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Abstract
We give a definition of finitary type theories that subsumes many examples of dependent
type theories, such as variants of Martin–Löf type theory, simple type theories, first-order
and higher-order logics, and homotopy type theory. We prove several general meta-theorems
about finitary type theories: weakening, admissibility of substitution and instantiation of
metavariables, derivability of presuppositions, uniqueness of typing, and inversion princi-
ples. We then give a second formulation of finitary type theories in which there are no
explicit contexts. Instead, free variables are explicitly annotated with their types. We provide
translations between finitary type theories with and without contexts, thereby showing that
they have the same expressive power. The context-free type theory is implemented in the
nucleus of the Andromeda 2 proof assistant.

Keywords Dependent type theory · Context-free type theory · Formal meta-theory · Proof
assistants

1 Introduction

We present a general definition of a class of dependent type theories which we call finitary
type theories. In fact, we provide two variants of such type theories, with and without typing
contexts, and show that they are equally expressive by providing translations between them.
Our definition broadly follows the development of general type theories [6], but is specialized
to serve as a formalism for implementation of a proof assistant. Indeed, the present paper
is the theoretical foundation of the Andromeda 2 proof assistant, in which type theories are
entirely defined by the user.

To be quite precise, we shall study syntactic presentations of type theories, in the sense that
theories are seen as syntactic constructions, and the meta-theorems conquered by a frontal
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assault on abstract syntax. Even though this may not be the most fashionable approach to
type theory, we were lead to it by our determination to understand precisely what we were
implementing inAndromeda 2.Wecertainly expect that the syntactic presentationswillmatch
nicely with some of the modern semantic accounts of type theories, and that the usefulness
of finitary type theories will transcend mere theoretical support for proof assistants.

We thus present our development of type theories in an elementary style, preferring con-
crete to abstract definitions and constructions,without compromising generality. In particular,
this means that we first define “raw” terms, judgements, rules, and the like, and then proceed
in stages to carve out the well-behaved fragment via predicates. Our motivations for this
choice are fourfold. First, in practice type systems are defined in this fashion. Second, an
elementary definition requires only very modest meta-mathematical foundations and lends
itself to interpretation in various foundational systems. Third, by eschewing intermediate
surrogates such as logical frameworks [23, 38] or quotient inductive-inductive types [2], the
semantics of finitary type theories may be addressed directly, without recourse to the inter-
pretation of such intermediates. And in any case, even the intermediates must eventually be
syntactically presented if they are to be used at all. Fourth, the programming languages avail-
able to us are not sufficiently expressive to isolate the well-formed fragment of type theory
in one fell swoop. They enable and insist on a more traditional approach, in which the input
strings are converted to syntactic trees, and the type theoretic entities presented in their “raw”
form, as values of inductively defined datatypes. The concrete nature of our constructions
and meta-theorems then makes it possible to transcribe them to code in a straightforward
fashion. Further discussion of alternative approaches is postponed to Sect. 7.

Our definition captures dependent type theories of Martin–Löf style, i.e. theories that
strictly separate terms and types, have four judgement forms (for terms, types, type equations,
and typed term equations), and hypothetical judgements standing in intuitionistic contexts.
Among examples are the intensional and extensional Martin–Löf type theory, possibly with
Tarski-style universes, homotopy type theory, Church’s simple type theory, simply typed
λ-calculi, and many others. A detailed presentation of first-order logic and Martin–Löf type
theory as finitary type theories is available in [30,AppendixA], and [24,AppendixB] presents
a finitary type theory for Harper’s Equational LF [21], and encodes Gödel’s System T in the
logical framework. Counter-examples can be found just as easily: in cubical type theory the
interval type is special, cohesive and linear type theories have non-intuitionistic contexts,
polymorphic λ-calculi quantify over all types, pure type systems organize the judgement
forms in their own way, and so on.

Contributions

In Sect. 2 we give an account of dependent type theories that is close to how they are tradition-
ally presented. A type theory should verify certainmeta-theoretical properties: the constituent
parts of any derivable judgement should bewell-formed, substitution rules should be admissi-
ble, and each term should have a unique type. The definition of finitary type theories proceeds
in stages. Each of the stages refines the notion of rule and type theory by specifying condi-
tions of well-formedness. We start with the raw syntax (Sect. 2.1) of expressions and formal
metavariables, out of which contexts, substitutions, and judgements are formed. Next we
define raw rules (Sect. 2.3), a formal notion of what is commonly called “schematic infer-
ence rule”.We introduce the structural rules (Figs. 4, 5, 6) that are shared by all type theories,
and define congruence rules (Definition 2.17). These rules are then collected into raw type
theories (Definition 2.21). The definition of raw rules ensures the well-typedness of each
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constituent part of a raw rule, by requiring the derivability of the presuppositions of a rule.
Next, we introduce finitary rules and finitary type theories (Sect. 2.4), whose rules form a
well-founded order under which each rule is well-typed with respect to its predecessors. This
way we rule out circularities in the derivations of well-typedness of rules, while the well-
founded order provides an induction principle for finitary type theories. Finally, standard
type theories are introduced (Definition 2.25) to enforce that each symbol is associated to a
unique rule.

We prove the following meta-theorems about raw (Sect. 3.1), finitary (Sect. 3.2), and
standard type theories (Sect. 3.3): admissibility of substitution and equality substitution (The-
orem 3.8), admissibility of instantiation of metavariables (Theorem 3.13) and equality
instantiation (Theorem 3.17), derivability of presuppositions (Theorem 3.18), admissibility
of “economic” rules (Propositions 3.19, 3.20 and 3.22), inversion principles (Theorem 3.24),
uniqueness of typing (Theorem 3.26).

The goal of Sect. 4 is the development of a context-free presentation of finitary type
theories that can serve as foundation of the implementation of a proof assistant. The definition
of finitary type theories in Sect. 2 is well-suited for the metatheoretic study of type theory,
but does not directly lend itself to implementation. For instance, in keeping with traditional
accounts of type theory, contexts are explicitly represented as lists.

In context-free type theories, the syntax of expressions (Sect. 4.1) is modified so that each
free variable is annotated with its type aA rather than being assigned a type by a context.
As the variables occurring in the type annotation A are also annotated, the dependency
between variables is recorded. Judgements in context-free type theories thus do not carry
an explicit context. Metavariables are treated analogously. To account for the possibility of
proof-irrelevant rules like equality reflection, where not all of the variables used to derive the
premises are recorded in the conclusion, we augment type and term equality judgements with
assumption sets (Sect. 4.1.5). Intuitively, in a judgement � A ≡ B by α, the assumption set
α contains the (annotated) variables that were used in the derivation of the equation but may
not be amongst the free variables of A and B. The conversion rule of type theory allows the
use of a judgemental equality to construct a term judgement. To ensure that assumption sets
on equations are not lost as a result of conversion, we include conversion terms (Fig. 9).

Following the development of finitary type theories, we introduce raw context-free rules
and type theories (Sect. 4.2).We proceed to define context-free finitary rules and type theories
whose well-formedness is derivable with respect to a well-founded order (Definition 4.13),
and standard theories (Definition 4.14).

Subsequently,weprovemeta-theoremsabout context-free raw (Sect. 5.1), finitary (Sect. 5.2),
and standard type theories (Sect. 5.3). The meta-theorems in this section are similar to those
obtained for finitary type theories,with the exception of themeta-theorems specific to context-
free type theories (Sect. 5.4). In particular, and contrary to finitary type theories, context-free
raw type theories satisfy strengthening (Theorem 5.16). We further prove that conversion
terms do not “get in the way” when working in context-free type theory (Theorem 5.17).
The constructions underlying these meta-theorems are defined on judgements rather than
derivations, and can thus be implemented effectively in a proof assistant for context-free type
theories without storing derivation trees.

In Sect. 6, we establish a correspondence between type theories with and without contexts
by constructing translations back and forth (Theorems 6.5 and 6.10).
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2 Finitary Type Theories

Our treatment of type theories follows in essence the definition of general type theories carried
out in [6], but is tailored to support algorithmic derivation checking in three respects: we limit
ourselves to finitary symbols and rules, construe metavariables as a separate syntactic class
rather than extensions of symbol signatures by fresh symbols, and take binding of variables
to be a primitive operation on its own.

2.1 Raw Syntax

In this section we describe the raw syntax of fintary type theories, also known as pre-syntax.
We operate at the level of abstract binding trees, i.e. we construe syntactic entities as syntax
trees generated by grammatical rules in inductive fashion, and with all bound variables well-
scoped. Of course, we still display such trees concretely as string of symbols, a custom that
should not detract from the abstract view.

Rawexpressions are formedwithout any typing discipline, but they have to be syntactically
well-formed in the sense that free and bound variables must be well-scoped and that all
symbols must be applied in accordance with the given signature. We shall explain the details
of these conditions after a short word on notation.

We write [X1, . . . , Xn] for a finite sequence and f = 〈X1 �→Y1, . . . , Xn �→Yn〉 for a
sequence of pairs (Xi , Yi ) that represents a map taking each Xi to Yi . An alternative notation
is 〈X1:Y1, . . . , Xn :Yn〉, and we may elide the parentheses [· · ·] and 〈· · ·〉. The domain of
such f is the set f = {X1, . . . , Xn}, and it is understood that all Xi are different from one
another. Given X /∈ f, the extension 〈 f , X �→Y 〉 of f by X �→ Y is the map

〈 f , X �→Y 〉 : Z �→
{
Y if Z = X ,

f (Z) if Z ∈ f.

Given a list � = [�1, . . . , �n], we write �(i) = [�1, . . . , �i−1] for its i-th initial segment. We
use the same notation in other situations, for example f(i) = 〈X1 �→ Y1, . . . , Xi−1 �→ Yi−1〉
for f as above.

2.1.1 Variables and Substitution

We distinguish notationally between the disjoint sets of free variables a,b, c, . . . and bound
variables x, y, z, . . ., each of which are presumed to be available in unlimited supply. The
free variables are scoped by variable contexts, while the bound ones are always captured by
abstractions.

The strict separation of free and bound variables is fashioned after locally nameless syntax
[14, 28], a common implementation technique of variable binding in which free variables are
represented as names and the bound ones as de Bruijn indices [17]. In Sect. 4 the separation
between free and bound variables will be even more pronounced, as only the former ones are
annotated with types.

Wewrite e[s/x] for the substitution of an expression s for a boundvariable x in expression e
and e[	s/	x] for the (parallel) substitution of s1, . . . , sn for x1, . . . , xn , with the usual proviso
about avoiding the capture of bound variables. In Sect. 3.1, when we prove admissibility
of substitution, we shall also substitute expressions for free variables, which of course is
written as e[s/a]. Elsewhere we avoid such substitutions and only ever replace free variables
by bound ones, in which case we write e[x/a]. This typically happens when an expression
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with a free variable is used as part of a binder, such as the codomain of a �-type or the body
of a lambda. We take care to always keep bound variables well-scoped under binders.

2.1.2 Arities and Signatures

The raw expressions of a finitary type theory are formed using symbols and metavariables,
which constitute two separate syntactic classes. Each symbol and metavariable has an asso-
ciated arity, as follows.

The symbol arity (c, [(c1, n1), . . . , (ck, nk)]) of a symbol S tells us that

1. the syntactic class of S is c ∈ {Ty, Tm},
2. S accepts k arguments,
3. the i-th argument must have syntactic class ci ∈ {Ty, Tm, EqTy, EqTm} and binds ni

variables.

The syntactic classes Ty and Tm stand for type and term expressions, and EqTy and EqTm for
type and term equations, respectively. For the time being the latter two are mere formalities,
as the only expression of these syntactic classes are the dummy values �Ty and �Tm. However,
in Sect. 4 we will introduce genuine expressions of syntactic classes EqTy and EqTm.

Example 2.1 The arity of a type constant such as bool is (Ty, []), the arity of a binary
term operation such as + is (Tm, [(Tm, 0), (Tm, 0)]). The arity of a quantifier such as the
dependent product Π is (Ty, [(Ty, 0), (Ty, 1)]) because it is a type former taking two type
arguments, with the second one binding one variable, and the arity of a dependent function λ

is (Tm, [(Ty, 0), (Ty, 1), (Tm, 1)]).

The metavariable arity associated to a metavariable M is a pair (c, n), where the syntac-
tic class c ∈ {Ty, Tm, EqTy, EqTm} indicates whether M is respectively a type, term, type
equality, or term equality metavariable, and n is the number of term arguments it accepts.
The metavariables of syntactic classes Ty and Tm are the object metavariables, and can be
used to form expressions. The metavariables of syntactic classes EqTy and EqTm are the
equality metavariables, and do not participate in formation of expressions. We introduce
them to streamline several definitions, and to have a way of referring to equational premises
in Sect. 4. The information about metavariable arities is collected in a metavariable context,
cf. Sect. 2.1.4.

A metavariable M of arity (c, n) could be construed as a symbol of arity

(c, [(Tm, 0), . . . , (Tm, 0)]︸ ︷︷ ︸
n

).

This approach is taken in [6], but we keep metavariables and symbols separate because they
play different roles, especially in context-free type theories in Sect. 4.

The information about symbol andmetavariable arities is respectively collected in a symbol
signature and a metavariable signature, which map symbols and metavariables to their
arities. When discussing syntax, it is understood that such signature have been given, even if
we do not mention them explicitly. In particular, whenever expressions are formed in a given
metavariable context, as described below, it is assumed that the metavariable signature is the
one induced by the context.
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Fig. 1 The raw syntax of expressions, boundaries and judgements

2.1.3 Raw Expressions

The raw syntactic constituents of a finitary type theory, with respect to given symbol and
metavariable signatures, are outlined in Fig. 1. In this section we discuss the top part of the
figure, which involves the syntax of term and type expressions, and arguments.

A type expression, or just a type, is formedby an application S(e1, . . . , en)of a type symbol
to arguments, or an application M(t1, . . . , tn) of a type metavariable to term expressions. A
term expression, or just a term, is a free variable a, a bound variable x , an application
S(e1, . . . , en) of a term symbol to arguments, or an application M(t1, . . . , tn) of a term
metavariable to term expressions.

An argument is a type or a term expression, the dummy argument �Ty of syntactic
class EqTy, or the dummy argument �Tm of syntactic class EqTm. We write just � when
it is clear which of the two should be used. Another kind of argument is an abstraction {x}e,
which binds x in e. An iterated abstraction {x1}{x2} · · · {xn}e is abbreviated as {	x}e. Note
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that abstraction is a primitive syntactic operation, and that it provides no typing information
about x .

Example 2.2 In our notation a dependent product is written as Π(A, {x}B), and a fully anno-
tated function as λ(A, {x}B, {x}e). The fact that x ranges over A is not part of the raw syntax
and will be specified later by an inference rule.

In all cases, in order for an expression to be well-formed, the arities of symbols and
metavariables must be respected. If S has arity (c, [(c1, n1), . . . , (ck, nk)]), then it must be
applied to k arguments e1, . . . , ek , where each ei is of the form {x1} · · · {xni }e′

i with e′
i a

non-abstracted argument of syntactic class ci . Similarly, a metavariable M of arity (c, n)

must be applied to n term expressions. When a symbol S takes no arguments, we write the
corresponding expression as S rather than S(), and similarly for metavariables.

As is usual, expressions which differ only in the choice of names of bound variables are
considered syntactically equal, e.g., {x}S(a, x) and {y}S(a, y) are syntactically equal and we
may write ({x}S(a, x)) = ({y}S(a, y)).

For future reference we define in Fig. 2 the sets of free variable, bound variable, and
metavariable occurrences, where wewrite set comprehension as {| · · · |} in order to distinguish
it from abstraction. A syntactic entity is said to be closed if no free variables occur in it.

2.1.4 Judgements and Boundaries

The bottom part of Fig. 1 displays the syntax of judgements and boundaries, whichwe discuss
next.

There are four judgement forms: “A type” asserts that A is a type; “t : A” that t is a
term of type A; “A ≡ B by �Ty” that types A and B are equal; and “s ≡ t : A by �Tm” that
terms s and t of type A are equal. We may shorten the equational forms to “A ≡ B” and
“s ≡ t : A” in this section, as the only possible choice for by is �.

Less familiar, but equally fundamental, is the notion of a boundary. Whereas a judgement
is an assertion, a boundary is a question to be answered, a promise to be fulfilled, or a goal
to be accomplished: “� type” asks that a type be constructed; “� : A” that the type A be
inhabited; and “A ≡ B by �” and “s ≡ t : A by �” that equations be proved.

An abstracted judgement has the form {x :A} J, where A is a type expression and J is a
(possibly abstracted) judgement. The variable x is bound in J but not in A. Thus in general
an abstracted judgement has the form

{x1:A1} · · · {xn :An} j,
where j is a judgement thesis, i.e. an expression taking one of the four (non-abstracted) judge-
ment forms. We may abbreviate such an abstraction as {	x : 	A} j. Analogously, an abstracted
boundary has the form

{x1:A1} · · · {xn :An} b,
where b is a boundary thesis, i.e. it takes one of the four (non-abstracted) boundary forms.
The reason for introducing abstracted judgements and boundaries will be explained shortly.

An abstracted boundary has the associated metavariable arity

ar({x1:A1} · · · {xn :An} b) = (c, n)
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Fig. 2 Free, bound, and metavariable occurrences

where c ∈ {Ty, Tm, EqTy, EqTm} is the syntactic class of b. Similarly, the associated
metavariable arity of an argument is

ar({x1} · · · {xn}e) = (c, n)

where c ∈ {Ty, Tm} is the syntactic class of the (non-abstracted) expression e.
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Fig. 3 Filling the placeholder of a
boundary

The placeholder � in a boundary B may be filled with an argument e, called the head,
to give a judgement B e , provided that the arities of B and e match. Because equations are
proof irrelevant, their placeholders can be filled uniquely with (suitably abstracted) dummy
value �. Filling is summarized in Fig. 3, where we also include notation for filling an object
boundary with an equation that results in the corresponding equation. The figure rigorously
explicates the dummy values, but we usually omit them. Filling may be inverted: given an
abstracted judgement J there is a unique abstracted boundary B and a unique argument e
such that J = B e .

Example 2.3 If the symbols A and Id have arities

(Ty, []), and (Ty, [(Ty, 0), (Tm, 0), (Tm, 0)]),
respectively, then the boundaries

{x :A}{y:A} � : Id(A, x, y) and {x :A}{y:A} x ≡ y : A by �

may be filled with heads {x}{y}x and {x}{y}� to yield abstracted judgements

{x :A}{y:A} x : Id(A, x, y) and {x :A}{y:A} x ≡ y : A by �.

Names of bound variables are immaterial, we would still get the same judgement if we filled
the left-hand boundary with {u}{v}u or {y}{x}y, but not with {x}{y}y.

Information about availablemetavariables is collected by ametavariable context, which is
a finite list� = [M1:B1, . . . ,Mn :Bn], also construed as amap, assigning to eachmetavariable
Mi a boundaryBi . In Sect. 2.3, the assigned boundaries will assign the typing ofmetavariable,
while at the level of raw syntax they determine metavariable arities. That is, � assigns the
metavariable arity ar(Bi ) to Mi .

A metavariable context � = [M1:B1, . . . ,Mn :Bn] may be restricted to a metavariable
context �(i) = [M1:B1, . . . ,Mi−1:Bi−1].

The metavariable context � is syntactically well formed when each Bi is a syntactically
well-formed boundary over � and the metavariable signature induced by �(i). In addition
each Bi must be closed, i.e. contain no free variables.

A variable context � = [a1:A1, . . . , an :An] over a metavariable context � is a finite list
of pairs written as ai :Ai . It is considered syntactically valid when the variables a1, . . . , an
are all distinct, and for each i the type expression Ai is valid with respect to the signature
and the metavariable arities assigned by �, and the free variables occurring in Ai are among
a1, . . . , ai−1. A variable context� yields a finitemap, also denoted�, defined by�(ai ) = Ai .
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A context is a pair �;� consisting of a metavariable context � and a variable context �
over �. A syntactic entity is considered syntactically valid over a signature and a context
�;� when all symbol and metavariable applications respect the assigned arities, the free
variables are among |�|, and all bound variables are properly abstracted. It goes without
saying that we always require all syntactic entities to be valid in this sense.

A (hypothetical) judgement has the form

�;� � J.

It differs from traditional notion of a judgement in a non-essential way, which nevertheless
requires an explanation. First, the context of a hypothetical judgement

�; a1:A1, . . . , am :Am � {x1:B1} · · · {xm :Bm} j
provides information about metavariables, not just the free variables. Second, the vari-
ables are split between the context a1:A1, . . . , an :An on the left of �, and the abstraction
{x1:B1} · · · {xm :Bm} on the right. It is useful to think of the former as the global hypotheses
that interact with other judgements, and the latter as local to the judgement. We could of
course delegate the metavariable context to be part of the signature as is done in [6], and
revert to the more familiar form

a1:A1, . . . , an :An, x1:B1, . . . , xm :Bm � j

by joining the variable context and the abstraction, but we would still have to carry the
metavariable information in the signature, and would lose the ability to explicitly mark the
split between the global and the local parts. The split will be especially important in Sect. 4,
where the context will be removed, but the abstraction kept.

Hypothetical boundaries are formed in the same fashion, as

�;� � B.

The intended meaning is that B is a well-typed boundary in context �;�.

2.1.5 Metavariable Instantiations

Metavariables are slots that can be instantiated with arguments. Suppose � = 〈M1:B1, . . . ,

Mk :Bk〉 is a metavariable context over a symbol signature �. An instantiation of � over a
context 	;� is a seqence I = 〈M1 �→e1, . . . ,Mk �→ek〉, representing a map that takes each
Mi to an argument ei over 	;� such that ar(Bi ) = ar(ei ).

An instantiation I = 〈M1 �→e1, . . . ,Mk �→ek〉 of � may be restricted to an instantia-
tion I(i) = 〈M1 �→e1, . . . ,Mi−1 �→ei−1〉 of �(i).

An instantiation I of � over 	;� acts on a term- or type-expression u over �;
 to give
an expression I∗u in which the metavariables are replaced by expressions, as follows:

I∗x = x, I∗a = a, I∗� = �, I∗({x}e) = {x}(I∗e),
I∗(S(e1, . . . , en)) = S(I∗e1, . . . , I∗en),

I∗(Mi (t1, . . . , tni )) = ei [(I∗t1)/x1, . . . , (I∗tni )/xni ].
Here, the symbol S and metavariable Mi take n and ni arguments respectively. The instan-
tiated expression I∗u is valid for 	;�, I∗
. Abstracted judgements and boundaries may be
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instantiated too:

I∗(A type) = (I∗A type), I∗(t : A) = (I∗t : I∗A),

I∗(A ≡ B by �) = (I∗A ≡ I∗B by �), I∗({x :A} J) = {x :I∗A} I∗J,

and by imagining that I∗� = �, the reader can tell how to instantiate a boundary. Finally,
a hypothetical judgement �;
 � J may be instantiated to 	;�, I∗
 � I∗J, and similarly
for a hypothetical boundary.

2.2 Deductive Systems

We briefly recall the notions of a deductive system, derivability, and a derivation tree; see
for example [1, 37] for background material. A (finitary) closure rule on a set S is a pair
([p1, . . . , pn], q), also displayed as

p1 · · · pn

q
,

where {p1, . . . , pn} ⊆ S are the premises and q ∈ S is the conclusion. Let Clos(S) be the
set of all closure rules on S.

A deductive system (also called a closure system) on a set S is a family of closure rules
C : R → Clos(S), indexed by a set R of rule names. A set D ⊆ S is said to be deductively
closed for C when, for all i ∈ R, if Ci = ([p1, . . . , pn], q) and {p1, . . . , pn} ⊆ D, then
q ∈ D. The associated closure operator is the map PS → PS which takes D ⊆ S to the
least deductively closed supserset D of D, which exists by Tarski’s fixed-point theorem [36].
We say that q ∈ S is derivable from hypotheses H ⊆ S when q ∈ H , and that it is derivable
in C when q ∈ ∅.

A closure rule ([p1, . . . , pn], q) is admissible for C when {p1, . . . , pk} ⊆ ∅ implies
q ∈ ∅. Note that adjoining an admissible closure rule to a closure system may change its
associated closure operator. In contrast, nothing changes if we adjoin a derivable closure
rule, which is a rule ([p1, . . . , pn], q) such that q ∈ {p1, . . . , pn}.

Derivability is witnessed by well-founded trees, which are constructed as follows. For
each q ∈ S let DerC (q) be generated inductively by the clause:

• for every i ∈ R, if Ci = ([p1, . . . , pn], q) and t j ∈ DerC (p j ) for all j = 1, . . . , n, then
deri (t1, . . . , tn) ∈ DerC (q), where der is a formal tag (a “constructor”).

The elements of DerC (q) are derivation trees with conclusion q . Indeed, we may view
deri (t1, . . . , tn) as a tree with the root labeled by i and the subtrees t1, . . . , tn . A leaf is a tree
of the form der j (), which arises when the corresponding closure rule C j has no premises.

Proposition 2.4 Given a closure system C on S, an element q ∈ S is derivable in C if, and
only if, there exists a derivation tree over C whose conclusion is q.

Proof The claim is that T = {q ∈ S | ∃t ∈ DerC (q) .�} coincides with C . The inclusion
C ⊆ T holds because T is deductively closed. The reverse inclusion T ⊆ C is established
by induction on derivation trees. ��

We remark that allowing infinitary closure rules brings with it the need for the axiom of
choice, for it is unclear how to prove that T is deductively closed without the aid of choice.

It is evident that derivability and derivation trees are monotone in all arguments: if S ⊆ S′,
R ⊆ R′, and the closure system C ′ : R′ → Clos(S′) restricts to C : R → Clos(S), then any
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q ∈ S derivable in C is also derivable in C ′ as an element of S′. Moreover, any derivation
tree in DerC (q) may be construed as a derivation tree in DerC ′(q).

Henceforth we shall consider solely deductive systems on the set of hypothetical judge-
ments and boundaries. Because we shall vary the deductive system, it is useful to write
�;� �C J when (�;� � J) ∈ C , and similarly for �;� �C B.

2.3 Raw Rules and Type Theories

A type theory in its basic form is a collection of closure rules. Some closure rules are specified
directly, but many are presented by inference rules—templates whose instantiations yield the
closure rules. We deal with the raw syntactic structure of such rules first.

Definition 2.5 A raw rule over a symbol signature � is a hypothetical judgement over � of
the form �; [ ] � j. We notate such a raw rule as

� �⇒ j.

The elements of � are the premises and j is the conclusion. We say that the rule is an
object rule when j is a type or a term judgement, and an equality rule when j is an equality
judgement.

Defining inference rules as hypothetical judgements with empty contexts and empty
abstractions permits in many situations uniform treatment of rules and judgements. Note
that the premises and the conclusion may not contain any free variables, and that the conclu-
sion must be non-abstracted. Neither condition impedes expressivity of raw rules, because
free variables and abstractions may be promoted to premises.

Example 2.6 To help the readers’ intuition, let us see howDefinition 2.5 captures a traditional
inference rule, such as product formation

Ty- Π

� A type � {x :A} B(x) type

� Π(A, {x}B(x)) type

Theuse ofA andB in the premises reveals that their arities are (Ty, 0), and (Ty, 1), respectively.
In fact, the premises assign boundaries tometavariables: eachpremise is a boundaryfilledwith
a particular head, namely a generically applied metavariable. If we pull out the metavariables
from the heads of premises, the assignment becomes explicit:

A: (� type) B: ({x :A} � type)

Π(A, {x}B(x)) type

This is just a different way of writing the raw rule

A:(� type), B:({x :A} � type) �⇒ Π(A, {x}B(x)) type.

Example 2.7 We may translate raw rules back to their traditional form by filling the heads
with metavariables applied to the variables they abstracts over. For example, the reader may
readily verify that the raw rule

A:(� type), B:({x :A} � type), b:({x :A} � : B(x))

�⇒
λ(A, {x}B(x), {x}b(x)) : Π(A, {x}B(x))
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corresponds to the lambda introduction rule of dependent type theory that is traditionally
written as

Tm- λ

� A type � {x :A} B(x) type � {x :A} b(x) : B(x)

� λ(A, {x}B(x), {x}b(x)) : Π(A, {x}B(x))

Metavariables occurring as arguments to symbols, such as {x}B(x) in the conclusion of
the previous example, are often abstracted and immediately applied. We record this pattern
in the following definition.

Definition 2.8 The generic application M̂ of the metavariableMwith associated boundaryB
is defined as:

1. M̂ = {x1} · · · {xk}M(x1, . . . , xk) if ar(B) = (c, k) and c ∈ {Ty, Tm},
2. M̂ = {x1} · · · {xk} � if ar(B) = (c, k) and c ∈ {EqTy, EqTm}.

Using generic metavariable applications, we can write the conclusion of Tm-λ more
concisely as � λ(̂A, B̂, b̂) : Π(̂A, B̂), where we note that Â = A.

Example 2.9 An informal presentation of type theorymight specify the result type of applying
f to a as “Bwith a substituted for x”, i.e. B[a/x]. Since substitution is not part of the syntax of
raw type theories but defined as a meta-operation, such a formulation would be nonsensical
in our setting. The raw rule for application with full typing annotations on app can be written
as follows.

Tm- app

� A type � {x :A} B(x) type � f : Π(A, B̂) � a : A
� app(A, B̂, f, a) : B(a)

Instead of using substitution, we define the type of the application as the metavariable appli-
cation B(a), which is syntactically well-formed since ar(B) = (Ty, 1) in the above rule.

Example 2.10 Raw rules can also describe how to derive equality judgements. For instance,
the raw rule

A:(� type), s:(� : A), t:(� : A), p:(� : Id(A, s, t)) �⇒ s ≡ t : A by �

corresponds to the equality reflection rule of extensional type theory that is traditionally
written as

Eq- Reflect

� A type � s : A � t : A � p : Id(A, s, t)

� s ≡ t : A
For everyone’s benefit, we shall display raw rules in traditional form, but use Definition 2.5
when formalities demand so.

Example 2.11 A rule that combines several aspects of the previous examples is β-reduction.

EqTm- β

� A type � {x :A} B(x) type � {x :A} b(x) : B(x) � a : A
� app(A, B̂, λ(A, B̂, b̂), a) ≡ b(a) : B(a)

Just like in Tm- app, we use metavariable application b(a) to describe the result of the
β-reduction. Once the raw rule is instantiated into a closure rule, this application will be
“activated” into a substitution.
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It may be mystifying that there is no variable context � in a raw rule, for is it not the
case that rules may be applied in arbitrary contexts? Indeed, closure rules have contexts, but
raw rules do not because they are just templates. The context appears once we instantiate the
template, as follows.

Definition 2.12 An instantiation of a raw rule R = (M1:B1, . . . ,Mn :Bn �⇒ b e ) over
context �;� is an instantiation I = 〈M1 �→e1, . . . ,Mn �→en〉 of its premises over �;�. The
associated closure rule I∗R is ([p1, . . . , pn, q], r) where pi is �;� � (I(i)∗Bi ) ei , q is

�;� � I∗b, and r is �;� � I∗(b e ).

We included among the premises thewell-formedness of the instantiated boundary�;� �
I∗b, so that the conclusion is well-formed.We need the premise as an induction hypothesis in
the proof of Theorem 3.18. In Sect. 3.2 we shall formulate well-formedness conditions that
allow us to drop the boundary premise.

Of special interest are the rules that give type-theoretic meaning to primitive symbols. To
define them, we need the boundary analogue of raw rules.

Definition 2.13 A raw rule-boundary over a symbol signature � is a hypothetical boundary
over � of the form �; [ ] � b. We notate such a raw rule-boundary as

� �⇒ b.

The elements of � are the premises and b is the conclusion boundary. We say that the rule-
boundary is an object rule-boundary when b is a type or a term boundary, and an equality
rule-boundary when b is an equality boundary.

Here is how a rule-boundary generates a rule associated to a symbol.

Definition 2.14 Given a raw object rule-boundary

M1:B1, . . . ,Mn :Bn �⇒ b

over �, the associated symbol arity is (c, [ar(B1), . . . , ar(Bn)]), where c ∈ {Ty, Tm} is the
syntactic class of b. The associated symbol rule for S /∈ |�| is the raw rule

M1:B1, . . . ,Mn :Bn �⇒ b S(M̂1, . . . , M̂n)

over the extended signature 〈�, S�→(c, [ar(B1), . . . , ar(Bn)])〉, where M̂i is the generic appli-
cation of the metavariableMi with associated boundary Bi . A raw rule is said to be a symbol
rule if it is the associated symbol rule for some symbol S.

The above definition is motivated by the observation that the head of the conclusion of
a symbol rule has a particular shape, which can be calculated from its rule-boundary. The
definition thus only requires the specification of the necessary data. Instead of describing
how to construct a symbol rule given a rule boundary and symbol, we could have defined
them directly as raw rules with conclusion heads of a particular form, but that would be less
economical, since we would have to write out the conclusion in full, and we would still have
to verify that the supplied head is the expected one. In examples we shall continue to display
symbol rules in their traditional form.

Example 2.15 According to Definition 2.14, the symbol rule for Π is generated by the rule-
boundary

� A type � {x :A} B(x) type

� � type
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Indeed, the associated symbol rule for Π is

� A type � {x :A} B(x) type

� Π(A, {x}B(x)) type

We allow equational premises in object rules. For example,

Refl’

� A type � s : A � t : A � s ≡ t : A
� refl(A, s, t, �) : Id(A, s, t)

is a valid symbol rule, assuming Id and refl have their usual arities.

We also record the analogous construction of an equality rule from a given equality rule-
boundary.

Definition 2.16 Given an equality rule-boundary

M1:B1, . . . ,Mn :Bn �⇒ b,

the associated equality rule is

M1:B1, . . . ,Mn :Bn �⇒ b � .

We next formulate the rules that all type theories share, starting with the most nitty-gritty
ones, the congruence rules.

Definition 2.17 The congruence rules associated with a raw object rule R

M1:B1, . . . ,Mn :Bn �⇒ b e

are closure rules, for any

I = 〈M1 �→ f1, . . . ,Mn �→ fn〉 and J = 〈M1 �→g1, . . . ,Mn �→gn〉,
of the form

�;� � (I(i)∗Bi ) fi for i = 1, . . . , n

�;� � (J(i)∗Bi ) gi for i = 1, . . . , n

�;� � (I(i)∗Bi ) fi ≡ gi for object boundary Bi

�;� � I∗B ≡ J∗B if b = (� : B)

�;� � (I∗b) I∗e ≡ J∗e
In case of a term equation at type B, the congruence rule has the additional premise

�;� � I∗B ≡ J∗B, which ensures that the right-hand side of the conclusion J∗e has type
I∗B. Having the equation available as a premise allows us to use it in the inductive proof
of Theorem 3.18. In Sect. 3.2 we show that the rule without the premises is derivable under
suitable conditions.

Example 2.18 The congruence rule associated with the product formation rule from Exam-
ple 2.6 is

�;� � A1 type �;� � {x :A1} B1 type

�;� � A2 type �;� � {x :A2} B2 type

�;� � A1 ≡ A2 �;� � {x :A1} B1 ≡ B2

�;� � Π(A1, {x}B1) ≡ Π(A2, {x}B2)
(2.1)
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Next we have formation and congruence rules for the metavariables. As metavariables are
like symbols whose arguments are terms, it is not suprising that their rules are quite similar
to symbol rules.

Definition 2.19 Given a context �;� over � with � = [M1:B1, . . . ,Mn :Bn], and Bk =
({x1:A1} · · · {xm :Am} b), the metavariable rules for Mk are the closure rules of the form

TT- Meta

�(Mk) = {x1:A1} · · · {xm :Am} b
�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � b[	t/	x]
�;� � (b[	t/	x])Mk(	t)

where 	x = (x1, . . . , xm) and 	t = (t1, . . . , tm). Recall that 	t( j) stands for [t1, . . . , t j−1]. In the
second line of premises, we thus substitute the preceding term arguments t1, . . . , t j−1 for the
bound variables x1, . . . , x j−1 in each type A j . The last premise ensures the well-formedness
of the boundary of the conclusion, just like the definition of the closure rule associated to a
raw rule (Def. 2.12).

Furthermore, if b is an object boundary, then the metavariable congruence rules for Mk

are the closure rules of the form

TT- Meta- Congr

�(Mk) = {x1:A1} · · · {xm :Am} b
�;� � s j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � C[	s/	x] ≡ C[	t/	x] if b = (� : C)

�;� � (b[	s/	x])Mk(	s) ≡ Mk(	t)
where 	s = (s1, . . . , sm) and 	t = (t1, . . . , tm).

Example 2.20 If we collect the metavariables A and B introduced by the premises
of the product formation rule from Example 2.6 into a metavariable context � =
[A : � type, B : {x :A} � type], we can apply the metavariable rule TT- Meta to derive
that B(a) is a well-formed type under the context �; a :A.

�(B) = {x :A} � type �; a :A � a : A �; a :A � � type

�; a :A � B(a) type

We are finally ready to give a definition of type theory which is sufficient for explaining
derivability.

Definition 2.21 A raw type theory T over a signature � is a family of raw rules over �,
called the specific rules of T . The associated deductive system of T consists of:

1. the structural rules over �:

(a) the variable, metavariable, metavariable congruence, and abstraction closure rules
(Fig. 4),

(b) the equality closure rules, (Fig. 5),
(c) the boundary closure rules (Fig. 6);
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Fig. 4 Variable, metavariable and abstraction closure rules

Fig. 5 Equality closure rules

2. the instantiations of the specific rules of T (Definition 2.12);
3. for each specific object rule of T , the instantiations of the associated congruence rule

(Definition 2.17).

We write � �T J when � � J is derivable with respect to the deductive system associated
to T , and similarly for � �T B.

Several remarks are in order regarding the above definition and the rules in Figs. 4, 5 and
6:
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Fig. 6 Well-formed abstracted boundaries

Fig. 7 Well-formed metavariable and variable contexts

1. It is assumed throughout that all the entities involved are syntactically valid, i.e. that arities
are respected and variables are well-scoped.

2. The metavariable rules TT- Meta and TT- Meta- Congr are exactly as in Defini-
tion 2.19.

3. The rules TT- Var, TT- Meta, and TT- Abstr contain side-conditions, such as a ∈ |�|
and�(M) = {x1:A1} · · · {xm :Am} b. For purely aesthetic reasons, these are written where
premises ought to stand. For example, the correct way to read TT- Abstr is: “For all �,
�, A, a, J, if a /∈ |�|, then there is a closure rule with premises �;� � A type and
�;�, a:A � J[a/x], and the conclusion �;� � {x :A} J.”

4. The structural rules impose no well-typedness conditions on contexts. Instead, Fig. 7
provides two auxiliary judgement forms, “� � mctx” and “� � � vctx”, stating that
� is a well-typed metavariable context, and � a well-typed variable context over �,
respectively. These will be used as necessary. Note that imposing the additional premise
�;� � �(a) type in TT- Var (where �(a) is the type assigned to a by �) would not
ensurewell-formednes of�, as not all variables need be accessed in a derivation.Requiring
that TT- Meta check the boundary of the metavariable is similarly ineffective.

5. We shall show in Sect. 3.1 that substitution rules (Fig. 8) are admissible.

Thismaybe a goodmoment to record the difference betweenderivability and admissibility.

Definition 2.22 Consider a raw theory T and a raw rule R, both over a symbol signature �:

1. R is derivable in T when R qua judgement has a derivation in T .
2. R is admissible in T when, for every instantiation I of R, if the premises of I∗R are

derivable in T then so is its conclusion.
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Fig. 8 Admissible substitution rules

2.4 Finitary Rules and Type Theories

Raw rules are syntactically well-behaved: the premises and the conclusion are syntactically
well-formed entities, and all metavariables, free variable and bound variables well-scoped.
Nevertheless, a raw rule may be ill-formed for type-theoretic reasons, a deficiency rectified
by the next definition.

Recall that a well-founded order on a set I is an irreflexive and transitive relation ≺
satisfying, for each S ⊆ I ,

(∀i ∈ I . (∀ j ≺ i . j ∈ S) ⇒ i ∈ S) ⇒ S = I .

The logical reading of the above condition is an induction principle: in order to show ∀x ∈
I . φ(x) one has to prove, for any i ∈ I , that φ(i) holds assuming that φ( j) does for all j ≺ i .

Definition 2.23 Given a raw theory T over a symbol signature �, a raw rule � �⇒ b e
over � is finitary over T when �T � mctx and �; [ ] �T b. Similarly, a raw rule-boundary
� �⇒ b is finitary when �T � mctx and �; [ ] �T b.

A finitary type theory is a raw type theory (Ri )i∈I for which there exists a well-founded
order (I ,≺) such that each Ri is finitary over (R j ) j≺i .

The type theories with context in this paper correspond loosely to the fragment of general
type theories [6] where the arities of symbols and rules are restricted to be finite, while
general type theories allow the premises to be families of arbitrary size. While raw type
theories are already subject to this restriction, we reserve the name finitary for the “good”
rules and theories, that are well-formed according to the above definition.

Examples of rules that exhibit problematic circularities which are ruled out by the finitary
requirements can be found in the section on “Acceptable type theories” in [6]; see also
Sect. 6 of loc. cit. for a thorough discussion of the merits of well-founded presentations of
type theories.
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Example 2.24 We take stock by considering several examples of rules. The rule

Unique- Ty

� A type � B type � t : A type � t : B type

� A ≡ B

is not raw because it introduces themetavariable t twice, and hence gives rise to a syntactically
ill-formed metavariable context. Assuming Π has arity (Ty, [(Ty, 0), (Ty, 1)]), consider the
rules

Ty- Π- Short

� {x :A} B(x) type

� Π(A, {x}B(x))

Ty- Π- Long

� A type � {x :A} B(x) type

� Π(A, {x}B(x))

The rule Ty-Π-Short is not raw because it fails to introduce the metavariable A, while
Ty-Π-Long is finitary over any theory. The rule

Succ- Congr- Typo

� m : nat � n : bool � m ≡ n : nat
� succ(m) ≡ succ(n) : nat

is raw when the symbols bool, nat, and succ respectively have arities (Ty, []), (Ty, []), and
(Tm, [(Tm, 0)]). Whether it is also finitary depends on a theory. For instance, given the raw
rules

Ty- Bool

� bool type

Ty- Nat

� nat type

Tm- Succ

� n : nat
� succ(n) : nat

Bool- Eq- Nat

� bool ≡ nat

the ruleSucc- Congr- Typo is not finitary over the first three rules, but is finitary over all four
of them. As a last example, given the symbol Id with arity (Ty, [(Ty, 0), (Tm, 0), (Tm, 0)]),
the rules

Ty- Id

� A type � s : A � t : A
� Id(A, s, t) type

Ty- Id- Typo

� A type � s : A � t : A
� Id(A, s, s) type

Eq- Reflect

� A type � s : A � t : A � p : Id(A, s, t)

� s ≡ t : A

are all raw, both Ty- Id and Ty- Id- Typo are finitary over an empty theory, while Eq- Re-
flect is finitary over a theory containing Ty- Id. The rule Ty- Id is a symbol rule, but
Ty- Id- Typo is not.

Could we have folded Definition 2.5 of raw rules and Definition 2.23 of finitary rules into
a single definition? Not easily, as that would generate a loop: finitary rules refer to theories
and derivability, which refer to closure rules, which are generated from raw rules. Without
a doubt something is to be learned by transforming the cyclic dependency to an inductive
definition, but we do not attempt to do so here.

A finitary type theory is fairly well behaved from a type-theoretic point of view, but can
still suffer from unusual finitary rules, such asTy- Id- Typo from Example 2.24, which looks
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like a spelling mistake. We thus impose a further restriction by requiring that every rule be
either a symbol rule or an equality rule.

Definition 2.25 A finitary type theory is standard if its specific object rules are symbol rules,
and each symbol has precisely one associated rule.

A standard type theory and its symbol signature may be built iteratively as follows:

1. The empty theory is standard over the empty signature.
2. Given a standard type theory T over �, and a rule-boundary

M1:B1, . . . ,Mn :Bn �⇒ b

finitary for T :

• If b is an object boundary, and S /∈ |�|, then T extended with the associated symbol
rule

M1:B1, . . . ,Mn :Bn �⇒ b S(M̂1, . . . , M̂n)

is standard over the extended signature 〈�, S�→α〉, where α is the symbol arity asso-
ciated with the rule-boundary.

• If b is an equation boundary, then T extended with the equality rule

M1:B1, . . . ,Mn :Bn �⇒ b �

is standard over �.

A more elaborate well-founded induction may be employed when a theory features infinitely
many rules, such as an infinite succession of universes.

3 Meta-theorems

We put our definitions to the test by proving meta-theorems which stipulate desirable
structural properties of type theories. The theorems are all rather standard and expected.
Nevertheless, we prove them to verify that our definition of type theories is sensible, and to
provide general-purpose meta-theorems that apply in a wide range of situations.

Making the statements precise in full generality has not always been trivial. We there-
fore include them here, together with statements of auxiliary lemmas, to give the reader an
overview of the technique, but mostly relegate the rather lengthy induction proofs to the
appendix. We shall continue to do so in subsequent sections.

3.1 Meta-theorems About RawTheories

A renaming of an expression u is an injective map ρ with domainmv(u) ∪ fv(u) that takes
metavariables to metavariables and free variables to free variables. The renaming acts on u to
yield an expressionρ∗u by replacing each occurrence of ametavariableM and a free variable a
with ρ(M) and ρ(a), respectively. We similarly define renamings of contexts, judgements,
and boundaries.

Proposition 3.1 (Renaming) If a raw type theory derives a judgement or a boundary, then
it also derives its renamings.
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Proof Let ρ be a renaming of a derivable judgement �;� � J. We show that ρ∗�; ρ∗� �
ρ∗J is derivable by induction on the derivation. The case of boundaries is similar.

Most cases only require a direct application of the induction hypotheses to the premises.
The only somewhat interesting case is TT- Abstr,

�;� � A type a /∈ |�| �;�, a:A � J[a/x]
�;� � {x :A} J

As a /∈ |�|, and thus a /∈ |ρ|, we may extend ρ to a renaming ρ′ = 〈ρ, a �→b〉, where b is
such that b /∈ |ρ∗�|. By induction hypothesis for the first premise, ρ∗�; ρ∗� � ρ∗A type
is derivable. We apply the induction hypothesis for the second premise to ρ′ and obtain
ρ′∗�; ρ′∗(�, a:A) � ρ′∗(J[a/x]), which equals ρ∗�; ρ∗�,b:ρ∗A � (ρ∗J)[b/x]. Thus, we
may conclude by TT- Abstr,

ρ∗�; ρ∗� � (ρ∗A) type b /∈ |ρ∗�| ρ∗�; ρ∗�,b:ρ∗A � (ρ∗J)[b/x]
ρ∗�; ρ∗� � {x :ρ∗A} ρ∗J

��
Proposition 3.2 (Weakening) For a raw type theory:

1. If �;�1, �2 � J and a /∈ |�1, �2| then �;�1, a:A, �2 � J.
2. If �1,�2;� � J and M /∈ |�1,�2| then �1,M:B,�2;� � J.

An analogous statement holds for boundaries.

Proof Once again we proceed by induction on the derivation of the judgement in a straight-
forward manner, where the case TT- Abstr relies on renaming (Proposition 3.1) to ensure
that a remains fresh in the subderivations. ��

In several places we shall require well-formedness of contexts, a useful consequence of
which we record first.

Proposition 3.3 If a raw type theory derives � � mctx then it derives �; [ ] � �(M) for
every M ∈ |�|; and if it derives � � � vctx, then it derives �;� � �(a) type for every
a ∈ |�|.
Proof By induction on the derivation of � � mctx and � � � vctx, respectively, followed
by weakening. ��

3.1.1 Admissibility of Substitution

In this section we prove that in a raw type theory substitution rules are derivable closure rules
in the sense of Sect. 2.2, and that substitution preserves judgemental equality.

Lemma 3.4 If a raw type theory derives �;�, a:A,
 � J and �;� � t : A then it derives
�;�,
[t/a] � J[t/a].
Proof See the proof on Page 64. ��
Lemma 3.5 If a raw type theory derives �;�, a:A,
 � B and �;� � t : A then it derives
�;�,
[t/a] � B[t/a].
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Proof Thebase cases immediately reduce to the previous lemma.The case ofTT- Bdry- Ab-
str is similar to the case of TT- Abstr in the previous lemma. ��
Lemma 3.6 In a raw type theory the following closure rules are admissible:

TT- Subst

�;� � {x :A} J �;� � t : A
�;� � J[t/x]

TT- Bdry- Subst

�;� � {x :A} B �;� � t : A
�;� � B[t/x]

TT- Conv- Abstr

�;� � {x :A} J �;� � B type �;� � A ≡ B

�;� � {x :B} J
Proof See the proof on Page 66. ��

The next lemma claims that substitution preserves equality, but is a bit finicky to state.
Given terms s and t , and an object judgement J, define J[(s ≡ t)/a] by

(A type)[(s ≡ t)/a] = (A[s/a] ≡ A[t/a])
(u : A)[(s ≡ t)/a] = (u[s/a] ≡ u[t/a] : A[s/a])

({x :A} J)[(s ≡ t)/a] = ({x :A[s/a]} J[(s ≡ t)/a]).
That is, J[(s ≡ t)/a] descends into abstractions by substituting s for a in the types, and
distributes types and terms over the equation s ≡ t .

Lemma 3.7 If a raw type theory derives

�;� � s : A, (3.1)

�;� � t : A, (3.2)

�;� � s ≡ t : A. (3.3)

�;�, a:A,
 � J, (3.4)

�;�,
[s/a] � B[s/a] ≡ B[t/a] for all b ∈ |
|with 
(b) = B, (3.5)

then it derives

1. �;�,
[s/a] � J[s/a],
2. �;�,
[s/a] � J[t/a], and
3. �;�,
[s/a] � J[(s ≡ t)/a] if J is an object judgement.

Proof See the proof on Page 66. ��
Theorem 3.8 (Admissibility of substitution) In a raw type theory, the closure rules from
Fig.8 are admissible.

Proof We already established admissibility of TT- Subst, TT- Bdry- Subst, and TT- -

Conv- Abstr in Lemma 3.6. Both TT- Subst- EqTy and TT- Subst- EqTm are seen to be
admissible the same way: invert the abstraction and apply Lemma 3.7 to derive the desired
conclusion. ��

We provide two more lemmas that allow us to combine substitutions and judegmental
equalities more flexibly.
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Lemma 3.9 Suppose a raw type theory derives

�;� � s : A, �;� � t : A, and �;� � s ≡ t : A.

1. If it derives

�;� � {x :A}{	y: 	B} C ≡ D and �;� � {x :A}{	y: 	B} D type

then it derives �;� � {	y: 	B[s/x]} C[s/x] ≡ D[t/x].
2. If it derives

�;� � {x :A}{	y: 	B} u ≡ v : C and �;� � {x :A}{	y: 	B} v : C
then it derives �;� � {	y: 	B[s/x]} u[s/x] ≡ v[t/x] : C[s/x].

Proof See the proof on Page 69. ��
Lemma 3.10 Suppose a raw type theory derives, for i = 1, . . . , n,

�;� � si : Ai [	s(i)/	x(i)]
�;� � ti : Ai [	t(i)/	x(i)]
�;� � si ≡ ti : Ai [	s(i)/	x(i)].

If it derives an object judgement �;� � {	x : 	A} B e then it derives

�;� � (B[	s/	x]) e[	s/	x] ≡ e[	t/	x] .
Proof See the proof on Page 69. ��

3.1.2 Admissibility of Instantiations

We next turn to admissibility of instantiations, i.e. preservation of derivability under instan-
tiation of metavariables by heads of derivable judgements.

Definition 3.11 An instantiation I = 〈M1 �→e1, . . . ,Mn �→en〉 of a metavariable context	 =
[M1:B1, . . . ,Mn :Bn] over �;� is derivable when �;� � (I(k)∗Bk) ek is derivable for
k = 1, . . . , n.

Lemma 3.12 In a raw type theory, let I be a derivable instantiation of 	 over context �;�.
If 	;�,
 � J is derivable then so is �;�, I∗
 � I∗J, and similarly for boundaries.

Proof See the proof on Page 70. ��
Theorem 3.13 (Admissibility of instantiation) In a raw type theory, let I be a derivable
instantiation of 	 over context �;�. If 	;� � J is derivable then so is �;� � I∗J, and
similarly for boundaries.

Proof Apply Lemma 3.12 with empty 
. ��
We next show that, under favorable conditions, instantiating by judgementally equal

instantiations leads to judgemental equality. To make the claim precise, define the notation
(I ≡ J )∗J by

(I ≡ J )∗(A type) = (I∗A ≡ J∗A by �),

(I ≡ J )∗(t : A) = (I∗t ≡ J∗t : I∗A by �),

(I ≡ J )∗({x :A} J) = ({x :I∗A} (I ≡ J )∗J)
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and say that instantiations

I = 〈M1 �→e1, . . . ,Mn �→en〉 and J = 〈M1 �→ f1, . . . ,Mn �→ fn〉
of 	 = [M1:B1, . . . ,Mn :Bn] over �;� are judgementally equal when, for k = 1, . . . , n, if
Bk is an object boundary then �;� � (I(k)∗Bk) ek ≡ fk is derivable.

Lemma 3.14 In a raw type theory, consider derivable instantiations I and J of 	 =
[M1:B1, . . . ,Mn :Bn] over �;� which are judgementally equal. Suppose that � 	 mctx
and � � � vctx, and that �;�,
 � (I(i)∗Bi ) J (Mi ) is derivable for i = 1, . . . , n, and
additionally that, for all a ∈ |
| with 
(a) = A, so are

�;�, I∗
 � I∗A type,

�;�, I∗
 � J∗A type,

�;�, I∗
 � I∗A ≡ J∗A

If 	;�,
 � J is derivable then so are

�;�, I∗
 � I∗J, (3.6)

�;�, I∗
 � J∗J, (3.7)

�;�, I∗
 � (I ≡ J )∗J if J is an object judgement. (3.8)

Proof See the proof on Page 71. ��
Lemma3.14 imposes conditions on the instantiations and the contextwhich can be reduced

to the more familiar assumption of well-typedness of the context, using Lemma 3.14 itself,
as follows.

Lemma 3.15 In a raw type theory, consider 	 = [M1:B1, . . . ,Mn :Bn] such that � 	 mctx,
and derivable instantiations

I = 〈M1 �→e1, . . . ,Mn �→en〉 and J = 〈M1 �→ f1, . . . ,Mn �→ fn〉
of 	 over �;� which are judgementally equal. Suppose further that � � � vctx and
�;� � (I(i)∗Bi ) fi for i = 1, . . . , n. If � � (�,
) vctx, then for all a ∈ |
| with

(a) = A:

�;�, I∗
 � I∗A type,

�;�, I∗
 � J∗A type,

�;�, I∗
 � I∗A ≡ J∗A.

Proof See the proof on Page 74. ��
Lemma 3.16 In a raw type theory, consider 	 = [M1:B1, . . . ,Mn :Bn] such that � 	 mctx,
and derivable instantiations

I = 〈M1 �→e1, . . . ,Mn �→en〉 and J = 〈M1 �→ f1, . . . ,Mn �→ fn〉
of 	 over �;� which are judgementally equal. Suppose that � � � vctx. Then �;� �
(I(i)∗Bi ) fi is derivable for i = 1, . . . , n.

Proof See the proof on Page 75. ��
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Finally, the lemmas can be assembled into an admissibility theorem about judgementally
equal derivable instantiations.

Theorem 3.17 (Admissibility of instantiation equality) In a raw type theory, consider deriv-
able instantiations I and J of 	 over �;� which are judgementally equal. Suppose that
� 	 mctx and � � � vctx. If an object judgement 	;� � J is derivable then so is
�;� � (I ≡ J )∗J.

Proof Lemma 3.14 applies with empty 
 because the additional precondition for I and J is
guaranteed by Lemma 3.16. ��

Our last meta-theorem about raw type theories shows that whenever a judgement is deriv-
able, so are its presuppositions, i.e., its boundary is well-formed.

Theorem 3.18 (Presuppositivity) If a raw type theory derives � � mctx, � � � vctx, and
�;� � B e then it derives �;� � B.

Proof See the proof on Page 76. ��

3.2 Meta-theorems About Finitary Type Theories

Several closure rules contain premises which at first sight seem extraneous, in particular
the boundary premises in rule instantiations (Definition 2.12) and the object premises in a
congruence rule (Definition 2.17). While these are needed for raw rules, they ought to be
removable for finitary rules, which already havewell-formed boundaries.We show that this is
indeed the case by providing economic versions of the rules, which are admissible in finitary
type theories. We also show that the metavariable rules (Definition 2.19) have economic
versions that are valid inwell-formedmetavariable contexts, such as themetavariable contexts
of finitary rules. Finitary type theories thus allow us to relegate the verification of boundary
premises to the definition of the rules, when finitary conditions are checked once and for all,
instead of deriving boundary premises for each instance.

Proposition 3.19 (Economic version of Definition 2.12) Let R be the raw rule 	 �⇒ b e
with 	 = [M1:B1, . . . ,Mn :Bn] such that 	; [ ] � b is derivable, in particular R may be
finitary. Then for any instantiation I = [M1 �→e1, . . . ,Mn �→en] over �;�, the following
closure rule is admissible:

TT- Specific- Eco

�;� � (I(i)∗Bi ) ei for i = 1, . . . , n

�;� � I∗(b e )

Proof To apply I∗R, derive the missing premise �;� � I∗b via Theorem 3.13. ��
Proposition 3.20 (Economic version of Definition 2.19) If a raw type theory derives �
� mctx and � � � vctx with �(M) = ({x1:A1} · · · {xm :Am} b), the following closure rules
are admissible:

TT- Meta- Eco

�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � (b[	t/	x])M(	t)
TT- Meta- Congr- Eco

�;� � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � (b[	s/	x])Mk(	s) ≡ Mk(	t)
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Proof See the proof on Page 77. ��

Lemma 3.21 In a raw type theory, suppose 	;� � B, and consider judgementally equal
derivable instantiations I , J of 	 over �;�. If �;� � (I∗B) e is derivable then so is
�;� � (J∗B) e .

Proof See the proof on Page 78. ��

Proposition 3.22 (Economic version of Definition 2.17) In a finitary type theory, consider
one of its object rules R

M1:B1, . . . ,Mn :Bn �⇒ b e .

Given instantiations of its premises,

I = 〈M1 �→ f1, . . . ,Mn �→ fn〉 and J = 〈M1 �→g1, . . . ,Mn �→gn〉,
over �;� such that � � mctx and � � � vctx, the following closure rule is admissible:

TT- Congr- Eco

�;� � (I(i)∗Bi ) fi for equation boundary Bi

�;� � (I(i)∗Bi ) fi ≡ gi for object boundary Bi

�;� � (I∗b) I∗e ≡ J∗e

Proof See the proof on Page 78. ��

3.3 Meta-theorems About Standard Type Theories

We next investigate to what extent a derivation of a derivable judgement can be reconstructed
from the judgement itself. Firstly, a term expression holds enough information to recover a
candidate for its type, since a standard type theory associates a unique rule, and thus a unique
(type) boundary, to each (term) symbol.

Definition 3.23 Let T be a standard type theory. The natural type τ�;�(t) of a term expres-
sion t with respect to a context �;� is defined by:

τ�;�(a) = �(a),

τ�;�(M(	t)) = B[	t/	x] where �(M) = ({	x : 	A} � : B)

τ�;�(S(	e)) = 〈 	M �→	e〉∗B where the (unique) rule for S is 	M: 	B �⇒ � : B

We prove an inversion principle that recovers the “stump” of a derivation of a derivable
object judgement.

Theorem 3.24 (Inversion) If a standard type theory derives an object judgement then there
is a derivation of this judgement which concludes with precisely one of the following rules:

1. the variable rule TT- Var,
2. the metavariable rule TT- Meta,
3. an instantiation of a symbol rule,
4. the abstraction rule TT- Abstr,
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5. the term conversion rule TT- Conv- Tm of the form

�;� � t : τ�;�(t) �;� � τ�;�(t) ≡ A

�;� � t : A
where τ�;�(t) �= A.

Proof See the proof on Page 79. ��

We may keep applying the theorem to all the object premises of a stump to recover the
proof-relevant part of the derivation. The remaining proof-irrelevant parts are the equational
premises. The inversion theoremyields further desirablemeta-theoretic properties of standard
type theories.

Corollary 3.25 If a standard type theory derives �;� � t : A then it derives �;� �
τ�;�(t) ≡ A.

Proof By inversion, τ�;�(t) = A or we obtain a derivation of � τ�;�(t) ≡ A. ��

Theorem 3.26 (Uniqueness of typing) For a standard type theory:

1. If �;� � t : A and �;� � t : B then �;� � A ≡ B.
2. If � � mctx and � � � vctx and �;� � s ≡ t : A and �;� � s ≡ t : B then

�;� � A ≡ B.

Proof The first statement holds because A and B are both judegmentally equal to the nat-
ural type of t by Corollary 3.25. The second statement reduces to the first one because the
presuppositions �;� � t : A and �;� � t : B are derivable by Theorem 3.18. ��

4 Context-Free Finitary Type Theories

In the forward-chaining style, characteristic ofLCF-style theoremprovers,whichAndromeda2
is designed to be, a judgement is not construed by reducing a goal to subgoals, but as a value
of an abstract datatype, and built by applying an abstract datatype constructor to previously
derived judgements. What should such a constructor do when its arguments have mismatch-
ing variable contexts? It can try to combine them if possible, or require that the user make
sure ahead of time that they match. As was already noted by Geuvers et al. in the context
of pure type systems [19], it is best to sidestep the whole issue by dispensing with contexts
altogether. In the present section we give a second account of finitary type theories, this
time without context and with free variables explicitly annotated with their types. These are
actually implemented in the Andromeda 2 trusted nucleus.

Our formulation of context-free finitary type theories is akin to the �∞ formalism for
pure type systems [19]. We would like to replace judgements of the form “�;� � J” with
just “J”. In traditional accounts of logic, as well as in �∞, this is accomplished by explicit
type annotations of free variables: rather than having a : A in the variable context, each
occurrence of a is annotated with its type as aA.

We use the same idea, although we have to overcome several technical complications, of
which the most challenging one is the lack of strengthening, which is the principle stating
that if �;�, a:A,
 � J is derivable and a does not appear in 
 and J, then �;�,
 � J is
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derivable. An example of a rule that breaks strengthening for finitary type theories is equality
reflection from Example 2.10,

� A type � s : A � t : A � p : Id(A, s, t)

� s ≡ t : A
Because the conclusion elides the metavariable p, it will not record the fact that a variable
may have been used in the derivation of the fourth premise. Consequently, we cannot tell what
variables ought to occur in the context just by looking at the judgement thesis. As it turns
out, variables elided by derivations of equations are the only culprit, and the situation can be
rectified by modifying equality judgements so that they carry additional information about
usage of variables. In the present section we show how this is accomplished by revisiting the
definition of type theories from Sect. 2 and making the appropriate modifications.

4.1 Raw Syntax of Context-Free Type Theories

Apart from removing the variable context and annotating free variableswith type expressions,
we make three further modifications to the raw syntax: we remove metavariable contexts,
and instead annotate metavariables with boundaries; we introduce assumption sets that keep
track of variables used in equality derivations; and we introduce explicit conversions.

4.1.1 Free and Bound Variables

The bound variables x, y, z, . . . are as before, for example they could be de Bruijn indices,
whereas the free variables are annotated explicitly with type expressions. More precisely,
given a set of names a,b, c, . . . a free variable takes the form aA where A is a type expression,
cf. Sect. 4.1.3. Two such variables aA and bB are considered syntactically equal when the
symbols a and b are the same and the type expressions A and B are syntactically equal.
Thus it is quite possible to have variables aA and aB which are different even though A
and B are judegmentally equal. In an implementation it may be a good idea to prevent such
extravaganza by generating fresh symbols so that each one receives precisely one annotation.

Similarly, metavariables are tagged with boundaries, where again MB and NB′
are con-

sidered equal when both the symbols M and N are equal and the boundaries B and B′ are
syntactically identical.

4.1.2 Arities and Signatures

Arities of symbols and metavariables are as in Sect. 2.1.2. We keep symbol signatures but
eliminate metavariable signature, as their arities are induced by annotations.

4.1.3 Raw Expressions

The raw expressions of a context-free type theory are built over a symbol signature, as
summarized in the top part of Fig. 9.

A type expression is either a type symbol S applied to arguments e1, . . . , en , or a metavari-
able MB applied to term expressions t1, . . . , tn where ar(B) = (Ty, n).

The syntax of term expressions differs from the one in Fig. 1 in two ways. First, we
annotate free variables with type expressions and metavariables with boundaries, as was
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Fig. 9 The raw syntax of context-free finitary type theories

already discussed, where it should be noted that in an annotation A of aA or B of MB there
may be further free and metavariables, which are also annotated, and so on. We require
that a boundary annotation B be closed with respect to free variables (metavariables may
occur). Furthermore, a type annotation A must not contain any “exposed” bound variables,
i.e. A should be syntactically valid on its own, without having to appear under an abstraction.
Second, we introduce the conversion terms “κ(t, α)”, whichwill serve to record the variables
used to derive the equality alongwhich t has been converted.The context-free conversion rules
CF- Conv- Tm and CF- Conv- EqTm in Sect. 4.2 keep track of the assumptions occurring
in derivations of type equalities (along which we convert), by recording them as conversion
terms.

The expressions of syntactic classes EqTy and EqTm are the assumption sets, which are
finite sets of free and bound variables, and metavariables. As we are already using the curly
braces for abstraction, we write finite set comprehension as {| · · · |}. Assumption sets record
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the variables and metavariables that are used in a derivation of an equality judgement but
may not appear in the boundary of the conclusion.

We ought to be a bit careful about occurrences of variables, since the free variables may
occur in variable annotations, and the metavariables in boundary annotations. Figure10, the
context-free analogue of Fig. 2, shows the definitions of free, bound and metavariable occur-
rences. Note the difference between fv0(e), which collects only the free variable occurrences
not appearing in a type annotation, and fv(e)which collects themall. Exposed bound variables
need not be collected from annotations, as they cannot appear there.

The collection of all free, bound and metavariables occurring in an expression is its
assumption set asm(e). Sometimes we write asm(e1, . . . , en) for the union

⋃
i asm(ei ).

4.1.4 Substitution and Syntactic Equality

Wemust review substitution and syntactic equality, because they are affected by annotations,
assumption sets, and conversion terms.

There are two kinds of substitutions. An abstraction e[x/aA] transforms the free variable
aA in e to a bound variable x , whereas a substitution e[s/x] replaces the bound variable
x with the term s. These are shown in Fig. 11. Note that an abstraction e[x/aA] is only
valid when aA does not appear in any type annotation in e, aA /∈ fvt(e), because type
annotations cannot refer to bound variables. Consequently, abstraction of several variables
must be carried out in the reverse order of their dependencies. We abbreviate a series of
abstractions ((e[x1/aA1

1 ]) · · · )[xn/aAn
n ] as e[x1/aA1

1 , . . . , xn/a
An
n ] or just e[	x/	aAn

n ]. Similarly,
a series of substitutions ((e[s1/x1]) · · · )[sn/xn] is written e[s1/x1, . . . , sn/xn] or just e[	s/	x].

Syntactic equality is treated in a standard way, we only have to keep in mind the fact
that symbols are considered syntactically equal if the bare symbols are equal and their
annotations are equal. More interestingly, since conversion terms and assumption sets carry
proof-irrelevant information, they should be ignored in certain situations. For this purpose,
define the erasure �e� to be the raw expression e with the assumption sets and conversion
terms removed:

�aA� = aA, �x� = x, �κ(t, α)� = �t�, �α� = �, �{x}e� = {x}�e�,
�S(e1, . . . , en)� = S(�e1�, . . . , �en�), �MB(t1, . . . , tn)� = MB(�t1�, . . . , �tn�).

The mapping e �→ �e� takes the context-free raw syntax of Fig. 9 to the type-theoretic raw
syntax of Fig. 1 where the variables aA and the metavariables MB are construed as atomic
symbols, i.e. their annotations are part of the symbol name.

4.1.5 Judgements and Boundaries

The lower part of Fig. 9 summarizes the syntax of context-free judgements and boundaries.
Apart from not having contexts, type judgements “A type” and term judgements “t : A” are
as before. Equality judgements are modified to carry assumption sets: a type equality takes
the form “A ≡ B by α” and a term equality “s ≡ t : A by α”.

Boundaries do not change, except of course that they have no contexts. The head of a
boundary is filled like before, except that assumption sets are used instead of dummy values,
see Fig. 12.
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Fig. 10 Context-free variable occurrences and assumption sets
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Fig. 11 Abstraction and substitution

Fig. 12 Context-free filling the head of a boundary

Free-variable occurrences in judgements are defined as follows, with fvt(J) defined anal-
ogously to fvt(e) in Fig. 12:

fv0(A type) = fv0(A), fv0(t : A) = fv0(t) ∪ fv0(A),

fv0(A ≡ B by α) = fv0(A) ∪ fv0(B) ∪ fv0(α),

fv0(s ≡ t : A by α) = fv0(s) ∪ fv0(t) ∪ fv0(A) ∪ fv0(α),

fv0({x : A}J) = fv0(A) ∪ fv0(J),

fv(J) = fv0(J) ∪ fvt(J).
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Fig. 13 The action of a metavariable instantiation

We trust the reader can emulate the above definition to define the setmv(J) of metavariable
occurrences in a judgementJ, as well as occurrences of free andmetavariables in boundaries.

4.1.6 Metavariable Instantiations

Next, let us rethink how metavariable instantiations work in the presence of the newly intro-
duced syntactic constructs. As before an instantiation is a sequence, representing a map,

I = 〈MB1
1 �→e1, . . . ,MBn

n �→en〉
such that mv(Bi ) ⊆ {|MB1

1 , . . . ,MBi−1
i−1 |} and ar(Bi ) = ar(ei ), for each i = 1, . . . , n. As in

Sect. 2.1.5, I acts on an expression u, provided thatmv(u) ⊆ |I |, by replacing metavariables
with the corresponding expressions, see Fig. 13. Note that the action of I on a free variable
changes the identity of the variable by acting on its typing annotation.

4.2 Context-Free Rules and Type Theories

In this section we adapt the notions of raw and finitary rules and type theories to the context-
free setting. We shall be rather telegraphic about it, as the changes are straightforward and
require little discussion.

Definition 4.1 A context-free raw rule R over a symbol signature � has the form

MB1
1 , . . . ,MBn

n �⇒ j

where the premises Bi and the conclusion j are closed and syntactically valid over �,
mv(Bi ) ⊆ {|MB1

1 , . . . ,MBi−1
i−1 |} for every i = 1, . . . , n, and mv(j) = {|MB1

1 , . . . ,MBn
n |}. We

say that R is an object rule when j is a type or a term judgement, and an equality rule when
j is an equality judgement.

The condition mv(j) = {|MB1
1 , . . . ,MBn

n |} ensures that the conclusion of an instantiation
of a raw rule records all uses of variables. We shall need it in the proof of Theorem 6.5.
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Example 4.2 The context-free version of equality reflection from Example 2.10 is

A� type, s� :A� type
, t� :A� type

, pId(A� type,s� :A� type
,t� :A� type

)

�⇒ s� :A� type ≡ t� :A� type
A� type by {|pId(A� type,s� :A� type

,t� :A� type
)|}

which is quite unreadable. We indulge in eliding annotations on any variable that is already
typed by a premise or a hypothesis, and write just

CF- Eq- Reflect

� A type � s : A � t : A � p : Id(A, s, t)

� s ≡ t : A by {|p|}
As there are no contexts, we could remove � too, but we leave it there out of habit. Note how
the assumption set in the conclusion must record dependence on p, or else it would violate
the assumption set condition of Definition 4.1.

When formulating equality closure ruleswe face a choice of assumption sets. For example,
what should γ be in the transitivity rule

� A ≡ B by α � B ≡ C by β

� A ≡ C by γ
?

Its intendedpurpose is to record any assumptions used in the premises but not already recorded
by A and C , which suggests the requirement

asm(A) ∪ asm(B) ∪ asm(C) ∪ α ∪ β ⊆ asm(A) ∪ asm(C) ∪ γ.

If we replace⊆with=we also avoid any extraneous asumptions, which leads to the following
definition.

Definition 4.3 In a closure rule ([p1, . . . , pn], b α ) whose conclusion is an equality judge-
ment, α is suitable when asm(p1, . . . , pn) = asm(b α ).

Provided that asm(b) ⊆ asm(p1, . . . , pn), wemay always take theminimal suitable assump-
tion set α = asm(p1, . . . , pn) \ asm(b). We do not insist on minimality, even though an
implementation might make an effort to keep the assumption sets small, because minimality
is not preserved by instantiations, whereas suitability is. We shall indicate the suitability
requirement in an equality closure rule by stating it as the side condition “α suitable”.

Definition 4.4 A context-free raw rule-boundary over a symbol signature � has the form

MB1
1 , . . . ,MBn

n �⇒ b

where the boundaries Bi and b are closed and syntactically valid over �, mv(Bi ) ⊆
{|MB1

1 , . . . ,MBi−1
i−1 |} for every i = 1, . . . , n, andmv(b) ⊆ {|MB1

1 , . . . ,MBn
n |}. We say that R is

an object rule-boundarywhen b is an object boundary, and an equality rule-boundarywhen
b is an equality boundary.

Definition 4.5 Given an object rule-boundary

MB1
1 , . . . ,MBn

n �⇒ b
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over �, the associated symbol arity is (c, [ar(B1), . . . , ar(Bn)]), where c ∈ {Ty, Tm} is the
syntactic class of b. The associated symbol rule for S /∈ |�| is the raw rule

MB1
1 , . . . ,MBn

n �⇒ b S(M̂B1
1 , . . . , M̂Bn

n )

over the extended signature 〈�, S�→(c, [ar(B1), . . . , ar(Bn)])〉, where M̂B is the generic
application of the metavariable MB , defined as:

1. M̂B = {x1} · · · {xk}MB(x1, . . . , xk) if ar(B) = (c, k) and c ∈ {Ty, Tm},
2. M̂B = {x1} · · · {xk}{|MB, x1, . . . , xk |} if ar(B) = (c, k) and c ∈ {EqTy, EqTm}.
Definition 4.6 Given an equality rule-boundary

MB1
1 , . . . ,MBn

n �⇒ b,

the associated equality rule is

MB1
1 , . . . ,MBn

n �⇒ b {|MB1
1 , . . . ,MBn

n |} \ asm(b) .

Definition 4.7 An instantiation of a raw rule

R = (MB1
1 , . . . ,MBn

n �⇒ b e )

over a symbol signature� is an instantiation I = 〈MB1
1 �→e1, . . . ,M

Bn
n �→en〉 of the metavari-

ables of R. The closure rule I∗R associated with I and R is ([p1, . . . , pn, q], r) where pi is
� (I(i)∗Bi ) ei , q is � I∗b, and r is � I∗(b e ).

A minor complication arises when congruence rules (Definition 2.17) are adapted to the
context-free setting, because conversionsmust be inserted. Consider the congruence rule (2.1)
for Π from Example 2.18. The premise A1 ≡ A2 ensures that the premise {x :A1} B1(x) ≡
B2(x) is well-formed by conversion of x on the right-hand side from A1 to A2, thus in the
context-free version of the rule we should allow for the possibility of an explicit conversion.
However, we should not enforce an unnecessary conversion in case A1 = A2, nor should we
require particular conversions, as there may be many ways to convert a term. We therefore
formulate flexible congruence rules as follows: if an occurrence of a term t possibly requires
conversion, we allow in its place a term t ′ such that �t� = �t ′�.
Definition 4.8 The context-free congruence rules associated with a context-free raw type
rule

MB1
1 , . . . ,MBn

n �⇒ A type

are closure rules, where

I = 〈MB1
1 �→ f1, . . . ,MBn

n �→ fn〉, and J = 〈MB1
1 �→g1, . . . ,MBn

n �→gn〉,
of the following form:

� (I(i)∗Bi ) fi for i = 1, . . . , n

� (J(i)∗Bi ) gi for i = 1, . . . , n

�g′
i� = �gi� for object boundary Bi

� (I(i)∗Bi ) fi ≡ g′
i by αi for object boundary Bi

β suitable

� I∗A ≡ J∗A by β
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Similarly, the congruence rule associated with a raw term rule

MB1
1 , . . . ,MBn

n �⇒ t : A
are closure rules of the form

� (I(i)∗Bi ) fi for i = 1, . . . , n

� (J(i)∗Bi ) gi for i = 1, . . . , n

�g′
i� = �gi� for object boundary Bi

� (I(i)∗Bi ) fi ≡ g′
i by αi for object boundary Bi

� t ′ : I∗A �t ′� = �J∗t�
β suitable

� I∗t ≡ t ′ : I∗A by β

Example 4.9 The context-free congruence rules for Π from Example 2.18 take the form

� A1 type � {x :A1} B1 type
� A2 type � {x :A2} B2 type

�A′
2� = �A2� �{x}B ′

2� = �{x}B2�
� A1 ≡ A′

2 by α1 � {x :A1} B1 ≡ B ′
2 by α2

� Π(A1, {x}B1) ≡ Π(A2, {x}B2) by β

where the minimal suitable β is

(α1 ∪ α2 ∪ asm(A′
2, {x}B ′

2)) \ (asm(A1, A2, {x}B1, {x}B2)).

The type expressions A′
2 and B ′

2 may be chosen in such a way that the equations � A1 ≡
A′
2 by α1 and � {x :A1} B1 ≡ B ′

2 by α2 are well-typed, so long as they match A2 and
B2 up to erasure. In this case, we expect to be able to directly use A2 for A′

2. The equation� {x :A1} B1 ≡ B2 by α2 where we use B2 instead of B ′
2 is not obviously well-typed, as B2

is a family over A2 rather than A1. Intuitively, B ′
2 should thus be B2 where uses of x have to

first convert along the equation A1 ≡ A2 by α1.

The context-free metavariable closure rules are in direct analogy with the usual ones from
Definition 2.19:

Definition 4.10 The context-free metavariable rules associated with the metavariable MB

where B = ({x1:A1} · · · {xn :An} b) are the closure rules
CF- Meta

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

� b[	t/	x]
� (b[	t/	x])MB(	t)

where 	x = (x1, . . . , xn), 	t = (t1, . . . , tn). Furthermore, if b is an object boundary, then the
metavariable congruence rules for MB are the closure rules CF- Meta- Congr- Ty and
CF- Meta- Congr- Tm displayed in Fig. 14.

The following definition of context-free raw type theories is analogous to Definition 2.21,
except that we have to use the context-free versions of structural rules.
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Definition 4.11 A context-free raw type theory T over a symbol signature � is a family of
context-free raw rules, called the specific rules of T . The associated deductive system of T
consists of:

1. the structural rules over �:

(a) the variable, metavariable, metavariable congruence, and abstraction closure rules
(Fig. 14),

(b) the equality closure rules (Fig. 15),
(c) the boundary closure rules (Fig. 16);

2. the instantiations of the specific rules of T (Definition 4.7);
3. for each specific object rule of T , the instantiations of the associated congruence rule

(Definition 4.8).

We write �T J when � J is derivable with respect to the deductive system associated to T ,
and similarly for �T B.

The formulations of the abstraction rules CF- Abstr and CF- Bdry- Abstr are suitable
for the backward-chaining style of proof, because their conclusions take a general form. For
forward-chaining, we may derive abstraction rules with premises in general form as follows:

CF- Abstr- Fwd

� A type � J aA /∈ fvt(J)

� {x :A} J[x/aA]

CF- Bdry- Abstr- Fwd

� A type � B aA /∈ fvt(B)

� {x :A} B[x/aA]
The side condition aA /∈ fvt(J) ensures that aA /∈ fv(J[x/aA]), hence CF- Abstr- Fwd can
be derived as the instance of CF- Abstr

� A type aA /∈ fv(J[x/aA]) � (J[x/aA])[aA/x]
� {x :A}J[x/aA]

and similarly for boundary abstractions.
The context-free analogues of the auxiliary judgements � � mctx and � � � vctx are as

follows. For simplicity we define a single notion that encompasses the well-formedness of
all annotations.

Definition 4.12 An expression u has well-typed annotations when � B for every MB ∈
asm(u) and � A type for every aA ∈ asm(u). The notion evidently extends to judgements
and boundaries.

The context-free version of finitary rules and type theories is quite similar to the original
one.

Definition 4.13 Given a raw theory T over a symbol signature �, a context-free raw rule
MB1

1 , . . . ,MBn
n �⇒ b e over � is finitary over T when �T Bi for k = 1, . . . , n, and �T b,

Similarly, a raw rule-boundary MB1
1 , . . . ,MBn

n �⇒ b is finitary over T when �T Bi for
k = 1, . . . , n, and �T b.

A context-free finitary type theory is a context-free raw type theory (Ri )i∈I for which
there exists a well-founded order (I ,≺) such that each Ri is finitary over (R j ) j≺i .

Definition 4.14 A context-free finitary type theory is standard if its specific object rules are
symbol rules, and each symbol has precisely one associated rule.

123



Finitary Type Theories With and Without Contexts Page 39 of 87 36

Fig. 14 Context-free free variable, metavariable, and abstraction closure rules

5 Meta-theorems About Context-Free Theories

The meta-theorems from Sect. 3 carry over to the context-free setting. Unfortunately, there
seems to be no wholesale method for transferring the proofs, and one simply has to adapt
themmanually to the context-free setting. The process is quite straightforward, so we indulge
in omitting the details.

5.1 Meta-theorems About Context-Free RawTheories

In the context-free setting, a renaming is still an injectivemapρ taking unannotated symbols to
unannotated symbols. Its action ρ∗e on an expression e recursively descends into e, including

123



36 Page 40 of 87 P. G. Haselwarter, A. Bauer

Fig. 15 Context-free closure rules for equality

Fig. 16 Well-formed context-free abstracted boundaries

into variable annotations, i.e. ρ∗(aA) = ρ(a)ρ∗A and ρ∗(MB) = ρ(M)ρ∗B . The action is
extended to judgements and boundaries in a straightforward manner. Renaming preserves
the size of an expression, as long as all symbols are deemed to have the same size.

Proposition 5.1 (Context-free renaming) If a context-free raw type theory derives a judge-
ment or a boundary, then it also derives its renamings.

Proof Straightforward induction on the derivation. ��
Weakening (Proposition 3.2) is not applicable, as there is no context that could be weak-

ened, and no variable ever occurs in the conclusion of a judgement without it being used in
the derivation.

We next prove that substitution rules are admissible closure rules in the sense of Sect. 2.2.
We take a slightly different route than in Sect. 3.1 in order to avoid substituting a term for a free
variable, as that changes type annotations and therefore the identity of variables. Lemmas 5.2
and 5.3 are proved by mutual structural induction, with a further structural induction within
each lemma.
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Lemma 5.2 If a context-free raw type theory derives

� {x1:A1} · · · {xn :An} J and

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

then it derives � J[	t/	x].
Proof See the proof on Page 80. ��
Lemma 5.3 If a context-free raw type theory derives

� {x1:A1} · · · {xn :An} B and

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

then it derives � B[	t/	x].
Proof We proceed as in the proof of Lemma 5.2, where CF- Bdry- Abstr is treated like
CF- Abstr, and the remaining ones invert to Lemma 5.2. ��
Theorem 5.4 (Context-free admissibility of substitution) In a context-free raw type theory,
the following substitution rules are admissible closure rules:

CF- Subst

� {x :A} J � t : A
� J[t/x]

CF- Bdry- Subst

� {x :A} B � t : A
� B[t/x]

Proof The admissibility of CF- Subst and CF- Bdry- Subst corresponds to the case n = 1
of Lemmas 5.2 and 5.3, respectively. ��

Before addressing the context-free versions of TT- Subst- EqTy and TT- Subst- EqTm,
we prove the context-free presuppositivity theorem.

Of course, presuppositivity holds in the context-free setting as well.

Theorem 5.5 (Context-free presuppositivity)
If a context-free raw type theory derives � B e and B e has well-typed annotations, then

it derives � B.

Proof See the proof on Page 81. ��
Let us now turn tometa-theorems stating that equal substitutions act equally.Once againwe

need to account for insertion of conversions. In congruence rules such conversions appeared
in premises: equations associated to object premises of the shape (I(i)∗Bi ) fi ≡ g′

i by αi

referred to a primed version of gi to allow the use of conversions in gi . In the following lemma,
conversions appear in the result of a substitution. Therefore, rather than being permissive
about insertions of conversions, we are faced with showing that it is possible to insert them.
Similarly to Lemma 3.7, we prove that equal terms can be substituted into a judgement to
yield equal results, but the right hand side of these results is only prescribed up to erasure,
namely as C ′ and u′.

Lemma 5.6 If a context-free raw type theory derives

� {x1:A1} · · · {xn :An}J
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where {	x : 	A}J has well-typed annotations, and for i = 1, . . . , n

� si : Ai [	s(i)/	x(i)] (5.1)

� ti : Ai [	t(i)/	x(i)]
� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi and �t ′i � = �ti�.

then:

1. if J = ({	y: 	B} C type) then there are γ and C ′ such that �C[	t/	x]� = �C ′�,
� {	y: 	B[	s/	x]} C[	s/	x] ≡ C ′ by γ,

2. if J = ({	y: 	B} u : C) then there are δ and u′ such that �u[	t/	x]� = �u′� and
� {	y: 	B[	s/	x]} u[	s/	x] ≡ u′ : C[	s/	x] by δ.

Furthermore, no extraneous assumptions are introduced by γ , C ′, δ and u′:

asm({	y}γ, {	y}C ′, {	y}δ, {	y}u′) ⊆ asm(	s, 	t, 	t ′, 	α, {	x : 	A} J).

Proof See the proof on Page 83. ��
Theorem 5.7 In a context-free raw type theory, the following closure rules are admissible:

CF- Subst- EqTy

� {	x : 	A}{	y: 	B} C type

� si : Ai [	s(i)/	x(i)] for i = 1, . . . , n

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

�ti� = �t ′i � for i = 1, . . . , n

� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi for i = 1, . . . , n

β suitable

� {	y: 	B[	s/	x]} C[	s/x] ≡ C[	t/x] by β

CF- Subst- EqTm

� {	x : 	A}{	y: 	B} u : C
� si : Ai [	s(i)/	x(i)] for i = 1, . . . , n

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

�ti� = �t ′i � for i = 1, . . . , n

� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi for i = 1, . . . , n

β suitable

� {	y: 	B[	s/	x]} u[	s/	x] ≡ κ(u[	t/	x], β) : C[	s/x] by β

Proof See the proof on Page 86. ��
Lastly, we prove the context-free counterpart of instantiation admissibility Theorem 3.13.

The notion of a derivable instantiation carries over easily to the context-free setting: I =
〈MB1

1 �→e1, . . . ,M
Bn
n �→en〉 is derivable when � (I(i)∗Bi ) ei for every i = 1, . . . , n.

Theorem 5.8 (Context-free admissibility of instantiation) In a raw type theory, if � J is
derivable, it has well-typed annotations, and I is a derivable instantiation such thatmv(J) ⊆
|I |, then � I∗J is derivable, and similarly for boundaries.

Proof See the proof on Page 87. ��
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5.2 Meta-theorems About Context-Free Finitary Theories

The context-free economic rules for finitary theories carry over to the context-free setting.
The proofs are analogous to those of Sect. 3.2 so we omit them.

Proposition 5.9 (Economic version of Definition 4.7) Let R be the context-free raw rule
	 �⇒ b e with 	 = [MB1

1 , . . . ,MBn
n ] such that � b is derivable, in particular R may be

finitary. Then for any instantiation I = [MB1
1 �→e1, . . . ,M

Bn
n �→en], the following closure

rule is admissible:

CF- Specific- Eco

� (I(i)∗Bi ) ei for i = 1, . . . , n

� I∗(b e )

Proposition 5.10 (Economic version of Definition 4.10) In a context-free raw type theory, if
B = {x1:A1} · · · {xm :Am} b and MB , and 	t have well-typed annotations, then the following
closure rule is admissible:

CF- Meta- Eco

� t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

� (b[	t/	x])MB(	t)
If, furthermore, 	s has well-typed annotations, then there exists v, such that �v� = �MB(	t)�
and the following closure rule is admissible:

CF- Meta- Congr- Eco

� s j ≡ t j : A j [	s( j)/	x( j)] by α j for j = 1, . . . ,m β suitable

� (b[	s/	x])MB(	s) ≡ v by β

5.3 Meta-theorems About Context-Free Standard Theories

Inversion and uniqueness of typing (Theorems 3.24, 3.26) carry over to context-free finitary
theories. First, the notion of natural type is simpler, as it does not depend on the context
anymore.

Definition 5.11 Let T be a finitary type theory. The natural type τ(t) of a term expression t
is defined by:

τ(aA) = A,

τ(MB(t1, . . . , tm)) = A[t1/x1, . . . , tm/xm]
where B = ({x1:A1} · · · {xm :Am} � : A)

τ(S(e1, . . . , en)) = 〈M1 �→e1, . . . ,Mn �→en〉∗B
where the symbol rule for S is

MB1
1 , . . . ,MBn

n �⇒ � : B
τ(κ(t, α)) = τ(t)

Next, we define an operation which peels conversions off a term, and another one that
collects the peeled assumption sets. We shall use these in the formulation of the context-free
inversion theorem.
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Definition 5.12 The conversion-stripping s(t) of a term expression t is defined by:

s(t) =
{
s(t ′) if t = κ(t ′, α),

t otherwise.

The conversion-residue r(t) is defined by

r(t) =
{

α ∪ r(t ′) if t = κ(t ′, α),

{||} otherwise.

Note that �t� = �s(t)� and that asm(t) = asm(s(t), r(t)).

Lemma 5.13 If a context-free standard type theory derives � t : A then

1. it derives � s(t) : τ(t) by an application of CF- Var, CF- Meta, or an instantiation of
a term symbol rule, and

2. it derives � τ(t) ≡ A by r(t).

Proof See the proof on Page 88. ��
Theorem 5.14 (Context-free inversion) If a context-free standard type theory derives� t : A,
then:

• if A = τ(t), it derives � s(t) : τ(t) by a derivation which concludes with CF- Var,
CF- Meta, or an instantiation of a term symbol rule;

• if A �= τ(t), it derives � κ(s(t), r(t)) : A by CF- Conv- Tm.

Proof Apply Lemma 5.13 and, depending on whether A = τ(t), either use � s(t) : τ(t)
so obtained directly or convert it along � τ(t) ≡ A by r(t), observing that the side con-
dition asm(s(t), τ(t), A, r(t)) = asm(s(t), r(t), A) holds because asm(τ(t)) ⊆ asm(t) =
asm(s(t), r(t)). ��
Theorem 5.15 (Context-free uniqueness of typing) For a context-free standard type theory:

1. If � t : A and � t : B, then � A ≡ B by α for some assumption set α.
2. If � s ≡ t : A by β1 and � s ≡ t : B by β2, with well-typed variables, then

� A ≡ B by α for some assumption set α.

In both cases, α ⊆ asm(t) can be computed from the judgements involved, without recourse
to their derivations.

Proof The first statement holds because A and B are both judegmentally equal to the nat-
ural type of t by Lemma 5.13. The second statement reduces to the first one because the
presuppositions � t : A and � t : B are derivable by Theorem 5.5. ��

5.4 Special Meta-theorems About Context-Free Theories

Weprove severalmeta-theoremswhich are specific to context-free type theories. The example
of the equality reflection rule in the beginning of Sect. 4 showcased that finitary type theories
do not enjoy strengthening.Context-free type theories, however, do satisfy thismeta-property.

Theorem 5.16 (Strengthening) If a context-free raw type theory derives

� {	y: 	B}{x :A} J
and x /∈ bv(J) then it also derives � {	y: 	B} J.
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Proof We proceed by induction on the derivation of {	y: 	B}{x :A} J. The only case to consider
is CF- Abstr. If the outer abstraction is empty, then the derivation ends with the abstraction

� A type aA /∈ fv(J) � J[aA/x]
� {x :A} J (5.2)

Because x /∈ bv(J), it follows that aA /∈ fv0(J[aA/x]) and that J[aA/x] = J, which is the
second premise, hence derivable. The other possibility is that the derivation ends with

� A type cC /∈ fv({	y: 	B}{x :A} J) � {	y: 	B[cC/z]}{x :A[cC/z]} J[cC/z]
� {z:C}{	y: 	B}{x :A} J

From x /∈ bv(J) it follows that x /∈ bv(J[cC/z]), hence we may apply the induction
hypothesis to the second premise and conclude by abstracting cC . ��

Why can we not adapt the above proof to type theories with contexts? In the derivation
(5.2), the second premise turns out to be precisely the desired conclusion, whereasTT- Abstr
would yield�;�, a:A � Jwhere�;� � J is needed. Indeed, strengthening is not generally
valid for type theories with contexts.

The next lemma can be used to modify the head of a judgement so that it fits another
boundary, as long as there is agreement up to erasure.

Theorem 5.17 (Boundary conversion) In a context-free raw theory, if � B1, � B2, � B1 e1
and �B1� = �B2� then there is e2 such that � B2 e2 , asm(e2) ⊆ asm(B1 e1 ) and �e1� =
�e2�.
Proof See the proof on Page 88. ��

6 A Correspondence Between Theories With andWithout Contexts

We now establish a correpondence between finitary type theories with and without contexts.
We use the prefixes “tt“ (for “traditional types“) and “cf“ (for “context-free“) to disambiguate
between the two versions of type theory. Thus the raw tt-syntax is the one from Fig.1, and
the raw cf-syntax the one from Fig. 9.

To ease the translation between the two versions of type theory, we shall use annotated
free variables aA and annotated metavariables MB in both version of raw syntax, where
the annotations A and B are those of the cf-syntax. In the tt-syntax these annotations are
considered part of the symbol names, and do not carry any type-theoretic significance.

6.1 Translation from cf-Theories to tt-Theories

We first show how to translate constituents of cf-theories to corresponding constituents of
tt-theories. The plan is simple enough: move the annotations to contexts, elide the conversion
terms, and replace the assumption sets with the dummy value.

The first step towards the translation was taken in Sect. 4.1.4, where we defined the era-
sure operation taking a cf-expression e to a tt-expression �e� by removing conversions and
replacing assumption setswith the dummyvalue.Note that erasure and substitution commute,
�e[t/x]� = �e�[�t�/x], by an induction on the syntactic structure of e.

Next, in order to translate cf-judgements to tt-judgements, we need to specify when a
context correctly encodes the information provided by cf-annotations.
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Definition 6.1 Wesay that� is a suitablemetavariable context for a set of cf-metavariables S
when S ⊆ |�| and �(MB) = �B� for allMB ∈ S. Similarly, � is a suitable variable context
for a set of free cf-variables V when V ⊆ |�| and �(aA) = �A� for all aA ∈ V . We say that
�;� is a suitable context for S and V when � is suitable for S an � for V .

As a shorthand, we say that �;� is suitable for a syntactic entity e when it is suitable
for mv(e) and fv(e). As suitability only depends on the assumption set, it follows from
suitability of �;� for e and asm(e′) ⊆ asm(e) that �;� is also suitable for e′.

Next, say that a free cf-variable aA depends on a free cf-variable bB , written bB ≺ aA,
when bB ∈ fv(A), and that a set S of free cf-variables is closed under dependence when
bB ≺ aA ∈ S implies bB ∈ S. Every set S of cf-variables is contained in the least closed set,
which is

⋃{|fv(aA) | aA ∈ S|}. We similarly define dependence for cf-metavariables.
The following lemma shows how to construct suitable contexts.

Lemma 6.2 For every finite set of cf-metavariables S there exists a suitable metavariable
context �, such that |�| is the closure of S with respect to dependence. For every finite set
of free cf-variables V there exists a suitable variable context �, such that |�| is the closure
of V with respect to dependence.

Proof Given a finite set of free cf-variables S, the well-founded order≺ on
⋃{|fv(aA) | aA ∈

S|} may be extended to a total one, say aA1
1 , . . . , aAn

n . Now take � to be the variable context

aA1
1 : �A1�, . . . , aAn

n : �An�. The argument for metavariables is analogous. ��
A totally ordered extension of ≺ can be given explicitly, so the preceding proof yields an

explicit construction of a suitable contexts. Notice that the construction does not introduce
any spurious assumptions, in the sense that for a variable context � the constructed suitable
set V contains only the variables appearing in � and the annotations of types appearing in �.

Proposition 6.3 If �;� is suitable for a cf-judgement J then �;� � �J� is a syntactically
valid tt-judgement, and similarly for boundaries.

Proof A straightforward induction on the structure of the judgement J. ��
Next we translate rules, theories, and derivations.

Proposition 6.4 A cf-rule and a cf-rule-boundary

MB1
1 , . . . ,MBn

n �⇒ j and MB1
1 , . . . ,MBn

n �⇒ b

respectively translate to the raw tt-rule and the tt-rule-boundary

MB1
1 :�B1�, . . . ,MBn

n :�Bn� �⇒ �j�
and

MB1
1 :�B1�, . . . ,MBn

n :�Bn� �⇒ �b�.
A raw-cf theory T = 〈Ri 〉i∈I over a symbol signature � is thus translated rule-wise to the
raw tt-theory Ttt = 〈(Ri )tt〉i∈I over the same signature.
Proof The conditions in Definition 4.1 guarantee that MB1

1 :�B1�, . . . ,MBn
n :�Bn� is a

metavariable context and that it is suitable for �j� and �b�. ��
Theorem 6.5 (Translation from finitary cf- to tt-theories)
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1. The translation of a finitary cf-theory is finitary.
2. Suppose T is a finitary cf-theory whose translation Ttt is also finitary. Let �;� be tt-

context such that �Ttt � mctx and � �Ttt � vctx. If �T J and �;� is suitable for J,
then �;� �Ttt �J�.

3. With T , �;� as in (2), if �T B and �;� is suitable for B then �;� �Ttt �B�.
Proof See the proof on Page 89. ��

With the theorem in hand, the loose ends are easily tied up.

Corollary 6.6 The translation of a standard cf-theory is a standard tt-theory.

Proof The translation takes symbol rules to symbol rules, and equality rules to equality rules.
��

Corollary 6.7 If a finitary cf-theory T derives �T J and J has well-typed annotations then
there exists a context �;� which is suitable for J such that �Ttt � mctx and � �Ttt � vctx.

Proof We may use the suitable context �;� with � and � constructed respectively
frommv(J) and fv(J) as in Lemma 6.2. ��

6.2 Translation from tt-Theories to cf-Theories

Transformation from tt-theories to cf-theories requires annotation of variables with typing
information, insertion of conversions, and reconstruction of assumption sets. Unlike in the
previous section, we cannot directly translate judgements, but must look at derivations in
order to tell where conversions should be inserted and what assumption sets used. We begin
by defining auxiliary notions that help organize the translation.

Given a cf-expression e, let ��e�� be the double erasure of e, which is like erasure �e�,
except that we also remove annotations: ��MB�� = M and ��aA�� = a. The following definition
specifies when an assignment of annotations to variables, which we call a labeling, meets
the syntactic criteria that makes it eligible for a translation.

Definition 6.8

1. Consider a metavariable context

� = [M1:B1, . . . ,Mm :Bm].
An eligible labeling for � is a map

θ = 〈M1 �→B′
1, . . . ,Mm �→B′

m〉
which assigns to each Mi a cf-boundary B′

i such that ��B′
i�� = Bi , and if MB

j ∈ mv(B′
i )

then B = B′
j .

2. With � and θ as above, consider a variable context

� = [a1:A1, . . . , an :An],
over �. An eligible labeling for � with respect to θ is a map

γ = 〈a1 �→A′
1, . . . , an �→A′

n〉
which assigns to each ai a cf-type A′

i such that ��A′
i�� = Ai , if MB

j ∈ mv(Ai ) then

B = θ(M j ), and if aAk ∈ fv(Ai ) then A = γ (ak).
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3. A pair (θ, γ ) is an eligible labeling for �;� when θ is eligible for � and γ is eligible
for � with respect to θ .

4. With (θ, γ ) eligible for�;�, an eligible cf-judgement J′ for a tt-judgementJ over�;�

is one that satisfies ��J′�� = J, if MB
i ∈ mv(J′) then B = θ(Mi ), and if aAk ∈ fv(J′)

then A = γ (ak).
5. With (θ, γ ) eligible for �;�, an eligible cf-boundary B′ for a tt-boundary B over �;�

is one that satisfies ��B′�� = B, if MB′′
i ∈ mv(B′) then B′′ = θ(Mi ), and if aAk ∈ fv(B′)

then A = γ (ak).

We also postulate eligibility requirements for raw rules and theories.

Definition 6.9 Consider a raw tt-rule

R = (M1:B1, . . . ,Mn :Bn �⇒ j).

An eligible raw cf-rule for R is a raw cf-rule

R′ = (M
B′
1

1 , . . . ,M
B′
n

n �⇒ j′)

such that θ = 〈M1 �→B′
1, . . . ,Mn �→B′

n〉 is eligible for [M1:B1, . . . ,Mn :Bn], and j′ is eligible
for j with respect to θ (and the empty labeling for [ ]).

Let T = 〈Ri 〉i∈I be a raw tt-theory over �. An eligible raw cf-theory for T is a raw
cf-theory T ′ = 〈R′

i 〉i∈I over � such that each R′
i is eligible for Ri .

Theorem 6.10 (Translation of standard tt- to cf-theories)

1. For any standard tt-theory T there exists a standard cf-theory T ′ eligible for T .
2. For any T , T ′ as above, if �T � mctx then there exists an eligible labeling θ for � such

that �T ′ θ(M) for every M ∈ |�|.
3. For any T , T ′, �, θ as above, if �; [ ] �T � vctx then there exists an eligible labeling γ

for � with respect to θ such that �T ′ γ (a) type for every a ∈ |�|.
4. For any T , T ′,�, θ ,�, γ as above, if�;� �T B then there exists an eligible cf-boundary

B′ for B with respect to θ , γ such that �T ′ B′.
5. For any T , T ′,�, θ ,�,γ , as above, if�;� �T J then there exists an eligible cf-judgement

J′ for J with respect to θ , γ such that �T ′ J′.

Proof See the proof on Page 93. ��

6.3 TransportingMeta-theorems Across the Correspondence

In Sect. 5 we proved enough meta-theorems about cf-theories to secure the translations
between cf- and tt-theories. We may now take advantage of the translations by transport-
ing meta-theorems about tt-theories to their cf-counterparts. We illustrate the technique by
proving the cf-counterpart of Theorem3.17,which states that judgementally equal derivations
act equally on judgements, and by formulating the economic congruence cf-rules.

Proposition 6.11 In a standard cf-theory, consider derivable instantiations

I = 〈MB1
1 �→ f1, . . . ,MBn

n �→ fn〉 and J = 〈MB1
1 �→g1, . . . ,MBn

n �→gn〉
such that � Bi for each i = 1, . . . , n, as well as

� (I(i)∗Bi ) fi ≡ g′
i by αi and �g′

i� = �gi�. (6.1)
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If an object cf-judgement B e has well-typed annotations and is derivable then there is a
derivable equality B′ eI ≡ eJ by β such that β ⊆ asm(J, 	f , 	g, 	g′, 	α), �B′� = �I∗B�,
�eI � = �I∗e� and �eJ � = �J∗e�.
Proof Let �;� be a context which is suitable for both (6.1) and B e , and is minimal in
the sense that any variable appearing in it also appears in (6.1) or B e . Let 	 = 〈MB1

1 :
�B1�, . . . ,MBn

n : �Bn�〉. By Theorem 6.10, erasure yields judgementally equal derivable
tt-instaniations �I� and �J� of 	 over �;�, and a derivable judgement �;� � �B e �. By
Theorem 3.17, the tt-equality

�;� � �I∗B� �I∗e� ≡ �J∗e�
is derivable. We apply the renaming MBi

i �→ Mi and a
Ai
i �→ai to it and obtain

�;� � ��I∗B�� ��I∗e�� ≡ ��J∗e�� .

Next, we apply Theorem 6.10 to the above equation with labelings θ(Mi ) = Bi and γ (ai ) =
Ai , which results in a derivable cf-equality

� B′ eI ≡ eJ by β . (6.2)

such that �B′� = �I∗B�, �eI � = �I∗e� and �eJ � = �J∗e�. Because we required �;� to be
minimal, β satisfies the desired constraint. ��

The previous proposition gives us a forward-chaining style of congruence rule, because
the conclusion is calculated from the premises via the translation theorems. There is also a
backward-chaining version in which we proceed from a given (well-formed) cf-equality that
we wish to establish.

Corollary 6.12 In a standard cf-theory, consider derivable instantiation

I = 〈MB1
1 �→ f1, . . . ,MBn

n �→ fn〉 and J = 〈MB1
1 �→g1, . . . ,MBn

n �→gn〉
such that � Bi for each i = 1, . . . , n, as well as

� (I(i)∗Bi ) fi ≡ g′
i by αi and �g′

i� = �gi�. (6.3)

Suppose � B′ eI ≡ eJ by � is derivable, where �B′� = �I∗B�, �eI � = �I∗e� and �eJ � =
�J∗e�. Then there is β ⊆ asm(J, 	f , 	g, 	g′, 	α) such that � B′ eI ≡ eJ by β is derivable.

Proof By Proposition 6.11 there is a derivable judgement

� B′ e′
I ≡ e′

J by β ′

such that �B′′� = �I∗B�, �e′
I � = �I∗e�, �e′

J � = �J∗e�, andβ satisfies that required condition.
Apply Theorem 5.17 to rectify the boundary to the given one. ��

The method works on other meta-theorems, too. For example, the backward-chaining
cf-variant of economic congruence tt-rules (Proposition 3.22) goes as follows.

Proposition 6.13 In a standard cf-theory, consider a derivable finitary object rule

MB1
1 , . . . ,MBn

n �⇒ b e
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and instantiations of its premises

I = 〈MB1
1 �→ f1, . . . ,MBn

n �→ fn〉, and J = 〈MB1
1 �→g1, . . . ,MBn

n �→gn〉.
Suppose the following are derivable:

1. � (I(i)∗Bi ) fi for each equality boundary Bi ,

2. � (I(i)∗Bi ) fi ≡ g′
i by αi with �g′

i� = �gi� for each object boundary Bi .

Suppose � b′ eI ≡ eJ by � is derivable, where �b′� = �I∗b�, �eI � = �I∗e�, �e j� = �J∗e�.
Then there is β ⊆ asm(b e , 	f , 	g, 	g′, 	α) such that � b′ eI ≡ eJ by β is derivable.

Proof We proceed much as in the proof of Proposition 6.11 and Corollary 6.12, except that
we apply Proposition 3.22 on the tt- side. ��

7 Related and FutureWork

Our investigation into a general metatheory for type theory has lead us to present and study
two languages. In Sect. 2, we gave a general definition of a broad class of finitary type
theories and proved that it satisfies the expected desirable type theoretic meta-theorems. In
Sect. 4, we introduced a context-free formulation of type theories and demonstrated that this
definition satisfies further meta-theorems, notably strengthening and a context-free inversion
principle. Context-free type theories serve as the theoretical foundation of Andromeda 2, as
the annotation discipline for variables and metavariables turned out to be better suited for
an effectful meta-language [24]. See in particular [24, Chapter 4] for a discussion of the
implementation of context-free type theories in Andromeda 2. The generality of finitary type
theories has been put to work in [7], where a general equality checking algorithm is shown
to be sound for all standard type theories.

Our work was developed concurrently with several other general frameworks for type
theory. There are different approaches to the study of formal systems such as logics and
type theories, ranging from syntactic [11, 23] to semantic [9, 10, 18, 25] characterisations.
To reasonably delimit the scope of this discussion we shall focus on those that (i) are suffi-
ciently expressive to faithfully represent a wide family of dependent type theories, but (ii)
are sufficiently restrictive to prove general meta-theorems that are comparable to ours.

General Dependent Type Theories

The closest relative are general dependent type theories [6], which we proposed together with
Lumsdaine. Finitary and general dependent type theories (GDTTs) have more in common
than divides them. FTTs can be seen as a bridge from GDTTs to context-free type theories
(CFTTs). As context-free type theories in turn are intended as the theoretical underpinning
of Andromeda 2, the choice was made to restrict arities of rules and symbols to be finite,
which allows for a direct representation as concrete syntax. This restriction is somewhat
coincidental, and we expect that it should be possible to generalise much of the treatment of
FTTs and possibly CFTTs to arbitrary arities.

The treatment of variables and metavariables in FTTs differs from that of GDTTs in an
inessential way: the former uses a locally-nameless discipline and metavariable contexts,
while the latter uses shape systems and metavariables as theory extensions. Once again the
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difference is motivated by implementation details and the rôle metavariables play in proof
assistants.

Finally, the levels of well-formedness of the two formalisms differs slighly. GDTTs places
fewer restrictions on the rules of raw type theories, while raw FTTs already satisfies presup-
positivity.

We expect that translations between the finitary fragment of GDTTs and FTTs can be
defined under mild assumptions, and leave their formal comparison as future work.

Logical Frameworks

Perhaps the most prominent family of systems for representing logics are logical frameworks
[23, 32]. Logical frameworks have spawned a remarkably fruitful line of work [13, 16, 40]
and several implementations exist [31, 33]. In concurrent work to the development of GDTTs
and FTTs, Uemura [38] and Harper [21] recently proposed frameworks with the purpose of
representing type theories.

BothUemura’s LF (ULF for short), andHarper’s Equational LF (henceforthEqLF) extend
previous frameworks by the addition of an equality type satisfying reflection to judgemental
equality at the framework level, and Uemura includes a substantial development of a general
categorical semantics. Harper’s Equational LF almost forms a standard finitary type theory.
In fact, only inessential modifications are needed to put it in standard form, as is confirmed
by a formalisation of EqLF in Andromeda 2 [24]. We compare both accounts of type theory
to FTTs along several axes. As they are quite similar, we focus on Uemura’s variant.

In one way, ULF is more expressive than FTTs. While FTTs allow only one judgement
form for types, terms, and their equalities, ULF can also capture theorieswith other judgement
forms, such as the fibrancy judgement of the homotopy type system or two-level type theory
[4, 39], or the face formulas of cubical type theory [15].While itmaybe possible to reconstruct
some type theories expressible in ULF via the use of universes in FTTs, a careful analysis
would be required to show that the account is faithful, for instance by showing that it is sound
and complete for derivability. Conversely, every standard finitary type theory is expressible
in ULF. The translation is straightforward, and we take this as a sign that both ULF and FTTs
achieve their goal of giving a “natural” account of type theory.

Finitary type theories on the other hand are not directly expressible in ULF or in EqLF.
Frequently, accounts of type theory present rules that are not standard, most often because
a symbol does not record all of the metavariables introduced by its premises as arguments.
But it is also standard practice to have only one notation for say dependent products which
may occur at more than one sort, as is done in [21, 27], or give a general cumulativity rule
allowing the silent inclusion of types from one sort into another [26, 38]. One may of course
take the view that such presentations are not really type theories and should be read with
full annotations inserted. It is usually understood that such an annotated presentation can
be given, and by including the right set of equations the original calculus can be recovered
[22]. Proofs that an unannotated theory is equivalent to a fully annotated one are hard labour
[35, Theorem 4.13]. Finitary type theories can thus serve to study the elaboration of such
unannotated to a standard FTT or ULF presentation. One such useful general result can
already be found in [6], where it is shown that every raw type theory, possibly containing
cyclic dependencies between rules, is equivalent to a well-founded one. The assumption of
well-founded stratification is hardwired in ULF through the definition of a signature and in
EqLF through the inductive construction of a context serving as signature, so that such a
theorem could not even be stated in ULF or EqLF. In ongoing research, Petković Komel is
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employing finitary type theories to investigate a general elaboration theorem, stating that all
finitary type theories can be elaborated to standard ones [29].

It would be useful to prove a general adequacy theorem of Uemura’s or Harper’s [21]
logical framework for finitary type theories. Conversely, the extension of finitary and context-
free type theories to other judgement forms in the style of Uemura’s LF seems within reach
and would allow the expression of exciting new type theories such as those based on cubical
sets [3, 12, 15]. Another active domain of current research are modal type theories [8, 34].
Multimodal type theory does not readily fit into our setup or the framework of Uemura [20],
and the development of modal finitary type theories is an exciting possibility for further work.

Context-Free Type Theories

Geuvers et al. [19] investigated the �∞ system, a context-free formulation of pure type sys-
tems. They prove similar meta-theorems, including translations from and to traditional pure
type systems. Pure type systems disallow proof-irrelevant rules such as equality reflection.
Consequently, the results of [19] are obtained more straightforwardly and without compli-
cations arising from the use of conversion terms and assumption sets. Like the authors of
[19], our motivation for avoiding explicit contexts came from implementation considera-
tions. A previous version of Andromeda implemented a form of extensional type theory with
assumption sets [5]. The results of [19] have been formalised in the Coq proof assistant. A
formalisation of context-free type theories could serve as trusted nucleus of a future version
of Andromeda. Generalisations of finitary type theories to more general judgement forms in
the style of [38] should be mirrored by the development of the corresponding context-free
notions and eventually implemented in Andromeda.
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Appendix A: Proofs of Statements

Weprovide herewithout further comment the rather technical detailed proofs that were elided
in the main text.
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A.1 Proofs of Meta-theorems About Type Theories

This section provides missing proofs from Sect. 3.

Lemma 3.4 If a raw type theory derives �;�, a:A,
 � J and �;� � t : A then it derives
�;�,
[t/a] � J[t/a].
Proof We proceed by induction on the derivation of the judgement. The induction is mutual
with the corresponding statement for boundaries, Lemma 3.5.

Case TT- Var: If the derivation ends with the variable rule for a then we apply weakening
to �;� � t : A to get �;�,
[t/a] � t : A. For other variables, we apply the variable rule
for the same variable.

Case TT- Abstr: Consider a derivation which ends with an abstraction

�;�, a:A,
 � B type b /∈ |�, a:A,
| �;�, a:A,
,b:B � J[b/x]
�;�, a:A,
 � {x :B} J

The induction hypotheses for the premises yield

�;�,
[t/a] � B[t/a] type and �;�,
[t/a],b:B[t/a] � (J[b/x])[t/a].
Note that (J[b/x])[t/a] = (J[t/a])[b/x], because x does not occur in t , and a �= b. Hence
abstracting b in the second premise yields

�;�,
[t/a] � {x :B[t/a]} J[t/a],
as desired.

Case TT- Meta and TT- Meta- Congr: We only consider the congruence rules, as the
metavariable rule is treated similarly. Consider a derivation which ends with the congruence
rule for a metavariable M whose boundary is �(M) = {	x : 	B} b:

�;�, a:A,
 � s j : Bj [	s( j)/	x( j)] for j = 1, . . . ,m
�;�, a:A,
 � t j : Bj [	t( j)/	x( j)] for j = 1, . . . ,m

�;�, a:A,
 � s j ≡ t j : Bj [	s( j)/	x( j)] for j = 1, . . . ,m
�;�, a:A,
 � C[	s/	x] ≡ C[	t/	x] if b = � : C

�;�, a:A,
 � (b[	s/	x])M(	s) ≡ M(	t)
We apply the induction hypotheses to the premises, and conclude by TT- Meta- Congr

for M, applied to 	s[a/x] and 	t[a/x], taking into account that in general (e[u/x])[v/a] =
(e[v/a])[u[v/a]/x].
Case of a specific rule: Consider a derivation ending with the application of a raw rule
R = (M1:B1, . . . ,Mn :Bn �⇒ j)with j = b e , instantiated by I = 〈M1 �→e1, . . . ,Mn �→en〉,

�;�, a:A,
 � (I(i)∗Bi ) ei for i = 1, . . . , n
�;�, a:A,
 � I∗b
�;�, a:A,
 � I∗j

The induction hypotheses for the premises yield, for i = 1, . . . , n,

�;�,
[t/a] � ((I(i)∗Bi ) ei )[t/a],
which equals

�;�,
[t/a] � (I [t/a](i)∗Bi ) ei [t/a] .
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By Lemma 3.5, we further obtain �;�,
 � (I [t/a])∗b. Now apply R instantiated at
I [t/a] = 〈M1 �→e1[t/a], . . . ,Mn �→en[t/a]〉 to derive �;�,
[t/a] � I [t/a]∗j, which
equals �;�,
[t/a] � (I∗j)[t/a].
Case of a congruence rule: Apply the induction hypotheses to the premises and conclude by
the same rule.

Cases TT- EqTy- Refl, TT- EqTy- Sym, TT- EqTy- Trans, TT- EqTm- Refl, TT- EqT-
m- Sym, TT- EqTm- Trans, TT- Conv- Tm, TT- Conv- EqTm: These cases are dispensed
with, once again, by straightforward applications of the induction hypotheses. ��
Lemma 3.6 In a raw type theory the following closure rules are admissible:

TT- Subst

�;� � {x :A} J �;� � t : A
�;� � J[t/x]

TT- Bdry- Subst

�;� � {x :A} B �;� � t : A
�;� � B[t/x]

TT- Conv- Abstr

�;� � {x :A} J �;� � B type �;� � A ≡ B

�;� � {x :B} J
Proof Suppose the premises of TT- Subst are derivable. By inversion the first premise
is derived by an application of TT- Abstr, therefore for some a /∈ |�|, we can derive
�;�, a:A � J[a/x]. Lemma 3.4 yields �;� � (J[a/x])[t/a], which is equal to the conclu-
sion of TT- Subst.

The rule TT- Bdry- Subst follows from Lemma 3.5.
Next, assuming the premises of TT- Conv- Abstr are derivable, its conclusion is

derived as

�; � � B type

�; � � {x :A} J
�; �, a:B � {x :A} J

�; �, a:B � a:B

�; � � A ≡ B

�; � � B ≡ A

�; �, a:B � B ≡ A

�; �, a:B � a:A
�; �, a:B � J[a/x] TT- Subst

�; � � {x :B} J

��
Lemma 3.7 If a raw type theory derives

�;� � s : A, (3.1)

�;� � t : A, (3.2)

�;� � s ≡ t : A. (3.3)

�;�, a:A,
 � J, (3.4)

�;�,
[s/a] � B[s/a] ≡ B[t/a] for all b ∈ |
|with 
(b) = B, (3.5)

then it derives

1. �;�,
[s/a] � J[s/a],
2. �;�,
[s/a] � J[t/a], and
3. �;�,
[s/a] � J[(s ≡ t)/a] if J is an object judgement.

Proof We proceed by induction on the derivation of (3.4).
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Case TT- Var: For a variable b ∈ |�|, (1) and (2) follow by the same variable rule, while
(3) follows by reflexivity for b and the same variable rule.

For the variable a, the desired judgements are precisely the assumptions (3.1), (3.2), and
(3.3) weakened to �,
[s/a].

For a variable b ∈ |
| with B = 
(b), the same variable rule derives �;
[s/a] � b :
B[s/a] to satisfy (1), while (2) requires an additional conversion along

�;�,
[s/a] � B[s/a] ≡ B[t/a] (A1)

which is just (3.5). To show (3), namely �;�,
[s/a] � b ≡ b : B[s/a], we use
TT- EqTm- Refl and the variable rule.

Case TT- Abstr: Consider a derivation ending with an abstraction

�;�, a:A,
 � B type b /∈ |�, a:A,
| �;�, a:A,
,b:B � J[b/x]
�;�, a:A,
 � {x :B} J

The induction hypothesis (1) applied to the first premise yields

�;�,
[s/a] � B[s/a] type, (A2)

�;�,
[s/a] � B[s/a] ≡ B[t/a]. (A3)

Equation (A3) ensures that the extended variable context 
,b:B satisfies (3.5), hence we
may use the induction hypothesis (1) for the last premise to show

�;�,
[s/a],b:B[s/a] � J[b/x][s/a],
which equals

�;�,
[s/a],b:B[s/a] � J[s/a][b/x]. (A4)

We can thus use the abstraction rule with (A2) and (A4) to derive �;�,
[s/a] �
{x :B[s/a]} J[s/a], as required.

The derivation of �;�,
[s/a] � {x :B[t/a]} J[t/a] is more interesting. We first apply
induction hypothesis (2) to the last premise and get

�;�,
[s/a],b:B[s/a] � J[b/x][t/a].
Abstraction now gets us to �;�,
[s/a] � {x :B[s/a]} J[t/a], after which we apply TT- -

Conv- Abstr from Lemma 3.6 to replace B[s/a] with B[t/a] using (A3).
Lastly, we use the induction hypothesis (3) for the last premise to derive

�;�,
[s/a],b:B[s/a] � (J[b/x])[(s ≡ t)/a],
which equals

�;�,
[s/a],b:B[s/a] � (J[(s ≡ t)/a])[b/x]. (A5)

We may thus apply abstraction to (A2) and (A5) to derive

�;�,
[s/a] � {x :B[s/a]} J[(s ≡ t)/a],
as desired.
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Case TT- Meta: Suppose (3.4) concludes with the metavariable rule for M, where �(M) =
B = ({x1:A1} · · · {xn :An} b):

�;�, a:A,
 � ui : Ai [	u(i)/	x(i)] for i = 1, . . . , n

�;�, a:A,
 � b[	u/	x]
�;�, a:A,
 � ((b[	u/	x])M(	u) )

(A6)

Judgements (1) and (2) are derived by the metavariable rule forM, applied to the correspond-
ing induction hypotheses for the premises of (A6). We address (3) in case b = (� : B), and
leave the simpler case b = (� type) to the reader. We thus seek a derivation of

�;�,
[s/a] � (M(	u) : B[	u/	x])[(s ≡ t)/a]
which equals

�;�,
[s/a] � M(	u[s/a]) ≡ M(	u[t/a]) : B[	u[s/a]/	x].
This is just the conclusion of the congruence rule TT- Meta- Congr forM, suitably applied
so that its term and term equation premises are precisely the induction hypotheses (1,2,3) for
the term premises of (A6), and its type equation premise is obtained by application of the
induction hypothesis (3) to the last premise of (A6).

Case TT- Meta- Congr: If (3.4) ends with a congruence rule for an object metavariable M
then both (1) and (2) follow by the same congruence rule, applied to the respective induction
hypotheses for the premises.

Case of a specific rule: Suppose (3.4) ends with an application of the raw rule R =
(M1:B1, . . . ,Mn :Bn �⇒ j) instantiated with I = 〈M1 �→e1, . . . ,Mn �→en〉:

�;�, a:A,
 � (I(i)∗Bi ) ei for i = 1, . . . , n

�;�, a:A,
 � I∗b where j = b e

�;�, a:A,
 � I∗j
(A7)

We would like to derive
�;�,
[s/a] � (I∗j)[s/a], (A8)

�;�,
[s/a] � (I∗j)[t/a], (A9)

and in case j is an object judgement, also

�;�,
[s/a] � (I∗j)[(s ≡ t)/a]. (A10)

We derive (A8) by (I [s/a])∗R where I [s/a] = 〈M1 �→e1[s/a], . . . ,Mn �→en[s/a]〉, as its
premises are induction hypotheses. Similarly, (A9) is derived by (I [t/a])∗R. We consider
(A10) in case j = (u : B) and leave the simpler case j = (B type) to the reader. We thus
need to derive

�;�,
[s/a] � (I∗u)[s/a] ≡ (I∗u)[t/a] : (I∗B)[s/a], (A11)

which we do by applying the congruence rule, where J = I [s/a] and K = I [t/a],
�;�,
[s/a] � (J(i)∗Bi ) ei [s/a] for i = 1, . . . , n

�;�,
[s/a] � (K(i)∗Bi ) ei [t/a] for i = 1, . . . , n

�;�,
[s/a] � (J(i)∗Bi ) ei [s/a] ≡ ei [t/a] for object boundary Bi

�;�,
[s/a] � J∗B ≡ K∗B
�;�,
[s/a] � J∗u ≡ K∗u : J∗B
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The first three rows of premises are just the induction hypotheses for the first row of premises
of (A7), and the last one is (3) for the last premise of (A7).

Case of a congruence rule: Both (1) and (2) are derived by applying the induction hypotheses
to the premises and using the congruence rule.

Case TT- Conv- Tm: Consider a derivation ending with a conversion

�;�, a:A,
 � u : B �;�, a:A,
 � B ≡ C

�;�, a:A,
 � u : C
The judgements �;�,
[s/a] � u[s/a] : C[s/a] and �;�,
[s/a] � u[t/a] : C[t/a]
immediately follow from the induction hypothesis and conversion. To derive�;�,
[s/a] �
(u : C)[(s ≡ t)/a], note that the induction hypothesis (3) for the first premise yields

�;�,
[s/a] � u[s/a] ≡ u[t/a] : B[s/a],
and (1) applied to the second premise

�;�,
[s/a] � B[s/a] ≡ C[s/a].
Thus by equality conversion we conclude �;�,
[s/a] � u[s/a] ≡ u[t/a] : C[s/a].
Cases TT- EqTy- Refl, TT- EqTy- Sym, TT- EqTy- Trans, TT- EqTm- Refl, TT- E-
qTm- Sym, TT- EqTm- Trans, TT- Conv- EqTm: These cases are dispensed with by
straightforward applications of the induction hypotheses. ��
Lemma 3.9 Suppose a raw type theory derives

�;� � s : A, �;� � t : A, and �;� � s ≡ t : A.

1. If it derives

�;� � {x :A}{	y: 	B} C ≡ D and �;� � {x :A}{	y: 	B} D type

then it derives �;� � {	y: 	B[s/x]} C[s/x] ≡ D[t/x].
2. If it derives

�;� � {x :A}{	y: 	B} u ≡ v : C and �;� � {x :A}{	y: 	B} v : C
then it derives �;� � {	y: 	B[s/x]} u[s/x] ≡ v[t/x] : C[s/x].

Proof We spell out the proof of the first claim only. By substituting s for x in the first
assumption we obtain

�;� � {	y: 	B[s/x]} C[s/x] ≡ D[s/x],
and by applying TT- Subst- EqTy to the second assumption

�;� � {	y: 	B[s/x]} D[s/x] ≡ D[t/x].
These two may be combined to give the desired judgement by unpacking the abstraction,
applying transitivity, and packing up the abstraction. ��
Lemma 3.10 Suppose a raw type theory derives, for i = 1, . . . , n,

�;� � si : Ai [	s(i)/	x(i)]
�;� � ti : Ai [	t(i)/	x(i)]
�;� � si ≡ ti : Ai [	s(i)/	x(i)].
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If it derives an object judgement �;� � {	x : 	A} B e then it derives

�;� � (B[	s/	x]) e[	s/	x] ≡ e[	t/	x] .

Proof First, by inversion on the derivation of�;� � {	x : 	A} B e we see that, for i = 1, . . . , n,

�;� � {	x(i): 	A(i)} Ai type.

Next, we claim that, for all j = 1, . . . , i − 1,

�;� � {x j :A j [	s( j)/	x( j)]} · · · {xi−1:Ai−1[	s( j)/	x( j)]}
Ai [	s( j)/	x( j)] ≡ Ai [	t( j)/	x( j)].

Indeed, when j = 1 the statement reduces to reflexivity, while an application of Lemma 3.9
lets us pass from j to j + 1. When j = i we obtain

�;� � Ai [	s(i)/	x(i)] ≡ Ai [	t(i)/	x(i)],
and this can be used to show by conversion that �;� � ti : Ai [	s(i)/	x(i)]. Now the goal can
be derived by repeated applications of Lemma 3.9. ��
Lemma 3.12 In a raw type theory, let I be a derivable instantiation of 	 over context �;�.
If 	;�,
 � J is derivable then so is �;�, I∗
 � I∗J, and similarly for boundaries.

Proof We proceed by structural induction on the derivation of 	;�,
 � J, only devoting
attention to the metavariable and abstraction rules, as all the other cases are straightforward.

Case TT- Meta: Consider an application of a metavariable rule for M with 	(M) =
({x1:A1} · · · {xm :Am} b) and I (M) = {	x}e:

	;�,
 � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � b[	t/	x]
	;�,
 � (b[	t/	x])M(	t)

We need to derive
�;�, I∗
 � ((I∗b)[I∗	t/	x]) e[I∗	t/	x] . (A12)

By induction hypothesis, for each j = 1, . . . ,m,

�;�, I∗
 � I∗t j : (I∗A j )[I∗	t( j)/	x( j)],
while derivability of I at M and weakening by I∗
 yield

�;�, I∗
 � {	x :I∗ 	A} (I∗b) e . (A13)

We now derive (A12) by repeatedly using TT- Subst to substitute I∗ti ’s for xi ’s in (A13).

Case TT- Meta- Congr: Consider an application of a metavariable congruence rule for M
with 	(M) = ({x1:A1} · · · {xm :Am} b) and I (M) = {	x}e:

	;�,
 � s j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � C[	s/	x] ≡ C[	t/	x] if b = (� : C)

	;�,
 � (b[	s/	x])M(	s) ≡ M(	t)
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We need to derive

�;�, I∗
 � ((I∗b)[I∗	s/x]) e[I∗	s/	x] ≡ e[I∗	t/	x] .
Derivability of I yields

�;�, I∗
 � {	x :I∗ 	A} (I∗b) e . (A14)

Wemay apply Lemma 3.10 to (A14) with terms I∗	s and I∗	t . The preconditions of the lemma
are met by the induction hypotheses for the premises.

Case TT- Abstr: Suppose the derivation ends with an abstraction

	;�,
 � A type a /∈ |�,
| 	;�,
, a:A � J[a/x]
	;�,
 � {x :A} J

The induction hypotheses for the premises state

�;�, I∗
 � I∗A type and �;�, I∗
, a:I∗A � I∗(J[a/x]).
Because I∗(J[a/x]) = (I∗J)[a/x] we may abstract a to derive

�;�, I∗
 � {x :I∗A} I∗J.
��

Lemma 3.14 In a raw type theory, consider derivable instantiations I and J of 	 =
[M1:B1, . . . ,Mn :Bn] over �;� which are judgementally equal. Suppose that � 	 mctx
and � � � vctx, and that �;�,
 � (I(i)∗Bi ) J (Mi ) is derivable for i = 1, . . . , n, and
additionally that, for all a ∈ |
| with 
(a) = A, so are

�;�, I∗
 � I∗A type,

�;�, I∗
 � J∗A type,

�;�, I∗
 � I∗A ≡ J∗A

If 	;�,
 � J is derivable then so are

�;�, I∗
 � I∗J, (3.6)

�;�, I∗
 � J∗J, (3.7)

�;�, I∗
 � (I ≡ J )∗J if J is an object judgement. (3.8)

Proof Note that (3.6) already follows from Theorem 3.13, so we do not bother to reprove it,
but we include the statement because we use it repeatedly.We proceed by structural induction
on the derivations of � 	 mctx and 	;�,
 � J.

Case TT- Var: Consider a derivation ending with the variable rule

	;�,
 � ai : Ai .

We derive (3.7) by the variable rule, and when ai ∈ |
| a subsequent conversion along
�;�, I∗
 � I∗Ai ≡ J∗Ai . The judgement (3.8) holds by TT- EqTm- Refl.

Case TT- Abstr: Consider a derivation ending with an abstraction

	;�,
 � B type b /∈ |�,
| 	;�,
,b:B � J[b/y]
	;�,
 � {y:B} J
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The induction hypothesis for the first premise yields

�;�, I∗
 � I∗B type, (A15)

�;�, I∗
 � J∗B type, (A16)

�;�, I∗
 � I∗B ≡ J∗B. (A17)

The extended variable context�,
,b:B satisfies the preconditions of the induction hypothe-
ses for the second premise, therefore

�;�, I∗
,b:I∗B � (I∗J)[b/y], (A18)

�;�, I∗
,b:I∗B � (J∗J)[b/y], (A19)

�;�, I∗
,b:I∗B � ((I ≡ J )∗J)[b/y], (A20)

where (A20) is present onlywhenJ is an object judgement. Now (3.8) follows by abstraction
from (A15) and (A20). To derive (3.7), we first abstract (A19) to get

�;�, I∗
 � {y:I∗B} J∗J

and then apply TT- Conv- Abstr to convert it along (A17) to derive the desired

�;�, I∗
 � {y:J∗B} J∗J.

Case of a specific rule: Consider a specific rule

R = (N1:B′
1, . . . ,Nm :B′

m �⇒ b e )

and an instantiation K = 〈N1 �→g1, . . . ,Nm �→gm〉. Suppose the derivation ends with the
instantiation K∗R:

	;�,
 � (K(i)∗B′
i ) gi for i = 1, . . . ,m

	;�,
 � K∗b
	;�,
 � K∗(b e )

(A21)

We derive (3.7) by (J∗K )∗R where J∗K = 〈N1 �→J∗g1, . . . ,Nm �→J∗gm〉. The resulting
premises for i = 1, . . . ,m are precisely the induction hypotheses (3.7) for the premises
of (A21). The last premise, �;�, I∗
 � (J∗K )∗b, follows by case analysis of b and the
same induction hypothesis (3.7). To establish (3.8), we must derive

�;�, I∗
 � ((I∗K )∗b) (I∗K )∗e ≡ (J∗K )∗e .

We do so by an application of the congruence rule associated with R, instantiated with I∗K
and J∗K . The resulting closure rule has four sets of premises, all of which are derivable:

• both copies of premises of R are derivable because they are the induction hypotheses
(3.6) and (3.7) for the premises of (A21),

• the additional equational premises are derivable because they are the induction hypotheses
(3.8) for the premises of (A21).

Case of a congruence rule: Similar to the case of a specific rule. Given a congruence rule
with instantiations L and K , (3.7) follows from the same congruence rule with instantiations
J∗L and J∗K . The premises hold by induction hypothesis (3.7).
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Case TT- Meta: Consider a derivation ending with an application of the metavariable rule
for Mi , where 	x = (x1, . . . , xm), 	t = (t1, . . . , tm), J (Mi ) = {	x}e, and Bi = {	x : 	A} b,

	;�,
 � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m
	;�,
 � b[	t/	x]

	;�,
 � (b[	t/	x])Mi (	t)
(A22)

Because J is derivable we know that �;� � {	x :J∗ 	A} (J∗b) e . For (3.7), we derive

�;�, I∗
 � ((J∗b)[J∗	t/	x]) e[J∗	t/	x]
by substituting J∗	t for 	x by repeated applications of TT- Subst, which generate premises,
for j = 1, . . . ,m,

�;�, I∗
 � J∗t j : (J∗A j )[J∗	t( j)/	x( j)].
These are precisely the induction hypotheses for the premises of (A22). It remains to show
(3.8). Writing I (Mi ) as {x}e′, we must establish

�;�, I∗
 � ((I∗b)[I∗	t/	x]) e′[I∗	t/	x] ≡ e[J∗	t/	x] .
Because I and J are judgementally equal, we know that

�;� � {	x : I∗ 	A} (I∗b) e′ ≡ e .

By substituting I∗	t for 	x by repeated use of TT- Subst, we derive

�;�, I∗
 � ((I∗b)[I∗	t/	x]) e′[I∗	t/	x] ≡ e[I∗	t/	x] , (A23)

where the substitutions generate obligations, for j = 1, . . . ,m,

�;�, I∗
 � I∗t j : (I∗A j )[I∗	t( j)/	x( j)].
These are precisely the induction hypotheses for the term premises of (A22). By transitivity
it suffices to derive

�;�, I∗
 � ((I∗b)[I∗	t/	x]) e[I∗	t/	x] ≡ e[J∗	t/	x] . (A24)

The induction hypotheses for the premises of (A22) for j = 1, . . . ,m are

�;�, I∗
 � I∗t j : (I∗A j )[I∗	t( j)/	x( j)] (A25)

�;�, I∗
 � J∗t j : (J∗A j )[J∗	t( j)/	x( j)] (A26)

�;�, I∗
 � I∗t j ≡ J∗t j : (I∗A j )[I∗	t( j)/	x( j)]. (A27)

We would like to apply Lemma 3.10 to these judgements to derive (A24), but the type of
the terms J∗t j in (A26) does not match the type of the corresponding terms I∗t j . We rectify
the situation by successively deriving the equality of the types involved and converting, as
follows.

By assumption � 	 mctx holds and hence 	(i); [ ] � {x1:A1} · · · {x j−1:A j−1} A j type
for j = 1, . . . ,m. Note that the preceding judgement is derivable in a smaller metavariable
context, and we can thus appeal to the induction hypothesis to derive

�;�, I∗
 � {x1:I∗A1} · · · {x j−1:I∗A j−1} I∗A j ≡ J∗A j .

We apply Lemma 3.10 together with (A25,A26,A27) to obtain

�;�, I∗
 � (I∗A j )[I∗	t( j)/	x( j)] ≡ (J∗A j )[J∗	t( j)/	x( j)].
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We now appeal to TT- Conv- Tm to derive

�;�, I∗
 � J∗t j : (I∗A j )[I∗	t( j)/	x( j)]. (A28)

Finally we derive (A24) by applying Lemma 3.10 to (A25,A28,A27) and to the judgement
�;� � {	x :I∗ 	A}(I∗b) e , which equals �;� � (I∗Bi ) J (Mi ) and so is derivable by assump-
tion.

CaseTT- Meta- Congr: Consider a derivation endingwith an application of the congruence
rule forMi , where 	x = (x1, . . . , xm), 	s = (s1, . . . , sm), 	t = (t1, . . . , tm), J (Mi ) = {	x}e, and
Bi = {	x : 	A} b,

	;�,
 � s j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

	;�,
 � C[	s/	x] ≡ C[	t/	x] if b = (� : C)

	;�,
 � (b[	s/	x])Mi (	s) ≡ Mi (	t)
(A29)

Because J is derivable we know that �;� � {	x :J∗ 	A} (J∗b) e , therefore by weakening also

�;�, I∗
 � {	x :J∗ 	A} (J∗b) e .

The desired judgement

�;�, I∗
 � ((J∗b)[J∗	s/	x]) e[J∗	s/	x] ≡ e[J∗	t/	x]
may be derived by repeated applications of TT- Subst- EqTm, provided that, for j =
1, . . . ,m,

�;�, I∗
 � J∗s j : (J∗A j )[J∗	s( j)/	x( j)],
�;�, I∗
 � J∗t j : (J∗A j )[J∗	t( j)/	x( j)],
�;�, I∗
 � J∗s j ≡ J∗t j : (J∗A j )[J∗	s( j)/	x( j)].

These are precisely induction hypotheses for (A29).

Cases TT- EqTy- Refl, TT- EqTy- Sym, TT- EqTy- Trans, TT- EqTm- Refl, TT- EqT-
m- Sym, TT- EqTm- Trans, TT- Conv- Tm, and TT- Conv- EqTm : The remaining cases
are all equality rules. Each is established by an appeal to the induction hypotheses for the
premises, followed by an application of the same rule. ��
Lemma 3.15 In a raw type theory, consider 	 = [M1:B1, . . . ,Mn :Bn] such that � 	 mctx,
and derivable instantiations

I = 〈M1 �→e1, . . . ,Mn �→en〉 and J = 〈M1 �→ f1, . . . ,Mn �→ fn〉
of 	 over �;� which are judgementally equal. Suppose further that � � � vctx and
�;� � (I(i)∗Bi ) fi for i = 1, . . . , n. If � � (�,
) vctx, then for all a ∈ |
| with

(a) = A:

�;�, I∗
 � I∗A type,

�;�, I∗
 � J∗A type,

�;�, I∗
 � I∗A ≡ J∗A.
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Proof We proceed by induction on the length of
. The base case is trivial. For the induction
step, suppose � � (�,
,b:B) vctx. For a ∈ |
| we apply the induction hypothesis to 


and weaken by b:I∗B. To deal with b, we apply Lemma 3.14 to �;�,
 � B type, which
holds by inversion, and weaken by b:I∗B to derive the desired

�;�, I∗
,b:I∗B � I∗B type,

�;�, I∗
,b:I∗B � J∗B type,

�;�, I∗
,b:I∗B � I∗B ≡ J∗B.

��
Lemma 3.16 In a raw type theory, consider 	 = [M1:B1, . . . ,Mn :Bn] such that � 	 mctx,
and derivable instantiations

I = 〈M1 �→e1, . . . ,Mn �→en〉 and J = 〈M1 �→ f1, . . . ,Mn �→ fn〉
of 	 over �;� which are judgementally equal. Suppose that � � � vctx. Then �;� �
(I(i)∗Bi ) fi is derivable for i = 1, . . . , n.

Proof We proceed by induction on n. The base case is trivial. To prove the induction
step for n > 0, suppose the statement holds for 	(n), I(n) and J(n), and that Bn =
{x1:A1} · · · {xm :Am} b. By inversion on � 	 mctx and weakening we derive 	(n);� � Bn .
Then by inverting the abstractions of Bn we obtain variables 	a = (a1, . . . , am) such that,
with A′

i = Ai [	a(i)/	x(i)] and 
 = [a1:A′
1, . . . , am :A′

m],
	(n) � (�,
) vctx, and 	(n);�,
 � b[	a/	x].

We apply Lemma 3.15 to 	(n), I(n), J(n), and 
 to derive, for i = 1, . . . ,m,

�;�, I∗
 � I∗A′
i type,

�;�, I∗
 � J∗A′
i type,

�;�, I∗
 � I∗A′
i ≡ J∗A′

i ,

�;�, I∗
 � ai : J∗A′
i . (A30)

where (A30) follows by conversion from the judgement above it. Next, we use (A30) to
substitute ai for xi in �;�, I∗
 � {	x :J∗ 	A} (J∗b) fn , which results in

�;�, I∗
 � ((J∗b)[	a/	x]) fn[	a/	x] . (A31)

If we can reduce (A31) to

�;�, I∗
 � ((I∗b)[	a/	x]) fn[	a/	x] , (A32)

we will be able to derive the desired judgement

�;�, I∗
 � {	x :I∗ 	A} (I∗b) fn

by abstracting a1, . . . , an in (A32). There are four cases, depending on what b is.

Case b = (� type): (A31) and (A32) are the same.

Case b = (� : B): We convert (A31) along

�;�, I∗
 � (J∗B)[	a/	x] ≡ (I∗B)[	a/	x],
which holds by Lemma 3.14 applied to 	(n);�,
 � B[	a/	x] type with 	(n), I(n), and J(n).
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Case b = (B ≡ C by �): Here (A31) and (A32) are respectively

�;�, I∗
 � J∗B ≡ J∗C and �;�, I∗
 � I∗B ≡ I∗C .

The latter follows from the former if we can also derive

�;�, I∗
 � I∗B ≡ J∗B, and �;�, I∗
 � I∗C ≡ J∗C . (A33)

We invert 	(n);�,
 � B ≡ C by � to derive

	(n);�,
 � B type and 	(n);�,
 � C type. (A34)

When we apply Lemma 3.14 to (A34) it gives us (A33).

Case b = (s ≡ t : B by �): Here (A31) and (A32) are respecetively

�;�, I∗
 � J∗s ≡ J∗t : J∗B and �;�, I∗
 � I∗s ≡ I∗t : I∗B,

The latter follows from the former if we can also derive

�;�, I∗
 � I∗B ≡ J∗B,

�;�, I∗
 � I∗s ≡ J∗s : I∗B,

�;�, I∗
 � I∗t ≡ J∗t : I∗B.

(A35)

We invert 	(n);�,
 � s ≡ t : B by � to derive

	(n);�,
 � B type, 	(n);�,
 � s : B and 	(n);�,
 � t : B. (A36)

When we apply Lemma 3.14 to (A36) it gives us (A35). ��
Theorem 3.18 (Presuppositivity) If a raw type theory derives � � mctx, � � � vctx, and
�;� � B e then it derives �;� � B.

Proof We proceed by induction on the derivation of �;� � B e .

Case TT- Var: By Proposition 3.3.

Case TT- Meta: The presupposition �;� � b[	t/	x] is available as premise.

CaseTT- Meta- Congr: Consider a derivation endingwith an application of the congruence
rule for M whose boundary is �(M) = ({x1:A1} · · · {xm :Am} b):

�;� � s j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � C[	s/	x] ≡ C[	t/	x] if b = (� : C)

�;� � (b[	s/	x])M(	s) ≡ M(	t)
If b = (� type), the presupposition �;� � M(	s) ≡ M(	t) by � follows directly by
TT- Bdry- EqTy and two uses of TT- Meta. If b = (� : C), the presuppositions of �
M(	s) ≡ M(	t) : C[	s/	x] by � follow by TT- Bdry- EqTm:

1. �;� � C[	s/	x] type holds by substitution of 	s for 	x in �;� � {	x : 	A} C type much like
in the previous case,

2. �;� � M(	s) : C[	s/	x] holds by TT- Meta,
3. �;� � M(	t) : C[	s/	x] is derived from �;� � M(	t) : C[	t/	x] by conversion along

�;� � C[	t/	x] ≡ C[	s/	x], which holds by the last premise.
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When applying TT- Meta above, the premise �;� � b[	s/	x] is required, and likewise for 	t .
We may derive it by applying Proposition 3.3 to � � mctx and substituting 	s for 	x with the
help of TT- Subst, and analogously for 	t .
Case TT- Abstr: Consider an abstraction

�;� � A type a /∈ |�| �;�, a:A � J[a/x]
�;� � {x :A} J

By induction hypothesis on the last premise, we obtain �;�, a:A � B[a/x] after which we
apply TT- Bdry- Abstr.

Case of a specific rule: The presupposition is available as premise.

Case of a congruence rule: Consider a congruence rule associated with an object rule R and
instantiated with I and J , as in Definition 2.17.

If R concludes with � A type, the presuppositions are �;� � I∗A type and �;� �
J∗A type, which are derivable by I∗R and J∗R, respectively.

If R concludes with � t : A, the presuppositions are �;� � I∗A type, �;� � I∗t : I∗A,
and �;� � J∗t : I∗A. We derive the first one by applying the induction hypothesis to the
premise �;� � I∗B ≡ J∗B, the second one by I∗R, and the third one by converting the
second one along the aforementioned premise.

Cases TT- EqTy- Refl, TT- EqTy- Sym, TT- EqTy- Trans, TT- EqTm- Refl, TT- EqT-
m- Sym, TT- EqTm- Trans: These are all dispensed with by straightforward appeals to the
induction hypotheses.

Case TT- Conv- Tm: Consider a term conversion

�;� � t : A �;� � A ≡ B

�;� � t : B
Then �;� � B type holds by the induction hypothesis for the second premise.

Case TT- Conv- EqTm: Consider a term equality conversion

�;� � s ≡ t : A �;� � A ≡ B

�;� � s ≡ t : B
As in the previous case, the induction hypothesis for the second premise provides �;� �
B type. The induction hypothesis for the first premise yields

�;� � s : A and �;� � t : A
We may convert these to �;� � s : B and �;� � t : B using the second premise. ��
Proposition 3.20 (Economic version of Definition 2.19) If a raw type theory derives �
� mctx and � � � vctx with �(M) = ({x1:A1} · · · {xm :Am} b), the following closure
rules are admissible:

TT- Meta- Eco

�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � (b[	t/	x])M(	t)
TT- Meta- Congr- Eco

�;� � s j ≡ t j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � (b[	s/	x])Mk(	s) ≡ Mk(	t)
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Proof Toprove admissibility ofTT- Meta- Eco, note that byProposition 3.3wehave�;� �
{	x : 	A} b, so we may derive �;� � b[	t/	x] by substituting 	t for 	x by repeated applications of
TT- Bdry- Subst to the premises of TT- Meta- Eco. We can now apply TT- Meta.

Next, we address admissibility of TT- Meta- Congr- Eco by deriving its conclusion
with the aid of TT- Meta- Congr. For this purpose we need to derive

�;� � s j : A j [	s( j)/	x( j)] for j = 1, . . . ,m

�;� � t j : A j [	t( j)/	x( j)] for j = 1, . . . ,m

�;� � C[	s/	x] ≡ C[	t/	x] if b = (� : C)

The first group follows by Theorem 3.18. The second is established by induction on j :
by Proposition 3.3, � � {	x : 	A} b holds, and thus � � {	x( j): 	A( j)} A j type by inver-
sion of TT- Bdry- Abstr. By applying Lemma 3.10, we obtain �;� � A j [	s( j)/	x( j)] ≡
A j [	t( j)/	x( j)] and we can convert �;� � t j : A j [	s( j)/	x( j)] which holds again by The-
orem 3.18. Finally, the last premise holds again by Lemma 3.10, this time applied to
� � {	x : 	A} C type. ��
Lemma 3.21 In a raw type theory, suppose 	;� � B, and consider judgementally equal
derivable instantiations I , J of 	 over �;�. If �;� � (I∗B) e is derivable then so is
�;� � (J∗B) e .

Proof We proceed by induction on the derivation of 	;� � B.

Case TT- Bdry- Ty: We have B = (� type), the statement is trivial.

Case TT- Bdry- Tm: We haveB = (� : A). From	;� � A typewe obtain�;� � I∗A ≡
J∗A using Theorem 3.17, and convert �;� � e : I∗A to �;� � e : J∗A.
Case TT- Bdry- EqTy: We have B = (A ≡ B by �). From Theorem 3.18 we get 	;� �
A type, hence �;� � I∗A ≡ J∗A by Theorem 3.17. It follows similarly that �;� �
I∗B ≡ J∗B. We may combine these with �;� � I∗A ≡ I∗B using transitivity to derive
�;� � J∗A ≡ J∗B.
Case TT- Bdry- EqTm: We have B = (s ≡ t : A). From Theorem 3.18 we get

	;� � A type, 	;� � s : A, and 	;� � t : A.

and from Theorem 3.17

	;� � I∗A ≡ J∗A, 	;� � I∗s ≡ J∗s : I∗A, and 	;� � I∗t ≡ J∗t : I∗A.

Together with 	;� � I∗s ≡ I∗t : I∗A this is sufficient to derive 	;� � J∗s ≡ J∗t : J∗A
using transitivity and conversions.

Case TT- Bdry- Abstr: We have B = ({x :A} B′) and 	;� � {x :I∗A} (I∗B′) e . We use
induction hypothesis and abstraction to derive 	;� � {x :I∗A} (J∗B′) e and then convert
the abstracion to J∗A using TT- Conv- Abstr. ��
Proposition 3.22 (Economic version of Definition 2.17) In a finitary type theory, consider
one of its object rules R

M1:B1, . . . ,Mn :Bn �⇒ b e .

Given instantiations of its premises,

I = 〈M1 �→ f1, . . . ,Mn �→ fn〉 and J = 〈M1 �→g1, . . . ,Mn �→gn〉,
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over �;� such that � � mctx and � � � vctx, the following closure rule is admissible:

TT- Congr- Eco

�;� � (I(i)∗Bi ) fi for equation boundary Bi

�;� � (I(i)∗Bi ) fi ≡ gi for object boundary Bi

�;� � (I∗b) I∗e ≡ J∗e

Proof We appeal to the congruence rule for R,

�;� � (I(i)∗Bi ) fi for i = 1, . . . , n

�;� � (J(i)∗Bi ) gi for i = 1, . . . , n

�;� � (I(i)∗Bi ) fi ≡ gi for object boundary Bi

�;� � I∗B ≡ J∗B if b = (� : B)

�;� � (I∗b) I∗e ≡ J∗e

whose premises are derived as follows.
The equational premises of the first row are given, while the object premises follow from

the corresponding equational premises in TT- Congr- Eco by Theorem 3.18.
The second row of premises is more challenging. First, for each object premise, applying

Theorem 3.18 to the corresponding equational premise in TT- Congr- Eco yields �;� �
(I(i)∗Bi ) gi which is then converted to �;� � (J(i)∗Bi ) gi with the aid of Lemma 3.21. For
an equational premise, we again use Lemma 3.21, except that we apply it to the corresponding
equational premise in the first row, noting that in this case fi and gi are the same.

The third row of premises is given. The last premise, when present, follows by Theo-
rem 3.17 from the fact that R is finitary. ��
Theorem 3.24 (Inversion) If a standard type theory derives an object judgement then there
is a derivation of this judgement which concludes with precisely one of the following rules:

1. the variable rule TT- Var,
2. the metavariable rule TT- Meta,
3. an instantiation of a symbol rule,
4. the abstraction rule TT- Abstr,
5. the term conversion rule TT- Conv- Tm of the form

�;� � t : τ�;�(t) �;� � τ�;�(t) ≡ A

�;� � t : A
where τ�;�(t) �= A.

Proof We proceed by induction on the derivation �;� � J. If the derivation concludes with
TT- Var, TT- Meta, a symbol rule, or TT- Abstr, then it already has the desired form. The
remaining case is a derivation D ending with a term conversion rule

D1

�; � � t : A
D2

�; � � A ≡ B

�; � � t : B

By induction hypothesis we may invert D1 and obtain a derivation D′ of �;� � t : A as in
the statement of the theorem:
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1. If D′ ends with TT- Var, TT- Meta or a term symbol rule then A = τ�;�(t). Either
τ�;�(t) = B and we use D′, or τ�;�(t) �= B and we use D.

2. If D′ concludes with a term conversion

D′
1

�; � � t : τ�;�(t)

D′
2

�;� � τ�;�(t) ≡ A

�; � � t : A

there are again two cases. If τ�;�(t) = B we use D′
1, otherwise we combine τ�;�(t) ≡ A

and A ≡ B by transitivity and conversion:

D′
1

�; � � t : τ�;�(t)

D′
2

�; � � τ�;�(t) ≡ A

D2

�; � � A ≡ B

�; � � τ�;�(t) ≡ B

�; � � t : B
��

A.2 Proofs of Meta-theorems About Context-Free Type Theories

This section provides missing proofs from Sect. 5.

Lemma 5.2 If a context-free raw type theory derives

� {x1:A1} · · · {xn :An} J and

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

then it derives � J[	t/	x].

Proof Wemay invert the derivation of� {	x : 	A} J to obtain a series of applications ofCF- Ab-

str, yielding types A′
1, . . . , A

′
n and (suitably fresh) free variables a

A′
1

1 , . . . , a
A′
n

n where, for
i = 1, . . . , n,

A′
i = Ai [aA

′
1

1 /x1, . . . , a
A′
i−1

i−1 /xi−1] and � A′
i type.

At the top of the abstractions sits a derivation D of the judgement

J[aA′
1

1 /x1, . . . , a
A′
n

n /xn].
The proof proceeds by induction on the derivation D, i.e. we only ever apply the induction
hypotheses to derivations that have a series of abstractions, and on the top a derivation that
is structurally smaller than D. Let us write

θ = [aA′
1

1 /x1, . . . , a
A′
n

n /xn],
ζ = [xn/aA

′
n

n , . . . , x1/a
A′
1

1 ],
τ = [t1/x1, . . . , tn/xn].

Case CF- Var: Suppose the derivation ends with the variable rule

� bB : B
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If bB is one of a
A′
i

i thenJ = {	x : 	A} xi : Ai , henceJτ = (ti : Ai [	t(i)/	x(i)]), which is derivable
by assumption. If bB is none of aAi

i ’s then aAi
i /∈ fv(B) by freshness, hence Jτ = (bB : B),

so we may reuse the same variable rule.

Case CF- Abstr: Suppose the derivation ends with an abstraction

� (An+1θ) type aAn+1θ

n+1 /∈ fv(J′θ) (J′θ)[aAn+1θ

n+1 /xn+1]
� {xn+1:An+1θ} (J′θ)

We extend the substitution by tn+1 = aAn+1τ

n+1 and apply the induction hypothesis to the

abstracted derivation of the right-hand premise, whose conclusion is {	x : 	A}{xn+1:An+1} J′,
to obtain � J′[τ, tn+1/xn+1]. We may abstract aAn+1τ

n+1 to get the desired judgement
� {xn+1:An+1τ } (J′τ).

All other cases The remaining cases all follow the same pattern: abstract the premises, apply
the induction hypotheses to them, and conclude with the same rule. We demonstrate how this
works in case of D ending with an instance of a specific rule R = (MB1

1 , . . . ,MBn
n �⇒ b e )

instantiated with I = 〈MB1
1 �→e1, . . . ,M

Bn
n �→en〉:

� (I(i)∗Bi ) ei for i = 1, . . . , n

� I∗b
� I∗(b e )

Define the instantiation J of the premises of R by J (Mi ) = e′
i = (eiζ )τ . Note that �

(I∗(b e ))τ equals � J∗(b e ), therefore we may derive it by J∗R. The last premise of J∗R is
� (I∗b)τ , and it follows by Lemma 5.3 applied to the last premise of I∗R. For i = 1, . . . , n,
abstract � (I(i)∗Bi ) ei to

� {	x : 	A} ((I(i)∗Bi ) ei )ζ

and apply the induction hypothesis to derive � (((I(i)∗Bi ) ei )ζ )τ , which equals �
(((I(i)∗Bi )ζ )τ ) (eiζ )τ and because Bi does not contain any free variables, also to �
(J(i)∗Bi ) e′

i . ��

Theorem 5.5 (Context-free presuppositivity) If a context-free raw type theory derives � B e
and B e has well-typed annotations, then it derives � B.

Proof The proof proceeds by induction on the number of metavariables appearing in the
judgement and the derivation of � B e . That is, each appeal to the induction hypothesis
reduces the number of metavariables, or is applied to a subderivation.

Case CF- Var: Immediate, by the well-typedness of annotations.

Case CF- Meta: Immedate as the desired judgement is a premise of the rule.
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Case CF- Meta- Congr- Tm: Suppose B = {x1:A1} · · · {xm :Am} � : B and consider a
derivation ending with the metavariable congruence rule

for k = 1, . . . ,m :
� sk : Ak[	s(k)/	x(k)]
� tk : Ak[	t(k)/	x(k)]
�tk� = �t ′k�
� sk ≡ t ′k : Ak[	s(k)/	x(k)] by αk

� v : B[	s/	x] �MB(	t)� = �v�
β suitable

� MB(	s) ≡ v : B[	s/	x] by β

The presuppositions are derived as follows:

• � B[	s/	x] type follows by CF- Subst from � 	x : 	A B type, which in turn follows by
inversion on � B.

• � MB(	s) : B[	s/	x] follows by CF- Meta.
• v : B[	s/	x] is a premise.

Case CF- Abstr: Consider an abstraction

� A type aA /∈ fv(B e ) � (B e )[aA/x]
� {x :A} B e

By induction hypothesis on the last premise, we obtain � B[aA/x] after which we apply
CF- Bdry- Abstr.

Case of a specific rule: Immediate, as the well-formedness of the boundary is a premise.

Case of a congruence rule: Consider a congruence rulles associated with an object rule R
and instantiated with I and J , as in Definition 4.8.

If R concludes with � A type, the presuppositions are � I∗A type and � J∗A type,
which are derivable by I∗R and J∗R, respectively.

If R concludes with � t : A, the presuppositions are � I∗A type, � I∗t : I∗A, and
� t ′ : I∗A. We derive the first one by applying the induction hypothesis to the premise
� t ′ : I∗A, the second one by I∗R, while the third one is a premise.

Cases CF- EqTy- Refl,CF- EqTy- Sym,CF- EqTy- Trans,CF- EqTm- Refl,CF- EqT-
m- Sym, CF- EqTm- Trans: These are all dispensed with straightforward appeals to the
induction hypotheses.

Case CF- Conv- Tm: Consider a term conversion

� t : A � A ≡ B by α

asm(t, A, B, α) = asm(t, B, β)

� κ(t, β) : B
By induction hypothesis for the second premise, � B type.

Case CF- Conv- EqTm: Consider a term equality conversion

� s ≡ t : A by α � A ≡ B by β

asm(s, A, B, β) = asm(s, B, γ )

asm(t, A, B, β) = asm(t, B, δ)

� κ(s, γ ) ≡ κ(t, δ) : B by α
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As in the previous case, the induction hypothesis for the second premise provides � B type.
The induction hypothesis for the first premise yields

� s : A and � t : A
We may convert these to � κ(s, γ ) : B and � κ(t, δ) : B using the second premise. ��
Lemma 5.6 If a context-free raw type theory derives

� {x1:A1} · · · {xn :An} J
where {	x : 	A} J has well-typed annotations, and for i = 1, . . . , n

� si : Ai [	s(i)/	x(i)]
� ti : Ai [	t(i)/	x(i)]
� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi and �t ′i � = �ti�. (5.1)

then:

1. if J = ({	y: 	B} C type) then there are γ and C ′ such that �C[	t/	x]� = �C ′�,
� {	y: 	B[	s/	x]} C[	s/	x] ≡ C ′ by γ,

2. if J = ({	y: 	B} u : C) then there are δ and u′ such that �u[	t/	x]� = �u′� and
� {	y: 	B[	s/	x]} u[	s/	x] ≡ u′ : C[	s/	x] by δ.

Furthermore, no extraneous assumptions are introduced by γ , C ′, δ and u′:

asm({	y}γ, {	y}C ′, {	y}δ, {	y}u′) ⊆ asm(	s, 	t, 	t ′, 	α, {	x : 	A} J).

Proof . As in the proof of Lemma 5.2, we invert the derivation of � {	x : 	A} J to obtain types

A′
1, . . . , A

′
n and (suitably fresh) free variables a

A′
1

1 , . . . , a
A′
n

n where, for i = 1, . . . , n,

A′
i = Ai [aA

′
1

1 /x1, . . . , a
A′
i−1

i−1 /xi−1] and � A′
i type

and a derivation D of the judgement

J[aA′
1

1 /x1, . . . , a
A′
n

i−1/xn].
The proof proceeds by induction on the well-founded ordering of the rules, the number
of metavariables, with a subsidiary induction on the derivation D. That is, each appeal to
the induction hypotheses either decreases the number of metavariables appearing in the
judgement, or descends to a subderivation of D. Let us write

θ = [aA′
1

1 /x1, . . . , a
A′
n

i−1/xn],
σ = [s1/x1, . . . , sn/xn],
τ = [t1/x1, . . . , tn/xn].

Case CF- Var: Suppose the derivation ends with the variable rule

� bB : B
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If bB is one of a
A′
i

i then J = {	x : 	A} xi : Ai , hence (2) is satisfied by (5.1). If bB is none

of aAi
i ’s then aAi

i /∈ fv(B) by freshness, hence (2) is satisfied by � bB ≡ bB : B by {||},
which holds by CF- EqTm- Refl.

Case CF- Abstr: Suppose the derivation ends with an abstraction

� (An+1θ) type aAn+1θ

n+1 /∈ fv(Jθ) (J′θ)[aAn+1θ

n+1 /y]
� {xn+1:An+1θ} (J′θ)

(A37)

We may abstract the first premise to � {	x : 	A} An+1 type, apply Lemma 5.2 to derive �
An+1τ type, and the induction hypothesis to obtain βn+1 and A′ such that �An+1τ� = �A′�,

� A′ type and � An+1σ ≡ A′ by βn+1.

By CF- EqTy- Trans and CF- EqTy- Refl it follows that for some γn+1

� An+1σ ≡ An+1τ by γn+1.

Let aAn+1σ

n+1 be fresh, and define

sn+1 = t ′n+1 = aAn+1σ

n+1 , tn+1 = κ(aAn+1σ

n+1 , γn+1), and αn+1 = {||}.
We may abstract the last premise of (A37) to

� {x1:A1} · · · {xn+1:An+1} J′

apply the induction hypothesis with the given sn+1, tn+1 and t ′n+1 to derive either (1) or (2),

and abstract aAn+1σ

n+1 to get the desired judgements.

Case CF- Meta: We consider the case of an object metavariable, and leave the easier case of
a type metavariable to the reader. Let B = ({	y: 	B} � : C), and suppose the derivation ends
with an application of the metavariable rule,

� u jθ : Bj [	u( j)θ/	y( j)] for j = 1, . . . ,m

� � : C[	uθ/	y]
� MB(	uθ) : C[	uθ/	y] (A38)

For each j = 1, . . . ,m we may abstract the premise of (A38) to

� {	x : 	A} u j : Bj [	u( j)/	y( j)]
and apply Lemma 5.2, once with 	s and once with 	t , to derive

� u jσ : Bj [(	uσ)( j)/	y( j)],
� u jτ : Bj [(	uτ)( j)/	y( j)],

where we took into account the fact that Bj does not contain any bound variables. Also, by
induction hypothesis there are δ j and u′

j such that �u jτ� = �u′
j� and

� u jσ ≡ u′
j : Bj [(	uσ)( j)/	y( j)] by δ j .

Next,we invert the last premise of (A38) and abstract it to� {	x : 	A} C[	u/	y] type. By induction
hypothesis we obtain δ′ and C ′ such that �C ′� = �C[	uτ/	y]� and � C[	uσ/	y] ≡ C ′ by δ′,
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hence � C[	uσ/	y] ≡ C[	uτ/	y] by δ′′ for some δ′′. Now (2) is satisfied, for some δ′′′

� κ(MB(	uτ), δ) : C[	uσ/	y],
� MB(	uσ) ≡ κ(MB(	uτ), δ) : C[	uσ/	y] by δ′′′

where the last judgement follows by the congruence rule for MB .

Case of a specific term rule: Suppose the derivation ends with a specific rule R =
(MB1

1 , . . . ,MBm
m �⇒ u : B) instantiated with I ′ = 〈MB1

1 �→e′
1, . . . ,M

Bm
m �→e′

m〉:
� (I ′

( j)∗B j ) e
′
j for j = 1, . . . , n

� (� : I ′∗B)

� I ′∗u : I ′∗B

Let ζ = [xn/aA
′
n

n , . . . , x1/a
A′
1

1 ]be the abstraction that undoes θ .Define e j = e′
jζ and I = I ′ζ ,

so that e′
j = e jθ and I ′ = Iθ , which allows us to write the above judgement as

� ((I( j)∗B j ) e j )θ for j = 1, . . . , n

� (� : I∗B)θ

� (I∗u)θ : (I∗B)θ

We invert the last premise, abstract to � {	x : 	A} I∗B type, and apply Lemma 5.2 to derive
� (I∗B)σ type. Next, the induction hypothesis providesβ and B ′ such that �B ′� = �(I∗B)τ�
and � (I∗B)σ ≡ B ′ by β. Therefore, we have β ′ such that

� (I∗B)σ ≡ (I∗B)τ by β ′.

It suffices to show

� (I∗u)σ ≡ κ((I∗u)τ, β ′) : (I∗B)σ by δ

for a suitable δ. This is precisely the conclusion of the congruence rule for R, so we derive
its premises. For any j = 1, . . . ,m we may abstract the j-th premise to

� {	x : 	A} (I( j)∗B j ) e j , (A39)

and apply Lemma 5.2, once with 	s and once with 	t , to derive

� ((Iσ)( j)∗B j ) e jσ and � ((I τ)( j)∗B j ) e jτ .

For each object premise with boundary B j , the remaining premises are provided precisely
by the induction hypotheses.

Case of a specific type rule: Suppose the derivation ends with a specific rule R =
(MB1

1 , . . . ,MBm
m �⇒ B type) instantiated with I ′ = 〈MB1

1 �→e′
1, . . . ,M

Bm
m �→e′

m〉:
� (I ′

( j)∗B j ) e
′
j for j = 1, . . . , n

� � type

� I ′∗B type

With ζ and I as in the previous case, we may write the above as

� ((I( j)∗B j ) e j )θ for j = 1, . . . , n

� (I∗B)θ type
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where we elided the trivial boundary premise. It suffices to find a suitable γ such that �
(I∗B)σ ≡ (I∗B)τ by γ , which is precisely the conclusion of the congruence rule for R,
whose premises are derived as in the previous case.

Case CF- Conv- Tm: Suppose the derivation ends with an application of the conversion rule

� uθ : Bθ � Bθ ≡ Cθ by βθ

� κ(uθ, βθ ∪ asm(Bθ)) : Cθ

We abstract the first premise to � {	x : 	A} u : B and apply the induction hypothesis to obtain
δ and u′ such that �u′� = �uτ� and

� uσ ≡ u′ : Bσ by δ.

We abstract the second premise to � {	x : 	A} B ≡ C by β, apply Lemma 5.2 to derive
� Bσ ≡ Cσ by βσ , and use CF- Conv- EqTm to conclude, for suitable γ and γ ′,

� κ(uσ, γ ) ≡ κ(u′, γ ′) : Cσ by δ.

��
Theorem 5.7 In a context-free raw type theory, the following closure rules are admissible:

CF- Subst- EqTy

� {	x : 	A}{	y: 	B} C type

� si : Ai [	s(i)/	x(i)] for i = 1, . . . , n

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

�ti� = �t ′i � for i = 1, . . . , n

� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi for i = 1, . . . , n

β suitable

� {	y: 	B[	s/	x]} C[	s/x] ≡ C[	t/x] by β

CF- Subst- EqTm

� {	x : 	A}{	y: 	B} u : C
� si : Ai [	s(i)/	x(i)] for i = 1, . . . , n

� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

�ti� = �t ′i � for i = 1, . . . , n

� si ≡ t ′i : Ai [	s(i)/	x(i)] by αi for i = 1, . . . , n

β suitable

� {	y: 	B[	s/	x]} u[	s/	x] ≡ κ(u[	t/	x], β) : C[	s/x] by β

Proof Lemma 5.6 applied to the premises of CF- Subst- EqTy provides γ and C ′ such that
�C[	t/	x]� = �C ′� and

� {	y: 	B[	s/	x]} C[	s/	x] ≡ C ′ by γ. (A40)

We would like to replace C ′ in the right-hand side with C[	t/	x], which we can so long as

� {	y: 	B[	s/	x]} C ′ type and � {	y: 	B[	s/	x]} C[	t/	x].
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The first judgement holds by Theorem 5.5 applied to (A40) under the abstraction, while
the second one is a substitution instance of the first premise. This establishes derivability of
CF- Subst- EqTy.

In case of CF- Subst- EqTm the same lemma yields δ and u′ such that �u[	t/	x]� = �u′�
and

� {	y: 	B[	s/	x]} u[	s/	x] ≡ u′ : C[	s/x] by δ.

We would like to replace u′ with a converted u[	t/	x], which we can by an argument similar
to the one above. ��
Theorem 5.8 (Context-free admissibility of instantiation) In a raw type theory, if � J is
derivable, it has well-typed annotations, and I is a derivable instantiation such thatmv(J) ⊆
|I |, then � I∗J is derivable, and similarly for boundaries.

Proof . We proceed by induction on the derivation of � J. We only devote attention to
the metavariable and abstraction rules, as all the other cases are straightforward. Suppose
I = 〈MB1

1 �→e1, . . . ,M
Bn
n �→en〉.

Case CF- Meta: Consider an application of the metavariable rule for MBi
i with Bi =

({x1:A1} · · · {xm :Am} b) and ei = {	x}e:
� ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

� b[	t/	x]
� ((b[	t/	x])MBi

i (	t) )

Because I∗((b[	t/	x])MBi
i (	t) ) = ((I∗b)[I∗	t/	x]) e[I∗	t/	x] we need to derive

� ((I∗b)[I∗	t/	x]) e[I∗	t/	x] . (A41)

Because I is derivable, we know that � {	x :I(i)∗ 	A} (I(i)∗b) e . By induction hypothesis
� I(i)∗t j : (I(i)∗A j )[I(i)∗	t( j)/	x( j)]) for each j = 1, . . . ,m, so by Lemma 5.2 we derive
� ((I(i)∗b) e )[I(i)∗	t/	x], which coincides with (A41).

Case CF- Meta- Congr- Ty: We consider the congruence rule for types only. Suppose
the derivation ends with an application of the congruence rule for MBi

i with Bi =
({x1:A1} · · · {xm :Am} � type) and ei = {	x}B:

for k = 1, . . . ,m :
� sk : A[	s(k)/	x(k)]
� tk : A[	t(k)/	x(k)]
�tk� = �t ′k�
� sk ≡ t ′k : A[	s(k)/	x(k)] by αk

β suitable

� MBi
i (	s) ≡ MBi

i (	t) by β

Because I is derivable, we know that � {	x :I(i)∗ 	A} B type, hence Lemma 5.6 applies.

Case CF- Abstr: Suppose the derivation ends with an abstraction

� A type aA /∈ fv(J) � J[aA/x]
� {x :A} J
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Without loss of generality we may assume that aI∗A /∈ fv(I∗J). (If not, rename a to a fresh
symbol.) We may apply the induction hypotheses to both premises and get

� I∗A type and � (I∗J)[aI∗A/x].
and derive the desired judgement � {x :I∗A} I∗J by abstracting aI∗A in the right-hand
judgement. ��
Lemma 5.13 If a context-free standard type theory derives � t : A then

1. it derives � s(t) : τ(t) by an application of CF- Var, CF- Meta, or an instantiation of
a term symbol rule, and

2. it derives � τ(t) ≡ A by r(t).

Proof We proceed by induction on the derivation of � t : A.
Cases CF- Var, CF- Meta, and symbol rule: In these cases t = s(t) and τ(t) = A, so we
already have � s(t) : τ(t), while � τ(t) ≡ A by {||} holds by reflexivity.

Case CF- Conv- Tm: Consider a derivation ending with a conversion

� t : B � B ≡ A by β

� κ(t, α) : A
where asm(t, B, A, β) = asm(t, A, α). By induction hypothesis for the first premise we
obtain � s(t) : τ(t) and � τ(t) ≡ B by r(t), derived by one of the desired rules. Because
s(t) = s(κ(t, α)) and τ(t) = τ(κ(t, α)), the first claim is established. For the second one,
we apply CF- EqTy- Trans like this:

� τ(t) ≡ B by r(t) � B ≡ A by β

� τ(t) ≡ A by r(t) ∪ α

Suitability of r(t) ∪ α is implied by asm(τ(t), r(t)) = asm(t):

asm(τ(t), B, r(t), A, β) = asm(t, B, A, β)

= asm(t, A, α)

= asm(τ(t), A, r(t), α).

��
Theorem 5.17 (Boundary conversion) In a context-free raw theory, if � B1, � B2, � B1 e1
and �B1� = �B2� then there is e2 such that � B2 e2 , asm(e2) ⊆ asm(B1 e1 ) and �e1� =
�e2�.
Proof We proceed by induction on the derivation of � B1.

Case CF- Bdry- Ty: If B1 = (� type) then B2 = (� type) and we may take e2 = e1.

Case CF- Bdry- Tm: If B1 = (� : A1) then B2 = (� : A2) and �A1� = �A2�, therefore
� A1 ≡ A2 by {||} by CF- EqTy- Refl. We may take e2 = κ(e1, asm(A1)\asm(A2)) and
derive � e2 : A2 by CF- Conv- Tm.

Case CF- Bdry- EqTy: If B1 = (A1 ≡ B1 by �) then B2 = (A2 ≡ B2 by �), �A1� =
�A2� and �B1� = �B2�. By CF- EqTy- Refl we obtain � A2 ≡ A1 by {||} and � B1 ≡
B2 by {||}. We take e2 = (e1 ∪ asm(A1) ∪ asm(B1))\(asm(A2) ∪ asm(B2)) and derive
� A2 ≡ B2 by e2 by two applications of CF- EqTy- Trans.
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Case CF- Bdry- EqTm: If B1 = (s1 ≡ t1 : A1 by �) then B2 = (s2 ≡ t2 : A2 by �),
�s1� = �s2�, �t1� = �t2� and �A1� = �A2�. By CF- EqTy- Refl we obtain � A1 ≡
A2 by {||}, then by CF- Conv- EqTm

� κ(s1, γ ) ≡ κ(t1, δ) : A2 by e1

where γ = asm(A1)\asm(s1, A2) and δ = asm(A1)\asm(t1, A2). Next, by reflexivity

� s2 ≡ κ(s1, γ ) : A2 by {||}
� κ(t1, δ) ≡ t2 : A2 by {||}

We may chain these together by transitivity to derive

� s2 ≡ t2 : A2 by e2

where e2 = asm(e1, s1, t1, A1)\asm(s2, t2, A2).

Case CF- Bdry- Abstr: If B1 = ({x :A1} B′
1) then e1 = {x}e′

1, B2 = {x :A2} B′
2, �A1� =

�A2�, and �B′
1� = �B′

2�. There is aA2 /∈ fv(B′
2) such that � B′

2[aA2/x]. We may apply
Lemma 5.2 to � {x :A1} B′

1 e
′
1 and � κ(aA2 , {||}) : A1 to derive

� (B′
1[κ(aA2 , {||})/x]) e′

1[κ(aA2 , {||})/x] .
By CF- Bdry- Subst we have � B′

1[κ(aA2 , {||})/x], hence we may apply the induction
hypothesis to obtain e′′

2 such that �e′′
2� = �e′

1[κ(aA2 , {||})/x]�, asm(e′′
2) ⊆

asm(B′
1[κ(aA2 , {||})/x]), and� (B′

2[aA2/x]) e′′
2 . Set e

′
2 = e′′

2 [x/aA2 ] and applyCF- Bdry- Ab-
str to derive � {x :A2} B′

2 e
′
2 . Thus we may take e2 = {x}e′

2. ��

A.3 Proofs of Theorems About Translation Betweeen tt- and cf-Type Theories

This section provides missing proofs from Sect. 6.

Theorem 6.5 (Translation from finitary cf- to tt-theories)

1. The translation of a finitary cf-theory is finitary.
2. Suppose T is a finitary cf-theory whose translation Ttt is also finitary. Let �;� be tt-

context such that �Ttt � mctx and � �Ttt � vctx. If �T J and �;� is suitable for J,
then �;� �Ttt �J�.

3. With T , �;� as in (2), if �T B and �;� is suitable for B then �;� �Ttt �B�.
Proof We proceed by mutual structural induction on all three statements. To prove state-
ment (1), consider a finitary cf-theory T = (Ri )i∈I , and let (I ,≺) be a well-founded order
witnessing the finitary character of T (Definition 4.13). We prove that Ttt is finitary with
respect to (I ,≺) by a well-founded induction on the order. Given any i ∈ I , with

Ri = (MB1
1 , . . . ,MBn

n �⇒ j),

let � = [MB1
1 :�B1�, . . . ,MBn

n :�Bn�]. We verifty that (Ri )tt = (� �⇒ �j�) is finitary
in T ′ = ((R j ) j≺i )tt as follows:

• �T ′ � mctx holds by induction on k = 1, . . . , n: assuming �T ′ �(k) mctx has been
established, apply (2) to a cf-derivation of �(Ri ) j≺i Bk and the suitable context �(k); [ ].

• �T ′ �j� holds by application of (2) to a cf-derivation of�(Ri ) j≺i j and the suitable context
�; [ ].
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We next address statement (2), which we prove by structural induction on the derivation of
�T J.

Case CF- Var: A cf-derivation ending with the variable rule

�T aA : A
is translated to an application of TT- Var

aA ∈ |�|
�;� �Ttt a

A : �A�
By suitability of � the side-condition aA ∈ |�| is satisfied, and �(aA) = �A�.
Case CF- Meta: Consider a cf-derivation ending in

�T ti : Ai [	t(i)/	x(i)] for i = 1, . . . , n

�T b[	t/	x]
� (b[	t/	x])MB(	t)

Because erasure commutes with substitution we have

�Ai [	t(i)/	x(i)]� = �Ai�[�	t(i)�/	x(i)],
�b[	t/	x]� = �b�[�	t�/	x],

�(bM{	x : 	A}b(	x) )[	t/	x]� = (�b� �M{	x : 	A}b(	x)� )[�	t�/	x].
Applying TT- Meta to the translation of the premises obtained by the induction hypothesis
thus yields the desired result. Suitability of�;� is ensured because all premises are recorded
in the conclusion.

Cases CF- Meta- Congr- Ty and CF- Meta- Congr- Tm: We spell out the translation of
the latter rule, where B = {x1:A1} · · · {xm :Am} � : B:

� sk : Ak[	s(k)/	x(k)] for k = 1, . . . ,m

� tk : Ak[	t(k)/	x(k)] for k = 1, . . . ,m

�tk� = �t ′k� for k = 1, . . . ,m

� sk ≡ t ′k : A[	s(k)/	x(k)] by αk for k = 1, . . . ,m
� v : B[	s/	x] �MB(	t)� = �v� β suitable

� MB(	s) ≡ v : B[	s/	x] by β
(A42)

The context �;� is suitable for the premises because β is suitable. We apply TT- Meta- -

Congr as follows:

�;� � �sk� : �Ak�[�	s�(k)/	x(k)] for k = 1, . . . ,m

�;� � �tk� : �Ak�[�	t�(k)/	x(k)] for k = 1, . . . ,m

�;� � �sk� ≡ �tk� : �Ak�[�	s�(k)/	x(k)] for k = 1, . . . ,m

�;� � �B�[�	s�/	x] ≡ �B�[�	t�/	x]
�;� � MB

k (�	s�) ≡ MB
k (�	t�) : �B�[�	s�/	x]

The first two rows of premises are secured by the induction hypotheses for the corresponding
rows in (A42), and the premises in the third row are derivable by the side conditions in the third
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row and induction hypotheses for the fourth row. The last premise follows by Theorem 3.8
applied to �;� �Ttt �B� type, which holds because we assumed �Ttt � mctx.

Case CF- Abstr: A cf-derivation ending with an abstraction

�T A type aA /∈ fv(J) �T J[aA/x]
�T {x :A} J

is translated to a tt-derivation ending with TT- Abstr

�;� �Ttt �A� type bA /∈ |�| �;�,bA:�A� �Ttt �J�[bA/x]
�;� �Ttt {x :�A�} �J�

The premises get their derivations from induction hypotheses, where bA /∈ |�| ensures that
�,bA:�A� is suitable for J[bA/x].
Case of a specific rule: Consider a derivation ending with an instantiation
I = 〈MB1

1 �→e1, . . . ,MBn

n �→en〉 of a raw cf-rule R = (MB1
1 , . . . ,MBn

n �⇒ b e ):

�T (I(i)∗Bi ) ei for i = 1, . . . , n

�T I∗b
�T I∗(b e )

Let �I� = MB1
1 �→�e1�, . . . ,MBn

n �→�en�. Because erasure commutes with instantiation we
have

�(I(i)∗Bi ) ei � = (�I�(i)∗�Bi�) �ei�

and �I∗(b e )� = �I�∗�b e �. Thuswemay appeal to the induction hypotheses for the premises
and conclude by Rtt , so long as we remember to check that �;� is suitable for the premises,
which it is because Definition 4.1 of raw cf-rules requiresmv(b e ) = {|MB1

1 , . . . ,MBn

n |}.
Case of a congruence rule: Consider an application of the congruence rule associated with
a cf-rule

R = (MB1
1 , . . . ,MBn

n �⇒ t : A),

as in Definition 4.8:

�T (I(i)∗Bi ) fi for i = 1, . . . , n

�T (J(i)∗Bi ) gi for i = 1, . . . , n

�g′
i� = �gi� for object boundary Bi

�T (I(i)∗Bi ) fi ≡ g′
i by αi for object boundary Bi

�T t ′ : I∗A �t ′� = �J∗t�
β suitable

�T I∗t ≡ t ′ : I∗A by β
(A43)
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The context �;� is suitable for the premises because β is suitable. We apply the corre-
sponding congruence for Rtt (Definition 2.17):

�;� �Ttt (�I�(i)∗�Bi�) � fi� for i = 1, . . . , n

�;� �Ttt (�J�(i)∗�Bi�) �gi� for i = 1, . . . , n

�;� �Ttt (�I�(i)∗�Bi�) � fi� ≡ �gi� for object boundary Bi

�;� �Ttt �I�∗�A� ≡ �J�∗�A�
�;� �Ttt �I�∗�t� ≡ �J�∗�t� : �I�∗�A�

The first and the second row of premises are derivable by induction hypotheses for the
corresponding rows in (A43), while the third row is derivable because of the side conditions
on the third row and induction hypotheses for the fourth row. The last premise follows by
Theorem 3.17 applied to �;� �Ttt A type, which in turn follows by induction hypothesis
applied to a derivation of �T A type witnessing the finitary character of R.

Case CF- Conv- Tm: Consider a term conversion

�T t : A �T A ≡ B by α

�T κ(t, β) : B
The side condition asm(t, A, B, α) = asm(t, B, β) ensures that �;� is suitable for both
premises, hence we may apply the induction hypotheses to the premisess and conclude by
TT- Conv- Tm.

Case CF- Conv- EqTm: Consider an equality conversion

� s ≡ t : A by α � A ≡ B by β

� κ(s, γ ) ≡ κ(t, δ) : B by α

The side conditions

asm(s, A, B, β) = asm(s, B, γ ) and asm(t, A, B, β) = asm(t, B, δ)

ensure that �;� is suitable for both premises, hence we may apply the induction hypotheses
to the premises and conclude by TT- Conv- EqTm. As in the preceding case all assumptions
in the premises already appear in the conclusion, and suitability is preserved.

Cases CF- EqTy- Refl, CF- EqTy- Sym, CF- EqTy- Trans, CF- EqTm- Refl, CF- EqT-
m- Sym, CF- EqTm- Trans: These all proceed by application of induction hypotheses to
the premises, followed by the corresponding tt-rule, where crucially we rely on recording
metavariables in the assumption sets to make sure that � and � are suitable for the premises.

Finally, we address statement (2), which is proved by structural induction on �T B. The
base cases CF- Bdry- Ty, CF- Bdry- Tm, CF- Bdry- EqTy, CF- Bdry- EqTm reduce to
translation of term and type judgements, while the induction stepCF- Bdry- Abstr is similar
to the case CF- Abstr above. ��
Theorem 6.10 (Translation of standard tt- to cf-theories)

1. For any standard tt-theory T there exists a standard cf-theory T ′ eligible for T .
2. For any T , T ′ as above, if �T � mctx then there exists an eligible labeling θ for � such

that �T ′ θ(M) for every M ∈ |�|.
3. For any T , T ′, �, θ as above, if �; [ ] �T � vctx then there exists an eligible labeling γ

for � with respect to θ such that �T ′ γ (a) type for every a ∈ |�|.
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4. For any T , T ′,�, θ ,�, γ as above, if�;� �T B then there exists an eligible cf-boundary
B′ for B with respect to θ , γ such that �T ′ B′.

5. For any T , T ′,�, θ ,�,γ , as above, if�;� �T J then there exists an eligible cf-judgement
J′ for J with respect to θ , γ such that �T ′ J′.

Proof We prove the above existence statements by explicit constructions, e.g., we prove (1)
by constructing a specific T ′ which meets the criteria, and similarly for the remaining parts.
We proceed by simultaneous structural induction on all the parts.
Proof of part (1): We proceed by induction on a well-founded order (I ,≺) witnessing the
finitary character of T = (Ri )i∈I . Consider any i ∈ I , with the corresponding specific rule

Ri = (� �⇒ b e ),

and let Ti = (R j ) j≺i . By induction hypothesis the tt-theory T ′
i eligible for Ti has

been constructred. Because �Ti � mctx, by (2) there is an eligible labeling θ =
〈M1 �→B′

1, . . . ,Mn �→B′
n〉 for � such that �T ′

k
B′
k for each k = 1, . . . , n. The empty map

γ = 〈〉 is an eligible labeling for the empty context [ ]. Because�; [ ] �Ti b, by (4) there is an
eligible cf-boundary b′ for b with respect to θ, γ such that �T ′

i
b′. We now are in possession

of the cf-rule-boundary

M
B′
1

1 , . . . ,M
B′
n

n �⇒ b′ (A44)

eligible for the tt-rule-boundary � �⇒ b. Let

R′
i = (M

B′
1

1 , . . . ,M
B′
n

n �⇒ b′ e′ )

be the symbol or equality cf-rule induced by (A44), as in Definitions 4.5 and 4.6. Comparison
with Definitions 2.14 and 2.16 shows that ��e′�� = e, as required.
Proof of part (2): We proceed by induction on the derivation of �T � mctx. The empty
map is an eligible labeling for the empty metavariable context. If �T 〈�,M:B〉 mctx then
by inversion �T � mctx and �; [ ] �T B. By induction hypothesis there exists an eligible
labeling θ for�, and by (4) applied to T , T ′,�, θ , [ ], 〈〉 a cf-boundaryB′ eligible forB such
that �T ′ B′. The map θ ′ = 〈θ,M�→B′〉 is eligible for 〈�,M:B〉, and moreover �T ′ θ ′(M′)
for every M′ ∈ |θ ′|.
Proof of part (3) is analogous to part (2).
Proof of part (4): The non-abstracted boundaries reduce to instances of (5) by inversion,
while the case of TT- Bdry- Abstr is analogous to the case TT- Abstr below.
Part (5): Let T , T ′, �, θ , �, γ be as in (5) with

� = [M1:B1, . . . ,Mm :Bp],
θ = 〈M1 �→B′

1, . . . ,Mp �→B′
p〉,

� = [a1:A1, . . . , ap:Ar ],
γ = 〈a1 �→A′

1, . . . , ar �→A′
r 〉.

We have the further assumption that eachMi has a cf-derivation DMi of �T ′ B′
i , and each a j

a cf-derivation Da j of �T ′ A′
j type. We proceed by structural induction on the derivation of

�;� �T J. In each case we construct a cf-derivation concluding with �T ′ J′ such that J′
is eligible for J.

Case TT- Var: Consider a tt-derivation ending with the variable rule

�;� �T a j : A j

123



36 Page 82 of 87 P. G. Haselwarter, A. Bauer

The corresponding cf-derivation is the application of CF- Var

�T ′ a
A′
j

j : A′
j

Case TT- Meta: Consider a tt-derivation ending with the metavariable rule, where Bk =
{x1:B1} · · · {xm :Bm} b and B′

k = {x1:B ′
1} · · · {xm :B ′

m} b′:

�;� �T t j : Bj [	t( j)/	x( j)] for j = 1, . . . ,m

�;� �T b[	t/	x]
�;� �T (b[	t/	x])Mk(	t)

The correspond cf-derivation ends with and application of CF- Meta,

�T ′ t ′j : B ′
j [	t ′( j)/	x( j)] for j = 1, . . . ,m

�T ′ b′[	t ′/	x]
�T ′ b′ MB′

(	t ′)
where the cf-terms 	t ′ = (t ′1, . . . , t ′m) are constructed inductively as follows. Assuming we
already have 	t ′( j), we apply the induction hypothesis to the j-th premise and obtain its eligible

counterpart �T ′ t ′′j : B ′′
j , so that ��t ′′j �� = t j and ��B ′′

j �� = Bj [	t( j)/	x( j)]. It follows that

�B ′′
j � = �B ′

j [	t ′( j)/	x( j)]�, therefore we may use Theorem 5.17 to modify t ′′j to a term t ′j which
fills B ′

j [	t ′( j)/	x( j)].
Case TT- Meta- Congr: We consider a tt-derivation ending with a metavariable term con-
gruence rule, where Bk = {x1:B1} · · · {xm :Bm} � : C and B′

k = {x1:B ′
1} · · · {xm :B ′

m} � :
C ′:

�;� �T s j : Bj [	s( j)/	x( j)] for j = 1, . . . ,m

�;� �T t j : Bj [	t( j)/	x( j)] for j = 1, . . . ,m

�;� �T s j ≡ t j : Bj [	s( j)/	x( j)] for j = 1, . . . ,m

�;� �T C[	s/	x] ≡ C[	t/	x]
�;� �T Mk(	s) ≡ Mk(	t) : C[	s/	x] (A45)

The corresponding cf-derivation ends with CF- Meta- Congr- Tm

�T ′ s′
j : B ′

j [	s′
( j)/	x( j)] for j = 1, . . . ,m

�T ′ t ′j : B ′
j [	t ′( j)/	x( j)] for j = 1, . . . ,m

�t ′k� = �t ′′j � for j = 1, . . . ,m

�T ′ s′
j ≡ t ′′j : B ′

j [	s′
( j)/	x( j)] by α j for j = 1, . . . ,m

�T ′ v : C ′[	s′/	x] �MB(	t ′)� = �v�
�T ′ MB(	s′) ≡ v : C ′[ 	s′/	x] by β

(A46)

where suitable 	s′, 	t ′, 	t ′′, 	α, v, and β remain to be constructed. The terms 	s′ and 	t ′ are
obtained as in the previous case, using the first two rows of premises of (A45). The induction
hypotheses for the third row give us judgements, for j = 1, . . . ,m,

�T ′ s′′
j ≡ t ′′j : B ′′

j
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such that �B ′′
j � = �Bj [	s′

( j)/	x( j)]�. We convert the above equality along �T ′ B ′′
j ≡

Bj [	s′
( j)/	x( j)] to derive

�T ′ s′′′
j ≡ t ′j : Bj [	s′

( j)/	x( j)]
and since �s′′′

j � = �s′
j� by reflexivity and transitivity

�T ′ s′
j ≡ t ′j : Bj [	s′

( j)/	x( j)].
It remains to construct v and β. For the former, we apply CF- Subst- EqTy to �T ′ {	x :

	B ′} C ′ type to derive

�T ′ C ′[	s′/	x] ≡ C ′[	t ′/	x] by δ

ands use it to convert �T ′ Mk(	t ′) : C ′[	t ′/	x] to �T ′ κ(Mk(	t ′), ε) : C ′[	s′/	x] for a suitable ε.
We take v = κ(Mk(	t ′), ε) and the minimal suitable β.

Case TT- Abstr: Consider a tt-derivation ending with an abstraction

�;� �T A type a /∈ |�| �;�, a:A �T J[a/x]
�;� �T {x :A} J

By induction hypothesis we obtain a derivation of �T ′ A′ type which is eligible for the first
premise. The extended map 〈γ, a �→A′〉 is eligible for �, a:A, and so by induction hypoth-
esis we obtain a derivble �T ′ J′ which is eligible for the second premise with respect to
(θ, 〈γ, a �→A′〉). We form the desired abstraction by CF- Abstr,

�T ′ A′ type aA
′
/∈ fv(J′) �T ′ J′

�T ′ {x :A′} J′[x/aA′ ]
Case of a specific rule: Consider a specific tt-rule

R = (N1:D1, . . . ,Nm :Dm �⇒ j),

and the corresponding cf-rule

R′ = (N1
D′

1 , . . . ,Nk
D′

m �⇒ j′)

Consider a tt-derivation ending with I∗R where I = 〈N1 �→e1, . . . ,Nm → em〉:
�;� �T (I( j)∗D j ) e j for j = 1, . . . ,m

�;� �T I∗b
�;� �T I∗(b e )

(A47)

The corresponding cf-derivation is obtained by an application of R′ instantiated with

I ′ = 〈N1
D′

1 �→e′
1, . . . ,Nk

D′
k �→e′

m〉,
which is constructed inductively as follows. Suppose 	e′

( j) have already been constructed in
such a way that ��e′

k�� = ek and �T ′ (I ′
(k)∗D

′
k) e

′
k for all k < j . The induction hypothesis

for the j-th premise of (A47) yields �T ′ D′′
j e

′′
j such that �D′′

j � = �I ′
( j)D

′
j�. We apply

Theorem 5.17 to modify e′′
j to e′

j such that �T ′ (I ′
( j)D

′
j ) e

′
j and ��e′

j�� = �e′′
j �. Lastly, the

premise �T ′ I ′∗b′ is derivable because R′ is finitary.
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Case of a congruence rule: Consider a term tt-rule

R = (N1:D1, . . . ,Nm :Dm �⇒ t : C),

and the corresponding cf-rule

R′ = (N
D′

1
1 , . . . ,N

D′
m

m �⇒ t ′ : C ′),

Given instantiations

I = 〈N1 �→ f1, . . . ,Nm → fm〉 and J = 〈N1 �→g1, . . . ,Nm → gm〉,
suppose the tt-derivation ends with the congruence rule for R:

�;� �T (I( j)∗D j ) f j for i = 1, . . . ,m

�;� �T (J( j)∗D j ) g j for i = 1, . . . ,m

�;� �T (I( j)∗D j ) f j ≡ gi for object boundaryD j

�;� �T I∗C ≡ J∗C
�;� � I∗t ≡ J∗t : I∗C (A48)

The corresponding cf-derivation ends with the congruence rule for R′,

�T ′ (I ′
(i)∗D

′
i ) f ′

i for i = 1, . . . ,m

�T ′ (J ′
(i)∗D

′
i ) g

′
i for i = 1, . . . ,m

�g′′
i � = �g′

i� for object boundaryD′
i

�T ′ (I ′
(i)∗D

′
i ) f ′

i ≡ g′′
i by αi for object boundaryD′

i

�T ′ t ′′ : I ′∗C ′ �t ′′� = �J ′∗t ′�
β suitable

�T ′ I ′∗t ′ ≡ t ′′ : I ′∗C by β

where

I ′ = 〈ND′
1

1 �→ f ′
1, . . . ,N

D′
m

m → f ′
m〉 and J ′ = 〈ND′

1
1 �→g′

1, . . . ,N
D′

m
m → g′

m〉.
It remains to determine 	f ′, 	g′, 	g′′, and t ′′.

The terms 	f ′ and 	g′ are constructed from the first two rows of premises of the tt-derivation
in the same way as 	e′ in the previous case. The third row of premises yields equations, which
after an application of Theorem 5.17, take the form

�T ′ (I ′
(i)∗D

′
i ) f ′′

i ≡ g′′
i by βi .

As � f ′
i � = � f ′′

i �, these can be rectified by reflexivity and transitivity to the desired form

�T ′ (I ′
(i)∗D

′
i ) f ′

i ≡ g′′
i by αi .

Finally, we construct t ′′ by converting �T ′ J∗t ′ : J∗C along �T ′ J ′∗C ′ ≡ I ′∗C ′ by γ ,
which is derived as follows. The induction hypothesis for the last premise of (A48) gives

�T ′ C1 ≡ C2
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such that �C1� = �I ′∗C ′� and �C2� = �J ′∗C ′�. Because �T ′ I ′∗C ′ type and �T ′ J ′∗C ′ type,
as well as �T ′ C1 type and �T ′ C2 type by Theorem 5.5, we may adjust the above equation
to

�T ′ I ′∗C ′ ≡ J ′∗C ′,

which is only a symmetry away from the desired one.
The case of a type specific rule is simpler and dealt with in a similar fashion.

Cases TT- EqTy- Refl, TT- EqTy- Sym, TT- EqTm- Refl, TT- EqTm- Sym: each of these
is taken care of by applying the induction hypotheses to the premises, followed by application
of the corresponding cf-rule.

Cases TT- EqTy- Trans and TT- EqTm- Trans: Consider a derivation ending with term
transitivity

�;� �T s ≡ t : A �;� �T t ≡ u : A
�;� �T s ≡ u : A

The induction hypotheses for the premises produce eligible judgements

�T ′ s′ ≡ t ′ : A′ by α and �T ′ t ′′ ≡ u′′ : A′′ by β

Because �A′� = �A′′� and �t ′� = �t ′′�, we may convert the second judgement to A′, and
rectify the left-hand side, which results in

�T ′ t ′ ≡ u′ : A′ by γ.

Now CF- EqTm- Trans applies. The case of transitivity of type equality similar and easier.

Case TT- Conv- Tm: Consider a conversion

�;� �T t : A �;� �T A ≡ B

�;� �T t : B
The induction hypotheses for the premises produce eligible judgements

�T ′ t ′′ : A′ and �T ′ A′′ ≡ B ′ by α

Because �A′� = �A′′�, we obtain A′ ≡ B ′ by β, after which CF- Conv- Tm can be used to
convert �T ′ t ′′ : A′ to a judgement �T ′ t ′ : B ′ by β which is eligible for the conclusion.

Case TT- Conv- EqTm: This case follows the same pattern as the previous one. ��
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29. Petković Komel, A.: Towards an Elaboration Theorem. HoTT/UF, Invited Talk (2021)
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