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Abstract
QCDCL is one of the main algorithmic paradigms for solving quantified Boolean formulas
(QBF). We design a new technique to show lower bounds for the running time in QCDCL
algorithms. For this we model QCDCL by concisely defined proof systems and identify a
new width measure for formulas, which we call gauge. We show that for a large class of
QBFs, large (e.g. linear) gauge implies exponential lower bounds for QCDCL proof size.
We illustrate our technique by computing the gauge for a number of sample QBFs, thereby
providing new exponential lower bounds for QCDCL. Our technique is the first bespoke
lower bound technique for QCDCL.

Keywords QBF · QCDCL · Proof complexity · Resolution · Lower bounds

1 Introduction

The satisfiability problem for propositional formulas (SAT) is one of the central problems of
computer science. Traditionally perceived as a hard problem due to its NP completeness, SAT
is nowadays very efficiently tackled by SAT solvers, building on the paradigm of conflict-
driven clause learning (CDCL) [29], which solve problems in even millions of variables on
many industrial problems.

The success of SAT solving has been transferred to computationally evenmore challenging
settings, with quantified Boolean formulas (QBF) receiving key attention during the last
decade [12]. One of the main approaches to QBF solving lifts CDCL to the quantified level,
resulting in QCDCL [36]. In addition to QCDCL there are a number of further competing
approaches to QBF solving [22, 26, 30]. Due to its PSPACE completeness, QBFs allow to
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encode many problems more succinctly, thus allowing to tackle even further applications
[33].

Understanding which formulas are hard for (Q)CDCL is one of the most fascinating
questions, both from a theoretical and a practical point of view. The main approach to this
problem is through interpreting runs of SAT and QBF solvers on unsatisfiable formulas as
formal proofs of their unsatisfiability. Since learned clauses in CDCL are derivable in res-
olution, it was noted early on that each run of a CDCL solver on an unsatisfiable formula
can be efficiently translated into a resolution refutation [3]. Somewhat surprisingly, the con-
verse holds as well, and when allowing arbitrary non-deterministic decision schemes, CDCL
and propositional resolution are equivalent [31]. However, practical CDCL using decision
schemes such as VSIDS [35] is exponentially weaker than the full resolution system [34].

Nevertheless, practical CDCL schemes are simulated by resolution and thus proof size
lower bounds for resolution translate into lower bounds for CDCL running time. To obtain
such lower bounds we can utilise the vast proof complexity machinery of resolution lower
bound techniques [24] to show a plethora of lower bounds for combinatorial, random, and
further formulas. Indeed, resolution is arguably the best-understood proof system, intensively
studied long before the advent of SAT solving.

The situation is somewhat more intricate regarding the relation between QCDCL and Q-
resolution, the latter being the simplest andmost-studied analogue of propositional resolution
forQBF [23]. The first result regarding their relative strength is due to Janota [21], who proved
that practical QCDCL does not simulate Q-resolution. This can be interpreted as the QBF
analogue of Vinyals result for practical CDCL vs resolution [34] (though [21] actually pre-
dates [34]). In contrast, the celebrated result on the equivalence of non-deterministic CDCL
and resolution [31] does not lift to QBF as very recently shown in [7]: (non-deterministic)
QCDCL and Q-resolution are incomparable, i.e., there exist formulas exponentially hard for
Q-resolution, but easy for QCDCL, and vice versa.

This leaves us with the conundrum of how to show lower bounds for QCDCL. Though
we understand Q-resolution fairly well and have a number of dedicated techniques for lower
bounds in that system [5, 6, 8, 10, 13–15], unlike in the SAT case, these do not automatically
apply to QCDCL.

The existing information on QCDCL lower bounds can be summarized as follows. In
addition to the above-mentioned lower bound of [21] for practical QCDCL, we showed in [7]
that under certain conditions, lower bounds fromQ-resolution can be lifted to QCDCL. Also,
while QCDCL runs on false QBFs cannot be efficiently transformed into Q-resolution proofs,
they can be translated into long-distance Q-resolution proofs, an exponentially stronger proof
system designed to model clause learning in QCDCL [2, 18]. However, we only have very
few examples of hard formulas for long-distance Q-resolution [1, 10, 14], which again are
lifted from Q-resolution hardness.

In summary, it is fair to say that QCDCL is rather poorly understood from a theoretical
point of view and in particular lower bound techniques that would allow to show exponential
lower bounds for QCDCL are lacking.

Our Contributions.We devise the first dedicated lower bound technique for QCDCL (with
arbitrary clause learningmechanisms including those used in practise). In contrast to previous
lower bounds for QCDCL, our technique does not import Q-resolution hardness and thus
applies to different formulas, regardless of whether they are hard for Q-resolution or not
(note that although Q-resolution was shown to be incomparable to QCDCL [7], basically all
QCDCL lower bounds were imported from long-distance Q-resolution and hence are lower
bounds also for Q-resolution). We already mention at this point though, that our technique
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is not completely general, but is restricted to �b
3 -formulas that meet a certain XT-condition,

considered already in [7].
Technically, our approach rests on interpreting QCDCL runs in a formal framework of

proof systems, already used in [7]. Further, we define a property of long-distanceQ-resolution
proofs, which we call quasi level-ordered. This is inspired by the notion of level-ordered
proofs, introduced in [22], where the order of resolution steps in proofs must follow the
quantification order in the prefix. Quasi level-order proofs relax that condition (Definition 4).

Our lower bound technique then rests on two steps: (1) We show that for �b
3 -formulas

with the XT-condition, QCDCL proofs can be efficiently translated into quasi level-ordered
Q-resolution proofs. (2) We define a new measure called the gauge of a QBF and show
that large (i.e. linear) gauge implies exponential size in quasi level-ordered Q-resolution.
Together, (1) and (2) imply that formulas with the XT-property and large gauge are hard for
QCDCL (our main Theorem 6).

We illustrate our technique on a couple of examples on which computing the gauge is
fairly straightforward. Thus, though showing (1) and (2) above is rather technical, the lower
bound technique itself is quite easily applicable.

It is also interesting tomention that our new notion of gauge is some kind of widthmeasure
on clauses. Showing proof size lower bounds via width lower bounds is a very well-explored
theme in proof complexity, both propositionally [4] and in QBF [6, 9]. We show, however,
that gauge and proof width are not related in general.

Organisation. The remainder of this article is organised as follows. We start in Sect. 2 by
reviewing notions from QBF, including Q-resolution and long-distance Q-resolution. In
Sect. 3 we sketch QCDCL and explain how to model it as a formal proof system QCDCL.
In Sect. 4 we introduce a new notion of quasi level-ordered proofs and give an algorithm
to translate QCDCL proofs into quasi-level ordered Q-resolution. Section 5 introduces our
lower bound method for quasi-level ordered proofs via the gauge measure, which we apply
in Sect. 6 to a number of old and new QBF families. We conclude in Sect. 7 with some open
questions.

2 Preliminaries

Propositional andQuantified Formulas.Variables and negated variables are called literals,
i.e., for a variable x wecan form two literals: x and its negation x̄ .Wedenote the corresponding
variable as var(x) := var(x̄) := x .

A clause is a disjunction of literals, sometimes also viewed as a set of literals. The empty
clause is the clause consisting of zero literals, denoted (⊥). Terms are conjunctions of literals.
Again, terms can be considered as sets of literals. A CNF (conjunctive normal form) is a
conjunction of clauses. For C = �1 ∨ . . . ∨ �m we define var(C) := {var(�1), . . . , var(�m)}.
For a CNF φ = C1 ∧ . . . ∧ Cn we define var(φ) := ⋃n

i=1 var(Ci ). A clause C is called
tautological, if there is a variable x with x, x̄ ∈ C .

An assignment σ of a set of variables X is a non-tautological set of literals, such that for
all x ∈ X there is � ∈ σ with var(�) = x . The restriction of a clause C by an assignment σ

is defined as C |σ := � (true) if C ∩ σ �= ∅, and ∨
�∈C,�/∈σ � otherwise. One can interpret

σ as an operator that sets all literals from σ to the Boolean constant 1. We denote the set of
assignments of X by 〈X〉.

A QBF (quantified Boolean formula) � = Q · φ is a propositional formula φ (also called
matrix) togetherwith aprefixQ. Aprefix Q1x1Q2x2 . . . Qkxk consists of variables x1, . . . , xk
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and quantifiers Q1, . . . , Qk ∈ {∃,∀}. We obtain an equivalent formula if we unite adjacent
quantifiers of the same type. Therefore we can always assume that our prefix is in the form
of Q = Q′

1X1Q′
2X2 . . . Q′

s Xs with non-empty sets of variables X1, . . . , Xs and quantifiers
Q′

1, . . . , Q
′
s ∈ {∃,∀} such that Q′

i �= Q′
i+1 for i ∈ [s − 1]. For a variable x in Q we denote

the quantifier level with respect to Q by lv(x) = lv�(x) = i , if x ∈ Xi . Variables from �

are called existential, if the corresponding quantifier is ∃, and universal if the quantifier is ∀.
A QBF with CNF matrix is called a QCNF. We require that all clauses from a matrix of

a QCNF are non-tautological, otherwise we just delete these clauses. We further require that
all variables in the matrix appear in the prefix. Since we will only discuss refutational proof
systems, we only consider false QCNFs.

A QBF can be interpreted as a game between two players ∃ and ∀. These players have to
assign the respective variables one by one along the quantifier order from left to right. The
∀-player wins the game if and only if the matrix of the QBF gets falsified by this assignment.
It is well known that for every false QBF � = Q · φ there exists a winning strategy for the
∀-player.
Q-Resolution and Long-Distance Q-Resolution. Let C1 and C2 be two clauses. Let also �

be an existential literal with var(�) /∈ var(C1) ∪ var(C2). Then the resolvent of C1 ∨ � and
C2 ∨ �̄ over � is defined as

(C1 ∨ �)
��� (C2 ∨ �̄) := C1 ∨ C2.

Let C := u1 ∨ . . . ∨ um ∨ x1 ∨ . . . ∨ xn ∨ v1 ∨ . . . ∨ vs be a clause from �, where
u1, . . . , um, v1, . . . , vs are universal literals, x1, . . . , xn are existential literals and v1, . . . , vs
are exactly those literals v ∈ C such that v is universal and lv(v) > lv(xi ) for all i ∈ [n].
Then we can perform a reduction step and obtain

red(C) := (u1 ∨ . . . ∨ um ∨ x1 ∨ . . . ∨ xn).

For a CNF φ = {C1, . . . ,Ck} we define red(φ) := {red(C1), . . . , red(Ck)}.
Q-resolution [23] is a refutational proof system for false QCNFs. A Q-resolution proof

π of a clause C from a QCNF � = Q · φ is a sequence of clauses π = C1, . . . ,Cm with
Cm = C . Each Ci has to be derived by one of the following three rules:

• Axiom: Ci ∈ φ;

• Resolution: Ci = C j
x�� Ck for some j, k < i and x ∈ var∃(�), and Ci is non-

tautological;
• Reduction: Ci = red(C j ) for some j < i .

Note that none of our axioms are tautological by definition. A refutation of a QCNF � is
a proof of the empty clause (⊥).

To model clause learning in QCDCL, the proof system long-distance Q-resolution was
introduced in [2, 36]. This extension of Q-resolution allows to derive universal tautologies
under specific conditions such that the resulting system is still sound (this would not be the
case for arbitrary tautologies). As in Q-resolution, there are three rules by which a clause Ci

can be derived. The axiom and reduction rules are identical toQ-resolution, but the resolution
rule is changed to

• Resolution (long-distance): Ci = C j
x�� Ck for some j, k < i and x ∈ var∃(�).

The resolvent Ci is allowed to contain a tautology u ∨ ū if u is a universal variable. If
u ∈ var(C j ) ∩ var(Ck), then we additionally require lv(u) > lv(x).
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Note that a long-distance Q-resolution proof without tautologies is just a Q-resolution
proof.

If π = C1, . . . ,Cm is a proof, we define a path in π as a subsequence Ci1 , . . . ,Cis of π ,
such that each Ci j is a parental clause of Ci j+1 for each j ∈ [s − 1], either by resolution or
reduction.

3 QCDCL as a Formal Proof System

In this section we review quantified conflict-driven clause learning (QCDCL) and its formal-
isation as a proof system from [7]. This provides the formal framework for our subsequent
proof complexity analysis.

QCDCL is the quantified version of the well-known CDCL algorithm (see [29, 35] for
further details on CDCL, and [19, 28, 36] for QCDCL). Let � = Q · φ be a false QCNF.
Roughly speaking, QCDCL consists of two interleaved processes: propagation and learning.

In the propagation processwe generate assignmentswith the goal to either find a satisfying
assignment or to obtain a conflict. We start with clauses from φ that force us to assign literals
such that we do not falsify these clauses (called unit clauses). The underlying idea of this
process is unit propagation. One can think of a clause x1 ∨ . . . ∨ xn as an implication
(x̄1 ∧ . . .∧ x̄n−1) → xn . That is, if we already assigned the literals x̄1, . . . , x̄n−1, then we are
forced to assign xn in order to satisfy this clause. In QBF, we also insert reduction steps into
this process, i.e., we are interested in clauses that become unit after reduction. For example,
the clause (x̄1 ∧ . . . ∧ x̄n−1) → (xn ∨ u) for an existential literal xn and a universal literal u
with lv(xn) < lv(u) can also be used as a ground clause for propagating xn .

Performing unit propagation, the goal is to prevent a conflict for as long as possible.
However, it is not guaranteed that we can even perform any unit propagations by just starting
with the formula. Therefore we will make decisions, i.e., we assign literals without any solid
reason. With the aid of these decisions (one can also think of assumptions) we can provoke
further unit propagations. Since decision making is one of the non-deterministic components
of the algorithm, we only make decisions if there are no more unit propagations available.
In QCDCL these decisions follow the quantification order, i.e., we always decide a variable
from the leftmost quantifier block.

After obtaining a conflict, i.e., falsifying a clause, we start the clause learning process.
Here the underlying idea is to use Q-resolution resp. long-distance Q-resolution. We start
with the clause that caused the conflict and resolve it with clauses that implied previous
literals in the assignment in the reverse propagation order. At the end we get a clause such
that is derived from existing clauses by long-distance Q-resolution. We add the learned
clause to φ, backtrack to a state before we assigned all literals of this clause and restart the
propagation process. The algorithm ends when we learn the empty clause (⊥) and therefore
obtain a refutation of �.

QCDCL has to handle both refutations of false formulas as well as prove the validity of
true formulas. Therefore one would additionally need to implement cube learning (or term
learning) for satisfying assignments. Since we are only interested in refutations (otherwise
we could not compare with Q-resolution), we will omit this aspect of QCDCL.

To prove rigorous lower bounds on the running time of QCDCL we cast QCDCL as
a formal proof system. We recall the relevant details from [7], where we fully formalised
all components of QCDCL. Each QCDCL run consists of backtracking steps and restarts.
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Between them we create trails, in which we store all information on decisions and unit
propagations.

Definition 1 (trails, repeated from [7]) Let � = Q · φ be a QCNF in n variables. A trail
T for � is a sequence of literals (or ⊥) of variables from � with some specific properties.
We distinguish two types of literals in T : decision literals, that can be both existential and
universal, and propagated literals, that are either existential or ⊥. We write a trail T as

T = (p(0,1), . . . , p(0,g0);d1, p(1,1), . . . , p(1,g1); . . . ;dr, p(r ,1), . . . , p(r ,gr )),

where we denote decision literals by di and propagated literals by p(i, j). We are not allowed
to make a new decision unless there are no more propagations possible. Also, decision
literals have to be level-ordered, i.e., we have to choose a leftmost quantified variable (still
unassigned) as the next decision.

There are some further requirements on T , for which we refer to [7]. However, as they
are not crucial for our lower bounds, we can safely ignore them for now.

For unit propagation we need the notion of unit clauses that allow us to assign a variable
without making a decision. We call a clauseC a unit clause if red(C) = (x) for an existential
literal x or x = ⊥.

The next definition presents the main framework for the analysis of QCDCL as a proof
system. After having defined trails in a general way, we want to specify the way a trail can
be generated during a QCDCL run.

Definition 2 (QCDCL proof systems [7]) Let � = Q · φ be a QCNF. We call a triple of
sequences

ι = ((T1, . . . , Tm), (C1, . . . ,Cm), (π1, . . . , πm))

a QCDCL proof from � of a clause C , if for all i ∈ [m] the trail Ti uses the QCNF Q ·
(φ ∪ {C1, . . . ,Ci−1}), where C j is a clause learnable from T j and Cm = C . Each πi is the
long-distance Q-resolution derivation of the clause Ci from Q · (φ ∪ {C1, . . . ,Ci−1}) that
we learned from the trail Ti .

Between two trails Ti and Ti+1 we backtrack to some point which we can choose freely.
Backtracking to the start (before any variable was assigned) is called restarting. If C = (⊥)

we call ι a refutation.
By sticking together π1, . . . , πm , we obtain a long-distance Q-resolution derivation π of

C from �. We identify QCDCL proofs with this exact π .
We require that all trails are naturally created, which means that we are not allowed to skip

unit propagations if they are possible, as we explained before. A more detailed description
of this condition is given in [7].

We remark that though QCDCL proofs are basically long-distance Q-resolution deriva-
tions (i.e., QCDCL is simulated by long-distance Q-resolution), these system are not equal
as QCDCL imposes a particular structure on long-distance Q-resolution proofs. Indeed,
long-distance Q-resolution is exponentially stronger than QCDCL (cf. [7]).

4 Quasi Level-Ordered Proofs

For the remainder of this article we will entirely focus on�b
3 formulas and throughout fix the

prefix ∃X∀U∃T , where X , U , and T are pairwise disjoint and non-empty sets of variables.
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Our ultimate aimwill be to develop a lower bound technique for such formulas forQCDCL.
Conceptually, our technique is inspired by an approach for level-ordered proofs, which is
why we recall that notion from [22].

Definition 3 ( [22]) A long-distance Q-resolution proof π from a QCNF � of a clause C is
called level-ordered if for each path P in π and two resolution steps in P over variables �1
and �2 the following holds: if the resolution over �1 is closer to the root C than the resolution
over �2, then lv(�1) ≤ lv(�2).

For level-ordered proofs one can devise lower bounds as follows. A level-ordered long-
distance Q-resolution refutation π of a �b

3 -formula � = ∃X∀U∃T · φ always starts with
T -resolutions and ends with X -resolutions. We then count the clauses consisting only of
X -literals at the transitions from a T -resolution to some X -resolution. For each τ ∈ 〈X〉
we can find such a clause Cτ that is falsified by τ . Note that Cτ does not necessarily need
to contain literals from all X -variables. Hence, the Cτ clauses do not need to be pairwise
distinct. However, we will show that for a particular class of formulas, the Cτ clauses cannot
be too small. Therefore each Cτ can only cover few assignments τ ′ ∈ 〈X〉 and the number
of these clauses is still exponential.

We will use this idea in a more general setting by introducing the notion of quasi level-
ordered proofs where only the existence of these Cτ is required.

Definition 4 A long-distance Q-resolution refutation π of a �b
3 formula with prefix

∃X∀U∃T is called quasi level-ordered, if for each assignment τ ∈ 〈X〉 there exists an
X-clause Cτ which is falsified by τ and the subproof πCτ ⊆ π of Cτ is level-ordered.

Clearly, level-orderedproofs are quasi level-ordered, but the converse does not hold in general.
In Sect. 5 we will devise a lower bound technique for quasi level-ordered proofs. To get

the connection toQCDCL, we show that eachQCDCL refutation of�b
3 formulas with a special

property can be efficiently transformed into a quasi level-ordered Q-resolution refutation.
The property needed is the XT-property, which we recall from [7].

Definition 5 [7] Let � be a QCNF of the form ∃X∀U∃T · φ. We call a clause C in the
variables of �

• X-clause, if var(C) ∩U = ∅ and var(C) ∩ T = ∅,
• T-clause, if var(C) ∩ X = ∅, var(C) ∩U = ∅ and var(C) ∩ T �= ∅,
• XT-clause, if var(C) ∩ X �= ∅, var(C) ∩U = ∅ and var(C) ∩ T �= ∅,
• XUT-clause, if var(C) ∩ X �= ∅, var(C) ∩U �= ∅ and var(C) ∩ T �= ∅.
We say that � fulfils the XT -property if φ contains no XT -clauses as well as no unit

T-clauses and there do not exist two T-clauses C1,C2 ∈ φ that are resolvable.

Intuitively, this says that there is no direct connection between the X - and T -variables, i.e.,
� does not contain clauses with X - and T -variables, but no U -variables. This XT-property
allows us to prove several properties regarding QCDCL refutations.

Lemma 1 [7] Let � be a QCNF that fulfils the XT-property. Then the following holds:

1. It is not possible to derive XT -clauses by long-distance Q-resolution.
2. It is not possible to resolve two XUT -clauses over an X-literal in a QCDCL proof.
3. Each QCDCL refutation of � is a Q-resolution refutation (not just a long-distance Q-

resolution refutation).
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Algorithm 1
1: MX := {m};
2: MXUT := ∅;
3: L := ∅;
4: π ′ := π ;
5: i := 1;
6: while MX �= ∅ do
7: while MX �= ∅ do
8: choose c ∈ MX maximal;
9: if subproof πCc of Cc is level-ordered then
10: add c to L;
11: else
12: if last step in π ′

Cc
was a resolution over X, say Cc = Cd

x�� Ce then
13: add d and e to MX ;
14: else
15: Under all transitions from X -resolutions to T -resolutions in π ′

Cc
of the form Cd

x��
Ce = C f and C f

t�� Cg = C j let {d, e} be maximal with respect to �;
16: W.l.o.g. let Cd be the XUT-clause and Ce be the X-clause (otherwise swap d and

e);
17: add (d, e, c) to MXUT ;
18: add e to MX ;
19: end if
20: end if
21: delete c from MX ;
22: end while
23: M(i)

XUT := MXUT ;
24: i := i + 1;
25: while MXUT �= ∅ do
26: Choose (d, e, c) ∈ MXUT ;
27:

Let Cd ,Ca1 ,Ca2 , . . . ,Cak ,Cc be the path from Cd to Cc . Since Cc is an X-clause, all T -

literals from Cd have to be resolved away. Let Ca1 = Cd
x�� Ce , Ca j = Ca j−1

r j�� Cb j−1
for T -variables r j , some indices b j−1, j = 2, . . . , k and Cc = red(Cak );

28:

Add the clauses Ca′
2

:= Cd
r1�� Cb1 , Ca′

j
:= Ca′

j−1

r j�� Cb j−1 for j = 3, . . . , k and

Ca′
k+1

:= red(Ca′
k
). If somewhere the resolution does not work due to a lacking literal r j or

x, we define the corresponding Ca′
j
as the clause that lacks this literal. The Ca′

j
are inserted

at the end of the proof.;
29: add a′

k+1 to MX ;
30: delete (d, e, c) from MXUT ;
31: end while
32: end while

For the following results, we will always assume that all three properties from Lemma 1
are fulfilled.

Now we will work towards the transformation of QCDCL proofs into quasi level-ordered
Q-resolution refutations. This transformation is described as an algorithm in the following
theorem.

Intuitively, the algorithm takes as input a long-distance Q-resolution refutation π that
was extracted from a QCDCL refutation of a QCNF that fulfils the XT-property (which is a
Q-resolution proof by Lemma 1) and adds a polynomial number of clauses (and resolution
steps), such that the obtained proof is quasi level-ordered (i.e., it containsCτ for each τ ∈ 〈X〉,
c.f. Definition 4). The idea is that all the Cτ from the definition of quasi level-ordered proofs
are already somehow contained inπ , but theymight be hidden inXUT-clauses. The algorithm
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detects these XUT-clauses and eliminates the T -literals by changing the order of resolutions
over X -variables and T -variables. Note that the algorithm will only add parts to π and never
delete anything (which is fine as quasi level-ordered proofs only require the existence of
these Cτ , but they do not need to contribute to the refutation).

Initially, the algorithm checks if the proof of the empty clause is already level-ordered.
If this is the case, then there is nothing to do as the technique for level-ordered proofs can
be applied to find the Cτ as described above. Otherwise, the algorithm tries to find the last
step in the subproof of the currently considered clause (which is the empty clause at the
beginning, but might also be non-empty later) that violated the level order, which is just
the last transition from an X -resolution to a T -resolution. When this transition is found, we
have detected a path of clauses that starts with one X -resolution step, followed by an at most
linear-sized sequence of T -resolution steps that ends with the currently considered clause
(c.f. Figure 2). The algorithm then adds a path of at most the same size that now starts with
all the T -resolutions and reductions (we do not need the X -resolution at the and as we are
only interested in parent clauses, c.f. Figure 4). Constructing this path can be done easily
because we know (by Lemma 1) that only one of the two clauses from the X -resolution step
can contain T -literals (if were both did, we would need to create two new paths, and therefore
potentially increase the proof size exponentially in further loops). The clause at the end of
this added path as well as the X-clause from the previous X -resolution step will become an
observed clause for the next loop (in Figure 4, these would be clauses Ca′

k+1
and Ce).

Theorem 2 Let � be a �b
3 QCNF that fulfils the XT-property. Then, using Algorithm 1, each

QCDCL refutation π (or more formally, the extracted Q-resolution refutation π) of � can
be efficiently transformed into a quasi level-ordered Q-resolution refutation π ′ of � with
|π ′| ∈ O(|π |4).
Proof First, because of the XT-property each refutation extracted from a QCDCL run is also
a Q-resolution refutation (cf. Lemma 1). That means we will only consider π as the Q-
resolution proof that was extracted from the QCDCL run.

Let π = C1, . . . ,Cm = ⊥. Note that clauses could occur more than once in a proof since
we cannot simply shorten a proof in QCDCL. Hence we will use indices to identify clauses
in a proof. Each index not only determines the clause itself, but also its position in the proof.
This is the reason why we will only use indices in the algorithm in order to store information
about a particular clause.

Technically, we define an order that will help us determine if a resolution Cd �� Ce takes
place before or after another resolution Cd ′ �� Ce′ in a given proof.

For this we define a total order � on {{d, e} : d, e ∈ N, d �= e} as follows:
A � B ⇔ max A < max B or (max A = max B and min A ≤ min B).

We use the notation A ≺ B for A � B and A �= B.
We sketch how the transformation (Algorithm 1) works: Throughout the whole process

we work with two sets MX and MXUT . The set MX contains indices of X-clauses, where
initially we start with MX = {m} (remember that Cm = (⊥)). For each c ∈ MX we check
whether the clause Cc has a level-ordered subproof. If the subproof is not level-ordered, and
if the last step before Cc (i.e., the last step in the subproof πCc ) was an X -resolution, we
just add the indices both parent clauses of Cc to MX and delete c from it. Otherwise, if the
subproof is not level-ordered, but the last step before Cc was no X -resolution, we search for
the last transition that violates the level-order condition. This must be a transition from an
X -resolution to a T -resolution. After this transition there will be only T -resolutions until
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35 Page 10 of 25 B. Böhm, O. Beyersdorff

Fig. 1 Sketch of the functionality of the algorithm. Below each clause C j we specify the type of clause (X- or
XUT-clause). Newly added parts are coloured red. Triangles labeled with “l.-o.” are level-ordered subproofs,
otherwise they are not level-ordered and we can find a transition from an X -resolution to a T -resolution. The
corresponding clause Cc is then one of the Cτ clauses for a particular τ

we reach Cc. One of the parent clauses of this X -resolution, which we call Cd and Ce, is
an X-clause and the other one is an XUT-clause due to the XT-property (Lemma 1). The
index of the X-clause (either d or e) is again stored in MX , while we delete c from MX .
However, for the XUT-clauses, which are stored as triples (d, e, c) in MXUT (where Cd is
the XUT-clause), we have to add several clauses to the proof, including a new X-clause Ca′ .
This clause Ca′ is then added to MX as well, and the loop repeats until there are no more
clauses in MX left. Note that these added clauses will be part of a dead end in the proof and
therefore are not necessary for the refutation itself. However, we need these new clauses for
a counting argument in our lower bound technique.

Wewill show that at the endwe return a proof that is quasi level-ordered.More specifically,
the X-clauses we detect during the run whose subproofs are level-ordered will be exactly
the clauses Cτ from the definition of quasi level-ordered proofs. This holds because, starting
from the empty clause, whenever we detect an X -resolution we can choose which parent
clause we will consider next. Hence we can choose the polarity of the X -variable we resolve
over in the current step. At the end, this last X-clause (whose subproof is level-ordered) only
consists of variables with the right polarity as previously chosen. Figure 1 depicts how the
algorithm transforms a proof. ��

Claim 1 Each step is well-defined and the algorithm terminates.

Proof Let us consider the first inner while loop from line 7 to 22. For each c ∈ MX that we
delete during the loop, we will add d and e (or sometimes only one of them) to MX such
that Cd and Ce both have smaller depth than Cc. Therefore this loop will repeat only finitely
often.

Note that for each Q-resolution proof that is not level-ordered, we can find at least one
transition from an X -resolution to a T -resolution. Because of theXT-property, we do not have
any XT-clauses and also no X -resolutions over two XUT-clauses. The only two remaining
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Fig. 2 Last transition from an

X -resolution Cd
x�� Ce to a

T -resolution C f
t�� Cg in the

subproof of Cc as it is detected in
line 12 of Algorithm 1. The
literals x (resp. t) are
placeholders for some X - (resp.
T -)literals. The T -literals do not
need to be equal

Fig. 3 Suppose that after the
detected {d, e} there is another
set {d ′, e′} which initializes a
transition from an X -resolution to
a T -resolution. However, this
would contradict the maximality
of {d, e} since we would have
d ′ > max{d, e} and therefore
{d, e} ≺ {d ′, e′}

possibilities for X -resolutions are between two X-clauses or between an XUT-clause and

an X-clause. Let Cd
x�� Ce = C f and C f

t�� Cg = C j be the transition we detected in
the algorithm and as sketched in Figure 2. The case where both Cd and Ce are X-clauses is
impossible since the next step is a T -resolution. So we can assume that we find an XUT- and
an X-clause. For each (d, e, c) ∈ MXUT we have that Cd is the XUT-clause and Ce is the
X-clause.

There cannot be another transition from an X -resolution to a T -resolution on a path
downwards starting with the above transition since this would contradict the maximality of
{d, e}, cf. Figure 3. Hence the found transition is indeed the (or “a”) last one.

In the second inner while-loop from line 25 to 31 we will add only finitely many new
clauses to the proof. Note that all added clauses are inserted after the original clauses. Since
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we have only added finitely many triples to MXUT until this point, we will repeat this loop
only finitely often, as well.

Let us now concentrate on the outer loop from line 6 to 32. We will show that this loop
will repeat only |π |2 times.

For each iteration i let

Ki := max�{{d, e} : (d, e, c) ∈ M (i)
XUT for some indexc ∈ N}.

For each (di , ei , ci ) ∈ M (i)
XUT let c′

i be the index a′
k+1 of the clause we add to π ′ cor-

responding to (di , ei , ci ) as described in the algorithm. If these c′
i are contained in a triple

in the next M (i+1)
XUT , say (di+1, ei+1, c′

i ) ∈ M (i+1)
XUT , then we have {di+1, ei+1} ≺ {di , ei }. We

cannot have {di , ei } = {di+1, ei+1} simply due to the fact that c′
i has no path to the resolution

Cdi
x�� Cei since we skipped the resolution with Cei . We cannot get {di , ei } ≺ {di+1, ei+1}

either because otherwise we would have chosen {di+1, ei+1} instead of {di , ei } when we
considered ci in the iteration before.

We conclude that we have Ki+1 ≺ Ki for each iteration i . These Ki are sets consisting of
indices from original clauses since the corresponding clauses Cd and Ce got resolved over
an X -variable in π and new clauses that were added during the run of the algorithm appear
only in resolution steps over T -literals and reduction steps. Hence we can argue that we will
repeat the outer while-loop at most |π |2 times. ��
Claim 2 At the end, we have |π ′| ∈ O(|π |4).
Proof We have to count the number of clauses we add to π ′ in each iteration. A visualization
of this part of the algorithm can be seen in Figure 4. Let π ′

(q) be the current proof π ′ after
the q th time we added a path to π ′ in line 28. For each q we prove by induction that each
possible path in π ′

(q) has at most length |π |. For q = 0 this is trivial since π ′
(0) = π . Let the

statement be true for π ′
(q) and consider the case π ′

(q+1). Let C j1 , . . . ,C j� be a path in π ′
(q+1).

If all of these clauses were already contained in π ′
(q), then the result follows immediately.

Therefore let us suppose the path contains some clauses we have newly added, say that
C jp is the leftmost new clause compared to π ′

(q). But then all clauses C jp ,C jp+1 , . . . ,C j�
are new clauses as well, since each new clause in inserted at the end of the proof. By the
method we constructed the clauses C jp ,C jp+1 , . . . ,C j� in line 28, we conclude that these
clauses are some of the Ca′

2
, . . . ,Ca′

k+1
, say Ca′

v
, . . . ,Ca′

w
. But then we can find another path

C j1 , . . . ,C jp−1 ,Cav , . . . ,Caw (we have to set Caw := Cc if w = k + 1 and we have to insert
Ca1 after C jp−1 if C jp−1 = Cd ), which has the same (or even a greater) length as the original
path and is completely contained in π ′

(q). Hence, the original path has length at most |π |.
All in all, for each (d, e, c) ∈ MXUT we will add a path of length at most |π |. Each c can

occur only once in the triples in MXUT . After we added the path corresponding to (d, e, c),
we can ignore potential future occurrences of (d, e, c) if this particular triple is detected more
than once in the algorithm.

We want to show next that in each outer while-loop we will only add at most |π |2 new
clauses (resp. at most |π | paths) toπ ′. The number of added paths in the i th loop is determined
by |M (i)

XUT |. For i = 1 this is obvious, as all c in (d, e, c) ∈ M (1)
XUT are indices from original

formulas and each c appears only once. Let us now assume that M (i ′)
XUT ≤ |π | for all i ′ < i .

Thenwe have to show thatM (i)
XUT ≤ |π | holds as well (for i > 1). For each (d, e, c) ∈ M (i)

XUT
it holds that c is either some a′

k+1 from the loop before, or an original index (because d and
e from the upper loop can only be original indices, the only newly added index that can be

123



Lower Bounds for QCDCL via Formula Gauge Page 13 of 25 35

Fig. 4 Visualization of lines 27 and 28 in Algorithm 1. Newly added clauses and resolutions are coloured in
red

contained in a triple is the last index a′
k+1 of some added path from the loop before), from

which we get |M (i)
XUT | ≤ |π | + |M (i−1)

XUT |. However, if the c from some (d, e, c) ∈ M (i)
XUT

was original, it must hold (d, e, c) /∈ M (i−1)
XUT . In fact, c cannot be included in any triple

(d ′, e′, c) from any M (i ′)
XUT for i ′ < i . Therefore, we can restrict the above inequality even

more: |M (i)
XUT | ≤ (|π | − |M (i−1)

XUT |) + |M (i−1)
XUT | = |π |.

We conclude that in each outer while-loop we will add at most |π |2 new clauses to π ′.
Since we will repeat the outer loop at most |π |2 times, the new proof π ′ will at the end consist
of at most O(|π |4) clauses. ��

Claim 3 π ′ is quasi level-ordered.

Proof Let us now briefly explain why the obtained proof is quasi level-ordered. We just have
to argue how one can find the clauses Cτ for each τ ∈ 〈X〉. For this, we simply backtrace
all steps of the algorithm. We start by defining the empty clause as the currently considered
clause and check whether its derivation is already level-ordered. If this is the case, then we
can set Cτ = (⊥) for all τ . Otherwise, we look at the last X -resolution step in this derivation
and find two clauses that got resolved over X . Depending on the choice of τ , we choose that
clause which contains the X -literal that got negated by τ (as we would do in the level-ordered
setting). At most one of these clauses is an XUT-clause (by Lemma 1), the other one is always
anX-clause. If the clause we have chosen is the X-clause, then this X-clause becomes the new
currently observed clause. If it is the XUT-clause, then we go into the path that was newly
added during the algorithm and its last clause becomes the next observed clause (which, by
construction, consists of the same X -literals as the original XUT-clause, but lacks all T - and
U -literals). That also means that all observed clauses are X -clauses.
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This search ends as soon as we get to a clause that has a level-ordered derivation, which
will happen when the considered clause is an axiom (in the worst case). Because we always
chose the right X -literal, this clause will be falsified by τ and can therefore serve as Cτ .

In more detail, we prove that the clauses we have added to L are exactly the clauses Cτ

from the definition of quasi level-ordered proofs. Let us fix an assignment τ ∈ 〈X〉. Starting
from Cm = (⊥), for each X-clause Cc we check if the subproof π ′

Cc
is level ordered. If it is

not, we can find clauses Cd ,Ce ∈ π ′
Cc

as described in the algorithm that are resolved over an
X -literal x . We pick the clause which contains x if τ(x) = 0 and the other clause otherwise.
If we pick an XUT-clause, sayCd , then we have to jump to the corresponding X-clauseCa′

k+1

which we have added when we chose (d, e, c) ∈ MXUT in the second inner while-loop. Note
that Ca′

k+1
is a subclause of Cc ∨ x (resp. Cc ∨ x̄) since we only omitted the resolution with

Ce over x . We continue by checking the subproof of Cd (resp. Ce or Ca′
k+1

).

At the end, when the X-clause Cc has finally a level-ordered subproof π ′
Cc
, we will stop

there and we set Cτ := Cc since we have τ(x) = 0 for each x ∈ Cc. Therefore Cτ is falsified
by τ . ��

Algorithm 1 can be easily modified to also transform long-distance Q-resolution refuta-
tions by adding more case distinctions to line 16. However, this might lead to an exponential
blow up.

We give an example of a formula with a refutation which we transform into a quasi
level-ordered refutation.

Example 1 Let 
 be the QCNF with prefix ∃X∀U∃T with X = {x, y}, U = {u}, T = {s, t}
and the matrix

(u ∨ s̄) ∧ (x ∨ u ∨ s) ∧ (ū ∨ s̄) ∧ (y ∨ u ∨ s) ∧ (x̄ ∨ u ∨ s̄) ∧ (x ∨ ȳ)

∧ (y ∨ u ∨ t) ∧ (s̄ ∨ t̄).

Further, let π be the Q-resolution refutation of 
 as represented in Figure 5. We want to
transform this proof π to a quasi level-ordered proof π ′ by carrying out the instructions as
described in the algorithm. Note that for the sake of simplicity this proof is exceptionally
not necessarily a QCDCL proof since finding a QCDCL proof that is representative enough to
serve as an example is not a trivial thing to do. However, π fulfils at least the properties we
need in order to get polynomially transformed, namely we never resolve two XUT-clauses
over X. Also, π is most likely not the shortest possible refutation of 
, as one can see that
the clause C6 = y ∨ u ∨ s is derived although C1 = y ∨ u ∨ s is an axiom clause.

First, we have MX = {16} and MXUT = ∅. The proof of C16, which is just π itself, is
obviously not level ordered. The last transition from an X -resolution to a T -resolution is at

C11
y�� C12 = C13 to C13

s�� C14 = C15. Since the last step in π was no X -resolution, we
have to add the triple (12, 11, 16) to MXUT (note that the first number of the triple has to be
the index of the XUT-clause). Further, we add 11 to MX and delete 16 from it. The subproof

πC11 of C11 is not level-ordered either. The last X- to T-transition in πC11 is C4
x�� C5 = C6

to C6
s�� C7 = C8. Because the last step in πC11 was a reduction and no X -resolution, we

have to add (5, 4, 11) to MXUT and replace 11 with 4 in MX . Now, the subproof πC4 is
level-ordered, so we can add 4 to L and delete it from MX . Because MX is now empty, we
can continue by adding new clauses to π .

First, we add the clauses C17 = C12
s�� C14 and C18 = red(C17). This new path, which

can be seen in Figure 6, corresponds to the triple (12, 11, 16), that can now be deleted from
MXUT . After this we have to add 18 to MX and continue with the next available triple from
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Fig. 5 Q-resolution refutation of



Fig. 6 Adding the new path of
clauses corresponding to
(12, 11, 16) ∈ MXUT
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Fig. 7 Adding the new path of clauses corresponding to (5, 4, 11) ∈ MXUT . This new proof π ′ is now quasi
level-ordered

MXUT , which is (5, 4, 11). We add the clauses C19 = C5
s�� C7, C20 = C9

t�� C19 and
C21 = red(C20) to π , delete (5, 4, 11) from MXUT and add 21 to MX . After that, MXUT is
empty and MX = {18, 21}.

In the next iteration, we have to consider the subproofs πC18 and πC21 , which are luckily
both level-ordered. That means we can immediately delete both 18 and 21 from MX and
add them to L . Both MX and MXUT are now empty and hence our algorithm terminates.
Our new proof π ′ which is represented in Figure 7 is now quasi level-ordered. The clauses
whose indexes are contained in L are exactly the clauses Cτ we need for a quasi level-
ordered proof. More precisely, L = {4, 18, 21} with Cx �→1,y �→1 = Cx �→0,y �→1 = C18 = (ȳ),
Cx �→1,y �→0 = C4 = x̄ ∨ y and Cx �→0,y �→0 = C21 = x ∨ y.

5 A Lower Bound Technique via Gauge

Now that we have proven thatQCDCL is simulated by quasi level-ordered proofs, we continue
by introducing a measure for �b

3 QCNFs that will provide an exponential lower bound for
quasi level-ordered refutations of these formulas.

Definition 6 For a �b
3 QCNF � with prefix ∃X∀U∃T let W� be the set of all Q-resolution

derivations π from� of some X-clause such that π only contains T -resolution and reduction
steps. We define the gauge of � as

gauge(�) := min{|C | : C is the root of some π ∈ W�}.
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Intuitively, gauge(�) is the minimal number of X -literals that are necessarily piled up in a
level-ordered Q-resolution derivation in which we want to get rid of all T -literals (hence we
consider proofs of X-clauses).

Before showing how gauge lower bounds imply proof size lower bounds let us consider
an example for which we recall the CRn formulas from [22].

Definition 7 ( [22]) The QCNF CRn consists of the quantifier prefix

∃x(1,1), . . . , x(1,n), x(2,1), . . . , x(2,n), . . . , x(n,1), . . . , x(n,n)∀u∃s1, . . . , sn, t1, . . . , tn
and matrix clauses (x(i, j) ∨ u ∨ si ), (x̄(i, j) ∨ ū ∨ t j ) for i, j ∈ [n] as well as ∨

i∈[n] s̄i and∨
i∈[n] t̄i .

The CRn formulas describe a ‘completion’ game on an (n × n)-matrix (cf. [22]): The
universal player has to set u to false iff for all i there exists a j such that x(i, j) is set to false.
Otherwise, there exists an i such that for each j , the literal x(i, j) is set to true, hence the
universal player has to set u to true.

It is readily checked that the CRn formulas fulfil the XT-property. We can now compute
their gauge. Note that according to our convention, the T -variables comprise of all variables
s1, . . . , sn, t1, . . . , tn .

Lemma 3 We have gauge(CRn) = n.

Proof Since there are noX-clauses as axioms,wenecessarily need to resolve overT somehow.
For this we need T -literals of negative polarity, hence each π ∈ WCRn contains

∨
i∈[n] s̄i or∨

i∈[n] t̄i . In each π ∈ WCRn every T -literal has to be resolved away. For this reason we need
the corresponding clauses x(i, j) ∨ u ∨ si or x̄(i, j) ∨ ū ∨ t j . Because we cannot resolve over X
in π ∈ WCRn , there are at least n X -literals that are piled up and therefore gauge(CRn) = n.

��
Towards our lower bound technique we now estimate the size of derivations of X-clauses

in terms of gauge.

Lemma 4 Let � be a �b
3 QCNF. Let π be a level-ordered Q-resolution proof from � of a

non-tautological X-clause D with |D| = c. Then |π | ≥ 2gauge(�)−c.

Proof Let V := X\var(D). For each assignment τ ∈ 〈V 〉 we will find a path Pτ in π by
going backwards starting from D. For each resolution step over some x ∈ V we choose the
path whose literals are negated by τ , hence we choose the clause that contains x if τ(x) = 0
and the other clause otherwise. If there are resolution steps over variables from var(D), then
we will always choose the literal from D. If we reach a reduction step, we will just expand
the path by this one parental clause. If we detect a resolution step over a T -literal, we stop
there.

Let Cτ be the clause at which we stop. Clearly, the subproof πCτ of Cτ is one of the
derivations in W�, hence |Cτ | ≥ gauge(�). Then Cτ has to be a non-tautological X-clause
with at least gauge(�) different X -literals. Then Cτ contains at least gauge(�) − c different
X -literals whose variables are in V . These literals are negated by the assignment τ .

Now let a be the number of these clauses Cτ by summing over all τ . Since for each Cτ

there are at most |X |−gauge(�) variables that are not contained as some literal in the clause,
there are at most 2|X |−gauge(�) paths that can lead to each Cτ . Multiplying with the number
of Cτ gives us at least the number of assignments τ ∈ 〈V 〉, hence

2|X |−gauge(�) · a ≥ 2|X |−c
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⇔ a ≥ 2|X |−c/2|X |−gauge(�) = 2gauge(�)−c.

Since each Cτ is a clause from π , we get |π | ≥ a ≥ 2gauge(�)−c. ��
Note that the bound from Lemma 4 is an exact lower bound (no asymptotics involved).We

will now use Lemma 4 to get a lower bound for quasi level-orderedQ-resolution refutations.
We will do this with a similar counting argument as in Lemma 4 by counting the number of
clauses Cτ in quasi level-ordered proofs.

Proposition 5 Each quasi level-ordered Q-resolution refutation of a �b
3 QCNF � has size

2�(gauge(�)).

Proof Let π be the shortest quasi level-ordered refutation of �. By the definition of quasi
level-ordered proofs we can find clauses Cτ for each τ ∈ 〈X〉.

Let h := minτ∈〈X〉 |Cτ |. By Lemma 4 we get |π | ≥ 2gauge(�)−h , hence h ≥ gauge(�) −
log |π |. Each clause Cτ can have at most 2|X |−h assignments α ∈ 〈X〉 such that Cα = Cτ .
Let a := |{Cτ : τ ∈ 〈X〉}|, then a · 2|X |−h ≥ 2|X | and thus

|π | ≥ a ≥ 2h ≥ 2gauge(�)−log |π | = 2gauge(�)

|π | .

We conclude that |π |2 ∈ 2�(gauge(�)). ��
We combine Theorem 2 and Proposition 5 above and obtain a lower bound for QCDCL on

formulas with the XT-property.

Theorem 6 Each QCDCL refutation of a �b
3 QCNF � that fulfils the XT-property has size

2�(gauge(�)).

6 Applications of the Lower Bound Technique

We now apply our new lower bound technique via gauge to show exponential lower bounds
for QCDCL proof size (and thereby for QCDCL running time) for a number of QBF families.
First, by combining Lemma 3 with Theorem 6 we obtain hardness for the CRn formulas from
[22].

Corollary 7 The formulas CRn require exponential-size proofs in QCDCL.

With this result we gain an improved separation between Q-resolution and QCDCL. It
was already shown in [7] that Q-resolution and QCDCL are incomparable. This involves
constructing QBFs that are easy for QCDCL, but hard for Q-resolution, and vice versa. One
direction is shown via the QParity formulas (Definition 9 below), which are hard for Q-
resolution [14], but easy in QCDCL [7]. For the other direction, [7] used the Trapdoor [7]
and Lonsing formulas [28], both of which are easy for Q-resolution, but hard for QCDCL.
However, bothQBF families incorporate the propositional pigeonhole principle (PHP) and the
hardness of these formulas forQCDCL rests entirely on the hardness of PHP for propositional
resolution [20]. This is somewhat unsatisfactory, as the hardness results do not refer to
quantification and in particular do not hold in the presence of NP oracles (cf. [11, 25] for a
detailed formal account on how to equip QBF proofs with NP oracles or equivalently QBF
solving with SAT calls).
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Our improved separation is shown in Corollary 7 above, as these formulas are hard in
QCDCL, but easy in Q-resolution [22]. Unlike the separations from [7], this hardness result
does not make any reference to propositional hardness but also holds under NP oracles
in the framework of [11] (at least if each axiom of our formula contains at least one T -
literal, otherwise the formula might be trivial to refute with just X -resolutions and without
reductions). This is due to the fact that one could simply replace |π | with the number of
reduction steps in π in Lemma 4 and Proposition 5 (note that we can assume that there
is a reduction step before each Cτ ) and hardness in the presence of NP oracles basically
corresponds to counting reduction steps (cf. [11]).

We also note that Janota [21] already proved hardness of the QBFs CRn for QCDCL with
UIP learning. Corollary 7 improves on that result as well as our hardness result holds for
arbitrary learning schemes in QCDCL.

As our second example we introduce the following formulas.

Definition 8 LetENarrown := ∃x1, . . . , xn+1∀u1, . . . , un+1∃t1, . . . , tn ·ψn with thematrix
ψn containing the clauses:

x1 ∨ u1 ∨ t1, x̄1 ∨ ū1 ∨ t1,

xi ∨ ui ∨ t̄i−1 ∨ ti , x̄i ∨ ūi ∨ t̄i−1 ∨ ti , f or i = 2, . . . , n

xn+1 ∨ un+1 ∨ t̄n, x̄n+1 ∨ ūn+1 ∨ t̄n .

It is easy to see that ENarrown fulfils the XT-property. ENarrown can be interpreted as
a variant of Eqalityn (cf. [5] or the corresponding definition later), in which the universal
player wins by setting all ui equal to xi . The only difference is that instead of having a long
T -clause, the T -literals are now connected chain-like by only using XUT-clauses. Next we
will show an exponential lower bound for ENarrown in QCDCL.

Lemma 8 We have gauge(ENarrown) = n + 1.

Proof Let π ∈ WENarrown . Define the sets of clauses

Z1 := {x1 ∨ u1 ∨ t1, x̄1 ∨ ū1 ∨ t1}
Zi := {xi ∨ ui ∨ t̄i−1 ∨ ti , x̄i ∨ ūi ∨ t̄i−1 ∨ ti } for i = 2, . . . , n

Zn+1 := {xn+1 ∨ un+1 ∨ t̄n, x̄n+1 ∨ ūn+1 ∨ t̄n}.
Let C be an axiom clause in π . Then C has to be contained in some set Zi as above.

Case 1: C ∈ Z1.
Then we have to get rid of t1 ∈ C , hence we need a clause from Z2. But then we have to

get rid of t2 and so on:
Z1 � Z2 � . . . � Zn � Zn+1.
We conclude that π has to contain at least one clause from each Z j , j ∈ [n+1]. Therefore

we have to pile up n + 1 X -literals.
Case 2: C ∈ Zi for some i ∈ {2, . . . , n}.
Then we have to get rid of t̄i−1 and ti ∈ C , hence we need a clause from Zi−1 and Zi+1.

After this we have to resolve over t̄i−2 and ti+1 and so on, leading to a chain of resolutions
Z1 �. . . �Zi−1 �Zi � Zi+1 � . . . � Zn+1.
Again, we conclude that π has to contain at least one clause from each Z j , j ∈ [n + 1].

Therefore we have to pile up n + 1 X -literals.
Case 3: C ∈ Zn+1.
This works similarly to Case 1, except that we start at Zn+1 and go backwards: Z1 �

Z2 �. . . �Zn �Zn+1. ��
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Corollary 9 The QBFs mathtt ENarrown require exponential-size proofs in QCDCL.

The gauge of a formula is obviously some width measure and it seems natural to wonder
how it relates to the notion of the existential proof width1 of long-distance Q-resolution
refutations of a formula as studied in [6, 9, 17]. However, it turns out that these two measures
are not directly related. On the one hand, it is easy to see that ENarrown has long-distance
Q-resolution refutations of constant existential clause width. Hence these formulas have
small (constant) existential proof width, but linear gauge.

On the other hand, there are also formulas with constant gauge and linear proof width.
For this we revisit the parity formula from [14].

Definition 9 [14] QParityn consists of the prefix ∃x1 . . . xn∀u∃t2 . . . tn and the matrix

x1 ∨ x2 ∨ t̄2, x1 ∨ x̄2 ∨ t2, x̄1 ∨ x2 ∨ t2, x̄1 ∨ x̄2 ∨ t̄2,

xi ∨ ti−1 ∨ t̄i , xi ∨ t̄i−1 ∨ ti , x̄i ∨ ti−1 ∨ ti , x̄i ∨ t̄i−1 ∨ t̄i fori ∈ {3, . . . , n}
u ∨ tn, ū ∨ t̄n .

The formulas QParityn are built on the parity function. In more detail, the universal
player onlywins by settingu equal to x1⊕. . .⊕xn . Each ti encodes the partial sum x1⊕. . .⊕xi .

It was shown in [6, 9] that QParityn requires linear proof width. Here we modify this
formula such that proof width remains unaffected, but gauge is small. Let mQParityn be
the modified variant of this formula that consists of the prefix ∃x1, . . . , xn, y∀u∃t2, . . . , tn
and the matrix (ȳ) ∧ ∧

C∈QParityn (y ∨ C). Obviously, because of the unit clause (ȳ), we
have gauge(mQParityn) = 1, but still linear proof width (since we can simply consider the
proof width of the proof restricted to the assignment y �→ 0, which is exactly a refutation of
QParityn).

We will see later that we can also use the QParityn formulas to show that large gauge
alone is not sufficient to guarantee QCDCL hardness, but some further assumption such as
the XT-condition is needed.

We continue with the equality formula from [5] as a further example of hard formulas for
QCDCL. In [7] QCDCL hardness of Equalityn was already proven by lifting Q-resolution
hardness of these formulas to QCDCL. However, with our new lower bound technique it is
possible to prove QCDCL hardness directly without importing Q-resolution lower bounds.

Definition 10 [5] The formula Equalityn is defined as the QCNF

∃x1 . . . xn∀u1 . . . un∃t1 . . . tn · (t̄1 ∨ . . . ∨ t̄n) ∧
n∧

i=1

((x̄i ∨ ūi ∨ ti ) ∧ (xi ∨ ui ∨ ti )).

Proposition 10 We have gauge(Equalityn) = n. Consequently the formulas are exponen-
tially hard for QCDCL.

Proof Let π ∈ WEqualityn . Since none of the axioms are X-clauses, we have to resolve over
T somehow. For this we need the clause t̄1 ∨ . . .∨ t̄n . But that means we have to resolve over
each ti at least once in π , and therefore we will pile up all n X -variables.

��
1 The existential width of a clause is defined as the number of existential literals in this clause. The existential
proof width is defined as the maximal existential width over all clauses in this proof.
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Our next example illustrates that some further condition (such as the XT-property) is
indeed required for our lower bound method to work. For this we will take another look at
the parity formula QParityn . These formulas are known to be hard for Q-resolution [14],
but easy for QCDCL [7]. Nevertheless, we show that QParityn has large gauge. Hence this
measure alone is not sufficient to imply QCDCL hardness.

Proposition 11 We have gauge(QParityn) = n.

Proof We define the following sets of clauses:

Z1 := {x1 ∨ x2 ∨ t̄2, x1 ∨ x̄2 ∨ t2, x̄1 ∨ x2 ∨ t2, x̄1 ∨ x̄2 ∨ t̄2}
Zi := {xi+1 ∨ ti ∨ t̄i+1, xi+1 ∨ t̄i ∨ ti+1, x̄i+1 ∨ ti ∨ ti+1, x̄i+1 ∨ t̄i ∨ t̄i+1}
Zn := {u ∨ tn, ū ∨ t̄n}

for i = 2, . . . , n − 1.
We show that each π ∈ WQParityn needs at least one clause from each Z j as an axiom,

hence π ∩ Z j �= ∅ for every j ∈ [n].
Assume that there is a proofπ ∈ WQParityn of anX-clauseC and j ∈ [n]withπ∩Z j = ∅.

Let S be the set of all symmetries σ on QParityn such that σ(xk) ∈ {xk, x̄k} for each
k ∈ [n] and σ(tk) is chosen such that σ(QParityn) ⊆ QParityn (one has to make sure
that σ(tk) = σ(x1) ⊕ . . . ⊕ σ(xk)).

Then for each such σ ∈ S we can derive σ(C) via σ(π) and still have σ(π)∩ Z j = ∅. But
then we could easily construct a refutation by just using {σ(C) : σ ∈ S}. Then QParityn
without the clauses from Z j would still be a false QCNF. However, this is not possible since
we can construct a winning strategy A for QParityn\Z j :

A(xk) := 0 for allk ∈ [n]
A(t�) := 0 for all� ∈ {2, . . . , j}
A(t�′) := 1 ⊕ u for all�′ ∈ { j + 1, . . . , n}

Therefore our assumption is false and we get π ∩ Z j �= ∅. Using one clause from each Z j

results in piling up all variables x1, . . . , xn in some polarity, hence gauge(QParityn) = n.
��

The next example is a formula that follows the same approach as Equalityn from [5],
where the universal player had to fulfil the task of assigning theU -variables in the same way
as the existential X -variables. However, we can replace this task with another, more complex
one. In our case, the universal player has to detect palindromes in the word that was input by
the existential player.

Example 2 Let QPalinn be the QCNF with prefix

∃X∀U∃T
with

X = {
x j : j ∈ {1, . . . , n}}

U =
{
uk,i , vk : k ∈ {0, . . . n − 1}, i ∈

{
1, . . . ,

⌊n

2

⌋}}

T =
{
tk,i , sk : k ∈ {0, . . . n − 1}, i ∈

{
1, . . . ,

⌊n

2

⌋}}
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where the indices from the X -variables are interpreted as integers modulo n. Let the matrix
of the formula consist of the following clauses:

xi+k ∨ xn−i+1+k ∨ ūk,i ∨ tk,i , x̄i+k ∨ x̄n−i+1+k ∨ ūk,i ∨ tk,i

xi+k ∨ x̄n−i+1+k ∨ uk,i ∨ t̄k,i , x̄i+k ∨ xn−i+1+k ∨ uk,i ∨ t̄k,i

v̄k ∨ t̄k,1 ∨ . . . ∨ t̄k,� n
2 � ∨ sk

vk ∨ tk,i ∨ sk, s̄0 ∨ . . . ∨ s̄n−1

for k ∈ {0, . . . n − 1}, i ∈ {
1, . . . ,

⌊ n
2

⌋}
.

Intuitively, the X -variables represent the word in which palindromes have to be detected.
We not only check the word x1 . . . xn itself, but also all shifted variants x1+k . . . xn+k . The
uk,i encode whether or not, in the word x1+k . . . xn+k , the i th letter from the left and the
i th letter from the right are the same. If the universal player assigns the uk,i correctly, the
existential player is forced to set tk,i equal to uk,i in their turn at the end. If and only if theword
x1+k . . . xn+k was a palindrome, the universal player sets vk to true. Hence, if x1+k . . . xn+k

was a palindrome, vk as well as tk,i for each i is set to true, hence the existential player has
to set sk to true. Otherwise, if it was not a palindrome, then there was an i such that xi+k and
xn−i+1+k were assigned differently, therefore tk,i and vk are both false and sk must be set to
true, as well. However, setting all sk to true falsifies the matrix.

In a nutshell: Let τ be a total assignment of X . There is a winning strategy for the universal
player by setting uk,i to 1 if and only if τ(xi+k) = τ(xn−i+k) and vk to 1 if and only if the
word τ(x1+k) . . . τ (xn+k) is a palindrome. Then the existential player has to set each sk to 1,
negating the last clause in the matrix.

Remark 1 QPalinn fulfils the XT-property.

Lemma 12 We have gauge(QPalinn) ∈ �(
√
n).

Proof Let π ∈ WQPalinn . Since we do not have any X-clauses as axioms, we need to resolve
over T -variables at least once. We partition the matrix of QPalinn into the following sets:

Z+
k,i := {xi+k ∨ xn−i+1+k ∨ ūk,i ∨ tk,i , x̄i+k ∨ x̄n−i+1+k ∨ ūk,i ∨ tk,i }

Z−
k,i := {xi+k ∨ x̄n−i+1+k ∨ uk,i ∨ t̄k,i , x̄i+k ∨ xn−i+1+k ∨ uk,i ∨ t̄k,i }
Pk := {v̄k ∨ t̄k,1 ∨ . . . ∨ t̄k,� n

2 � ∨ sk}
Nk,i := {vk ∨ tk,i ∨ sk}

S := {s̄0 ∨ . . . ∨ s̄n−1}
Let C ∈ π be an axiom. We claim that S ⊆ π , for which we will distinguish four cases.
Case 1: C ∈ Z+

k,i for some k ∈ {0, . . . , n − 1} and i ∈ {
1, . . . ,

⌊ n
2

⌋}
.

Then we have to resolve away tk,i , which can only be done with the clause in Pk since the
clauses from Z−

k,i are blocked because of the uk,i . But now we have introduced sk which we
can only resolve with the clause from S.

Case 2: C ∈ Z−
k,i for some k ∈ {0, . . . , n − 1} and i ∈ {

1, . . . ,
⌊ n
2

⌋}
.

To get rid of t̄k,i , we have to use the clause from Nk,i since Z+
k,i is blocked as before. But

then we have introduces sk and we will need the clause from S.
Case 3: C ∈ Pk or C ∈ Nk,i for some k ∈ {0, . . . , n − 1} and i ∈ {

1, . . . ,
⌊ n
2

⌋}
.

Then we have sk ∈ C and we need to use the clause from S in order to resolve it away.
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Case 4: C ∈ S.
This case is trivial.
We have shown that in each case we have S ⊆ π . That means we have to resolve over each

sk in π . For each k ∈ {0, . . . , n − 1} we can choose if we want to use Pk or Nk,i to get rid of
the literal s̄k . If we choose Pk , then we have to resolve over each tk,i for i ∈ {

1, . . . ,
⌊ n
2

⌋}
by

using the clauses from Z+
k,i . However, if we choose Nk,i , it suffices to resolve over only one

tk,i for some particular i . Hence, we only have to use one clause from Z−
k,i for only one i .

In the worst case (that means in the case with the least resolutions over tk,i ), we will always
pick Nk,i . More specific, for each k ∈ {0, . . . , n − 1} there exists an ik ∈ {

1, . . . ,
⌊ n
2

⌋}
such

that π contains at least one clause from Z+
k,ik

or Z−
k,ik

. That means we will pile up at least the
X -variables xik+k, xn−ik+1+k for each k ∈ {0, . . . , n − 1}. If we can find a lower bound for
the number of these X -variables, then this is also a lower bound for gauge(QPalinn).

First of all, it its obvious that for each k we have xik+k �= xn−ik+1+k since ik + k �≡
n − ik + 1 + k (mod n). Next, we define the following sets of variables:

Xk := {xik+k, xn−ik+1+k}
for k ∈ {0, . . . , n−1}. Aswe have argued above,we already know that the gauge ofQPalinn
is �(| ⋃k Xk |). Note that if a pair {x j , x�} is equal to Xk , then their position in the word
x1+k . . . xn+k is symmetric. If n is odd, then each pair {x j , x�} can represent at most one Xk .
For example, for n = 5 the pair {x3, x4} can atmost be X3 since they are only symmetric in the
word x4x5x1x2x3. However, if n is even then each pair then each pair {x j , x�} can represent
up to two Xk . For example, for n = 4 the pair {x1, x4} is symmetric in both x1x2x3x4 and
x3x4x1x2.

We conclude that for odd n we have |{X0, . . . , Xn−1}| = n and for even n we have
|{X0, . . . , Xn−1}| ≥ n

2 . Now, with m different variables we could create at most O(m2)

different pairs Xk . Hence we need at least�(
√
n) different variables to createO(n) different

pairs Xk , and therefore | ⋃k Xk | ∈ �(
√
n) and also gauge(QPalinn) ∈ �(

√
n). ��

Corollary 13 The QCNF QPalinn needs QCDCL refutations of size 2�(
√
n).

7 Conclusion

We initiated the study of devising lower bound methods tailored to QCDCL. At the moment
our techniques only apply to �b

3 -formulas. Though this is a quite relevant class of QBFs,
also prominently represented in QBF benchmarks [27, 32], it would be very interesting to
extend the method to QBFs of higher quantifier complexity.

In another direction, future research should explore further conditions (besides the XT-
condition considered here) that allow to efficiently translate QCDCL into quasi level-ordered
proofs and thus enable to show lower bounds via gauge.
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