisfied.
1. {C1(x, a), . . . ,Cn(y, b)} is a flat LGQnucl clausal set.
2. a and b, respectively, represent the Skolem and the non-Skolem constants in

{C1(x, a), . . . ,Cn(y, b)}.
3. The variable z does not occur in {C1(x, a), . . . ,Cn(y, b)}.

We use Q-Unsko to denote the procedure of applying the UnSkI and the UnSkF rules
to an LGQnucl clausal set. Using the LGQnucl clausal set N ′′′

2 ∪ N ′
3 ∪ N ′′

3 as an example, we
show what the Q-Unsko procedure does.

1. For inter-connected LGQnucl clausal sets, the UnSkI rule is applied to them. Applying
the UnSkI rule to N ′

3 and N ′′
3 , respectively, derives

F1 = ∃z′∀xy∃x ′y′
⎡
⎣

(¬G1(x, y) ∨ A1(x ′, x) ∨ A2(y′, x) ∨ y �≈ a) ∧
(¬G2(x, y) ∨ A3(x ′, x) ∨ A4(y′, x)) ∧
(¬G3(x, y) ∨ A5(y′, x) ∨ x �≈ z′)

⎤
⎦ and

F2 = ∀y1z1x1∃x ′
1

[¬G4(x1, y1, z1) ∨ A6(x ′
1) ∨ A7(x ′

1) ∨ y1 �≈ c ∨ z1 �≈ y1
]
.

2. For flat LGQnucl clausal sets, the UnSkF rule is applied to them. Applying the UnSkF
rule to N ′′′

2 unskolemise it into

F3 = ∀x6x7x8
[¬B1(x8, x6) ∨ ¬B2(x6, x7) ∨ ¬B3(x7, x8)

]
.

3. Conjunctively connect the outputting formulas of 1. and 2. The running sample N is
hence back-translated to a Skolem-symbol-free first-order formula F1 ∧ F2 ∧ F3.

Lemma 63 The back-translation defined by applying the Q-Unsko procedure to an LGQnucl
clausal set is a Skolem-symbol-free first-order formula (with equality).

Proof By Lemma 62, Theorem 57 and the definition of the Q-Unsko procedure. ��
The result of our back-translation procedure is summarised as follows.

Lemma 64 Let N bean LGQ clausal set. Then, i) successively applying theQ-Abs, theQ-Rena
and the Q-Unsko procedures to N back-translates it into a Skolem-symbol-free first-order
formula F, and ii) F is logically equivalent to N.

Proof By ii) of Lemma 59, Lemmas 62 and 63, N is ensured to be back-translated to a
Skolem-symbol-free first-order formula. That the ConAbs and the VarAbs rules are special
cases of the Abs rule, the VarRe rule is a special case of the Rena rule, the UnSkI and the
UnSkF rules are special cases of the Unsko rule and Lemma 58 imply that F and N are
logically equivalent. ��

Figure 11 summarises our back-translation procedure for the LGQ clausal class.
Returning to Question 2, let a first-order formula Σq be computed such that D |� Σq if

and only if Σ ∪ D |� q . The final step in our procedure is to negate the first-order formula

123

39 Page 60 of 68 S. Zheng, R. A. Schmidt

Fig. 11 The back-translation process for LGQ clausal sets

form of the saturation of Σ ∪ {¬q}. In our example, we need negate F1 ∧ F2 ∧ F3 to obtain
as Σq :

∀z′∃xy∀x ′y′
⎡
⎣

(G1(x, y) ∧ ¬A1(x ′, x) ∧ ¬A2(y′, x) ∧ y ≈ a) ∨
(G2(x, y) ∧ ¬A3(x ′, x) ∧ ¬A4(y′, x)) ∨
(G3(x, y) ∧ ¬A5(y′, x) ∧ x ≈ z′)

⎤
⎦ ∨

∃y1z1x1∀x ′
1

[
G4(x1, y1, z1) ∧ ¬A6(x ′

1) ∧ ¬A7(x ′
1) ∧ y1 ≈ c ∧ z1 ≈ y1

] ∨
∃x6x7x8[B1(x8, x6) ∧ B2(x6, x7) ∧ B3(x7, x8)].

Let N be an LGQ clausal set. We use Q-Rew to denote the procedure of successively
applying the Q-Abs, the Q-Rena and the Q-Unsko procedures to N , deriving a first-order
formula F , and then negating F .

Finally, we positively answer Question 2.

Theorem 65 Suppose Σ is a set of guarded quantification formulas, D is a set of ground
atoms and q is a union of BCQs. Further, suppose N is a saturation obtained by applying Q-
Ans to {¬q}∪Σ . Then, applying theQ-Rew procedure to N produces a Skolem-symbol-free
first-order formula Σq such that Σ ∪ D |� q if and only if D |� Σq .

Proof By Lemma 64. ��

Comparing the signature inΣq and that inΣ and q ,Σq may contain predicate and equality
symbols not occurring in q and Σ , since these symbols may have been introduced by the
Q-Ans and the Q-Abs procedures, respectively.

9 RelatedWork

Resolution-Based Decision Procedures

The basis of our BCQ answering and rewriting approaches is saturation-based resolution,
which provides a practical and powerful method for developing decision procedures, as is
evidenced in [9, 29, 35, 38, 57, 59, 60, 82].

The P-Res rule is inspired by the ‘partial replacement’ strategy in [7, 8] and the ‘partial
conclusion’ of the ‘Ordered Hyper-Resolution with Selection’ rule in [39]. Even though [39]
claims that the idea of ‘partial conclusion’ can be easily generalised in the framework of [8], it
does not show how and no proof is provided. In [7] and [8], the ‘partial replacement’ strategy
seems to be what is behind ‘partial conclusions’, and it is proved that for ground clauses
the ‘partial replacement’ strategy makes the application of a selection-based resolution rule,
viz., the S-Res rule, redundant. In this paper, we formalise ‘partial replacement’ in the P-Res

123

Saturation-Based Boolean Conjunctive … Page 61 of 68 39

system with the P-Res rule as the core rule. We have proved the system is generally sound
and refutationally complete for full first-order clausal logic.

The P-Res rule adds high-level flexibility to the approach of an S-Res inference step,
as one can choose any sub-multiset of the S-Res side premises as the P-Res side premises.
This means that the P-Res rule gives us the option to choose a desirable resolvent from the
possible ‘partial resolvents’. This technique is critical in our methods to querying for the
guarded quantification fragments, allowing a choice of the ‘partial resolvent’ that can be
expressed in the same clausal class as the P-Res premises.

Motivated by the ‘MAXVAR’ technique in [29], we devised the top-variable technique.
The ‘MAXVAR’ technique and the top-variable technique are also used in [39] and [98],
respectively. A detailed example to demonstrate how the ‘MAXVAR’ technique works is
given in [39], and the reader is referred to the manuscript [29] for the formal definitions and
proofs. [29] uses the ‘MAXVAR’ technique to avoid term depth increase in the resolvents of
the loosely guarded clauseswith nested compound terms. The presentation of the ‘MAXVAR’
technique in [29] is complicated: one needs to identify the depth of a sequence of variables,
and then apply a specially devised unification algorithm to find ‘MAXVAR’. Moreover, the
‘MAXVAR’ technique requires the use of non-liftable orderings, which are not compatible
with the framework of [8].

We introduce the top-variable technique as a variation and simplification of the ‘MAX-
VAR’ technique in the conference paper [98], which considers the LG clausal class with no
nested compound terms. The top-variable technique is generalised to apply to query clauses
and already uses liftable orderings, so that it fits into the framework of [8]. However, in [98],
the pre-conditions of the top-variable technique, so-called query pairs, cannot be immediately
applied in our general querying setting.

Improving on [29, 39, 98], in the present paper, we first give a clean approach to compute
top variables, viz., the ComT function, and we then encode the top-variable technique in the
TRes function, as given in Algorithm 2. We formally prove that the T-Res rule can be used
in any saturation-based resolution inference system following principles of the framework
of [8]. We further generalise the premises of the T-Res rule to non-ground flat clauses and
LG clauses, with detailed formal proofs given in Lemma 24, Corollary 25 and Lemma 26.

The T-Res system extends the resolution systems for the guarded fragment in [29, 39, 60]
and the loosely guarded fragment in [29, 39, 98]. Although [60] is not interested in the loosely
guarded fragment, it points out that the guarded clauses have the property that all compound
terms have the same sequence of variables, i.e., the strongly compatible property, which is
an essential observation for our saturation-based rewriting procedure. Nonetheless, in [60],
this property is only used in analysing the complexity of its resolution decision procedure
for the guarded fragment. [39] includes a discussion of refinement for the loosely guarded
fragment, but does not give a formal description of the refinement or relevant proofs. A
detailed refinement for the loosely guarded fragment is given in [29]with proofs, but [29] uses
non-liftable orderings, which are not compatible with the framework of [8]. The resolution
framework in [8] provides a powerful system unifying many different resolution refinement
strategies that exist in different forms, such as standard resolution, ordered resolution, hyper-
resolution and selection-based resolution, and it provides vigorous simplification rules and
redundancy elimination techniques, and forms the basis of themost state-of-the-art first-order
theorem provers, such as SPASS [95], Vampire [75], E [83], and Zipperposition [27]. Our
initial work in [98] gives a resolution-based procedure in line with the resolution framework
of [8] for deciding satisfiability of LGF and querying for LGF, but only solves the BCQ
answering problem for the Horn fragment of LGF.

123

39 Page 62 of 68 S. Zheng, R. A. Schmidt

In this paper, we formally define and thoroughly investigate partial resolution and the
top-variable resolution techniques and develop detailed proofs. We then show that these
techniques can be used and extended to decide satisfiability, BCQ answering and saturation-
based BCQ rewriting for the guarded quantification fragments.

These are significant improvements and extensions over [29, 39, 60, 98]. Moreover, our
methods provide the basis for BCQ answering and new saturation-based BCQ rewriting pro-
cedures for all the guarded quantification fragments.

BCQ Answering Problem

The chase algorithms [20], which can be viewed as a form of forward chaining [79] or
semantic tableau [49], is the state-of-the-art methods in solving BCQ answering problems
in database and knowledge representation. These methods are applied on the ground data
andΣ-rules in implication normal form. Unlike chase, our saturation-based query answering
procedure does not require the grounding of clauses, which significantly reduces the number
of clauses that need to be generated and handled. In our procedures, the inferences are
performed differently, in particular, we are not limited to forward chaining and instead the
Σ-clauses can be saturated first and then data can be added. Not only do our procedures
avoid grounding, but they can simulate grounding by performing inferences on data first.

The following ontology-based data access [24, 30, 52, 71] scenario further motivates the
saturation-based methods to address query answering problems: given a set Σ of guarded
quantification formulas, a BCQ q and datasets D, checking whetherΣ ∪D |� q is equivalent
to checking unsatisfiability of {¬q} ∪ Σ ∪ D.

Suppose both q and Σ are fixed. We pre-saturate {¬q} ∪ Σ and use N to denote this
pre-saturation. Then, independent of the datasets D, the saturation N can be reused
in checking satisfiability of N ∪ D. This prevents having to recompute numerous
inferences of {¬q} ∪ Σ unnecessarily.

Previous works investigate the BCQ answering problem for Datalog± [22] and descrip-
tion logics, such as guarded Datalog± rules [20, 21, 23] and fragments of the description
logic ALCHOI [24, 62, 67, 77]. Constraints in relational databases and ontological lan-
guages in knowledge bases are widely formalised in rules of Datalog±, therefore devising
automated querying procedures for Datalog± is important.

A Datalog± rule is a first-order formula in the form

F = ∀x y(ϕ(x, y) → ∃zφ(x, z)),

whereϕ(x, y) andφ(x, z) are conjunctions of atoms.Although answeringBCQs forDatalog±
rules is undecidable [17], answering BCQs for the guarded fragment of Datalog±, viz.,
guardedDatalog± rules, is 2ExpTime-complete [21]. The aboveDatalog± rule F is a guarded
Datalog± rule if there exists an atom in ϕ(x, y) that contains all free variables of ∃zφ(x, z).
Guarded Datalog± can be extended to the so-called loosely guarded and clique-guarded
Datalog± by adopting the definition of the loosely guarded and the clique-guarded frag-
ments, respectively. For example,

∀xyz(Siblings(x, y) ∧ Siblings(y, z) ∧ Siblings(z, x) → ∃u(Mother(u, x, y, z)))

is a loosely guarded Datalog± rule. Guarded, loosely guarded and clique-guarded Datalog±
rules can be seen as belonging to the Horn fragments of GF, LGF and CGF, respectively.
Therefore our methods apply and lay the theoretical foundation for the first practical decision

123

Saturation-Based Boolean Conjunctive … Page 63 of 68 39

procedure of answering BCQs for guarded, loosely guarded and clique-guarded Datalog±
rules. Note that there are guarded Datalog± rules that are not expressible in GF [10, p. 103],
however, the Trans process transforms these Datalog± rules into Horn guarded clauses.

The fragments of expressive description logic ALCHOI [5] are prominent ontological
languages in semantic web [50]. Query answering approaches for fragments of ALCHOI
have been extensively studied in the literature [24, 40, 62, 67, 77]. A key technique in this
area is transforming BCQs into knowledge bases; see the rolling-up technique in [87] and
the tuple graph technique in [25]. Interestingly, our Q-Sep procedure also achieves encoding
of a query clause into the knowledge base of LG clauses. By the standard translation [18,
chapter 2], axioms in the description logicALCHOI can be translated into guarded formulas
needing only unary and binary predicate symbols. Hence, our Q-Ans procedure can also be
used as a practical decision procedure for BCQ answering for the expressive description logic
ALCHOI.

The squid decomposition technique analyses the complexity for answering BCQs over
weakly guarded Datalog± [21]. In squid decompositions, a BCQ is regarded as a squid-like
graph in which branches are ‘tentacles’ and variable cycles are ‘heads’. Squid decomposition
finds ground atoms that are complementary in the squid head, and then uses ground unit
resolution to eliminate the heads. In contrast, our approach uses the separation rules to
first cut ‘tentacles’ and then uses the T-Res rule to resolve cycles in ‘heads’. Our approach
produces compact saturations of BCQs and the guarded quantification formulas, thus avoiding
the significant overhead of grounding.

BCQ Rewriting Problem

Standard BCQ rewriting settings consider the following problem: given a union q of BCQs,
a set Σ of first-order formulas and a dataset D, can we produce (function-free) first-order
formulasΣq , so that the entailment checking problem of D∪Σ |� q is reduced to the model
checking problem of D |� Σq . If there exists such a Σq , Σ and q are said to be first-order
rewritable [24]. Problems on the first-order rewritability property have been extensively
studied in [19, 24, 51, 88, 89] for different description logics, and in [14, 23, 43, 51] for
fragments of Datalog± rules. However, it is known that BCQ answering for none of the
guarded quantification fragments are first-order rewritable. Another interesting saturation-
based rewriting approach is [58], in which one first saturates axioms of the description logic
SHIQ, presenting the saturation as a set of disjunctive Datalog rules, and then deductive
databases are used to check entailment of BCQs over the disjunctive Datalog rules.

Unlike the idea of the first-order rewritability, saturation-based BCQ rewriting regards
D |� Σq as an entailment checking problem. Unlike [58], in our query rewriting, queries are
included in the reasoning process to obtain a saturation. Our saturation-based query rewriting
is advantageous in ontology-based data access scenarios: Having a function-free first-order
formula Σq such that D ∪ Σ |� q if and only if D |� Σq , we can check Σq over different
datasets D1, . . . , Dn . More importantly, to check whether Di |� Σq , we can use reasoning
methods other than resolution, e.g., the chase algorithm, as Σq is free of Skolem symbols.
This combines different reasoning tools can potentially accelerate query answering processes.
Moreover, devising this rewriting procedure is interesting and challenging in its own right,
as it required a new investigation and new techniques to back-translate a first-order clausal
set into a function-free first-order formula, which in general is an undecidable problem.

123

39 Page 64 of 68 S. Zheng, R. A. Schmidt

10 Conclusion and Discussion

Considering the problem of query answering for the guarded quantification fragments, we
present three sound and refutationally complete saturation-based resolution inference sys-
tems for general first-order clausal logic. Based on the top-variable inference system and
customised separation rules, we establish the theoretical foundation for the first practical
decision procedures of BCQ answering for the guarded, the loosely guarded, and the clique-
guarded fragments. By extending the BCQ answering procedures with the back-translation
techniques, we have devised a novel saturation-based BCQ rewriting procedure for these
fragments.

We are confident that our procedures provide a solid foundation for practical implementa-
tions. We claim the procedures can be implemented in any saturation-based theorem prover,
as they are devised in line with the resolution framework in [8]. Compared to the framework
in [8], novel techniques are i) the SepDeQ and the SepIndeQ rules, ii) the P-Res and the
T-Res rules and iii) the rules in the Q-Rew procedure.

i) Given a query clause Q, the application of the SepDeQ or the SepIndeQ rules to Q
can be implemented by the following steps.

1. Find the surface literals in Q. By regarding each literal L in Q as a multiset in which the
elements are the variable arguments of L , one can implement a multiset ordering �m for
the literals in Q. The �m-maximal literals in Q are the surface literals in Q.

2. Identify the separable surface literals in Q. Check whether two surface literals in Q have
overlapping variables.

3. Identify the separable subclauses in Q. Suppose L1 and L2 are two separable surface
literals in Q. To separate L1 from Q, one needs to find the literals in Q that are �m-
smaller than L1, namely the literals guarded by L1. The literals guarded by L1 are a
separable subclause in Q.

4. Separate the subclause guarded by L1 from Q. Following the conditions defined in the
SepDeQ or the SepIndeQ rule, apply formula renaming with negative literals to replace
the literals guarded by L1 by a fresh predicate symbol containing the only overlapping
variables of L1 and L2.

ii) A possible implementation of the P-Res or the T-Res rule is: Suppose in a selection-
based resolution (S-Res) inference, C1, . . . ,Cn are the side premises, and C is the main
premise with the negative literals ¬A1, . . . ,¬An selected. Then, one can use the selection-
based resolution (S-Res) to implement a P-Res or a T-Res resolvent of C and C1, . . . ,Cn

as follows.

1. Without deriving any resolvent, compute an mgu σ ′ between C and C1, . . . ,Cn .
2. Unselect the literals ¬A1, . . . ,¬An in C , and then select a sub-multiset ¬A1, . . . ,¬Am

of ¬A1, . . . ,¬An where 1 ≤ m ≤ n, performing the P-Res rule on C1, . . . ,Cm and C
with ¬A1, . . . ,¬Am selected. For the case of the T-Res inference, ¬A1, . . . ,¬Am are
the top-variable literals computed using the variable ordering �v and σ ′.

3. When the P-Res or the T-Res resolvent is derived, unselect ¬A1, . . . ,¬Am .

iii) The Abs, the Rena and the Unsko rules have been used in eliminating second-order
quantifiers tasks, as implemented in the SCAN system [70].

One next step is implementing theQ-Ans and theQ-Rew procedures and evaluating them
on real-world ontologies. For example, we could focus on ontologies that are composed by
the fragments of the description logic ALCHOI and guarded, loosely guarded and clique-
guarded Datalog±, since the number of GF problems in the TPTP first-order theorem proving
benchmark [85] is rather small.

123

Saturation-Based Boolean Conjunctive … Page 65 of 68 39

Two other interesting questions for future work are: 1) Extend our saturation-based pro-
cedures to support the tasks of BCQ answering and saturation-based BCQ rewriting for the
guarded negation and the clique-guarded negation fragments [11]. This will require equality
reasoning which we conjecture can be handled by extensions of the procedures presented
in this paper with paramodulation or superposition. Whether our saturation-based methods
can be refined to decide satisfiability of other variations of the guarded fragment such as
the guarded fragment with transitive guards [86], the triguarded fragment [61, 78], the two-
variable guarded fragment with counting quantifiers [72] and the forward guarded fragment
[15], and querying for other guard-related fragments such as the monadic fragment of the
two-variable guarded fragment with transitive guards [44] and the forward guarded fragment
[15] remains to be investigated.

2) In ourQ-Rew procedure, the rewritten queries are expressible in LGF and BCQs, butwith
equality. It would be interesting to know whether in the setting of the saturation-based BCQ
rewriting problem for the guarded quantification fragmentswith equality, one can translate the
saturated clausal set back into BCQs and formulas in these guarded quantification fragments
with equality. The answer is not straightforward, as we first need to develop a decision
procedure for the problem of the BCQ answering for these equality-occurring fragments.

Acknowledgements We would like to thank the editor and the reviewers for useful comments. Sen Zheng’s
work is partially sponsored by the Great Britain-China Educational Trust.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases: The Logical Level. Addison-Wesley Long-
man, Reading (1995)

2. Aho, A.V., Beeri, C., Ullman, J.D.: The theory of joins in relational databases. ACM Trans. Database
Syst. 4(3), 297–314 (1979)

3. Andréka, H., Németi, I., van Benthem, J.: Modal languages and bounded fragments of predicate logic. J.
Philos. Logic 27(3), 217–274 (1998)

4. Areces, C., Monz, C., de Nivelle, H., de Rijke, M.: The guarded fragment: ins and outs. Essays dedicated
to Johan van Benthem on the occasion of his 50th birthday 28, 1–14 (1999)

5. Baader, F., Horrocks, I., Lutz, C., Sattler, U.: An Introduction to Description Logic. Cambridge University
Press, Cambridge (2017)

6. Baaz, M., Egly, U., Leitsch, A.: Normal form transformations. In: Robinson, J.A., Voronkov, A. (eds.)
Handbook of Automated Reasoning, pp. 273–333. Elsevier and MIT Press, Cambridge (2001)

7. Bachmair, L., Ganzinger, H.: A theory of resolution. Research Report MPI-I-97-2-005, Max-Planck-
Institut für Informatik (1997)

8. Bachmair, L., Ganzinger, H.: Resolution theorem proving. In: Robinson, J.A., Voronkov, A. (eds.) Hand-
book of Automated Reasoning, pp. 19–99. Elsevier and MIT Press, Cambridge (2001)

9. Bachmair, L., Ganzinger, H., Waldmann, U.: Superposition with simplification as a decision procedure
for the monadic class with equality. In: Proceedings of the KGC’93. LNCS, vol. 713, pp. 83–96. Springer
(1993)

10. Bárány, V., Benedikt, M., ten Cate, B.: Rewriting guarded negation queries. In: Proceedings of the
MFCS’13, pp. 98–110. Springer (2013)

11. Bárány, V., ten Cate, B., Segoufin, L.: Guarded negation. J. ACM 62(3), 22:1–22:26 (2015)

123

http://creativecommons.org/licenses/by/4.0/

39 Page 66 of 68 S. Zheng, R. A. Schmidt

12. Bárány, V., Gottlob, G., Otto, M.: Querying the guarded fragment. Logic Methods Comput. Sci. 10(2)
(2014)

13. Barceló, P., Berger, G., Gottlob, G., Pieris, A.: Guarded ontology-mediated queries. In: J. Madarász,
G. Székely (eds.) Hajnal Andréka and István Németi on Unity of Science: From Computing to Relativity
Theory Through Algebraic Logic, pp. 27–52. Springer (2021)

14. Barceló, P., Berger, G., Lutz, C., Pieris, A.: First-order rewritability of frontier-guarded ontology-mediated
queries. In: Proceedings of the IJCAI’18, pp. 1707–1713. IJCAI (2018)

15. Bednarczyk, B.: Exploiting forwardness: satisfiability and query-entailment in forward guarded fragment.
In: Proceedings of the JELIA’2021, LNCS, vol. 12678, pp. 179–193. Springer (2021)

16. Beeri, C., Fagin, R., Maier, D., Yannakakis, M.: On the desirability of acyclic database schemes. J. ACM
30(3), 479–513 (1983)

17. Beeri, C., Vardi,M.Y.: The implication problem for data dependencies. In: Proceedings of ICALP’81,
pp.73–85. Springer (1981)

18. Blackburn, P., deRijke,M.,Venema,Y.:ModalLogic.CambridgeTracts inTheoreticalComputer Science.
Cambridge University Press, Cambridge (2001)

19. Borgida, A., de Bruijn, J., Franconi, E., Seylan, I., Straccia, U., Toman, D., Weddell, G.E.: On finding
query rewritings under expressive constraints. In: Proceedings of the SEDB’10, pp. 426–437. Esculapio
Editore (2010)

20. Calautti, M., Gottlob, G., Pieris, A.: Chase termination for guarded existential rules. In: Proceedings of
the PODS’15, pp. 91–103. ACM (2015)

21. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: query answering under expressive relational
constraints. J. Artif. Intell. Res. 48(1), 115–174 (2013)

22. Calì, A., Gottlob, G., Lukasiewicz, T.: Datalog+/-: a unified approach to ontologies and integrity con-
straints. In: Proceedings of the ICDT’09, pp. 14–30. ACM (2009)

23. Calì, A., Gottlob, G., Lukasiewicz, T.: A general Datalog-based framework for tractable query answering
over ontologies. J. Web Semant. 14, 57–83 (2012)

24. Calvanese, D., DeGiacomo,G., Lembo,D., Lenzerini,M., Poggi, A., Rosati, R.: Ontology-based database
access. In: Proceedings of the SEBD’07, pp. 324–331. SEBD (2007)

25. Calvanese,D.,DeGiacomo,G., Lenzerini,M.:On the decidability of query containment under constraints.
In: Proceedings of the PODS’98, pp. 149–158. ACM (1998)

26. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In:
Proceedings of the SToC’77, pp. 77–90. ACM (1977)

27. Cruanes, S.: Extending Superposition with Integer Arithmetic, Structural Induction, and Beyond. (Exten-
sions de la Superposition pour l’Arithmétique Linéaire Entière, l’Induction Structurelle, et bien plus
encore). Ph.D. thesis, École Polytechnique, France (2015)

28. D’Agostino, G., Lenzi, G.: Bisimulation quantifiers and uniform interpolation for guarded first order
logic. Theor. Comput. Sci. 563, 75–85 (2015)

29. de Nivelle, H., de Rijke, M.: Deciding the guarded fragments by resolution. J. Symb. Comput. 35(1),
21–58 (2003)

30. Dolby, J., Fokoue, A., Kalyanpur, A., Ma, L., Schonberg, E., Srinivas, K., Sun, X.: Scalable grounded
conjunctive query evaluation over large and expressive knowledge bases. In: Proceedings of the ISWC’08,
LNCS, vol. 5318, pp. 403–418. Springer (2008)

31. Echenim, M., Peltier, N.: Combining induction and saturation-based theorem proving. J. Autom. Reason.
64(2), 253–294 (2020)

32. Eiter, T., Ortiz, M., Šimkus, M., Tran, T.K., Xiao, G.: Query rewriting for Horn-SHIQ plus rules. In:
Proceedings of the AAAI’12, pp. 726–733. AAAI (2012)

33. Engel, T.: Quantifier Elimination in Second-Order Predicate Logic: Foundations, Computational Aspects
and Applications. Diplomarbeit, Fachbereich Informatik, Univ. des Saarlandes, Germany (1996)

34. Feder, T., Vardi, M.Y.: Monotone monadic SNP and constraint satisfaction. In: S.R. Kosaraju, D.S.
Johnson, A. Aggarwal (eds.) Proceedings of the STOC’93, pp. 612–622. ACM

35. Fermüller, C.G., Leitsch, A., Tammet, T., Zamov, N.K.: Resolution Methods for the Decision Problem.
LNCS, vol. 679. Springer (1993)

36. Flum, J., Frick, M., Grohe, M.: Query evaluation via tree-decompositions. J. ACM 49(6), 716–752 (2002)
37. Gabbay, D.M., Schmidt, R.A., Szałas, A.: Second-order Quantifier Elimination. College Publications,

Marshalls Creek (2008)
38. Ganzinger, H., Hustadt, U., Meyer, C., Schmidt, R.A.: A resolution-based decision procedure for exten-

sions of K4. In: Proceedings of the AiML’98, pp. 225–246. CSLI (1998)
39. Ganzinger, H., de Nivelle, H.: A superposition decision procedure for the guarded fragment with equality.

In: Proceedings of the LICS’99, pp. 295–303. IEEE (1999)
40. Glimm, B.: Querying Description Logic Knowledge Bases. Ph.D. thesis, Univ. Manchester, U.K. (2007)

123

Saturation-Based Boolean Conjunctive … Page 67 of 68 39

41. Goodman, N., Shmueli, O., Tay, Y.C.: GYO reductions, canonical connections, tree and cyclic schemas,
and tree projections. J. Comput. Syst. Sci. 29(3), 338–358 (1984)

42. Gottlob, G., Leone, N., Scarcello, F.: Robbers, marshals, and guards: game theoretic and logical charac-
terizations of hypertree width. J. Comput. Syst. Sci. 66(4), 775–808 (2003)

43. Gottlob, G., Orsi, G., Pieris, A.: Query rewriting and optimization for ontological databases. ACM Trans.
Database Syst. 39(3), 25:1–25:46 (2014)

44. Gottlob, G., Pieris, A., Tendera, L.: Querying the guarded fragment with transitivity. In: Proceedings of
the ICALP’13, LNCS, vol. 7966, pp. 287–298. Springer (2013)

45. Grädel, E.: Decision procedures for guarded logics. In: Proceedings of the CADE’16. LNCS, vol. 1632,
pp. 31–51. Springer (1999)

46. Grädel, E.: On the restraining power of guards. J. Symb. Logic 64(4), 1719–1742 (1999)
47. Graham, M.H.: On the universal relation. Univ. Toronto, Technical report (1979)
48. Grau, B.C., Motik, B., Stoilos, G., Horrocks, I.: Computing Datalog rewritings beyond horn ontologies.

In: Proceedings of the IJCAI’13, pp. 832–838. AAAI (2013)
49. Hähnle, R.: Tableaux and related methods. In: Robinson, J.A., Voronkov, A. (eds.) Handbook of Auto-

mated Reasoning, pp. 100–178. Elsevier and MIT Press, Cambridge (2001)
50. Harrison, J.: Theorem proving for verification (invited tutorial). In: Proceedings of the CAV’08. LNCS,

vol. 5123, pp. 11–18. Springer (2008)
51. Hernich,A., Lutz, C., Papacchini, F.,Wolter, F.: Horn-rewritability vsPTime query evaluation in ontology-

mediated querying. In: Proceedings of the IJCAI’18, pp. 1861–1867. IJCAI (2018)
52. Heymans, S., Ma, L., Anicic, D., Ma, Z., Steinmetz, N., Pan, Y., Mei, J., Fokoue, A., Kalyanpur, A.,

Kershenbaum, A., Schonberg, E., Srinivas, K., Feier, C., Hench, G., Wetzstein, B., Keller, U.: Ontology
reasoning with large data repositories. In: M. Hepp, P.D. Leenheer, A. de Moor, Y. Sure (eds.) Ontology
Management, Semantic Web, Semantic Web Services, and Business Applications, vol. 7, pp. 89–128.
Springer (2008)

53. Hirsch, C., Tobies,S.: A tableau algorithm for the clique guarded fragment. In: Proceedings of AiML’00,
pp.257–277. World Scientific (2001)

54. Hladik, J.: Implementation and optimisation of a tableau algorithm for the guarded fragment. In: Pro-
ceedings of the TABLEAUX’02. LNCS, vol. 2381, pp. 145–159. Springer (2002)

55. Hodkinson, I.: Loosely guarded fragment of first-order logic has the finite model property. Studia Logica
70(2), 205–240 (2002)

56. Hoogland, E., Marx, M.: Interpolation and definability in guarded fragments. Studia Logica 70(3), 373–
409 (2002)

57. Hustadt, U.: Resolution Based Decision Procedures for Subclasses of First-order Logic. Ph.D. thesis,
Univ. Saarlandes, Germany (1999)

58. Hustadt, U., Motik, B., Sattler, U.: Reasoning in description logics by a reduction to disjunctive Datalog.
J. Autom. Reason. 39(3), 351–384 (2007)

59. Hustadt, U., Schmidt, R.A.: Maslov’s class K revisited. In: Proceedings of the CADE’99. LNCS, vol.
1632, pp. 172–186. Springer (1999)

60. Kazakov,Y.: Saturation-BasedDecision Procedures for Extensions of theGuarded Fragment. Ph.D. thesis,
Univ. Saarlandes, Saarbrücken, Germany (2006)

61. Kieronski, E., Rudolph, S.: Finite model theory of the triguarded fragment and related logics. In: Pro-
ceedings of the LICS’21, pp. 1–13. IEEE (2021)

62. Kikot, S., Kontchakov, R., Zakharyaschev, M.: Conjunctive query answering with OWL 2 QL. In: Pro-
ceedings of the KR’12, pp. 275–285. AAAI (2012)

63. Kolaitis, P.G., Vardi, M.Y.: Conjunctive-query containment and constraint satisfaction. J. Comput. Syst.
Sci. 61(2), 302–332 (2000)

64. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database
Syst. 4(4), 455–469 (1979)

65. Marx, M.: Queries determined by views: pack your views. In: Proceedings of the PODS’07, pp. 23–30.
ACM (2007)

66. McCune,W., Wos, L.: Otter—the CADE-13 competition incarnations. J. Autom. Reason. 18(2), 211–220
(1997)

67. Mora, J., Rosati, R., Corcho, O.: Kyrie2: query rewriting under extensional constraints in ELHOI. In:
Proceedings of the ISWC’14. LNCS, vol. 8796, pp. 568–583. Springer (2014)

68. de Nivelle, H.: Splitting through new proposition symbols. In: Proceedings of the LPAR’01, pp. 172–185.
Springer (2001)

69. Nonnengart, A., Weidenbach, C.: Computing small clause normal forms. In: Robinson, J.A., Voronkov,
A. (eds.) Handbook of Automated Reasoning, pp. 335–367. Elsevier and MIT Press, Cambridge (2001)

123

39 Page 68 of 68 S. Zheng, R. A. Schmidt

70. Ohlbach, H.J.: SCAN—elimination of predicate quantifiers. In: Proceedings of the CADE’96, pp. 161–
165. Springer (1996)

71. Poggi, A., Lembo, D., Calvanese, D., De Giacomo, G., Lenzerini, M., Rosati, R.: Linking data to ontolo-
gies. In: S. Spaccapietra (ed.) J. on Data Semantics X, pp. 133–173. Springer (2008)

72. Pratt-Hartmann, I.: Complexity of the guarded two-variable fragment with counting quantifiers. J. Logic
Comput. 17(1), 133–155 (2007)

73. Reger, G., Voronkov, A.: Induction in saturation-based proof search. In: Proceedings of the CADE’19.
LNCS, vol. 11716, pp. 477–494. Springer (2019)

74. Riazanov,A.,Voronkov,A.: Splittingwithout backtracking. In: Proceedings of the IJCAI’01, pp. 611–617.
Morgan Kaufmann (2001)

75. Riazanov, A., Voronkov, A.: Vampire 1.1 (system description). In: Proceedings of the IJCAR’01. LNCS,
vol. 2083, pp. 376–380. Springer (2001)

76. Robinson, J.A.: Automatic deduction with hyper-resolution. Int. J. Comput. Math. 1, 227–234 (1965)
77. Rosati, R., Almatelli, A.: Improving query answering over DL-lite ontologies. In: Proceedings of the

KR’10, pp. 290–300. AAAI (2010)
78. Rudolph, S., Simkus, M.: The triguarded fragment of first-order logic. In: Proceedings of the LPAR’18,

vol. 57, pp. 604–619. EasyChair (2018)
79. Russell, S.J., Norvig, P.: Artificial Intelligence: AModern Approach, 4th Edition Pearson, London (2020)
80. Sattler, U., Calvanese, D., Molitor, R.: Relationships with other formalisms. In: Baader, F., Calvanese,

D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.) The Description Logic Handbook: Theory,
Implementation, andApplications, 2nd edn., pp. 149–192.CambridgeUniversity Press,Cambridge (2007)

81. Schlichtkrull, A., Blanchette, J., Traytel, D., Waldmann, U.: Formalizing Bachmair and Ganzinger’s
ordered resolution prover. J. Autom. Reason. 64(7), 1169–1195 (2020)

82. Schmidt, R.A., Hustadt, U.: A resolution decision procedure for fluted logic. In: Proceedings of the
CADE’00. LNCS, vol. 1831, pp. 433–448. Springer (2000). Its technical report can be downloaded at
http://apt.cs.manchester.ac.uk/ftp/pub/TR/UMCS-00-3-1.ps.Z

83. Schulz, S.: System description: E 1.8. In: Proceedings of the LPAR’13. LNCS, vol. 8312, pp. 735–743.
Springer (2013)

84. Schulz, S., Möhrmann, M.: Performance of clause selection heuristics for saturation-based theorem prov-
ing. In: Proceedings of the IJCAR’16. LNCS, vol. 9706, pp. 330–345. Springer (2016)

85. Sutcliffe, G.: The CADE ATP system competition—CASC. AI Mag. 37(2), 99–101 (2016)
86. Szwast, W., Tendera, L.: The guarded fragment with transitive guards. Ann. Pure Appl. Logic 128(1–3),

227–276 (2004)
87. Tessaris, S.: Questions and Answers: Reasoning and Querying in Description Logic. Ph.D. thesis, Univ.

Manchester, U.K. (2001)
88. Toman, D., Weddell, G.E.: First order rewritability for ontology mediated querying in Horn-DLFD. In:

Proceedings of the DL’20, vol. 2663. CEUR-WS.org (2020)
89. Trivela, D., Stoilos, G., Chortaras, A., Stamou, G.B.: Optimising resolution-based rewriting algorithms

for OWL ontologies. J. Web Semant. 33, 30–49 (2015)
90. Ullman, J.D.: Principles of Database and Knowledge-Base Systems. Computer Science Press (1989)
91. Vardi, M.Y.: Constraint satisfaction and database theory: a tutorial. In: Proceedings of the PODS’00, pp.

76–85. ACM (2000)
92. Waldmann, U.: Automated Reasoning Lecture Notes . http://rg1-teaching.mpi-inf.mpg.de/autrea-ws19/

script-3.11-3.16.pdf (2019). Accessed 23 Mar 2022
93. Waldmann, U., Tourret, S., Robillard, S., Blanchette, J.: A comprehensive framework for saturation

theorem proving. In: Proceedings of the IJCAR’20. LNCS, vol. 12166, pp. 316–334. Springer (2020)
94. Weidenbach, C.: Combining superposition, sorts and splitting. In: Robinson, J.A., Voronkov, A. (eds.)

Handbook of Automated Reasoning, pp. 1965–2013. Elsevier and MIT Press, Cambridge (2001)
95. Weidenbach, C., Dimova, D., Fietzke, A., Kumar, R., Suda, M., Wischnewski, P.: SPASS Version 3.5. In:

Proceedings of the CADE’09. LNCS, vol. 5663, pp. 140–145. Springer (2009)
96. Yu, C., Ozsoyoglu, M.: An algorithm for tree-query membership of a distributed query. In: Proceedings

of the COMPSAC’79, pp. 306–312. IEEE (1979)
97. van Benthem, J.: Dynamic bits and pieces. Research Report LP-97-01, Univ. Amsterdam (1997)
98. Zheng, S., Schmidt, R.A.: Deciding the loosely guarded fragment and querying its horn fragment using

resolution. In: Proceedings of the AAAI’20, pp. 3080–3087. AAAI (2020)
99. Zheng, S., Schmidt, R.A.: Querying the guarded fragment via resolution (extended abstract). In: Proceed-

ings of the PAAR’20, CEUR workshop proceedings, vol. 2752, pp. 167–177. CEUR-WS.org (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://apt.cs.manchester.ac.uk/ftp/pub/TR/UMCS-00-3-1.ps.Z
http://rg1-teaching.mpi-inf.mpg.de/autrea-ws19/script-3.11-3.16.pdf
http://rg1-teaching.mpi-inf.mpg.de/autrea-ws19/script-3.11-3.16.pdf

	Saturation-Based Boolean Conjunctive Query Answering and Rewriting for the Guarded Quantification Fragments
	Abstract
	1 Introduction
	2 Basic Notions, Guarded Fragments and the Querying Problems
	Basic Notions
	Guarded Quantification Fragments
	BCQ Answering and Saturation-Based BCQ Rewriting Problems

	3 From Formulas to Clausal Sets
	Loosely Guarded Clauses and Query Clauses
	Clausal Normal Form Translation

	4 Top-Variable Inference System
	Basic Notions in the Saturation-Based Resolution Framework
	The S-Res System
	The P-Res System
	The T-Res System

	5 Deciding Satisfiability of the LG Clausal Class
	6 Handling Query Clauses
	Basic Notions of Query Clauses
	The Separation Rules
	Separating Query Clauses
	Handling Indecomposable Chained-Only Query Clauses

	7 Answering BCQs for the Guarded Quantification Fragments
	8 Saturation-Based BCQ Rewriting for the Guarded Quantification Fragments
	Basic Notions and Rules for Back-Translation
	Transforming LGQ Clausal Sets to Normal and Unique Clausal Sets
	Renaming LGQnu Clausal Sets for Unskolemisation
	Unskolemising LGQnucl Clausal Sets

	9 Related Work
	Resolution-Based Decision Procedures
	BCQ Answering Problem
	BCQ Rewriting Problem

	10 Conclusion and Discussion
	Acknowledgements
	References

