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Abstract
We present a uniform syntactical characterisation of the class of quasi-relevant logics which
are four-valued extensions of the basic relevant logic B of Meyer and Routley. All these
logics are obtained by the addition of suitable quasi-relevant implications to the four-valued
logic of First Degree Entailment FDE. So far they were characterised axiomatically and
semantically in several ways but did not obtain a special proof-theoretic treatment. To this
aim a generalised form of sequent calculus called bisequent calculus (BSC) is applied. In
BSC rules operate on the ordered pairs of ordinary sequents. It may be treated as the weakest
kind of system in the rich family of generalised sequent calculi operating on items which
are some collections of ordinary sequents, like hypersequents or nested sequents. It is shown
that all logics under consideration have cut-free characterisation in BSC which satisfies the
subformula property and yields decidability. It is also shown that the interpolation theorem
holds for these logics if their language is enriched with additional negation.

Keywords Bisequent calculus · Four-valued logic · Relevant logic · Cut elimination ·
Interpolation theorem

1 Introduction

Many-valued logics were characterised by means of a variety of proof systems of different
kinds so far (see e.g. Hähnle [17], or Baaz, Fermüller and Salzer [6] for a survey). The most
direct and popular approach to construction of many-valued sequent calculi (SC) or tableau
systems is based on the idea of syntactic representation of n values either bymeans of n-sided
sequents or byn labels attached to formulae or sets of formulae.This solutionwaspresentedby
many authors, starting with the works of Schröter [33] and later, independently, of Takahashi
[38] and Rousseau [31]. Those n-sequent based approaches were succesfully developed in a
general way bymany authors, with constructive cut elimination theorems established (see e.g.
Baaz, Fermüller and Zach [5]). Dual approach, based on the tableau systems with n labels
added to formulae, was also independently developed by several authors (see e.g. Surma
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[36], Suchoń [35], Carnielli [12]). These methodologies of formalisation of many-valued
logic, despite their generality and popularity, have some drawbacks (see [20] for discussion).
Significant improvement in the construction of efficient SC or tableau systems for many-
valued logic was proposed independently by Doherty [14] and Hähnle [17]. It is based on the
idea that labels should correspond not to single values but to their (selected) sets. Such an
approach was developed in several variants also in the setting of SC. In particular, for several
three-valued logics it allows to develop an almost standard form of SC (see Avron [4]).

The aim of this paper is to present yet another approach to many-valued logics, a simple
form of cut-free generalised sequent calculus called bisequent calculus (BSC). It was intro-
duced by Indrzejczak [21]1 to obtain a cut-free BSC for several variants of first-order modal
logic S5. BSC has strictly syntactical character, i.e. no labels or other external devices are
required. Rules are defined on ordered pairs of sequents, so it may be treated as the weakest
kind of system in the rich family of generalised sequent calculi operating on items being
some collections of ordinary sequents and called many-sequent calculi in [20]. All these
generalised kinds of SC, like hyper- or nested sequent calculi have shown a great utility in
applications to several non-classical logics.2 However it seems that in some cases a reason-
ably modest generalisation of standard sequent calculus is sufficient. In particular, if we use
structures which consist of two sequents only we obtain a limiting case of either hypersequent
or nested sequent calculi.

This is where BSC enters and in case of some classes of logics it allows us to obtain
simpler and more direct formalisation than the uniform approach based on n-sequents. In this
paper we focus on the interesting class of so called quasi-relevant logics (simply R4-logics)
determined by four-valued matrices. They are quasi-relevant in the sense explicated e.g. in
Avron, Arieli and Zamansky [2]: every implicational thesis has either some variable common
to its arguments, or both the negation of the antecedent and the succedent is a thesis. The
matrices determining these logics are obtained by the addition of several implication operation
to the well-known matrix B4 introduced for FDE—the logic of First Degree Entailment
proposed by Belnap [7] and Dunn [15] (see also [8] or [1]). The important position of FDE
in the research on relevant and paraconsistent logics is well known and established (see
e.g. [26] in the special issue of Studia Logica devoted to FDE). The connection of R4-
logics to relevant logics is even stronger since all R4-logics are also axiomatic extensions
of the basic relevant logic B of Meyer and Routley. Since both FDE and B play a crucial
role in the study of relevant logics, the examination of those logics which are at the same
time (implicational) expansions of FDE, (axiomatic) extensions of B, and are in a sense
relevant, is surely interesting. All these logics are also paraconsistent and paracomplete in
the sense that sentences may be evaluated as having both values or neither. Thus the laws of
noncontradiction and of the excluded middle fail.

Incidentally we will characterise also some other (non-relevant) implicational expansions
of FDE but the main interest is in the proof-theoretic characterisation of R4-logics. It was
shown recently by Lopez that this class contains exactly 8 logics, of which two -BN4 andE4
were identified and investigated earlier.BN4was introduced by Brady [11] as the four-valued
logic of the relevant conditional. It can be seen as an extension of RW, the contractionless
version of the well-known relevant logic R, and its implication is sometimes claimed as
the most naturally associated with FDE (see e.g. [30]). E4 was introduced by Robles and

1 Note that the name bisequent was already used by Bochman [10] in the context of defining generalised
consequence relations and corresponding SC for some many-valued logics. Our BSC is a different kind of
generalised SC.
2 A wider discussion of several kinds of generalised SC can be found in [20].
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Fig. 1 B4

Fig. 2 Implication operations

Mendez [29] and is related to E, the well-known logic of entailment, in a similar way, as
BN4 is related to R. Namely, it is a four-valued extension of Er, the reductioless version of
E. Both logics were presented as axiomatic calculi and proved complete also with respect to
relational semantics. Robles andMendez [29] described 6 other logics of this type and Lopez
[23] showed that there are no other quasi-relevant logics which shareB and are determined by
the four-valued matrix. She provided also their axiomatization and semantic characterisation
by means of relational models in [24].

The aim of this paper is twofold: to provide a uniform characterisation of these logics by
means of BSC and to use this framework for proving interpolation theorems for negational
expansions of all considered logics. In Sect. 2 we describe briefly the logics under consid-
eration. In the next section we provide rules for the connectives of the logics introduced
in Sect. 2. Section4 presents a constructive proof of cut elimination for these systems and
Sect. 5 shows how BSC can be applied to prove interpolation for their negational expansions,
i.e. after addition of a different kind of negation to the language and suitable rules to the
calculus. We will close the paper with some concluding remarks and comparison with other
approaches.

2 Logics

We will examine propositional logics determined by four-element matrices which are impli-
cational expansions of the well-known matrix B4 due to Dunn and Belnap. Generally a
matrix M = 〈A, D〉 for a propositional language L is an algebra A = 〈A, O〉 similar to
L, and D is a nonempty subset of designated elements of its carrier. B4 is a matrix with
A = {0,⊥,�, 1}, D = {1,�} and O containing a unary operation ¬ : A −→ A and binary
operations � : A × A −→ A, where � ∈ {∧,∨}. Informally ⊥ stands for a gap (no value)
and � for a glut (both values). Operations are defined in Fig.1 where we have added also a
characterisation of three additional negations: boolean ∼ and two cyclic negations: � (see
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Ruet [32]) and �, called also demi-negation (see Humberstone [18]). As we will see the
addition of at least one of them will be necessary for proving the interpolation theorem.

Languages of our logics are freely generated algebras 〈For ,¬,∧,∨,→〉 similar to the
underlying algebra of B4 enriched with some additional implication operation →i with suit-
able index i . Logics are interpreted by homomorphisms from the language to algebra of
values such that h(cn(ϕ1, . . . , ϕn)) = c(h(ϕ1), . . . , h(ϕn)) for every n−argument connec-
tive c and the corresponding operation c. For any matrix M we define a relation of matrix
consequence in the following way:Γ |�M ϕ iff for any homomorphism h: if h(Γ ) ⊆ D, then
h(ϕ) ∈ D, where h(Γ ) = {h(ψ) : ψ ∈ Γ }. In what follows the logics under consideration
are identified with suitable matrix consequences.

Although FDE is formulated in the language without implication, a lot of implications
have been considered as a reasonable expansion, in particular those which are listed in the
first row of Fig. 2. In the first case b is for boolean, since it is material implication definable
in terms of boolean negation and disjunction (see Omori and Wansing [26]). The second is
mixed implication which is a joint extension of three-valued implications of Kleene’s logic
K3 and Priest’s LP (with taking Kleene’s third value as ⊥ and Priest’s third value as �) (see
Degauquier [13]). The next is extensional implication which is the most popular implication
considered in the context of extended FDE (see Avron [4]). The next one is an interesting
case of connexive implication (see Omori and Wansing [26]).

Neither of these four implications is relevant in any sense. Also their proof-theoretic
characterisation in terms of BSC does not raise any problem. The situation is different and
more demanding with the remaining 8 logics whose implications are defined in the last two
positions of the first and in the second row of Fig. 2. The two four-valued quasi-relevant logics
proposed as expansions of FDE are Brady’s BN4 (→B for Brady) and Robles’ E4 (→R for
Robles). Both are axiomatic extensions of the basic relevant logicB ofMeyer and Routley. In
particular →B is a joint extension of three-valued implications of Łukasiewicz’s L3 and the
implication of three-valued relevant logicMR3. Although neither BN4 nor E4 is relevant in
the strict sense of satisfying the variable-sharing property, they both satisfy the weaker quasi-
relevance property: For every theorem of the form ϕ → ψ either AT (ϕ) ∩ AT (ψ) �= ∅

or ¬ϕ and ψ are theorems (AT (ϕ) denotes the set of atoms, i.e. propositional variables,
occurring in ϕ).

The following six implications listed in the second row of Fig.2 are the remaining ones
that on the basis of FDE yield quasi-relevant logics which are the four-valued extensions
of B. The nomenclature is taken from Lopez and the missing →1 and →5 are just →B

and →R respectively. All these 8 logics are quasi-relevant, paraconsistent and paracom-
plete. They were characterised semantically not only by means of matrix semantics but also
in terms of Belnap-Dunn semantics (Lopez [23]) and Routley-Meyer’s ternary relational
semantics (Lopez [24]). However, in syntactical terms they obtained only standard Hilbert-
style axiomatisation. In what follows we provided a proof-theoretic characterisation in terms
of BSCwhich is cut-free and analytic, in the sense of enjoying the subformula property. These
features yield decidability of all considered logics. Moreover, after enriching the set of rules
with rules for boolean or circular negation, we obtain a calculus which yields a constructive
proof of the Craig’s interpolation property for the expansions of these logics with respective
negation.
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Fig. 3 BSC-FDE

3 Bisequent Calculus

Our proof-theoretic tool is a generalised form of sequent calculus using bisequents which
are ordered pairs of sequents Γ ⇒ Δ | Π ⇒ Σ , where Γ ,Δ,Π,Σ are finite (possibly
empty) multisets of formulae. We will call the elements of a bisequent as 1- and 2-sequent
respectively. Bisequents with all elements being atomic will be also called atomic.
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What is the rationale behind the bisequents? In a deep sense the notion of a bisequent
is implicitly based on the so called Suszko’s thesis [37] according to which there are only
two “real" truth values corresponding to sets of designated and nondesignated values in the
characteristic matrix. This view, and a way of its interpretation, is a matter of philosophical
dispute3 but technically, Suszko’s thesismay serve as a convenient basis for one of the possible
introductions of SC into the realm of many-valued logics, and BSC is one of the possible
frameworks for the development of this idea. More precisely, this fundamental bivalence
is expressed by 1-sequent; its antecedent refers to designated values, and its succedent to
nondesignated ones. Therefore to show that the bisequent is falsified we must show that all
elements of the antecedent of 1-sequent are true or �, and all elements of the succedent of
1-sequent are false or ⊥. The 2-sequent has rather auxiliary character; its arguments refer to
the remaining combinations of truth values, namely 1, ⊥ for the antecedent and 0, � for the
succedent.

Thus, in the sense of semantical motivation, BSC is rather far from n-sided approach,
where each part of the n-sequent corresponds to a unique truth value. If we look for a semantic
motivation it is rather closer to Hähnle’s sets-as-signs approach [17] using labels representing
sets of truth values. It is clear that BSC and sets-as-signs tableaux realise essentially the same
idea when we consider a semantic interpretation of bisequents suggested above. As a result
it makes possible to simulate BSC rules in the setting of Hähnle’s system. On the other hand,
BSC is different in many respects from Hähnle’s approach since it is a purely proof-theoretic
system with rules constructed to satisfy standard desiderata and enabling constructive proofs
of admissibility of cut and interpolation. Similar solutions but developed bymeans of different
kinds of generalised sequents can be found in Degauquier [13] and Indrzejczak [20].

This idea allows for defining a uniform and simple framework having several nice prop-
erties. The set of axioms is fixed for all considered calculi: a bisequent Γ ⇒ Δ | Π ⇒ Σ is
axiomatic iff it has nonempty Γ ∩Δ or Π ∩Σ . The set of rules characterising the operations
of the B4 consists of the schemata listed in Fig. 3. Let us call this calculus BSC-FDE. We
have included here also the rules for additional negations which will be of interest in Sect. 5.
The formulae displayed in the schemata are called active; in particular those in the premisses
are side formulae, whereas the one in the conclusion is the principal formula. The remaining
formulae are parametric and together form a context.

Boolean and mixed implication are characterised by the rules in Fig. 4. Note that all rules
for →b are uniform in the sense that all active formulae are in the same sequent, either
1- or 2-sequent, in a similar way as in the case of ∧,∨,∼, whereas in case of →m rules
are mixed having always one side formula (namely the antecedent of implication) in the
opposite sequent than the principal formula. To obtain a calculus for FDE with extensional
implication we do not need any new rules—it is given by BSC-FDEwith (⇒→b |), (→b⇒ |
), (|⇒→m), (|→m⇒). It follows from the fact that a distribution of 1,� and 0,⊥ is the same
in the tables for →b and →e, whereas a distribution of 1,⊥ and 0,� are the same for →m

and →e. Since in the case of →c a distribution of 1,� and 0,⊥ is also the same as in the
table for →b one pair of rules is identical to (⇒→b |), (→b⇒ |). We need only two new
rules listed in Fig. 4.

To get a calculus for E4 we need the rules for →R listed in Fig. 5. However, to obtain a
calculus forBN4we do not need new rules for→B again. The respective rules are: (|⇒→m),
(|→m⇒), (⇒→R |) and (→R⇒ |). In the first case identical rules follow from the fact that

3 One of the recent summary of different positions towards Suszko’s thesis is provided by Shramko and
Wansing [34].
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Fig. 4 Basic implications

Fig. 5 E4

a distribution of 1,⊥ and 0,� is the same in the tables for →m and →B . In the second case
it is a consequence of the same distribution of 1,� and 0,⊥ in the tables for →R and →B .

Now note that for all the remaining implications a distribution of 1,� and 0,⊥ are also
the same as in the tables for →R , hence for all these implications we have the same rules,
namely (⇒→R |) and (→R⇒ |). What we need are only special rules for (|⇒→i ) and
(|→i⇒) listed in Fig. 6.

To facilitate orientation in the construction of all considered logics as BSC calculi we
provide a descriptionof their rules inFig. 7.Note that all considered calculi are rule-extensions
of BSC-FDE which means that all share the same axioms and all rules for ¬,∧,∨ from Fig
3. The only difference is the set of four rules for → which are specified in the table.

One may easily notice that all rules satisfy the subformula property and other desirable
properties of well-behaved SC, like explicitness, symmetry, separation (see [20]). In partic-
ular, since no rules are constrained with any side conditions they are context independent
in the sense that validity-preservation of rules is intact by deletion or addition of the same
parameters in the premisses and conclusion. This feature will be of special importance for
the proof of admissibility of important structural rules, including cut, in Sect. 4, and for the
proof of the interpolation theorem in Sect. 5. One may easily observe that in case of rules
for ∧,∨,∼ and boolean → we have just standard G3 rules but repeated in both components.
Rules for ¬,�,� and the remaining kinds of → have different character since side and
principal formulae are in different sequents in most cases.
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Fig. 6 Quasi-relevant implications

Fig. 7 BSC for considered logics
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A proof in BSC-L, where L is one of the logics under consideration, is defined as a tree
where each leaf is axiomatic, the root is a bisequent B of the form Γ ⇒ Δ |⇒ and all nodes
are generated by the rules defined for BSC-L.

Slightly more general notion is that of a proof-search tree for B, where leaves are not
necessarily axiomatic. If moreover, all leaves are atomic bisequents, it is called a complete
proof-search tree. The height of a proof-search tree (a proof in particular) is defined as the
length of the maximal branches. A simple consequence of the subformula property of rules
is:

Proposition 1 Every proof-search tree is extendible to a finite complete proof-search tree.

To show the adequacy of all systems we use the following falsifying interpretation of
bisequents: Γ ⇒ Δ | Π ⇒ Σ is falsified by h (in L) iff all elements of Γ are designated
(either true or �), all elements of Δ are not designated (either false or ⊥), all elements of Π

are either true or⊥ and all elements ofΣ are either false or�. Otherwise, Γ ⇒ Δ | Π ⇒ Σ

is satisfied by h (in L). If it is satisfied by every h we say that it is valid in L.
Obviously, all axiomatic bisequents are valid for any logic L. As for the rules they are not

only sound (i.e. validity-preserving) but also invertible; namely it holds:

Theorem 1 For all rules of BSC-L, all premisses are L-valid iff the conclusion is L-valid.

Proof By simple but tedious calculation. It is easier to prove it by contraposition, i.e. that for
every rule the conclusion is falsified by some h iff at least one premiss is falsified by the same
h. For illustration consider (→R⇒|). In one direction assume that the conclusion is falsified
by some h. Hence h(ϕ → ψ) ∈ {1,�} and the same holds for all elements of Γ , whereas
every element of Δ is either false or ⊥, every element of Π is either true or ⊥ and every
element of Σ is either false or �. Since the values of all parametric formulae under h remain
fixed we need to check only the values of side formulae, and there are four cases: a) h(ϕ) = 0
or b) h(ψ) = 1 or c) h(ϕ) = h(ψ) = � or d) h(ϕ) = h(ψ) = ⊥. In the first case h falsifies
the rightmost premiss. Similarly, case b), c), d) falsifies the third, the second and the first
(leftmost) premiss respectively. In the second direction, assume that some premiss is falsified
by some h. Take the leftmost one where h(ϕ) ∈ {0,⊥}, h(ψ) ∈ {1,⊥}. But if h(ϕ) = 0 or
h(ψ) = 1, then h(ϕ → ψ) = 1 and if h(ϕ) = h(ψ) = ⊥, then h(ϕ → ψ) = �. In any case
h(ϕ → ψ) ∈ {1,�} and this falsifies the conclusion. The remaining three premisses, when
assumed to be falsified, lead to the same result. ��
Theorem 2 (Soundness) If BSC-L � Γ ⇒ ϕ |⇒, then Γ |�L ϕ

Proof It follows from Theorem 1 by induction on the height of the proof. ��
Invertibility of all rules implies that proof search process is confluent, i.e. that the order

of applications of rules does not affect the result. In particular, a bisequent B is provable iff
every proof-search tree may be extended to obtain a proof.

Theorem 3 (Completeness) If Γ |�L ϕ, then BSC-L � Γ ⇒ ϕ |⇒
Proof Assume that Γ |�L ϕ but BSC-L � Γ ⇒ ϕ |⇒. Moreover, since all rules satisfy
the subformula-property, by Proposition 1 every proof-search is terminating. Hence in every
complete proof-search tree for Γ ⇒ ϕ |⇒ there is at least one branch starting with nonax-
iomatic atomic bisequent falsified by some h. Since all rules inherit this valuation, then the
root is also falsified, contrary to our assumption. ��
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Fig. 8 Structural Rules

As a simple consequence we obtain also a decision procedure for every L under consider-
ation. Another by-product of our proof is that the structural rules of weakening, contraction
and cut from Fig. 8 are admissible in BSC-L. One may easily check that all of them are
validity-preserving, hence by soundness and completeness theorem, they are also admissi-
ble.

4 Cut Elimination

Moreover we can constructively prove that all structural rules introduced in the previous
section are admissible. The most suitable strategy is that developed by Dragalin and applied
for standard sequent calculus G3 in Negri and von Plato [25]. It is convenient to use for
this task a version of BSC where active formulae in axioms are restricted to atomic ones. In
order to show that this variant is equivalent to the one introduced in the previous section it is
sufficient to prove:

Proposition 2 Axiomatic sequents with arbitrary formulae are provable in BSC with
restricted axioms.

Proof By induction on the complexity of active formulae.Weprovide one case for illustration.
Consider ϕ → ψ,Γ ⇒ Δ,ϕ → ψ | Π ⇒ Σ proven in BSC-E4.

From: 1. ϕ, Γ ⇒ Δ,ψ, ϕ | ψ,Π ⇒ Σ , 2. ψ, ϕ, Γ ⇒ Δ,ψ | Π ⇒ Σ,ϕ

3. ψ, ϕ, Γ ⇒ Δ,ψ | ψ,Π ⇒ Σ and 4. ϕ, Γ ⇒ Δ,ψ, ϕ | Π ⇒ Σ,ϕ

we obtain by (→R⇒|): a. ϕ → ψ, ϕ, Γ ⇒ Δ,ψ | Π ⇒ Σ .
From 5. Γ ⇒ Δ,ϕ | ψ, ϕ,Π ⇒ Σ,ψ , 6. ψ,Γ ⇒ Δ | ϕ,Π ⇒ Σ,ψ, ϕ

7. ψ,Γ ⇒ Δ | ψ, ϕ,Π ⇒ Σ,ψ and 8. Γ ⇒ Δ,ϕ | ϕ,Π ⇒ Σ,ψ, ϕ

we obtain by (→R⇒|): b. ϕ → ψ,Γ ⇒ Δ | ϕ,Π ⇒ Σ,ψ .
From a and b by (⇒→R |) we obtain the result. All sequents 1–8 are provable by the

induction hypothesis. ��
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The remaining results in this section are proven for the version with restricted axioms,
although for some of them this difference does not matter.

Proposition 3 Weakening rules are height-preserving admissible.

Proof By induction on the height of the proof of the premiss, and context independence of
all rules. ��
Proposition 4 All primitive (logical) rules are height-preserving invertible.

Proof By induction on the height of the proof of the conclusion for each rule r . In the
basis the considered bisequent is an axiom, hence the complex formula which we take as
the principal formula of the respective rule r cannot be active in this axiom. Hence, by the
context independence, it may be replaced with side formula(e). Otherwise this sequent is
derived and either the complex formula in question is indeed principal or not. In the former
case we have a proof of the premiss(es) directly above. In the latter case this formula belongs
to the context and by the context independence and the induction hypothesis we derive the
proof of the required premiss. ��
Proposition 5 Contraction rules are height-preserving admissible.

Proof It follows by induction on the height of the proof of the premiss, context independence
and invertibility of all rules. ��
Theorem 4 Both cut rules are admissible.

Proof We prove their admissibility simultaneously by double induction on the complexity
of cut-fromula and on the sum of heights of the proofs of the premisses of cut. The cases
where at least one premiss of cut is axiomatic or has a parametric cut-formula are trivial.
The latter follows from the context independence of all rules. The only interesting points
are where both cut-formulae are principal. In case of formulae which are not implications,
or implications derived by rules for →b,→m,→e,→c, the proofs are like in the classical
logic, so we only examine the cases of rules for quasi-relevant implications. Consider the
following application of cut:

(Cut |) Γ ⇒ Δ,ϕ → ψ | Λ ⇒ Θ ϕ → ψ,Π ⇒ Σ | Ξ ⇒ Ω

Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω
where the left premiss is derived by (⇒→R |) from:
a : ϕ, Γ ⇒ Δ,ψ | Λ ⇒ Θ

b : Γ ⇒ Δ | ϕ,Λ ⇒ Θ,ψ

and the right premiss by (→R⇒|) from:
1: Π ⇒ Σ,ϕ | ψ,Ξ ⇒ Ω

2: ψ,Π ⇒ Σ | Ξ ⇒ Ω,ϕ

3: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

4: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

1
a 3

ϕ, Γ ,Π ⇒ Δ,Σ | ψ,Λ,Ξ ⇒ Θ,Ω

Γ ,Π ⇒ Δ,Σ | ψ,Λ,Ξ ⇒ Θ,Ω

and:
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a
b 4

Γ , Π ⇒ Δ, Σ, ϕ | Λ, Ξ ⇒ Θ, Ω,ψ

Γ ,Π ⇒ Δ, Σ,ψ | Λ, Ξ ⇒ Θ,Ω, ψ

3
b 2

ψ, Γ ,Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ,Ω, ψ

ψ, Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω

Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω,ψ

By (| Cut) on ψ and contractions we obtain Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω . Since all
cuts were performed on subformulae of the original cut-formula they are admissible by the
induction hypothesis. Note that this is a solution correct for all 8 R4-logics.

Now we must examine the second cut for every logic. For BN4 it is obvious. For E4:

(| Cut)
Γ ⇒ Δ | Λ ⇒ Θ,ϕ → ψ Π ⇒ Σ | ϕ → ψ,Ξ ⇒ Ω

Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω
where the left premiss is derived by (|⇒→R) from:
1: ϕ, Γ ⇒ Δ,ψ | Λ ⇒ Θ

2: ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

3: Γ ⇒ Δ,ψ | ϕ,Λ ⇒ Θ

4: Γ ⇒ Δ | ϕ,Λ ⇒ Θ,ψ

and the right premiss by (|→R⇒) from:
a : Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

b : ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

b

a 2
Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω, ϕ, ψ

b 4
ψ, Γ , Π ⇒ Δ, Σ | ϕ,Λ, Ξ ⇒ Θ,Ω

ψ, Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ,Ω, ψ

ψ, Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ,Ω

and

3
a 1

Γ ,Π ⇒ Δ,Σ,ψ | Λ,Ξ ⇒ Θ,Ω, ϕ

Γ ,Π ⇒ Δ,Σ,ψ | Λ,Ξ ⇒ Θ,Ω

which both by (Cut |) on ψ and contractions yield the result.
For →2 let the left premiss be derived by (|⇒→2) from:
a : ϕ, Γ ⇒ Δ,ψ | Λ ⇒ Θ

b : Γ ⇒ Δ | ϕ,Λ ⇒ Θ,ψ

c : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

and the right premiss by (|→2⇒) from:
1: Π ⇒ Σ,ϕ | ψ,Ξ ⇒ Ω

2: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

3: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

c 2
ϕ,ψ, Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω

b 1
Γ , Π ⇒ Δ, Σ, ϕ | ϕ, Λ,Ξ ⇒ Θ,Ω 3

Γ , Π ⇒ Δ, Σ, ϕ | Λ, Ξ ⇒ Θ,Ω

ψ, Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω

and
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a

b 1
Γ ,Π ⇒ Δ,Σ, ϕ | ϕ,Λ,Ξ ⇒ Θ,Ω 3

Γ ,Π ⇒ Δ,Σ, ϕ | Λ,Ξ ⇒ Θ,Ω

Γ ,Π ⇒ Δ,Σ,ψ | Λ,Ξ ⇒ Θ,Ω

which both by (Cut |) on ψ and contractions yield the result.
For →3 where the left premiss is derived by (|⇒→3) from:
a : ϕ, Γ ⇒ Δ,ψ | Λ ⇒ Θ

b : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

and the right premiss by (|→3⇒) from:
1: Π ⇒ Σ,ϕ | Ξ ⇒ Ω

2: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

1 a
Γ , Π ⇒ Δ, Σ,ψ | Λ,Ξ ⇒ Θ,Ω

b 1
Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ,Ω, ψ 2

ψ, Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ,Ω

Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ,Ω

For →4 where the left premiss is derived by (|⇒→4) from:
a : Γ ⇒ Δ | ϕ,Λ ⇒ Θ,ψ

b : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

and the right premiss by (|→4⇒) from:
1: Π ⇒ Σ | ψ,Ξ ⇒ Ω

2: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

2 a
Γ ,Π ⇒ Δ,Σ, ϕ | Λ,Ξ ⇒ Θ,Ω,ψ b

Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω,ψ 1
Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

For →6 let the left premiss be derived by (|⇒→6) from:
a : Γ ⇒ Δ,ψ | ϕ,Λ ⇒ Θ

b : Γ ⇒ Δ | ϕ,Λ ⇒ Θ,ψ

c : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

and the right premiss by (|→6⇒) from:
1: Π ⇒ Σ | ψ,Ξ ⇒ Ω,ϕ

2: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

3: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

1 a
Γ , Π ⇒ Δ, Σ,ψ | ψ, Λ, Ξ ⇒ Θ, Ω 2

Γ , Π ⇒ Δ, Σ | ψ, Λ, Ξ ⇒ Θ, Ω b

Γ ,Π ⇒ Δ, Σ | ϕ,Λ, Ξ ⇒ Θ, Ω

1 c
ϕ, Γ , Π ⇒ Δ,Σ | Λ, Ξ ⇒ Θ, Ω, ϕ 3

Γ , Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ, Ω, ϕ

Γ ,Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω

For →7 let the left premiss be derived by (|⇒→7) from:
a : Γ ⇒ Δ,ψ | ϕ,Λ ⇒ Θ
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b : ϕ, Γ ⇒ Δ,ψ | Λ ⇒ Θ

c : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

and the right premiss by (|→7⇒) from:
1: ψ,Π ⇒ Σ,ϕ | Ξ ⇒ Ω

2: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

3: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

1 a
Γ , Π ⇒ Δ, Σ, ϕ | ϕ,Λ, Ξ ⇒ Θ, Ω 3

Γ , Π ⇒ Δ, Σ, ϕ | Λ, Ξ ⇒ Θ, Ω

2 b
ϕ, Γ , Π ⇒ Δ,Σ | ψ, Λ, Ξ ⇒ Θ, Ω c

ϕ, Γ , Π ⇒ Δ, Σ | Λ, Ξ ⇒ Θ, Ω

Γ ,Π ⇒ Δ, Σ | Λ,Ξ ⇒ Θ, Ω

For →8 where the left premiss is derived by (|⇒→8) from:
a : ϕ, Γ ⇒ Δ | Λ ⇒ Θ,ψ

b : Γ ⇒ Δ,ψ | ϕ,Λ ⇒ Θ

and the right premiss by (|→8⇒) from:
1: ψ,Π ⇒ Σ,ϕ | Ξ ⇒ Ω

2: Π ⇒ Σ,ϕ | Ξ ⇒ Ω,ϕ

3: ψ,Π ⇒ Σ | ψ,Ξ ⇒ Ω

4: Π ⇒ Σ | ψ,Ξ ⇒ Ω,ϕ

Using cuts on several occurrences of ϕ,ψ and contractions we obtain:

3 a
ϕ,ψ, Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω b

ϕ, Γ ,Π ⇒ Δ,Σ | ϕ,Λ,Ξ ⇒ Θ,Ω

4 a
ϕ, Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω, ϕ

ϕ, Γ ,Π ⇒ Δ,Σ | Λ,Ξ ⇒ Θ,Ω

and

1 b
Γ ,Π ⇒ Δ,Σ, ϕ | ϕ,Λ,Ξ ⇒ Θ,Ω 2

Γ ,Π ⇒ Δ,Σ, ϕ | Λ,Ξ ⇒ Θ,Ω

which by (Cut |) on ϕ and contractions yields the desired effect. ��

5 Interpolation

We present a constructive proof of the Craig interpolation theorem for all discussed logics.
However, it does not hold for these logics as formulated in the original language L; we
consider instead their variants in the language L∼, with added boolean negation ∼. If some
other proof leads to the result for these logics in L is an open problem. Perhaps, the original
language is not expressive enough and interpolation does not hold for the original formulation.
Our strategy is based on the proof by Muskens and Wintein [39] originally applied in the
tableau setting forB4 and three-valued logicsK3 andLP. Here we demonstrate that BSC can
be also used for showing that interpolation holds for all 12 logics under consideration, since
in the proof only the rules common to all calculi in the extended version with ∼ are applied.
A close analysis of our proof demonstrates that interpolation holds for any logic which is
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adequately characterised by cut-free and terminating BSC such that it contains invertible and
context independent rules. Indeed it is sufficient if it contains the rules for ∧,∨,¬,∼, since
only these rules are used in the proof. AT (Γ ) extends to multisets the notion which was used
to denote the set of propositional variables in ϕ.

Theorem 5 For any formulae ϕ,ψ such that neither ϕ |� nor |� ψ holds, if ϕ |� ψ , then we
can construct an interpolant on the basis of proof-search trees for ϕ ⇒|⇒ and ⇒ ψ |⇒.

Proof Since ϕ |� ψ then, by completeness we have a cut-free proof of ϕ ⇒ ψ |⇒. Now
produce complete proof-search trees for ϕ ⇒|⇒ and ⇒ ψ |⇒. Since neither ϕ |�, nor
|� ψ hold, these proof-search trees have some nonaxiomatic leaves. Let Γ1 ⇒ Δ1 | Π1 ⇒
Σ1, . . . , Γk ⇒ Δk | Πk ⇒ Σk be the list of nonaxiomatic atomic leaves of the proof-search
tree for ϕ ⇒|⇒ and Θ1 ⇒ Λ1 | Ξ1 ⇒ Ω1, . . . , Θn ⇒ Λn | Ξn ⇒ Ωn such a list taken
from the proof-search tree for ⇒ ψ |⇒. It holds:

Claim (1). For any i ≤ k and j ≤ n, Γi ,Θ j ⇒ Δi ,Λ j | Πi , Ξ j ⇒ Σi ,Ω j is an
axiomatic atomic bisequent.

This is a straightforward observation. Consider a proof-search tree for ϕ ⇒|⇒ and add
ψ to succedents of all 1-sequents in the tree. Due to context independence of all rules it is
a correct proof-search tree. Now for each leaf Γi ⇒ Δi , ψ | Πi ⇒ Σi append a tree of
⇒ ψ |⇒ but withΓi added to each antecedent andΔi added to each succedent of 1-sequents,
and similarly with Πi and Σi in all 2-sequents. In the resulting proof-search tree we have
leaves of the form Γi ,Θ j ⇒ Δi ,Λ j | Πi , Ξ j ⇒ Σi ,Ω j for all i ≤ k and j ≤ n. If at least
one of them is not axiomatic, then � ϕ ⇒ ψ |⇒. ��

Next for every Γi ⇒ Δi | Πi ⇒ Σi , i ≤ k, define the following sets:

Γ ′
i = Γi ∩ ⋃

j≤n Λ j

Δ′
i = Δi ∩ ⋃

j≤n Θ j

Π ′
i = Πi ∩ ⋃

j≤n Ω j

Σ ′
i = Σi ∩ ⋃

j≤n Ξ j

Since every Γi ⇒ Δi | Πi ⇒ Σi is not axiomatic but every Γi ,Θ j ⇒ Δi ,Λ j |
Πi , Ξ j ⇒ Σi ,Ω j is axiomatic we are guaranteed that Γ ′

i ∪ Δ′
i ∪ Π ′

i ∪ Σ ′
i �= ∅. Note also

that AT (Γ ′
i ∪ Δ′

i ∪ Π ′
i ∪ Σ ′

i ) ⊆ AT (ϕ) ∩ AT (ψ).
Now define an interpolant I nt(ϕ, ψ) as a formula of the following form:∧

Γ ′
1 ∧∧ ¬Σ ′

1∧∧ ∼ Δ′
1∧∧ ∼ ¬Π ′

1 ∨ . . .∨ ∧
Γ ′
k ∧∧ ¬Σ ′

k ∧∧ ∼ Δ′
k ∧∧ ∼ ¬Π ′

k ,
where

∧
Π denotes the conjunction of all elements of Π and ¬Π,∼ Π,∼ ¬Π denote sets

of suitable negations (double negations) of all elements in Π .
We can show that:

Claim (2). I nt(ϕ, ψ) is an interpolant for ϕ |� ψ . ��
Proof Since for every

∧
Γ ′
i ∧ ∧ ¬Σ ′

i ∧ ∧ ∼ Δ′
i ∧ ∧ ∼ ¬Π ′

i all (negated) atoms are by
definition taken from AT (ϕ) ∩ AT (ψ) we must only prove that � ϕ ⇒ I nt(ϕ, ψ) |⇒,
and � I nt(ϕ, ψ) ⇒ ψ |⇒. Again take a complete proof-search tree for ϕ ⇒|⇒ and add
I nt(ϕ, ψ) to every succedent of 1-sequent. For every Γi ⇒ Δi , I nt(ϕ, ψ) | Πi ⇒ Σi

which is not axiomatic apply (⇒ ∨ |) to get Γi ⇒ Δi ,
∧

Γ ′
i ∧ ∧ ¬Σ ′

i ∧ ∧ ∼ Δ′
i ∧ ∧ ∼

¬Π ′
i , I nt(ϕ, ψ)−i | Πi ⇒ Σi , where I nt(ϕ, ψ)−i is the multiset of the remaining disjuncts

(if any). Applying (⇒ ∧ |) we obtain the following bisequents:

(a) Γi ⇒ Δi ,
∧

Γ ′
i , I nt(ϕ, ψ)−i | Πi ⇒ Σi

(b) Γi ⇒ Δi ,
∧ ¬Σ ′

i , I nt(ϕ, ψ)−i | Πi ⇒ Σi

(c) Γi ⇒ Δi ,
∧ ∼ Δ′

i , I nt(ϕ, ψ)−i | Πi ⇒ Σi
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(d) Γi ⇒ Δi ,
∧ ∼ ¬Π ′

i , I nt(ϕ, ψ)−i | Πi ⇒ Σi

Systematically applying (⇒ ∧ |) to (a) we obtain Γi ⇒ Δi , p, I nt(ϕ, ψ)−i | Πi ⇒ Σi

for each p ∈ Γ ′
i and since Γ ′

i ⊆ Γi they are all axiomatic. Similarly with (b) but now we
first obtain Γi ⇒ Δi ,¬p, I nt(ϕ, ψ)−i | Πi ⇒ Σi for each p ∈ Σ ′

i . After the application
of (⇒ ¬ |) we obtain Γi ⇒ Δi , I nt(ϕ, ψ)−i | p,Πi ⇒ Σi which is axiomatic since
Σ ′

i ⊆ Σi . In the similar way from (c) by the application of (⇒ ∧ |) and (⇒∼|) we
obtain p, Γi ⇒ Δi , I nt(ϕ, ψ)−i | Πi ⇒ Σi for each p ∈ Δ′

i which is axiomatic since
Δ′

i ⊆ Δi . Finally for (d) we succesively apply (⇒ ∧ |), (⇒∼|) and (¬ ⇒|) to obtain
Γi ⇒ Δi , I nt(ϕ, ψ)−i | Πi ⇒ Σi , p for each p ∈ Π ′

i which is axiomatic since Π ′
i ⊆ Πi .

In this way we obtain a proof of ϕ ⇒ I nt(ϕ, ψ) |⇒.
We have to do the same with a complete proof-search tree for ⇒ ψ |⇒ but now adding

I nt(ϕ, ψ) to every antecedent of all 1-sequents in the tree. For every nonaxiomatic leaf
I nt(ϕ, ψ),Θ j ⇒ Λ j | Ξ j ⇒ Ω j we apply (∨ ⇒ |) to each disjunct of I nt(ϕ, ψ)

until we get leaves:
∧

Γ ′
1 ∧ ∧ ¬Σ ′

1 ∧ ∧ ∼ Δ′
1 ∧ ∧ ∼ ¬Π ′

1,Θ j ⇒ Λ j | Ξ j ⇒ Ω j

…
∧

Γ ′
k∧

∧ ¬Σ ′
k∧

∧ ∼ Δ′
k∧

∧ ∼ ¬Π ′
k,Θ j ⇒ Λ j | Ξ j ⇒ Ω j . To each such leafwe apply

(∧ ⇒|) obtaining bisequents of the formΓ ′
i ,¬Σ ′

i ,∼ Δ′
i ,∼ ¬Π ′

i ,Θ j ⇒ Λ j | Ξ j ⇒ Ω j for
i ≤ k, j ≤ n. In each case the successive applications of (¬ ⇒|) to¬Σ ′

i , (∼⇒|) to∼ Δ′
i and

(∼⇒|) and then (⇒ ¬ |) to∼ ¬Π ′
i yield in the effect leaves of the form Γ ′

i ,Θ j ⇒ Λ j ,Δ
′
i |

Π ′
i , Ξ j ⇒ Ω j ,Σ

′
i . Since for every i ≤ k, j ≤ n, Γi ,Θ j ⇒ Δi ,Λ j | Πi , Ξ j ⇒ Σi ,Ω j is

axiomatic these primed versions are axiomatic too. This follows from definition of primed
sets, since they contain just these atoms which occur also in their complementary sets, for
example if some p ∈ Γi ∩ Λ j , then p ∈ Γ ′

i as well. ��

It is worth noting that this theorem may be also proved in the same way for the versions
with added cyclic negation. The only difference is that the interpolation formulae now have
the shapes:

∧
Γ ′
1 ∧∧¬Σ ′

1∧∧
� Π ′

1∧∧
� ¬Δ′

1 ∨ . . .∨ ∧
Γ ′
k ∧∧¬Σ ′

k ∧∧
� Π ′

k ∧∧
� ¬Δ′

k .
∧

Γ ′
1∧∧¬Σ ′

1∧
∧ ¬ � Δ′

1∧
∧¬ � ¬Π ′

1 ∨. . .∨ ∧
Γ ′
k ∧∧ ¬Σ ′

k∧
∧¬ � Δ′

k∧
∧ ¬ �

¬Π ′
k .

Interested reader is invited to provide a proof. What is even more interesting both cyclic
negations may be used instead of ¬, and each is sufficient to prove interpolation. It follows
from the fact that the rules (|�⇒), (|⇒�) and (�⇒|), (⇒�|) are identical with respective
rules for ¬. The alternative interpolants look like this:

∧
Γ ′
1 ∧ ∧

� Π ′
1 ∧ ∧

�� Δ′
1 ∧ ∧

��� Σ ′
1 ∨ . . . ∨ ∧

Γ ′
k ∧ ∧

� Π ′
k ∧ ∧

��
Δ′

k ∧ ∧
��� Σ ′

k .∧
Γ ′
1 ∧ ∧

� Σ ′
1 ∧ ∧

�� Δ′
1 ∧ ∧

��� Π ′
1 ∨ . . . ∨ ∧

Γ ′
k ∧ ∧

� Σ ′
k ∧ ∧

��
Δ′

k ∧ ∧
��� Π ′

k .

Perhaps this result is not so surprising in light of the fact that Ruet’s [32] cyclic negation
was shown to be functionally complete (see [26]). Since this kind of connective is sometimes
considered as doubtful (see e.g.Humberstone [18]) this resultmaybe seen as another evidence
for the usefulness of cyclic negation and another contribution to the study of these interesting
connectives recently investigated by several researchers.4

4 For example, see the works of Blasio [9], Kamide [22], Omori and Wansing [27], Paoli [28] or Grigoriev
and Zaitsev [16].
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6 Conclusion

BSC is a relatively simple generalization of standard form of sequent calculuswhich can be of
great utility in the field ofmany-valued logics. It is not a general frameworkwhich can be used
for characterisation of arbitrarymany-valued logics, like n-sequents, or n-labelled approaches
mentioned in the introduction. However for some classes of many-valued logics it offers
simpler calculi than those covered by thesemore prevalent methodologies. The class of logics
considered in this paper is important but rather small, nonetheless the applicability of BSC is
wider. In [19] we show that in the case of three-valued logics BSC can be applied universally,
in the sense that arbitrary connectives of such propositional logics can be characterised by
means of bisequent rules. When the number of values is four or higher the situation is not so
clear. In this work we have shown how BSC works for the specific class of such four-valued
logics. Investigation on other types of non-classical logics is an open problem.

Despite of the signalled limitations of BSC framework its simplicity in the considered
case is appealing. It lies in the fact that two sequents are sufficient for encoding all situations
which are relevant for searching of proof/falsification in the case where precisely two values
are accepted/rejected. Rules of BSC are not computed on the basis of any normal (disjunctive
or conjunctive) form, like in other approaches, but directly based on the tabular representa-
tion of the respective connective. Geometrical insights are appropriate here: to establish the
premisses for the rule with the principal formula in one of the four positions in a bisequent,
we just examine the tabular representation of this connective. For example, if indicated values
of the arguments form a rectangle, one premiss is enough, in case of more complex shapes,
two or three or even four premisses are required.

Since the process of construction of rules on the basis of tables is not deterministic we do
not propose any algorithm for that aim. However, an analysis of some example shall make
it clear how the rules were constructed and can help the reader to apply this strategy to their
favourite logics. Let us consider the case of (→R⇒|). The principal formula is placed in the
antecedent of the 1-sequent which means that it is designated (either 1 or �). In the table for
→R from Fig 2 a distribution of these values is not very regular: (a) the leftmost column,
(b) the last row, plus the single cels for both arguments being either (c) � or (d) ⊥. The case
(a) shows that the implication is designated if the succedent is 1 and this yields the third
premiss where ψ is in both antecedents. Since the first means that ψ is either 1 or �, and the
second that ψ is either 1 or ⊥, such placement means that ψ is simply 1. Similarly the case
(b) means that the implication is designated if the antecedent is just 0. Hence it dictates the
fourth premiss where ϕ is in both succedents, hence simply false. How to deal with cases
(c) and (d)? One may note that the leftmost half of the second row with the leftmost half
of the last row gives us the rectangle having only designated values and including the cell
(c). This rectangle is determined by ϕ being � or 0, and ψ being 1 or �. This determines
the placement of ϕ and ψ in the second premiss. Similarly, the bottom halves of the first
and the third column give us a rectangle capturing cell (d) and containing only designated
values. This rectangle is determined by ϕ being ⊥ or 0, and ψ being 1 or ⊥, which dictates
the placement of ϕ and ψ in the first premiss.

Note that the interpretation of bisequents together with this technique of analysing the
table for the connective does not dictate the shape of the rules in a deterministic way. Very
often several possibilities are at hand. For example in the analysed case we could keep the
premiss one and two but for the third and fourth just consider the remaining cells with
designated values; the upper rightmost (with ϕ and ψ being 1) and the lowest rightmost
(with ϕ and ψ being 0). Such a choice gives premisses where both formulae ϕ,ψ are put
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in the places which are originally occupied only by ψ in the third premiss and by ϕ in
the fourth premiss. Alternatively we can keep the third and fourth premiss intact but try to
provide premisses one and two which uniquely describe cells c) and d). This yields the first
premiss of the shape Γ ⇒ Δ,ϕ,ψ | ϕ,ψ,Π ⇒ Σ (case d) and the second of the shape
ϕ,ψ, Γ ⇒ Δ | Π ⇒ Σ,ϕ,ψ (case c). Such rules are however more redundant and may
lead to more complex proof-search trees.

While constructing rules on the basis of tables we made an effort to select these choices
which led to the simplest possible rules allowing us to carry the proofs of proof-theoretic
results. As a result the rules of BSC are proof-theoretically well-behaved, similar to stan-
dard sequent rules, satisfying properties of explicitness, separation, symmetry (see [20]),
the subformula-property and admissibility of structural rules, including cut. Moreover, for
negation expansions, with ∼ or with � or �, we have the algorithm for construction of inter-
polants. In the future work we are going to extend the application of BSC to many-valued
first-order logics.
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