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Abstract
Thepropagation redundant (PR) proof systemgeneralizes the resolution and resolution asym-
metric tautology proof systems used by conflict-driven clause learning (CDCL) solvers. PR
allows short proofs of unsatisfiability for some problems that are difficult for CDCL solvers.
Previous attempts to automate PR clause learning used hand-crafted heuristics that work
well on some highly-structured problems. For example, the solver SaDiCaL incorporates
PR clause learning into theCDCL loop, but it cannot competewithmodernCDCL solvers due
to its fragile heuristics. We present PReLearn, a preprocessing technique that learns short
PR clauses. Adding these clauses to a formula reduces the search space that the solver must
explore. By performing PR clause learning as a preprocessing stage, PR clauses can be found
efficiently without sacrificing the robustness of modern CDCL solvers. On a large portion of
SAT competition benchmarks we found that preprocessing with PReLearn improves solver
performance. In addition, there were several satisfiable and unsatisfiable formulas that could
only be solved after preprocessing with PReLearn. PReLearn supports proof logging, giv-
ing a high level of confidence in the results. Lastly, we tested the robustness of PReLearn by
applying other forms of preprocessing as well as by randomly permuting variable names in
the formula before running PReLearn, and we found PReLearn performed similarly with
and without the changes to the formula.

Keywords Propagation redundant proof · SAT Solving · Preprocessing · Verification

1 Introduction

Conflict-driven clause learning (CDCL) [27] is the standard paradigm for solving the satis-
fiability problem (SAT) in propositional logic. CDCL solvers learn clauses implied through
resolution inferences. Additionally, all competitive CDCL solvers use pre- and inprocessing
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techniques captured by the resolution asymmetric tautology (RAT) proof system [22]. As
examples, the well-studied pigeonhole and mutilated chessboard problems are challenging
benchmarks with exponentially-sized resolution proofs [1, 13]. It is possible to construct
small hand-crafted proofs for the pigeonhole problem using extended resolution (ER) [9],
a proof system that allows the introduction of new variables [33]. ER can be expressed in
RAT but has proved difficult to automate due to the large search space for introducing new
variables. Even with modern inprocessing techniques, many CDCL solvers struggle on these
seemingly simple problems. The propagation redundant (PR) proof system allows short
proofs for these problems [16, 18], and unlike in ER, no new variables are required. This
makes PR an attractive candidate for automation.

At a high level, CDCL solvers make decisions that typically yield an unsatisfiable branch
of a problem. The clause that prunes the unsatisfiable branch from the search space is learned,
and the solver continues by searching another branch. PR extends this paradigm by allowing
more aggressive pruning. In the PR proof system a branch can be pruned as long as there
exists another branch that is at least as satisfiable. This can be viewed as a kind of “without
loss of generality” reasoning where the branch that was pruned could be handled similarly
(w.r.t. a proof of unsatisfiability) to the branch that is at least as satisfiable.

As an example, consider the perfect matching problem for a bipartite graph in Fig. 1. This
problem involves finding a set of edges such that every vertex is incident to exactly one edge.
It can be encoded naturally as a SAT problem, with at-least-one constraints for vertices on
one side of the graph and at-most-one constraints for vertices on the other. Assume we are
placing the at-most-one constraints on vertices from the bottom side of the graph, and edges
are labelled by variables xi, j with i as the index of the top vertex. For any perfect matching
solution that uses the two green edges in the (a), assigning those two edges to false (red)
and instead using the edges in (b) will give another valid solution. It is easy to see that both
choices for edges will be incident to vertices 1 and 2 on the top and bottom, so switching
between then will not affect the matching on the remaining vertices. This means the partial
assignment in (b) is at least as satisfiable as the partial assignment in (a). Therefore, one could
carry out the proof after excluding the edge orientation in (a) without loss of generality. This
is a powerful form of reasoning that can efficiently remove many symmetries.

The satisfaction-driven clause learning (SDCL) solver SaDiCaL [17] incorporates PR
clause learning into the CDCL loop. SaDiCaL implements hand-crafted decision heuristics
that exploit the canonical structure of the pigeonhole and mutilated chessboard problems
to find short proofs. However, SaDiCaL’s performance deteriorates under slight variations
to the problems including different constraint encodings [8]. The heuristics were developed
from a fewwell-understood problems and do not generalize to other problem classes. Further,
the heuristics for PR clause learning are likely ill-suited for CDCL, making the solver less
robust.

Fig. 1 Motivating example of a bipartite graph perfect matching problem. Green edges are assigned true (in
the perfect matching), and red edges are assigned false (not in the perfect matching). (Color figure online)
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In this paper, we present PReLearn, a preprocessing technique for learning PR clauses.
PReLearn alternates between finding and learning PR clauses. We develop multiple heuris-
tics for finding PR clauses and multiple configurations for learning some subset of the found
PR clauses. As PR clauses are learned we use failed literal probing [12] to find unit clauses
implied by the formula. The preprocessing is made efficient by taking advantage of the
inner/outer solver framework in SaDiCaL. The learned PR clauses are added to the original
formula, aggressively pruning the search space in an effort to guide CDCL solvers to short
proofs. With this method PR clauses can be learned without altering the complex heuristics
that make CDCL solvers robust. PReLearn focuses on finding short PR clauses and failed
literals to effectively reduce the search space. This is done with general heuristics that work
across a wide range of problems.

For some highly structured problems, the addition of short PR clauses can be viewed as
a form of symmetry breaking, as shown with the bipartite matching example above. There
exist tools for detecting symmetries and generating symmetry-breaking constraints, such
as BreakID [10]. They work by converting the SAT problem into a colored graph, then
using an automorphism extractor such as SAUCY [23] to detect symmetries. Recent work
has shown that some preprocessing techniques are harmful to graph-based symmetry break-
ing methods [2]. State-of-the-art SAT solvers incorporate many preprocessing techniques
throughout solving [22], and the interaction between preprocessing techniques is not well
understood. Therefore, it is important that new preprocessing techniques are robust if they
are to be incorporated in a complex solver. PReLearn performs symmetry-breaking in a
much different way than the graph-based tools, finding PR clauses by solving small SAT
problems that do not consider the formula’s global structure. In our evaluation we show that
randomly permuting variable names and applying preprocessors will not significantly alter
the performance of PReLearn.

Most SAT solvers support logging proofs of unsatisfiability for independent checking [15,
21, 34]. This has proved valuable for verifying solutions independent of a (potentially buggy)
solver. Modern SAT solvers log proofs in the DRAT proof system (RAT [22] with deletions).
DRAT captures all widely used pre- and inprocessing techniques including bounded variable
elimination [11], bounded variable addition [26], and extended learning [5, 33]. DRAT can
express the common symmetry-breaking techniques, but it is complicated [14]. PR can com-
pactly express some symmetry-breaking techniques [16, 18], yielding short proofs that can
be checked by the proof checkerDPR-trim [17]. PR gives a framework for strong symmetry-
breaking inferences and also maintains the highly desirable ability to independently verify
proofs.

This journal article is an extension of a conference paper under the same name that
appeared in IJCAR’22 [30]. The contributions of the original paper included: (1) giving a
high-level algorithm for extracting PR clauses, (2) implementing several heuristics for finding
and learning PR clauses, (3) evaluating the effectiveness of different heuristic configurations,
and (4) assessing the impact of PReLearn on solver performance. PReLearn improved
the performance of the CDCL solver Kissat on 22% of the satisfiable and unsatisfiable
competition benchmarks we considered. The improvement was significant for a number of
instances that can only be solved by Kissat after preprocessing. Most of them come from
hard combinatorial problems with small formulas. In addition, PReLearn directly produced
refutation proofs for the mutilated chessboard problem containing only unit and binary PR
clauses. We extend the results in this article by exploring the impact or permuting and
preprocessing formulas before running PReLearn. In an experimental evaluation we found
that the effectiveness of PReLearn was not significantly altered. We also present several
examples and pseudocode for our main algorithm not appearing in the conference version.
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2 Preliminaries

We consider propositional formulas in conjunctive normal form (CNF). A CNF formula F is
a conjunction of clauses where each clause is a disjunction of literals. A literal � is either a
variable x (positive literal) or a negated variable x (negative literal). The polarity of a literal is
positive if it is a positive literal, and negative if it is a negative literal. Clauses are represented
as a set of literals, but we often write them out directly, e.g., the clause {x1, x2} is written
(x1 ∨ x2). For a set of literals L the formula F(L) is the clauses {C ∈ F | C ∩ L �= ∅}.

An assignment α is a mapping from variables to truth values 1 (true) and 0 (false). An
assignment is total if it assigns every variable appearing in a finite formula to a value, and
is partial if it assigns a subset of variables to values. For a literal �, var(�) is the variable
corresponding to �, e.g., var(x1) = var(x1) = x1. The set of variables occurring in a for-
mula, assignment, or clause is given by var(F), var(α), or var(C). Assignment α satisfies a
positive (negative) literal � if α maps var(�) to true (α maps var(�) to false, respectively), and
falsifies it if α maps var(�) to false (α maps var(�) to true, respectively). We write a partial
assignment as the set of literals it satisfies, e.g., x y mapping α(x) = 1 and α(y) = 0. An
assignment satisfies a clause if the clause contains a literal satisfied by the assignment. An
assignment satisfies a formula if every clause in the formula is satisfied by the assignment.
A formula is satisfiable if there exists a satisfying assignment, and unsatisfiable otherwise.
Two formulas are logically equivalent if they share the same set of satisfying assignments.
Two formulas are satisfiability equivalent if they are either both satisfiable or both unsatisfi-
able.

If assignment α satisfies a clause C we define C |α = �, otherwise C |α represents the
clause C with the literals falsified by α removed. The empty clause is denoted by ⊥. The
formula F reduced by an assignment α is given by F |α = {C |α | C ∈ F and C |α �= �}.
Given an assignment α = �1 . . . �n , C = (�1 ∨ · · · ∨ �n) is the clause that blocks α. The
assignment blocked by a clause is the negation of the literals in the clause. A unit is a clause
containing a single literal. The unit clause rule takes the assignment α of all units in a formula
F and generates F |α. Iteratively applying the unit clause rule until fixpoint is referred to as
unit propagation. In cases where unit propagation yields ⊥ we say it derived a conflict. A
formula F implies a formula F ′, denoted F |
 F ′, if every assignment satisfying F satisfies
F ′. By F �1 F ′ we denote that for every clause C ∈ F ′, applying unit propagation to the
assignment blocked by C in F derives a conflict. If unit propagation derives a conflict on
the formula F ∪ {{�}}, we say � is a failed literal and the unit � is logically implied by the
formula. Failed literal probing [12] is the process of successively assigning literals to check
if units are implied by the formula. In its simplest form, probing involves assigning a literal
� and learning the unit � if unit propagation derives a conflict, otherwise � is unassigned and
the next literal is checked.

To evaluate the satisfiability of a formula, a CDCL solver [27] iteratively performs the
following operations: First, the solver performs unit propagation, and tests for a conflict. Unit
propagation ismade efficient with two-literal watch pointers [28]. If there is no conflict and all
variables are assigned, the formula is satisfiable. Otherwise, the solver chooses an unassigned
variable through a variable decision heuristic [7, 25], assigns a truth value to it, and performs
unit propagation. The selected variables are decision variables, and the assignment including
decision variables and propagated variables is called the trail. If, however, there is a conflict,
the solver performs conflict analysis potentially learning a short clause. In case this clause is
the empty clause, the formula is unsatisfiable.
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3 The PR Proof System

A clause C is redundant w.r.t. a formula F if F and F ∪ {C} are satisfiability equiv-
alent. The clause sequence F,C1,C2, . . . ,Cn is a clausal proof of Cn from F if each
clause Ci (1 ≤ i ≤ n) is redundant w.r.t. F ∪ {C1,C2, . . . ,Ci−1}. The proof is a refu-
tation of F if Cn is ⊥. Clausal proof systems may also allow deletion. In a refutation
proof, clauses can be deleted freely because the deletion cannot make a formula less sat-
isfiable.

Clausal proof systems are distinguished by the kinds of redundant clauses they allow
to be added. The standard SAT solving paradigm CDCL learns clauses implied through
resolution. These clauses are logically implied by the formula, and fall under the reverse
unit propagation (RUP) proof system. A clause has RUP if unit propagation on the falsified
literals of the clause results in a conflict. The Resolution Asymmetric Tautology (RAT) proof
system generalizes RUP. All commonly used inprocessing techniques emit DRAT proofs.
The propagation redundant (PR) proof system generalizes RAT, but requires witnesses for
proof steps to be efficiently checkable.

Let C be a clause in the formula F and α the assignment blocked by C . Then C is PR
w.r.t. F if and only if there exists an assignment ω such that F |α �1 F |ω and ω satisfies
C . Intuitively, this allows inferences that block a partial assignment α as long as another
assignment ω is as satisfiable. This means every assignment containing α that satisfies F can
be transformed into an assignment containing ω that satisfies F .

Running Example As the running example, we consider the bipartite graph from Fig. 1.
There may be more nodes in the graph but as long as there are no additional edges incident
to the vertices 1−3 on the top and bottom the additional edges will not affect the calculation
of the positive reduct or any following examples. Variable xi, j denotes the edge from vertex i
on the top to vertex j on the bottom set of nodes. The at-most-one constraints for the bottom
vertices shown are: (x1,1∨ x2,1)∧ (x1,2∨ x2,2)∧ (x2,3∨ x3,3)∧ (x2,3∨ x4,3)∧ (x3,3∨ x4,3).
The at-least-one constraints for the top vertices are: (x1,1 ∨ x1,2) ∧ (x2,1 ∨ x2,2 ∨ x2,3) ∧
(x3,3 ∨ · · · ) ∧ (x4,2 ∨ x4,3 ∨ · · · ). In the examples below, F denotes the entire formula.

Example 1 From Fig. 1, the clause (x1,1∨ x2,2) corresponds to the binary PR clause blocking
the assignment of red edges in (a). One possible witness for this PR clause could be ω =
x1,2 x2,1 x1,1. Thewitness is saying that if x1,1 x2,2 (red edges)were in a satisfying assignment
to the problem, we could negate them then set x1,2 x2,1 (green edges) to true in the assignment
while keeping the rest of the assignment untouched, and it would still satisfy the formula.

Clausal proofs systems must be checkable in polynomial time to be useful in practice.
RUP and RAT are efficiently checkable due to unit propagation. In general, determining
if a clause is PR is NP-complete [19]. However, a PR proof is checkable in polynomial
time if the witness assignments ω are included. A clausal proof with witnesses has the form
F, (C1, ω1), (C2, ω2), . . . , (Cn, ωn). The proof checker DPR-trim can efficiently check PR
proofs that include witnesses. Further, DPR-trim1 can emit proofs in the LPR format. They
can be validated by the formally-verified checkerCake-LPR [32], whichwas used to validate
results in recent SAT competitions.

1 https://github.com/marijnheule/dpr-trim.
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Fig. 2 Assignments and propagation used in Example 3

4 Pruning Predicates and SADICAL

Determining if a clause is PR is NP-complete and can naturally be formulated in SAT. Given
a clause C and formula F , a pruning predicate is a formula such that if it is satisfiable,
the clause C is redundant w.r.t. F . SaDiCaL uses two pruning predicates to determine if a
clause is PR: positive reduct and filtered positive reduct. If either predicate is satisfiable, the
satisfying assignment serves as the witness showing the clause is PR.

Definition 1 (Definition 3 of [19]) Let F be a formula, α an assignment, andC the clause that
blocks α. The positive reduct p(F, α) of F with respect to α is the formula G ∧C , where G
is obtained from F by first removing all clauses that are not satisfied by α and then removing
from the remaining clauses all literals that are not assigned by α.

Definition 2 (Definition 6 of [18]) Let F be a formula, α an assignment, and C the clause
that blocks α. The filtered positive reduct f (F, α) of F with respect to α is the formula
G ∧ C , where G is obtained from F by first removing all clauses that are not satisfied by
α. Next, clauses are removed (filtered) if unit propagation on the formula F |α conjuncted
with negated literals from the clause that are not assigned by α derives a conflict. Finally, all
literals that are not assigned by α are removed from the remaining clauses.

The filtered positive reduct is a subset of the positive reduct. The filtered positive reduct
is more expensive to compute due to the filtering operation that applies unit propagation. In
Example 2 the PR clause found by solving the positive reduct is larger than it needs to be.
In fact, one can assign variables, perform unit propagation to get a new assignment α, solve
the reduct based on α, then remove all propagated literals from the resulting clause. This is
shown in Example 3, where the the positive reduct is SAT, and we can remove the propagated
literals appearing in the PR clause from Example 2. For more information on the positive
reduct and filtered positive reduct, we refer readers to [18].

Example 2 Given the assignment α = x1,1 x2,2 x1,2 x2,1, the positive reduct is the clause that
blocks α, (x1,1∨x2,2∨x1,2∨x2,1), conjuncted with the satisfied clauses with literals from α,
(x1,1∨x2,1)∧(x1,2∨x2,2)∧(x1,1∨x1,2)∧(x2,1∨x2,2). The assignmentω = x1,1 x2,2 x1,2 x2,1
satisfies the positive reduct, so we can learn the clause (x1,1∨ x2,2∨ x1,2∨ x2,1)with witness
ω added to the proof.

Example 3 In this example, (a) and (b) refer to Fig. 2. This example considers the positive
reduct generated fromanassignment afterunit propagation and showshowpropagated literals
can be removed from the learned PR clause. After assigning α = x1,1 x2,2, shown in (a),
then performing unit propagation, the new assignment is α = x1,1 x2,2 x1,2 x2,1, shown in
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(b). The resulting positive reduct is satisfiable, with witness ω = x1,1 x2,2 x1,2 x2,1. Instead
of learning (x1,1 ∨ x2,2 ∨ x1,2 ∨ x2,1), we can remove propagated literals and learn the clause
(x1,1 ∨ x2,2) that blocks the assignment in (a), and this binary clause is far more effective at
pruning the search space.

SaDiCaL [17] uses satisfaction-driven clause learning (SDCL) that extends CDCL by
learning PR clauses [19] based on (filtered) positive reducts. SaDiCaL uses an inner/outer
solver framework. The outer solver attempts to solve the SAT problem with SDCL. SDCL
diverges from the basic CDCL loop when unit propagation after a decision does not derive
a conflict. In this case a reduct is generated using the current assignment, and the inner
solver attempts to solve the reduct using CDCL. If the reduct is satisfiable, the PR clause
blocking the current assignment is learned, and the SDCL loop continues. The PR clause
can be simplified by removing all non-decision variables from the assignment. SaDiCaL
emits PR proofs by logging the satisfying assignment of the reduct as the witness, and these
proofs are verified with DPR-trim. The key to SaDiCaL finding good PR clauses leading
to short proofs is the decision heuristic, because variable selection builds the candidate PR
clauses. Hand-crafted decision heuristics enable SaDiCaL to find short proofs on pigeonhole
and mutilated chessboard problems. However, these heuristics differ significantly from the
score-based heuristics in most CDCL solvers. Our experiences with SaCiDaL suggest that
improving the heuristics for SDCL reduces the performance of CDCL and vice versa. This
may explain why SaDiCaL performs worse than standard CDCL solvers on the majority of
the SAT competition benchmarks. While SaDiCaL integrates finding PR clauses of arbitrary
size in the main search loop, our tool focuses on learning short PR clauses as a preprocessing
step. This allows us to develop good heuristics for PR learning without compromising the
main search loop.

5 Extracting PR Clauses

PReLearn is a preprocessor that adds short PR clauses to a formula. The new formula which
now contains the additional PR clauses can be solved by an off-the-shelf SAT solver. In this
section, we first discuss an overview of how PReLearn fits in the general SAT solving tool-
chain. Next, we describe the process for finding candidate short PR clauses. Then, we provide
a method for determining if a candidate PR clause can be learned by solving the positive
reduct. We present several additional configurations for finding and learning PR clauses
that do not appear in the experimental evaluation. Finally, we detail the implementation of
PReLearn through pseudocode.

5.1 Overview of PRELEARN

The goal of PReLearn is to find useful PR clauses that improve the performance of CDCL
solvers on both satisfiable and unsatisfiable instances. Figure3 shows how a SAT problem is
solved using PReLearn. For some preset time limit, PR clauses are found and then added
to the original formula. When the preprocessing stage ends, the new formula that includes
learned PR clauses is solved by a CDCL solver. If the formula is satisfiable, the solver
will produce a satisfying assignment. If the formula is unsatisfiable, a refutation proof of
the original formula can be computed by combining the satisfaction preserving proof from
PReLearn and the refutation proof emitted by the CDCL solver. The complete proof can be
verified with DPR-trim.
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Fig. 3 Solving a formula with PReLearn and a CDCL solver

PReLearn alternates between finding PR clauses and learning PR clauses. Candidate
PR clauses are found by iterating over each variable in the formula, and for each variable
constructing clauses that include that variable. To determine if a clause is PR, the positive
reduct generated by that clause is solved. We use unit propagation on the original formula to
construct the positive reduct. When unit propagation after assigning a single literal derives
the empty clause, the negation of the failed literal is RUP and is learned as a unit. This is in
contrast to a PR unit found by solving the positive reduct, which requires storing a witness
in the proof. It can be costly to generate and solve many positive reducts, so heuristics are
used to find candidate clauses that are more likely to be PR. It is possible to find multiple
PR clauses that conflict with each other. PR clauses are conflicting if adding one of the PR
clauses to the formula makes the other no longer PR. Learning PR clauses involves selecting
PR clauses that are nonconflicting. The selection may maximize the number of PR clauses
learned or optimize for some other metric. Adding PR clauses and failed literals may cause
new clauses to become PR, so the entire process is iterated multiple times.

5.2 Finding PR Clauses

PR clauses are found by constructing a set of candidate clauses and solving the positive
reduct generated by each clause. In SaDiCaL the candidates are the clauses blocking the
partial assignment of the solver after each decision in the SDCL loop that does not derive a
conflict. In effect, candidates are constructed using the solver’s variable decision heuristic.
We take a more general approach, constructing sets of candidates for each variable based on
unit propagation and the partial assignment’s neighbors.

For a formula F and variable x , neighbors(F, x) denotes the set of variables occur-
ring in clauses containing literal x or x , excluding variable x . For a partial assignment α,
neighbors(F, α) denotes

⋃
x∈var(α) neighbors(F, x)\var(α). Candidate clauses for a literal

� are generated in the following way:

• Let α be the partial assignment found by unit propagation starting with the assignment
that makes � true.

• Generate the candidate PR clauses {(� ∨ y), (� ∨ y) | y ∈ neighbors(F, α)}.
Example 4 shows how candidate binary PR clauses are constructed using a single polarity

of an initial variable x . This can also be done by assigning x to false and proceeding with
candidate generation in a similar way. If x was assigned false, candidate PR clauses would
be of the form (x ∨ y), (x ∨ y) for some variable y. The example also describes how larger
sets of candidate clauses can be created with recursive applications of neighbors. The is
important for solving the mutilated chess problem from Sect. 5.5.

123



Preprocessing of Propagation Redundant Clauses Page 9 of 26 31

Fig. 4 Neighbors visualizations used in Example 4

Example 4 In this example, (a) and (b) refer to Fig. 4. To find the neighbors for a candidate
variable x1,1 we first assign x1,1 to true (green), then perform unit propagation assigning
x2,1 to false (red). With α = x1,1 x2,1, neighbors(F, α) = {x1,2, x2,2, x2,3} (blue), shown
in (a). Using these variables, we can construct the following candidate PR clauses, (x1,1 ∨
x1,2), (x1,1 ∨ x1,2), . . . , (x1,1 ∨ x2,3), (x1,1 ∨ x2,3).

We can extend the candidates by taking neighbors(F,neighbors(F, α)) = {x3,3, x4,3},
shown as yellow in (b). This will increase the number of candidate PR clauses to test. In
general, we can continue to iteratively extend the the candidates by calculating the neighbors
of the previous iteration.

We consider both polarities when constructing candidates for a variable. After all can-
didates for a variable are constructed, the positive reduct for each candidate is generated
and solved in order. Note that propagated literals appearing in the partial assignment do not
appear in the PR clause. The satisfying assignment is stored as the witness and the PR clause
may be learned immediately depending on the learning configuration.

This process is naturally extended to ternary clauses. The binary candidates are generated,
and for each candidate (x ∨ y), x and y are assigned to false in the first step. The variables
z ∈ neighbors(F, α) yield clauses (x ∨ y ∨ z) and (x ∨ y ∨ z). This approach can generate
many candidate ternary clauses depending on the connectivity of the formula since each
candidate binary clause is expanded. A filtering operation would be useful to avoid the blow-
up in number of candidates. There are likely diminishing returns when searching for larger
PR clauses because (1) there are more possible candidates, (2) the positive reducts are likely
larger, and (3) each clause blocks less of the search space. We consider only unit and binary
candidate clauses in our main evaluation.

Ideally, we should construct candidate clauses that are likely PR to reduce the number of
failed reducts generated. Note, the (filtered) positive reduct can only be satisfiable if given
the partial assignment there exists a reduced, satisfied clause. By focusing on neighbors, we
guarantee that such a clause exists. The reduced heuristic in SaDiCaL finds variables in all
reduced but unsatisfied clauses. Given a formula F and assignment α, reduced(F, α) =
var(F |α \ F). The idea behind this heuristic is to direct the assignment towards conditional
autarkies that imply a satisfiable positive reduct [19]. The neighbors approach generalizes
this to variables in all reduced clauses whether or not they are unsatisfied. A comparison can
be found in Sect. 5.4.

5.3 Learning PR Clauses

Given multiple clauses that are PR w.r.t. the same formula, it is possible that some of the
clauses conflict with each other and cannot be learned simultaneously. Example 5 below
shows how learning one PR clause may invalidate the witness of another PR clause. It may
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be that a different witness exists, but finding it requires regenerating the positive reduct to
include the learned PR clause and solving it. The simplest way to avoid conflicting PR clause
is to learn PR clauses as they are found. When a reduct is satisfiable, the PR clause is added
to the formula and logged with its witness in the proof. Then subsequent reducts will be
generated from the formula including all added PR clauses. Therefore, a satisfiable reduct
ensures a PR clause can be learned.

Alternatively, clauses can be found in batches, then a subset of nonconflicting clauses can
be learned. The set of conflicts between PR clauses can be computed in polynomial time.
For each pair of PR clauses C and D, if the partial assignment that generated the pruning
predicate for D satisfiesC andC is not satisfied by the witness of D, thenC conflicts with D.
Intuitively, if the partial assignment α that generated the pruning predicate for D satisfies C
then C will appear in the positive reduct generated for D after removing literals from C not
assigned by α. If this clause is not satisfied by the previous witness for D, then the previous
witness for D no longer satisfies the positive reduct, making the witness invalid. In some
cases reordering the two PR clauses may avoid a conflict. In Example 5 learning the second
clause would not affect the validity of the first clauses’ witness. Once the conflicts are known,
clauses can be learned based on some heuristic ordering. Batch learning configurations are
discussed more in the following section.

Example 5 Assume the following clause witness pairs are valid in a formula F : {(x1 ∨ x2 ∨
x3), x1 x2 x3}, and {(x1 ∨ x2 ∨ x4), x1 x2 x4}. The first clause conflicts with the second. If the
first clause is added to F , the clause (x1 ∨ x2) would be in the positive reduct for the second
clause, but it is not satisfied by the witness of the second clause.

5.4 Additional Configurations

The sections above describe the PReLearn configuration used in the main evaluation, i.e.,
finding candidate PR clauses with the neighbors heuristic and learning clauses instantly as
the positive reducts are solved. In this section we present several additional configurations.

In batch learning a set of PR clauses are found in batches then learned. Learning as many
nonconflicting clauses as possible coincideswith themaximum independent set problem.This
problem is NP-Hard. We approximate the solution by adding the clause causing the fewest
conflicts with unblocked clauses. When a clause is added, the clauses it blocks are removed
from the batch and conflict counts are recalculated Alternatively, clauses can be added in a
random order. Random ordering requires less computation at the cost of potentially fewer
learned PR clauses.

The neighbors heuristic for constructing candidate clauses can be modified to include a
depth parameter. neighborsi indicates the number of iterations expanding the variables. For
example, neighbors2 expands on the variables in neighbors1, seen in Example 4. We also
implement the reduced heuristic, shown in Example 6. Detailed evaluations and comparisons
can be found in our repository. In general, we found that the additional configurations did
not improve on our main configuration. Also, increasing the timeout for PReLearn by 5×’s
would increase the number of PR clauses learnedwhen using larger values of i in neighborsi ,
but these additional PR clauses did not improve solver performance. More work needs to be
done to determine when and how to apply these additional configurations.

Example 6 Given the assignment α = x1,1 x2,1 from Example 4, the only clause reduced but
not satisfied is (x2,1 ∨ x2,2 ∨ x2,3), yielding the candidate variables {x2,2, x2,3}. This is a
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Algorithm 1 PReLearn (F : CNF)
1: for � in Both(1, 2, . . . ,NumVariables) do
2: F ← SimplifyUnits(F) � Propagate top-level units, simplify formula
3: if IsAssigned(�) then
4: Continue � Skip already assigned literals
5: end if
6: α ← [�]
7: if UnitProp(F, α) is UNSAT then
8: F ← Learn(F, �, ()) � Learn failed literal
9: Continue
10: end if
11: if ω ← Solve(GetReduct(F, α)) is SAT then
12: F ← Learn(F, �, ω) � Learn unit PR
13: Continue
14: end if
15: for k in Both(neighbors(F, α)) do
16: α′ ← α + [k]
17: if UnitProp(F, α′) is not UNSAT then
18: if ω ← Solve(GetReduct(F, α′)) is SAT then
19: F ← Learn(F, (� ∨ k), ω) � Learn binary PR
20: Break
21: end if
22: end if
23: end for
24: end for

smaller set than neighbors(F, α) = {x1,2, x2,2, x2,3}, because neighbors does not consider
if the clause is satisfied, and will include x1,2 from the satisfied clause (x1,1 ∨ x1,2).

5.5 Implementation

PReLearn was implemented using the inner/outer-solver framework in SaDiCaL, and the
general algorithm for the outer solver is presented in Algorithm 1. The outer solver takes a
formula F as input, and learns clauses by adding them to the formulawhilewriting clauses and
witnesses to a proof. Instead of performing a complete search procedure like CDCL, the outer
solver searches for short clauses to learn. The outer loop ranges over both polarities of each
variable in the formula, selecting candidate literals �. Given a set of variables V , the function
Both returns set of literals

⋃
x∈V {x, x}. In line 2, it propagates all unit clauses and simplifies

the formula (i.e., removes falsified literals from clauses and removes satisfied clauses from
the formula). This ensures that as PReLearn learns unit clauses they are removed from
the formula and do not affect candidate generation (which depends on unit propagation).
If the candidate literal � is assigned, the candidate is skipped and the next candidate literal
is considered. The assignment of � in α on line 6 is achieved by deciding on � within the
outer solver at the top decision level. The unit propagation algorithm propagates an input
assignment α on an input formula, adding propagated literals to α during the procedure,
and returns UNSAT if a conflict is found. α is represented internally as the trail of the outer
solver. The function call in line 7 checks if � is a failed literal, and if so learns �. The Learn
function adds a clause to the input formula and writes a clause and witness to the proof (the
witness is empty for a failed literal since it is RUP). In line 11, the positive reduct is generated
for the assignment α after propagating �. If the inner solver returns SAT, then the satisfying
assignment to the positive reduct (ω) is used as the witness for the unit PR clause �. In the
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case of a failed literal or unit PR clause, the procedure continues with the next candidate
literal.

Candidate binary PR clauses are tested in lines 15–24. Line 15 ranges over both polarities
of all of theneighbors ofα, and this can be substitutedwith any procedure that finds candidate
variables (e.g., the reduced heuristic). The assignment of k in α′ is achieved by deciding on
k within the outer solver at the first decision level. Again, unit propagation is necessary to
obtain the new assignment α in order to generate the positive reduct. If the reduct is SAT, then
the satisfying assignment (ω) to the positive reduct is used as the witness for the binary PR
clause (� ∨ k). Upon each subsequent iteration of this inner loop, the assignment in line 16
is achieved by backtracking one decision level, (unassigning the previous k), then deciding
on the new literal k.

In this pseudocode, clauses are learned immediately and added to the formula, so in
subsequent calls to unit propagation, all learned units will be propagated and learned binary
PR clauses will be included in the formula. For this reason, after learning a binary PR clause
we move on to the next candidate variable in the outer for loop, instead of finding more PR
clauses with the same candidate. Alternatively, the Learn function could store found binary
PR clauses, and every so often select some of the non-conflicting binary PR clauses to learn
and add to the formula in a batch.

6 Mutilated Chessboard

The mutilated chessboard is an N × N grid of alternating black and white squares with
two opposite corners removed. The problem is whether or not the the board can be covered
with 2 × 1 dominoes. This can be encoded in CNF by using variables to represent domino
placements on the board.At-most-one constraints say only one domino can cover each square,
and at-least-one constraints say some domino must cover each square.

In recent SAT competitions, no proof-generating SAT solver could deal with instances
larger than N = 18. In ongoing work, we found refutation proofs that contain only units
and binary PR clauses for some boards of size N ≤ 30. PReLearn can be modified to
automatically find proofs of this type. Running iterations of PReLearn until saturation,
meaning no new binary PR clauses or units can be found, yields some set of units and binary
PR clauses. Removing the binary PR clauses from the formula and rerunning PReLearnwill
yield additional units and a new set of binary PR clauses. Repeating the process of removing
binary PR clauses and keeping units will eventually derive the empty clause for this problem.
Figure6 gives detailed values for N = 20.Within each execution (red dotted lines) there are at
most 10 iterations (red tick markers), and each iteration learns some set of binary PR clauses
(red). Some executions saturate binary PR clauses before the tenth iteration and exit early.
At the end of each execution the binary PR clauses are deleted, but the units (blue) are kept
for the following execution. A complete DPR proof (PR with deletion) can be constructed
by adding deletion information for the binary PR clauses removed between each execution
when concatenating the PReLearn proofs. The approach works for mutilated chess because
in each execution there are many binary PR clauses that can be learned and will lead to units,
but they are mutually exclusive and cannot be learned simultaneously. Further, adding units
allows new binary PR clauses to be learned in following executions.

Table 1 shows the statistics for PReLearn. Achieving these results required some mod-
ifications to the configuration of PReLearn. First, notice in Fig. 5 the PR clauses that can
be learned involve blocking one domino orientation that can be replaced by a symmetric
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Fig. 5 Occurrences of two horizontal dominoes may be replaced by two vertical dominos in a solution.
Similarly, occurrences of a horizontal domino atop two vertical dominos can be replaced by shifting the
horizontal domino down

Fig. 6 Unit and binary PR clauses learned each execution (red-dotted line) until the empty clause was learned.
Markers on binary PR lines represent an iteration within an execution. (Color figure online)

Table 1 Statistics running multiple executions of PReLearn on the mutilated chessboard problem with the
configurations described below

N Time (s) # Exe. Avg. (s) Units Bin. Avg. units Avg. bin.

8 0.14 1 0.14 30 164 30.00 164.00

12 4.94 1 4.94 103 1045 103.00 1045.00

16 62.47 2 31.23 195 3988 97.50 1994.00

20 513.12 6 85.52 339 14,470 56.50 2411.67

24 4941.38 26 190.05 512 64,038 19.69 2463.00

Total units includes failed literals and learned PR units. The average units and average binary PR clauses
learned during each execution (Exe.) are shown as well
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orientation. To optimize for these types of PR clauses, we only constructed candidates where
the first literal was negative. The neighbors heuristic had to be increased to a depth of 6,
meaning more candidates were generated for each variable. Intuitively, the proof is con-
structed by adding binary PR clauses in order to find negative units (dominos that cannot be
placed) around the borders of the board. Following iterations build more units inwards, until a
point is reached where units cover almost the entire board. This forces an impossible domino
placement leading to a contradiction. Complete proofs using only units and binary PR clauses
were found for boards up to size N = 24 within 5000 seconds. We verified all proofs using
DPR-trim. The mutilated chessboard has a high degree of symmetry and structure, making
it suitable for this approach. For most problems it is not expected that multiple executions
while keeping learned units will find new PR clauses.

Experiments were done with several configurations (see Sect. 5.4) to find the best results
(presented above). The reduced heuristic (a subset of neighbors) did not yield complete
proofs. The same was true for neighbors when the depth parameter was not large enough.
The configurations that worked best were those that tested many candidate PR clauses,
allowing units to be found in each successive iteration and eventually completing the proof.
In fact, we found that increasing the depth of neighbors was necessary for larger boards
including N = 24.

We know of PR proofs using only unit and binary PR clauses that are shorter than the
proofs PReLearn produced. One way to achieve a more optimal proof size is through batch
learning – systematically adding only the PR clauses that are most effective in the proof –
instead of adding PR clauses immediately after they are found. The current heuristics for
batch learning, random and sorted, are not clever enough to achieve this result.

7 SAT Competition Benchmarks

Weevaluated PReLearn on previous SAT competition formulas. Formulas from the ’13, ’15,
’16, ’19, ’20, and ’21 SAT competitions’ main tracks were grouped by size. 0–10k contains
the 323 formulas with less than 10,000 clauses and 10–50k contains the 348 formulas with
between 10,000 and 50,000 clauses. In general, short PR proofs have been found for hard
combinatorial problems typically having few clauses (0–10k). These include the pigeonhole
and mutilated chessboard problems, some of which appear in 0–10k benchmarks. The PR
clauses that can be derived for these formulas are intuitive and almost always beneficial to
solvers. Less is known about the impact of PR clauses on larger formulas, motivating our
separation of test sets by size. The repository containing the preprocessing tool, experiment
configurations, and experiment data can be found at https://zenodo.org/record/7882172.

We ran our experiments on StarExec [31]. The specs for the compute nodes can be found
online.2 The compute nodes that ran our experiments were Intel Xeon E5 cores with 2.4
GHz, and all experiments ran with 64 GB of memory and a 5000 seconds timeout. We run
PReLearn for 50 iterations over 100 seconds, exiting early if no new PR clauses were found
in an iteration.

PReLearn was executed as a stand-alone program, producing a derivation proof and a
modified CNF. For experiments, the CDCL solver Kissat [6] was called once on the original
formula and once on the modified CNF. Kissat was selected because of its high-rankings
in previous SAT competitions, but we expect the results to generalize to other CDCL SAT
solvers.

2 https://starexec.org/starexec/public/about.jsp.
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Table 2 Fraction of benchmarks where PR clauses were learned, average runtime of PReLearn, generated
positive reducts and satisfiable positive reducts (PR clauses learned), and number of failed literals found

Set Benches Avg. (s) Gen. reducts Sat. reducts % Sat. Failed lits

0–10k 174/323 22.68 101,459,481 531,482 0.52 3412

10–50k 115/348 69.98 156,983,732 762,363 0.49 6095

Table 3 Number of total solved instances and exclusive solved instances running Kissat with and without
PReLearn

0–10k SAT 0–10k UNSAT 10–50k SAT 10–50k UNSAT

Total w/ PReLearn 85 148 139 89

Total w/o PReLearn 80 140 142 89

Exclusively w/ PReLearn 5 10 1 1

Exclusively w/o PReLearn 0 2 4 1

Improved w/ PReLearn 22 42 21 13

Number of improved instances running Kissat with PReLearn. PReLearn execution times were included
in total execution times. An instance was improved if it was solved at least a second faster and the difference
in solving time was at least one percent

In the satisfiable case, the derivation for the learned PR clauses was verified using a
forward check in DPR-trim, and the satisfying assignment found byKissatwas verified by
the StarExec post-processing tool. In the unsatisfiable case, we verified complete proofs with
a formally-verified proof checker. To do this, the derivation for the learned PR clauses was
concatenated to the proof traced by Kissat. The proof was then passed through DPR-trim
to produce a proof with hints, which was then checked by Cake-LPR. Only two proofs were
not verified on the cluster because of resource limitations (timeouts), so we verified them
locally.

Table 2 shows the cumulative statistics for running PReLearn on the benchmark sets. PR
clauses are found in about one third of the formulas (174 of the 323 small formulas and 115 of
the 348 larger formulas), showing our approach generalizes beyond the canonical problems
for which we knew PR clauses existed. Expanding the exploration and increasing the time
limit did not help to find PR clauses in the remaining one third. The number of satisfiable
reducts is the number of learned PR clauses, because PR clauses are learned immediately after
the reduct is solved. These include both unit and binary PR clauses. A very small percentage
of generated reducts is satisfiable, and subsequently learned. This is less important for small
formulas when reducts can be computed quickly and there are fewer candidates to consider.
However, for the 10–50k formulas the average runtime more than triples, but the number of
generated reducts less than doubles.

Table 3 gives a high-level picture of PReLearn’s impact on Kissat. PReLearn signifi-
cantly improves performance on 0–10k SAT andUNSATbenchmarks. These contain the hard
combinatorial problems including pigeonhole that PR clauses are well-suited for. There were
5 additional SAT formulas solved with PReLearn that Kissat alone could not solve. This
shows that PReLearn impacts not only hard unsatisfiable problems but satisfiable problems
as well. On the other hand, the addition of PR clauses makes some problems more difficult.
This is clear with the 10–50k results, where 2 benchmarks are solved exclusively with PRe-
Learn and 5 are solved exclusively without. Additionally, PReLearn improved Kissat’s

123



31 Page 16 of 26 J. E. Reeves et al.

performance on 98 of 671 or approximately 15% of benchmarks. This is a large portion of
benchmarks, both SAT and UNSAT, for which PReLearn is helpful.

Figure 7 gives a more detailed picture on the impact of PReLearn per benchmark. In
the scatter plot the left-hand end of each line indicates the Kissat execution time, while
the length of the line indicates the PReLearn execution time, and so the right-hand end
gives the total time for PReLearn plus Kissat. Lines that cross the diagonal indicate that
the preprocessing improved Kissat’s performance but ran for longer than the improvement.
PReLearn improved performance for points above the diagonal. Points on the dotted-lines
(timeout) are solved by one configuration and not the other.

The top plot gives the results for the 0–10k formulas, with many points on the top timeout
line as expected. These are the hard combinatorial problems that can only be solved with
PReLearn. In general, the unsatisfiable formulas benefit more than the satisfiable formulas.
PR clauses can reduce the number of solutions in a formula and this may explain the negative
impact on many satisfiable formulas. However, there are still some satisfiable formulas that
are only solved with PReLearn.

In the bottom plot, formulas that take a long time to solve (above the diagonal in the upper
right-hand corner) are helped more by PReLearn. Many of these formulas are satisfiable,
unlike for the smaller benchmarks. Most of the formulas solved within 100 seconds barely
cross the diagonal, indicating that the addition of PR clauses provided a negligible benefit.

The results in Fig. 7 are encouraging, with many formulas significantly benefitting from
PReLearn. PReLearn improves the performance on both SAT and UNSAT formulas of
varying size and difficulty. In addition, lines that cross the diagonal imply that improving
the runtime efficiency of PReLearn alone would produce more improved instances. For
future work, it would be beneficial to classify formulas before running PReLearn. There
may exist general properties of a formula that signal when PReLearn will be useful and
when PReLearn will be harmful to a CDCL solver. For instance, a formula’s community
structure [3]may help focus the search to parts of the formulawhere PR clauses are beneficial.

7.1 Benchmark Families

In this section we analyze benchmark families that PReLearn had the greatest positive
(negative) effect on, found in Table 4. Studying the formulas PReLearn works well on may
reveal better heuristics for finding good PR clauses.

It has been shown that PR works well for hard combinatorial problems based on perfect
matchings [16, 18]. The perfect matching benchmarks (randomG) [8] are a generalization of
the pigeonhole (PHP) and mutilated chessboard problems with varying at-most-one encod-
ings and edge densities. The binary PR clauses can be intuitively understood as blocking two
edges from the perfect matching if there exist two other edges that match the same nodes.
These benchmarks are relatively small but extremely hard for CDCL solvers. Symmetry-
breaking with PR clauses greatly reduces the search space and leads Kissat to a short
proof of unsatisfiability. PReLearn also benefits other hard combinatorial problems that use
pseudo-Boolean constraints. The pseudo-Boolean (Pb-chnl) [24] benchmarks are based on
at-most-one constraints (using the pairwise encoding) and at-least-one constraints. These
formulas have a similar graphical structure to the perfect matching benchmarks. Binary PR
clauses block two edges when another set of edges exists that are incident to the same nodes.

For the other benchmark family that benefited from PReLearn, the intuition behind
PR learning is less clear. The fixed-shape random formulas (FSF) [29] are parameterized
non-clausal random formulas built from hyper-clauses. The SAT encoding makes use of
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Fig. 7 Execution timesw/ andw/o PReLearn on 0–10k (top) and 10–50k (bottom) benchmarks. The left-hand
point of each segment shows the time for the SAT solver alone; the right-hand point indicates the combined
time for preprocessing and solving
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Table 4 Some formulas solved by Kissat exclusively with PReLearn (top) and some formulas solved
exclusively without PReLearn (bottom)

Set Value With Without Clauses Formula/year

0–10k UNSAT 1.21 – 2033 ph12* ’13

0–10k UNSAT 37.58 – 20,179 Pb-chnl15-16_c18* ’19

0–10k UNSAT 104.72 – 44,373 Pb-chnl20-21_c18 ’19

0–10k UNSAT 87.83 – 1,480 randomG-Mix-n17-d05 ’21

0–10k UNSAT 81.48 – 1320 randomG-n17-d05 ’21

0–10k UNSAT 519.24 – 1469 randomG-n18-d05 ’21

0–10k UNSAT 762.22 – 1535 randomG-Mix-n18-d05 ’21

0–10k SAT 1269.13 – 9650 fsf-300-354-2-2-3−2.23.opt ’13

0–10k SAT 1456.33 – 10,058 fsf-300-354-2-2-3−2.46.opt ’13

10–50k SAT – 22.99 254 Ptn-7824-b13 ’16

10–50k SAT – 549.27 133 Ptn-7824-b09 ’16

10–50k SAT – 1246.42 39 Ptn-7824-b02 ’16

10–50k SAT – 1290.49 121 Ptn-7824-b08 ’16

10–50k UNSAT – 3650.21 30,975 rphp4_110_shuffled ’16

10–50k UNSAT – 4273.88 30,434 rphp4_115_shuffled ’16

(*) solved without Kissat. Clauses include PR clauses and failed literals learned

the Plaisted-Greenbaum transformation, introducing circuit-like structure to the problem. It
cannot be determined without a deeper knowledge of the benchmark how PR clauses are
improving the solving time.

The relativized pigeonhole problem (RPHP) [4] involves placing k pigeons in k − 1 holes
with n nesting places. This problem has polynomial hardness for resolution, unlike the expo-
nential hardness of the classical pigeonhole problem. The symmetry-breaking preprocessor
BreakID [10] generates symmetry-breaking formulas for RPHP that are easy for a CDCL
solver. PReLearn can learn many PR clauses but the formula does not become easier. Note
PReLearn can solve the php with n = 12 in a second.

One problem is clause and variable permuting (a.k.a. shuffling), where variable names
are permuted within a formula, or clause ordering is shuffled (neither operation changes the
meaning of the formula but may affect solver heuristics). The mutilated chessboard problem
can still be solved by PReLearn after permuting variables and clauses. The pigeonhole
problem can be solved after permuting clauses but not after permuting variable names. In
PReLearn, PR candidates are sorted by variable name independent of clause ordering, but
when the variable names change the order of learned clauses changes. In the mutilated
chessboard problem there is local structure, so similar PR clauses are learned under variable
renaming. In the pigeonhole problem there is global structure, so a variable renaming can
significantly change the binary PR clauses learned and cause earlier saturation with far fewer
units. These benchmarks motivated a further exploration of the robustness of PReLearn in
Sect. 8.

Another problem is that the addition of PR clauses can change the existing structure of a
formula and negatively affect CDCL heuristics. The Pythagorean Triples Problem (PTN) [20]
asks whether monochromatic solutions of the equation a2 + b2 = c2 can be avoided. The
formulas encode numbers {1, . . . , 7824}, for which a valid 2-coloring is possible. In the
namings, the N in bN denotes the number of backbone literals added to the formula. A

123



Preprocessing of Propagation Redundant Clauses Page 19 of 26 31

backbone literal is a literal assigned true in every solution. Adding more than 20 backbone
literalsmakes the problemeasy. For each formulaKissat canfind a satisfying assignment, but
timeoutswith the addition of PR clauses. For one instance, adding only 39PRclauseswill lead
to a timeout. In some hard SAT and UNSAT problems, solvers require some amount of luck
and adding a few clauses or shuffling a formula can cause a CDCL solver’s performance to
sharply decrease. For example, we found that adding the found PR clauses to the beginning of
the formula instead of the end, or removing blocked clauses from the set of found PR clauses,
improved the solving time of Kissat. The PythagoreanTriples Problemwas originally solved
with a local search solver, and local search still performs well after adding PR clauses.

In a straight-forward way, one can avoid the negative effects of adding harmful PR clauses
by running two solvers in parallel: one with PReLearn and one without. This fits with the
portfolio approach for solving SAT problems.

8 Robustness of PRELEARN

Preprocessing is necessary for state-of-the-art SAT solvers to achieve good performance on
a diverse benchmark set. In general, preprocessing can significantly change the structure
of a formula by removing literals from clauses, removing clauses, and propagating literals.
There are amultitude of preprocessing techniques, many of which are run repeatedly during a
solver’s execution. Therefore, new preprocessing techniques must be robust against changes
to the formula in order to be effective in relation to other important forms of preprocessing.
Recent work has shown that some preprocessing techniques are harmful to graph-based sym-
metry breaking methods [2]. The work presented a restricted set of preprocessing techniques
that still allowed for, and aided, syntactic-based symmetry breaking. In addition to prepro-
cessing, it is important that solving techniques are robust under clause order permutations
(shuffling) and variable name permutations (renaming), as there is no guarantee of how a
user will translate some problem into a formula. Graph-based symmetry breaking is resilient
to such renamings and shuffling, as they will not affect the graphical structure of the formula.

PR clauses are found by solving the positive reduct. Preprocessing can significantly affect
the structure of a positive reduct on certain literals, potentially turning a satisfiable reduct
unsatisfiable. Furthermore, preprocessing can remove variables themselves either through
propagation or elimination, nullifying any PR clause that may have contained those variables.
It is unclear whether the combination of preprocessing techniques will prevent many PR
clauses from being found, or whether new PR clauses will appear. With respect to clause
shuffling and variable renamings, if PReLearn were to loop over every variable in the
formula it should find all of the same PR clauses. However, learning PR clauses in a different
order might block other PR clauses from being found and learned, and this could occur under
a variable renaming.

8.1 Evaluation with Preprocessing

For this evaluation we perform preprocessing using the SAT solver CaDiCaL with flags
-o inproc.cnf -c 10000. With this configuration, the solver returns the irredundant formula
clauses after 10,000 conflicts have been found. Before 10,000 conflicts, CaDiCaLwill have
applied all of the standard preprocessing techniques to the formula. This approach mim-
ics the preprocessing that would occur to a real problem before it was passed to another
tool like PReLearn. There are four configurations we consider: preprocessing, PReLearn
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Fig. 8 Cumulative number of solved instances with different preprocessing configurations. In the legend, pr
is a call to PReLearn, and preproc is a call to the preprocessor. After running some combination of the two,
Kissat is called on the resulting formula

then preprocessing, preprocessing then PReLearn, and PReLearn then preprocessing then
PReLearn. In each case PReLearn was run with the same configuration as the main eval-
uation. Experiments were run on the 0-10k benchmark set for 5000 seconds as in the main
evaluation.

Figure 8 shows the cumulative instances solved for the four configurations including pre-
processing and the fifth configuration with only PReLearn. The runtimes consist of the
entire toolchain for each configuration, including preprocessing with CaDiCaL, preprocess-
ing with PReLearn, and solving with Kissat. Only using preprocessing solves the fewest
instances. Note that many of the inprocessing techniques from CaDiCaL are included in
Kissat. This result shows that applying preprocessing before PReLearn will not be worse
than only applying PReLearn. In other words, the PR clauses learned by PReLearn will
still benefit solving even after preprocessing. However, preprocessing before PReLearn does
affect the number of solved instances, producing slightly worse performance than applying
PReLearn before preprocessing. The three configurations with PReLearn applied first
show similar performance, suggesting that PReLearn is most effective when applied to the
original formula before preprocessing, and nearly as effective after preprocessing.

The scatter plots in Fig. 9 show the number of PR clauses learned (top) and the execution
times (bottom) for each formula. From the top plot it is clear that fewer PR clauses are
learned after applying preprocessing, and in many formulas no PR clauses are learned after
preprocessing. The bottom plot shows that execution times are varied, and fewer PR clauses
does not necessarily mean worse performance. In fact, there are several problems solved
exclusively when preprocessing is applied before PReLearn, and vice versa. However, this
does not lead to a large difference in overall performance, as seen by the cumulative solved
instances in Fig. 8.
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Fig. 9 Number of unit and binary PR clauses learned (top) and execution times (bottom) with PReLearn
after preprocessing vs. without preprocessing
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Fig. 10 Unit and binary PR clauses learned (top) execution times (bottom) with PReLearn on the original
formulas vs. formulas after permuting variables
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8.2 Evaluation with Variable Permutating

For this evaluation, we randomly permuted the variable names in the formula then ran the
default PReLearn configuration on the modified formulas. The learned PR clauses were
then permuted back to the original variable naming and appended to the original formula.
With this method we could pinpoint the effect of variable permuting on PReLearn without
including noise from variable permuting on solving with Kissat. We did not consider clause
permuting because PReLearn sorts candidates based on variable naming so that it works
independently of clause ordering; while the renaming of variables can impact the order
variables are expanded and the choice of candidates. The runtimes consist of the preprocessing
withPReLearn and solvingwithKissat, but do not include the script for permuting variables
before and after executing PReLearn.

The top plot of Fig. 10 shows the number of unit and binary PR clauses learned on the
original formula versus the formula with permuted variables when applying PReLearn. For
most instances, permuting variables within the formula had little impact on the number of
PR clauses learned. There is an outlier, the SAT point below the diagonal with 100 learned
PR clauses on the original formulas and 1000 learned PR clauses on the permuted formulas.
There was one instance, battleship-13-25-sat, where in the original formula, the variable
with name 1 is the first variable expanded by PReLearn. After propagating this variable,
most other variables in the formula are neighbors of the assignment, so the candidate list is
large, and the pruning predicates require nearly all clauses in the formula. Thus, PReLearn
spends the entire 100 seconds looking for candidates that include the variable 1, finding only
100 PR clauses. After permuting variable names, a different variable is selected first. This
new variable will not generate as many candidates, and so PReLearn can exploremanymore
variables and find more PR clauses. This type of problem can arise in any formula where
propagating a few variables touches all or most other variables in the formula. To avoid this,
a limit can be set on the number of candidates each variable can generate, or on the size
of the pruning predicate produced. This would allow PReLearn to search across the entire
formula without getting stuck on candidates involving a small set of variables.

The bottom plot of Fig. 10 shows the execution time on the original formula versus the
formula with permuted variables when applying PReLearn. There are a few UNSAT for-
mulas that are solved without permutation, due to a difference of a few thousand PR clauses
not learned after variable permuting. In one of these cases, PReLearn timed out with and
without variable permuting, so an increase in the timeout may have brought the execution
times closer together. In general, a small variation in the number of PR clauses added to a
formula will negatively impact some formulas and positively impact others, but in most cases
will not make a large difference.

9 Conclusion and FutureWork

In this paper we presented PReLearn, a tool built from the SaDiCaL framework that learns
PR clauses in a preprocessing stage. We developed several heuristics for finding PR clauses
and multiple configurations for clause learning. In the evaluation we found that PReLearn
improved the performance of the CDCL solver Kissat on many benchmarks from past SAT
competitions. In addition, we showed that the performance of PReLearn does not decline
after preprocessing a formula or permuting variables names.
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For future work, quantifying the usefulness of each PR clause in relation to guiding the
CDCL solver may lead to better learning heuristics. This is a difficult task that likely requires
problem specific information. However, we found that for some problems where PR clauses
made the solving time worse, many of the PR clauses were blocked and could be removed
by an additional preprocessing tool. Finding a way to filter certain PR clauses as to not
harm CDCL heuristics may be a general way to improve the effectiveness of PReLearn.
Separately, failed clause caching can improve performance by remembering and avoiding
candidate clauses that fail with unsatisfiable reducts in multiple iterations. This would be
most beneficial for problems like the mutilated chessboard that have many conflicting PR
clauses. Lastly, incorporating PReLearn during inprocessingmay allow formore PR clauses
to be learned. This could be implemented with the inner/outer solver framework but would
require a significantly narrowed search. CDCL learns many clauses during execution and it
would be infeasible to examine binary PR clauses across the entire formula.
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