
Journal of Automated Reasoning (2023) 67:29
https://doi.org/10.1007/s10817-023-09677-z

Mechanising Gödel–Löb Provability Logic in HOL Light

Marco Maggesi1 · Cosimo Perini Brogi2

Received: 7 May 2022 / Accepted: 17 July 2023 / Published online: 29 August 2023
© The Author(s) 2023

Abstract
We introduce our implementation in HOLLight of the metatheory for Gödel–Löb provability
logic (GL), covering soundness and completeness w.r.t. possible world semantics and featur-
ing a prototype of a theorem prover for GL itself. The strategy we develop here to formalise
the modal completeness proof overcomes the technical difficulty due to the non-compactness
of GL and is an adaptation—according to the formal language and tools at hand—of the proof
given in George Boolos’ 1995 monograph. Our theorem prover for GL relies then on this
formalisation, is implemented as a tactic of HOL Light that mimics the proof search in the
labelled sequent calculus G3KGL, and works as a decision algorithm for the provability logic:
if the algorithm positively terminates, the tactic succeeds in producing a HOL Light theorem
stating that the input formula is a theorem of GL; if the algorithm negatively terminates,
the tactic extracts a model falsifying the input formula. We discuss our code for the formal
proof of modal completeness and the design of our proof search algorithm. Furthermore, we
propose some examples of the latter’s interactive and automated use.

Keywords Provability logic · Higher-order logic · Mechanised mathematics · HOL Light
theorem prover

1 Introduction

The origin of provability logic dates back to a short paper by Gödel [28] where propositions
about provability are formalised through a unary operator B to give a classical reading of
intuitionistic logic. That work opened the question of finding an adequate modal calculus for
the formal properties of the provability predicate used in Gödel’s incompleteness theorems.
The problem has been settled since the 1970s for many formal systems of arithmetic employ-
ing Gödel–Löb logic GL: the abstract properties of the formal provability predicate of any

B Marco Maggesi
marco.maggesi@unifi.it

B Cosimo Perini Brogi
cosimo.perinibrogi@imtlucca.it

1 Department of Mathematics and Computer Science, University of Florence, Tuscany, Italy

2 SySMA Research Unit, IMT School for Advanced Studies Lucca, Tuscany, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09677-z&domain=pdf

29 Page 2 of 34 M. Maggesi, C. Perini Brogi

�1-sound arithmetical theory T extending I�1 [76] are captured by that modal system, as
established by Solovay [73].

Solovay’s technique consists of an arithmetization of a relational countermodel for a
given formula that is not a theorem of GL, from which it is possible to define an appropriate
arithmetical formula that is not a theorem of the mathematical system.1

Therefore, on the one hand, completeness of formal systems w.r.t. the relevant relational
semantics is still an unavoidable step in achieving the more substantial result of arithmetical
completeness; on the other hand, however, the area of provability logic keeps flourishing and
suggesting old and new open problems.2

Our work starts then with a deep embedding of the syntax of propositional modal logic
together with the corresponding relational semantics. Next, we introduce the traditional
axiomatic calculus GL and prove the soundness of the system w.r.t. irreflexive transitive
finite frames.

A more mathematical part then follows: our goal has been proving formally

Theorem 1 For any formula A, GL � A iff A is true in any irreflexive transitive finite frame.

Since GL is not compact, the standard methodology based on canonical models [69]
cannot be directly applied here. After Kozen and Parikh [43], it is common to restrict the
construction to a finite subformula universe.3 The same idea is basically used in Boolos [8] to
prove modal completeness for GL. Proceeding in that same way, we have to formally verify a
series of preliminary lemmas and constructions involving the behaviour of syntactical objects
used in the standard proof of the completeness theorem. These unavoidable steps are often
only proof-sketched in wide-adopted textbooks in logic—including [8]—for they mainly
involve “standard” reasoning within the proof system we are dealing with. Nevertheless,
when working in a formal setting, as we did with HOL Light, we need to split down the main
goal into several subgoals, dealing with both the object- and the meta-level. Sometimes, the
HOL Light automation does mirror—and, using automation mechanisms, simplify details
of—the informal reasoning. On other occasions, we have to modify some aspects of the proof
strategies, simplifying, through the computer tools at hand, some passages of the informal
argument in Boolos [8, Chap. 5].

As it is known, for any logical calculus, a completeness result w.r.t. finite models—aka
finite model property—implies the decidability of that very logic [36]. Therefore, the formal
proof for Theorem 1we discuss in the first part of the present work could be used, in principle,
to develop a decision algorithm forGL. That would be a valuable tool for automating in HOL
Light the proof of theorems of GL.

Proof search in axiomatic calculi is a challenging task. In our formalisation, we had to
develop several proofs in the axiomatic calculus for GL, and only in a few cases, it has been
possible to leave the proof search to the automation mechanism of HOL Light.

By having a formal proof of the finite model property, one could hope to solve the goal
of checking whether a formula is a theorem of GL by shifting from the syntactic problem of
finding a proof of that formula in the axiomatic calculus to the semantic problem of checking
the validity of that formula in any finite model by applying automated first-order reasoning
as implemented in the proof assistant.

1 In contemporary research, this is still the main strategy to prove arithmetical completeness for other modal-
ities for provability and related concepts, particularly for interpretability logics.
2 Some of them are closely related to the field of proof theory; others point at developing a uniform proof-
strategy to establish adequate semantics in formal theories of arithmetic having different strengths and flavours.
The reader is referred to Beklemishev and Visser [5] for a survey of open problems in provability logics.
3 We are grateful to an anonymous referee for pointing us to that work.

123

Mechanising Gödel–Löb Provability Logic... Page 3 of 34 29

Such a strategy has many shortcomings, unfortunately. We document some of its limits in
Sect. 4.4 and at the beginning of the subsequent section, but themain points are the following:
From the complexity theory viewpoint, a decision procedure based on the countermodel con-
struction would be far from being optimal, belonging to EXPSPACE, rather than PSPACE,
to which decidability of GL belongs [46];4 from the practical viewpoint, implementing it in
HOL Light would consists in a relatively simple formalisation exercise.

Structural proof theory for modal logics—briefly summarised in Sect. 5.1—suggests a
more promising strategy.

Many contemporary sequent calculi for non-classical logics are based on an “internalisa-
tion” of possible world semantics in Gentzen’s original formalism [58, 67].

We resort to an explicit internalisation for developing our decision algorithm since our
formalisation in HOL Light of Kripke semantics for GL is per se a labelling technique in
disguise.

Therefore, in the second part of this paper, we introduce what might be considered a
shallow embedding in HOL Light of Negri’s labelled sequent calculus G3KGL [53, 54].

To state it clearly: while in the first part, we defined the axiomatic system GL within our
proof assistant employing an inductive definition of the derivability relation for GL, in the
second part, we define new tactics of HOL Light in order to perform a proof search in G3KGL
by using the automation infrastructure provided by HOL Light itself.

By relying on the meta-theory for G3KGL developed in [54], we can safely claim that such
an embedding provides a decision algorithm for GL: if proof search terminates on a modal
formula given as input, HOL Light produces a new theorem, stating that the input formula is
a theorem of GL; otherwise, our algorithm prints all the information necessary to construct
an appropriate countermodel for the input formula.

Our code is integrated into the current HOL Light distribution and freely available from
[35]. The files we will occasionally refer to during the presentation are freely accessible from
there.

The present paper is structured as follows:

• In Sect. 2, we introduce the basic ingredients of our development, namely the formal
counterparts of the syntax and relational semantics for provability logic, along with
some lemmas and general definitions which are useful to handle the implementation of
these objects uniformly, i.e. without the restriction to the specific modal system we are
interested in. The formalisation constitutes a large part of the file modal.ml;

• In Sect. 3, we formally define the axiomatic calculus GL and prove neatly the validity
lemma for this system. Moreover, we give formal proofs of several lemmas in GL (GL-
lemmas, for short), whose majority is, in fact, common to all normal modal logics, so that
our proofs might be re-used in subsequent implementations of different systems. This
corresponds to the contents of our code in gl.ml;

• In Sect. 4 we give our formal proof of modal completeness of GL, starting with the
definition of maximal consistent lists of formulas. In order to prove their syntactic
properties—and, in particular, the extension lemma for consistent lists of formulas to
maximal consistent lists—we use the GL-lemmas and at the same time, we adapt an
already known general proof-strategy to maximise the gain from the formal tools pro-
vided by HOL Light—or, informally, from higher-order reasoning.
At the end of the section, we give the formal definition of bisimilarity for our setup,
and we prove the associated bisimulation theorem [69, Chap. 11]. Our notion of bisim-
ilarity is polymorphic because it can relate classes of frames sitting on different types.

4 Refer to Sect. 4.4 for the explicit bound one can obtain for the complexity of such a decision procedure.

123

29 Page 4 of 34 M. Maggesi, C. Perini Brogi

With this tool at hand, we can correctly state our completeness theorem in its natu-
ral generality (COMPLETENESS_THEOREM_GEN)—i.e. for irreflexive, transitive finite
frames over any (infinite) type—this way obtaining the finite model property for GL
w.r.t. frames having finite sets of formulas as possible worlds, as in the standard Henkin’s
construction. These results conclude the first part of the paper and are gathered in the file
completeness.ml.

• Section 5 opens the part of the paper describing our original theorem prover for GL. We
collect some basic notions and techniques for proof-theoretic investigations on modal
logic. In particular, we recall the methodology of explicit internalisation of relational
semantics and the results that provide the meta-theory for our decision algorithm.

• Finally, in Sect. 6, we describe our implementation of the labelled sequent calculus
G3KGL—documented by the file decid.ml—to give a decision procedure for GL. We
recover the formalisation of Kripke semantics for GL presented in Sect. 2 to define new
tactics mimicking the rules for G3KGL. Then, we properly define our decision algorithm
by designing a specific terminating proof search strategy in the labelled sequent calculus.
Thisway,we extend theHOLLight automation toolboxwith an “internal” theoremprover
for GL that can also produce a countermodel for any formula for which proof search fails.
We propose some hands-on examples of use by considering modal principles that have
a certain relevance for meta-mathematical investigations; the interested reader will find
further examples in the file tests.ml.

• Section 7 closes the paper and compares our results with related works on mechanised
modal logic.

Our formalisation does not modify any original HOL Light tools, and it is therefore
“foundationally safe”. Moreover, since we only used that original formal infrastructure, our
results can be easily translated into another theorem prover belonging to the HOL family
endowed with the same automation toolbox.

Revision notes.
This article is an expanded version of the conference paper [48], presented at Interactive
TheoremProving (ITP) 2021.Changes include addingSects. 5 and 6onour implementation in
HOLLight of the theorem prover and countermodel constructor for GL, and someminor local
revisions. An intermediate version of the contents discussed in the present paper appeared
in [65]. Both authors wish to thank two anonymous referees for their valuable feedback and
comments towards improving the presentation of the material we discuss here.

1.1 HOL Light Notation

TheHOLLight proof assistant [35] is based on classical higher-order logic with polymorphic
type variables and where equality is the only primitive notion. From a logical viewpoint,
the formal engine defined by the term-conversions and inference rules underlying HOL
Light is the same as that described in [47], extended by an infinity axiom and the classical
characterization of Hilbert’s choice operator. From a practical perspective, it is a theorem
prover privileging a procedural proof style development. I.e., when using it, we have to
solve goals by applying tactics that reduce them to (hopefully) simpler subgoals so that
the interactive aspect of proving is highlighted. Proof scripts can then be constructed using
tacticals that compact the proof into a few lines of code evaluated by the machine.

In what follows, we will report several code fragments to give the flavour of our devel-
opment and to provide additional documentation and information to the reader interested in

123

Mechanising Gödel–Löb Provability Logic... Page 5 of 34 29

the technical details. We partially edited the code to ease the reading of the mathematical
formulas. For instance, we replaced the purely ASCII notations of HOL Light with the usual
graphical notation. Every source code snippet in this paper has a link—indicated by the
word “(sources)” on the right—to a copy of the source files stored on the Software Heritage5

archive which is helpful to those who want to see the raw code and how it fits in its original
context. Here is an example:

ADD_SYM (sources)
� ∀m n. m + n = n + m

Note that we report theorems with their associated name (the name of its associated OCaml
constant), andwewrite their statement prefixedwith the turnstile symbol (�). In the expository
style, we omit formal proofs, but the meaning of definitions, lemmas, and theorems in natural
language is clear.

The HOL Light printing mechanism omits type information completely. Therefore,
we warn the reader about types when it might be helpful, or even indispensable, to
avoid ambiguity—including the case of our main results, COMPLETENESS_THEOREM and
COMPLETENESS_THEOREM_GEN.

We also recall that a Boolean function s : α -> bool is also called a set on α in the
HOL parlance. The notation x IN s is equivalent to s x and must not be confused with a
type annotation x : α.

Asmentioned, our contribution is part of the HOLLight distribution. The reader interested
in performing these results on her machine—and perhaps building further formalisation on
top of it—can run our code with the command

loadt "GL/make.ml";;

at the HOL Light prompt.

2 Basics of Modal Logic

As we stated, we deal with a logic that extends classical propositional reasoning using a
single modal operator intended to capture the abstract properties of the provability predicate
for arithmetic.

To reason about and within this logic, we have to “teach” HOL Light—our meta-
language—how to identify it, startingwith its syntax—theobject-language—and semantics—
the interpretation of this very object-language.

From a foundational perspective, we want to keep everything neat and clean; therefore, we
will define both the object-language and its interpretation with no relation to the HOL Light
environment. In other terms: our formulas and operators are real syntactic objects which
we keep distinct from their semantic counterparts—and from the logical operators of the
theorem prover too.

2.1 Language and Semantics Defined

Let us start by fixing the propositional modal language L we will use throughout the present
work. We consider all classical propositional operators—conjunction, disjunction, implica-
tion, equivalence, negation, along with the 0-ary symbols � and ⊥—and add a modal unary

5 https://www.softwareheritage.org/.

123

https://archive.softwareheritage.org/swh:1:cnt:e47e19813eec4cbd6ffd9d8082c86b0b421c9c2e;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/arith.ml;lines=67-69
https://www.softwareheritage.org/

29 Page 6 of 34 M. Maggesi, C. Perini Brogi

connective�. The starting point is, as usual, a denumerable infinite set of propositional atoms
a0, a1, · · · . Accordingly, formulas of this language will have one of the following forms

⊥ | � | a | ¬A | A ∧ B | A ∨ B | A → B | A ↔ B | �A .

The following code extends the HOL system with an inductive type of formulas generated
by the above syntactic constructions

let form_INDUCT,form_RECURSION = define_type (sources)
"form = False

| True
| Atom string
| Not form
| && form form
| || form form
| --> form form
| <-> form form
| Box form";;

Later in the code, the operators &&, ||, - ->, <-> are used infixed as usual. Next, we turn
to semantics for our modal language. We use relational models—aka Kripke models.6

Formally, a Kripke frame is made of a non-empty set ‘of possible worlds’ W, together
with a binary relation R on W. To this, we add an evaluation function V, which assigns to each
atom of our language and each world w in W a Boolean value. This is extended to a forcing
relation holds, defined recursively on the structure of the input formula p, that computes
the truth-value of p in a specific world w:

let holds = new_recursive_definition form_RECURSION (sources)
‘(holds f V False (w:W) ⇐⇒ ⊥) ∧
(holds f V True w ⇐⇒ �) ∧
(holds f V (Atom s) w ⇐⇒ V s w) ∧
(holds f V (Not p) w ⇐⇒ ¬(holds f V p w)) ∧
(holds f V (p && q) w ⇐⇒
holds f V p w ∧ holds f V q w) ∧

(holds f V (p || q) w ⇐⇒
holds f V p w ∨ holds f V q w) ∧

(holds f V (p --> q) w ⇐⇒
holds f V p w �⇒ holds f V q w) ∧

(holds f V (p <-> q) w ⇐⇒
holds f V p w = holds f V q w) ∧

(holds f V (� p) w ⇐⇒
∀u. u ∈ FST f ∧ SND f w u �⇒ holds f V p u)‘;;

In the previous lines of code,f stands for a generic Kripke frame—i.e. a pair (W:W->bool,
R:W->W->bool) of a set of worlds and an accessibility relation—and V:string->W->
bool is an evaluation of propositional variables. Then, the validity of a formula p with
respect to a frame (W,R), and a class of framesL, denoted respectively holds_in (W,R)
p and L |= p, are

let holds_in = new_definition (sources)
‘holds_in (W,R) p ⇐⇒
∀V w. w ∈ W �⇒ holds (W,R) V p w‘;;

6 See Copeland [10] for the historical development of this notion.

123

https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=21-30
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=40-55
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=57-58

Mechanising Gödel–Löb Provability Logic... Page 7 of 34 29

let valid = new_definition (sources)
‘L |= p ⇐⇒ ∀f. L f �⇒ holds_in f p‘;;

The above formalisation is essentially presented in Harrison’s HOL Light Tutorial [34, § 20].
Notice that the usual notion of Kripke frame requires that the set of possible worlds is non-
empty: that condition could be imposed by adapting the valid relation. We have preferred
to stick to Harrison’s original definitions in our code. However, in the next section, when we
define the classes of frames, we are dealing with for GL, the requirement on W is correctly
integrated with the corresponding types.

2.2 Frames for GL

For carrying out our formalisation, we are interested in the logic of the (non-empty) frames
whose underlying relation R is transitive and conversely well-founded—aka Noetherian—
on the corresponding set of possible worlds; in other terms, we want to study the modal
tautologies in models based on an accessibility relation R on W such that

• if x Ry and yRz, then x Rz; and
• for no X ⊆ W there are infinite R-chains x0Rx1Rx2 · · · .

In HOL Light, WF R states that R is a well-founded relation: then, we express the latter
condition as WF(\x y. R y x). Here we see a recurrent motif in logic: defining a system
from the semantic perspective requires non-trivial tools from the foundational point of view,
for, in order to express the second condition, a first-order language is not enough. However,
that is not an issue here since our underlying system is natively higher order:7

let TRANSNT = new_definition (sources)
‘TRANSNT (W:W->bool,R:W->W->bool) ⇐⇒
¬(W = {}) ∧
(∀x y:W. R x y �⇒ x ∈ W ∧ y ∈ W) ∧
(∀x y z:W. x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ R x y ∧ R y z

�⇒ R x z) ∧
WF(λx y. R y x)‘;;

We can characterize this class of frames by using a propositional language extended by a
modal operator � that satisfies the Gödel–Löb axiom schema (GL) : �(�A → A) → �A.

Here is the formal version of our claim:

TRANSNT_EQ_LOB (sources)
� ∀W:W->bool R:W->W->bool.

(∀x y:W. R x y �⇒ x ∈ W ∧ y ∈ W)
�⇒ ((∀x y z. x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ R x y ∧ R y z

�⇒ R x z) ∧
WF (λx y. R y x) ⇐⇒
(∀p. holds_in (W,R) (Box(Box p --> p) --> Box p)))

The informal proof of the above result is standard and can be found in [8, Theorem 10]
and in [69, Theorem 5.7]. The computer implementation of the proof is made easy thanks to
Harrison’s tacticMODAL_SCHEMA_TAC for semantic reasoning inmodal logic, documented
in [34, § 20.3].

7 We warn the reader about a potentially misleading notation. In the following statement, two interrelated
mathematical objects occur, both denoted by W for convenience: one is the type W, and the other is the set W
on the former—in a sense explained in the introduction about the HOL Light notation.

123

https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=62-63
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=99-104
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=121-129

29 Page 8 of 34 M. Maggesi, C. Perini Brogi

Using this preliminary result, we could say that the frame property of being transitive and
Noetherian can be captured by Gödel–Löb modal axiom without recurring to a higher-order
language.

Nevertheless, that class of frames is not particularly informative from a logical point of
view: a frame in TRANSNT can be too huge to be used, e.g., for mechanically checking
whether it does provide a countermodel for a formula of our logic. In fact, when aiming at a
completeness theorem, one wants to consider models that are helpful for establishing further
properties of the same logic. In the present case, the decidability of GL, which, as for any
other normal modal logic, is a straightforward corollary of the finite model property [69,
Chap. 13].

The frames we want to investigate are then those whose W is finite, and whose R is both
irreflexive and transitive:

let ITF = new_definition (sources)
‘ITF (W:W->bool,R:W->W->bool) ⇐⇒

¬(W = ∅) ∧
(∀x y:W. R x y �⇒ x ∈ W ∧ y ∈ W) ∧
FINITE W ∧
(∀x. x ∈ W �⇒ ¬ R x x) ∧
(∀x y z. x ∈ W ∧ y ∈ W ∧ z ∈ W ∧ R x y ∧ R y z
�⇒ R x z)‘;;

Now it is easy to see that ITF is a subclass of TRANSNT:

ITF_NT (sources)
� ∀W R:W->W->bool. ITF(W,R) �⇒ TRANSNT(W,R)

That will be the class of frames whose logic we are now going to define syntactically.

3 Axiomatizing GL

We want to identify the logical system generating all and only the modal tautologies for
transitive Noetherian frames; more precisely, we want to isolate the generators of the modal
tautologies in the subclass of transitive Noetherian frames which are finite, transitive, and
irreflexive.8

When dealing with the very notion of tautology—or theoremhood, discarding the com-
plexity or structural aspects of derivability in a formal system—it is convenient to focus on
axiomatic calculi. The calculus we deal with here is usually denoted by GL.

It is clear from the definition of the forcing relation that for classical operators, any
axiomatization of propositional classical logic will do the job. Here, we adopt a basic system
inwhich only→ and⊥ are primitive—from the axiomatic perspective—and all the remaining
classical connectives are definedbyaxiomschemas andby the inference rule ofModusPonens
imposing their standard behaviour.

Therefore, to the classical engine, we add

• the axiom schema K: �(A → B) → �A → �B;
• the axiom schema GL: �(�A → A) → �A;

• the necessitation rule NR: A
NR�A

,

8 Notice that the lemma ITF_NT allows us to derive the former result as a corollary of the latter.

123

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=152-158
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=160-167

Mechanising Gödel–Löb Provability Logic... Page 9 of 34 29

where A, B are generic formulas (not simply atoms). Then, here is the complete definition
of the axiom system GL. The inductive predicate GLaxiom encodes the set of axioms for
GL:

let GLaxiom_RULES,GLaxiom_INDUCT,GLaxiom_CASES = (sources)
new_inductive_definition
‘(∀p q. GLaxiom (p --> (q --> p))) ∧
(∀p q r.

GLaxiom ((p --> q --> r) --> (p --> q)
--> (p --> r))) ∧

(∀p. GLaxiom (((p --> False) --> False) --> p)) ∧
(∀p q. GLaxiom ((p <-> q) --> p --> q)) ∧
(∀p q. GLaxiom ((p <-> q) --> q --> p)) ∧
(∀p q. GLaxiom ((p --> q) --> (q --> p)
--> (p <-> q))) ∧
GLaxiom (True <-> False --> False) ∧
(∀p. GLaxiom (Not p <-> p --> False)) ∧
(∀p q.

GLaxiom (p && q <-> (p --> q --> False) --> False)) ∧
(∀p q. GLaxiom (p || q <-> Not(Not p && Not q))) ∧
(∀p q. GLaxiom (Box (p --> q) --> Box p --> Box q)) ∧
(∀p. GLaxiom (Box (Box p --> p) --> Box p))‘;;

The judgment GL � A, denoted |- - A in the machine code (not to be confused with the
symbol for HOL theorems �), is also inductively defined in the expected way:9

let GLproves_RULES,GLproves_INDUCT,GLproves_CASES =
(sources)

new_inductive_definition
‘(∀p. GLaxiom p �⇒ |-- p) ∧
(∀p q. |-- (p --> q) ∧ |-- p �⇒ |-- q) ∧
(∀p. |-- p �⇒ |-- (Box p))‘;;

3.1 Soundness Lemma

We can now prove that GL is sound—i.e. every formula derivable in the calculus is a
tautology in the class of irreflexive transitive finite frames. This result is obtained by simply
unfolding the relevant definitions and applying theorems TRANSNT_EQ_LOB and ITF_NT
of Sect. 2.2:

GL_TRANSNT_VALID (sources)
� ∀p. (|-- p) �⇒ TRANSNT |= p

GL_ITF_VALID (sources)
� ∀p. |-- p �⇒ ITF |= p

From this, we get a model-theoretic proof of consistency for the calculus

9 Small modifications to limit the application of NR on the definition of |- - would introduce the notion of
derivability from a set of assumptions, so that the deduction theorem would hold [32].

123

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=11-23
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=29-32
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=143-146
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=169-174

29 Page 10 of 34 M. Maggesi, C. Perini Brogi

GL_consistent (sources)
� ¬(|-- False)

Weare now ready to consider themechanised proof of completeness for the calculusw.r.t. this
very class of frames.

3.2 GL-Lemmas

Proving some lemmas in the axiomatic calculus GL is a technical interlude necessary for
obtaining the completeness result.

Following this aim, we denoted the classical axioms and rules of the system as the propo-
sitional schemas used by Harrison in the file Arithmetic/derived.ml of the HOL
Light standard distribution [35]—where, in fact, many of our lemmas relying only on the
propositional calculus are already proven there w.r.t. an axiomatic system for first-order clas-
sical logic; our further lemmas involving modal reasoning are denoted by names that are
commonly used in informal presentations.

Therefore, the code in gl.ml mainly consists of the formalised proofs of those lemmas
in GL that are useful for the formalised results we present in the next section. This file might
be considered a “kernel” for further experiments in reasoning about axiomatic calculi using
HOL Light. The lemmas we proved are, indeed, standard tautologies of classical propo-
sitional logic, along with specific theorems of minimal modal logic and its extension for
transitive frames—i.e. of the systems K and K4 [69]—, so that by applying minor changes
in basic definitions, they are—so to speak—take-away proof scripts for extensions of that
very minimal system within the realm of normal modal logics.

Whenever it was useful, we have also given a characterisation of classical operators in
terms of an implicit (i.e. internal) deduction expressed by the connective - ->. When this
internal deduction is from an empty set of assumptions, we named the HOL theorem with
the suffix _th, and stated the deduction as a GL-lemma, such as

GL_modusponens_th (sources)
� ∀p q. |-- ((p --> q) && p --> q)

Moreover, we introduced some derived rules of the axiomatic system mimicking the
behaviour in Gentzen’s formalism of classical connectives, as in e.g.

GL_and_elim (sources)
� ∀p q r. |-- (r --> p && q)

�⇒ |-- (r --> q) ∧ |-- (r --> p)

We had to prove about 120 such results of varying degrees of difficulty. We believe that
this piece of code is well worth the effort of its development, for two main reasons to be
considered – along with the just mentioned fact that they provide a (not so) minimal set of
internal lemmas which can be moved to different axiomatic calculi at, basically, no cost.

On the one hand, these lemmas simplify the subsequent formal proofs involving consistent
lists of formulas since they let us work formally within the scope of |- - so that we can
rearrange subgoals according to theirmost useful equivalent form by applying the appropriate
GL-lemma(s).

On the other hand, giving formal proofs of these lemmas of the calculus GL has been
important for checking howmuch our proof-assistant is “friendly” and efficient in performing
this specific task.

123

https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=176-182
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=333-335
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=321-323

Mechanising Gödel–Löb Provability Logic... Page 11 of 34 29

As it is known, any axiomatic system fits very well an investigation involving a notion of
theoremhood-as-tautology for a specific logic, but its lack of naturalness w.r.t. the practice
of developing proper derivations makes it an unsatisfactory model for structural aspects of
deducibility. In more practical terms: developing a formal proof of a theorem in an axiomatic
system by pencil and paper can be a dull and uninformative task, even when dealing with
trivial propositions.

We, therefore, left the proof search to the HOL Light toolbox as much as possible. Unfor-
tunately, we have to express mixed feelings about the general experience. In most cases,
relying on this specific proof assistant’s automation tools did save our time and resources
when trying to give a formal proof in GL. Nevertheless, those automation tools did not turn
out to be helpful at all in proving some GL-lemmas. In those cases, we had to search for the
specific instances of axioms from which deriving the lemmas,10 so that interactive proving
them had advantages as well as traditional instruments of everyday mathematicians.

To stress the general point: it is possible—and valuable in general—to rely on the resources
of HOL Light to develop formal proofs both about and within an axiomatic calculus for a
specific logic, in particular when the lemmas of the object system have relevance or practical
utility for mechanising (meta-)results on it; however, these very resources—and, as far as we
can see, the tools of any other general proof assistant—do not look particularly satisfactory
for pursuing investigations on derivability within axiomatic systems.

4 Modal Completeness

When dealing with normal modal logics, it is common to develop a proof of completeness
w.r.t. relational semantics by using the so-called ‘canonical model method’. This approach
can be summarised as a standard construction of countermodels made of maximal consistent
sets of formulas and an appropriate accessibility relation, according to e.g. the textbooks [69]
and [8].

ForGL, we cannot pursue this strategy since the logic is not compact: maximal consistent
sets are (in general) infinite objects, though the notion of derivability involves only a finite set
of formulas. We cannot, therefore, reduce the semantic notion of (in)coherent set of formulas
to the syntactic one of (in)consistent set of formulas: when extending a consistent set of
formulas to a maximal consistent one, we might end up with a syntactically consistent set
that nevertheless cannot be semantically satisfied.

Despite this, it is possible to achieve a completeness result by

1. identifying the relevant properties of maximal consistent sets of formulas; and
2. modifying the definitions so that those properties hold for specific consistent sets of

formulas related to the formula to which we want to find a countermodel.

That is the fundamental idea behind the proof in Boolos’ monograph [8, Chap. 5]. In that
presentation, however, constructing a maximal consistent set from a simply consistent one
is only proof-sketched and relies on a syntactic manipulation of formulas. By using HOL
Light, we succeed in giving a detailed proof of completeness as directly as that by Boolos.
Moreover, we can do that by carrying out in a very natural way a tweaked Lindenbaum
construction to extend consistent lists to maximal consistent ones. This way, we succeed in
preserving the standard Henkin-style completeness proofs, and, at the same time, we avoid

10 TheHOLLight tactics for first-order reasoning MESON and METISwere unable, for example, to instantiate
autonomously the obvious middle formula for the transitivity of an implication, or even the specific formulas
of a schema to apply to the goal in order to rewrite it.

123

29 Page 12 of 34 M. Maggesi, C. Perini Brogi

the symbolic subtleties sketched in [8] that have the unpleasant consequence of making the
formalised proof rather pedantic—or even dull.

Furthermore, the proof of the main lemma EXTEND_MAXIMAL_CONSISTENT is rather
general and does not rely on any specific property of GL: our strategy suits all the
other normal (mono)modal logics—we only need to modify the subsequent definition of
GL_STANDARD_REL according to the specific system under consideration. Thus, we pro-
vide a way for formally establishing completeness á la Henkin and the finite model property
without resorting to filtrations [69] of canonical models for those systems.

4.1 Maximal Consistent Lists

Following the standard practice, we need to consider consistent finite sets of formulas for
our proof of completeness. In principle, we can employ general sets of formulas in the
formalisation. However, from the practical viewpoint, lists without repetitions are better
suited since they are automatically finite and we can easily manipulate them by structural
recursion. We define first the operation of finite conjunction of formulas in a list:11

let CONJLIST = (sources)
new_recursive_definition list_RECURSION
‘CONJLIST [] = True ∧
(∀p X. CONJLIST (CONS p X) =

if X = [] then p else p && CONJLIST X)‘;;

We prove some properties on lists of formulas and some GL-lemmas involving
CONJLIST. These properties and lemma allow us to define the notion of consistent list
of formulas and prove the main properties of this kind of objects:

let CONSISTENT = new_definition (sources)
‘CONSISTENT (l:form list) ⇐⇒ ¬(|-- (Not (CONJLIST l)))‘;;

In particular, we prove that:

• a consistent list cannot contain both p and Not p for any formula p, nor False;
• for any consistent list X and formula p, either X + p is consistent, or X + Not p is

consistent, where + denotes the usual operation of appending an element to a list.

Our maximal consistent lists w.r.t. a given formula p will be consistent lists that do not
contain repetitions and that contain, for any subformula of p, that very subformula or its
negation:12

let MAXIMAL_CONSISTENT = new_definition (sources)
‘MAXIMAL_CONSISTENT p X ⇐⇒
CONSISTENT X ∧ NOREPETITION X ∧
(∀q. q SUBFORMULA p �⇒ MEM q X ∨ MEM (Not q) X)‘;;

11 Notice that in this definition, we perform a case analysis where the singleton list is treated separately (i.e. we
have CONJLIST [p] = p). This is slightly uncomfortable in certain formal proof steps: in retrospect, we
might have used a simpler version of this function. However, since this is a minor detail, we preferred not to
change our code.
12 Here we define the set of subformulas of p as the reflexive, transitive closure of the set of formulas on
which the main connective of p operates: this way, the definition is simplified, and it is easier to establish
standard properties of the set of subformulas employing general higher-order lemmas in HOL Light for the
closure of a given relation.

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=11-13
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=149-150
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=220-223

Mechanising Gödel–Löb Provability Logic... Page 13 of 34 29

where X is a list of formulas and MEM q X is the membership relation for lists. We
then establish the main closure property (MAXIMAL_CONSISTENT_LEMMA) of maximal
consistent lists, namely closure under modus ponens (sources).

After proving some further lemmas with practical utility—in particular, the fact that
any maximal consistent list behaves like a restricted bivalent evaluation for classical
connectives—we can finally define the ideal (type of counter)model we are interested in.

We define first the relation of subsentences as

let SUBSENTENCE_RULES,SUBSENTENCE_INDUCT, (sources)
SUBSENTENCE_CASES = new_inductive_definition
‘(∀p q. p SUBFORMULA q �⇒ p SUBSENTENCE q) ∧
(∀p q. p SUBFORMULA q �⇒ Not p SUBSENTENCE q)‘;;

Next, given a formulap,we take as “standard”—anddefine the classGL_STANDARD_MODEL—
those models consisting of:

C1. the set of maximal consistent lists w.r.t. p made of subsentences of p—i.e. its subfor-
mulas or their negations—as possible worlds;

C2. an accessibility relation R such that

a. it is irreflexive and transitive, and
b. for any subformula Box q of p and any world w, Box q is in w iff, for any x

R-accessible from w, q is in x;

C3. an atomic evaluation that gives value T (true) to a in w iff a is a subformula of p.

The corresponding code is the following:

let GL_STANDARD_FRAME = new_definition (sources)
‘GL_STANDARD_FRAME p (W,R) ⇐⇒

(*C1. *) W = {w | MAXIMAL_CONSISTENT p w ∧
(∀q. MEM q w �⇒ q SUBSENTENCE p)} ∧

(*C2.a.*) ITF (W,R) ∧
(*C2.b.*) (∀q w. Box q SUBFORMULA p ∧ w ∈ W

�⇒ (MEM (Box q) w ⇐⇒ ∀x. R w x �⇒ MEM q x))‘;;

let GL_STANDARD_MODEL = new_definition (sources)
‘GL_STANDARD_MODEL p (W,R) V ⇐⇒
GL_STANDARD_FRAME p (W,R) ∧

(*C3.*)(∀a w. w ∈ W
�⇒ (V a w ⇐⇒ MEM (Atom a) w ∧ Atom a SUBFORMULA p))‘;;

Notice that the conditions C1, C2.b and C3 are very general and do not relate to the logic
under consideration: they constitute a minimal set of conditions required for normal modal
systems; on the contrary, the condition C2.a is specific to GL, and needs to be properly
mirrrored at the syntactic level. That is the role played by the last two lines of the definition
GL_STANDARD_REL discussed at the end of the next section.

4.2 Maximal Extensions

What we have to do now is to show that the relation GL_STANDARD_MODEL on the type of
relational models is non-empty. We achieve this by constructing suitable maximal consistent
lists of formulas from specific consistent ones.

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=225-243
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=285-288
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=290-296
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=310-313

29 Page 14 of 34 M. Maggesi, C. Perini Brogi

Our original strategy differs from the presentation in e.g. [8] for being closer to the
standard Lindenbaum construction commonly used to prove completeness results. By doing
so, we have been able to circumvent bothmany technicalities in formalising the combinatorial
argument sketched by Boolos in [8, p. 79] and the problem – inherent to the Lindenbaum
extension—due to the non-compactness of the system, as we mentioned before.

The main lemma states then that, from any consistent list X of subsentences of a formula
p, we can construct a maximal consistent list of subsentences of p by extending (if necessary)
X:

EXTEND_MAXIMAL_CONSISTENT (sources)
� ∀p X.

CONSISTENT X ∧
(∀q. MEM q X �⇒ q SUBSENTENCE p)
�⇒ ∃M. MAXIMAL_CONSISTENT p M ∧

(∀q. MEM q M �⇒ q SUBSENTENCE p) ∧
X SUBLIST M

where X SUBLIST M denotes that each element of the list X is an elment of the list M.
The proof sketch is as follows: given a formulap, we proceed in a step-by-step construction

by iterating over the subformulas q of p not contained in X. At each step, we append to the list
X the subformula q—if the resulting list is consistent—or its negation Not q—otherwise.

This way, we do not have to worry about the non-compactness ofGL since we are working
with finite objects—the type list—from the very beginning.

Henceforth, we see that—under the assumption that p is not aGL-lemma—the set of pos-
sible worlds in GL_STANDARD_FRAME w.r.t. p is non-empty, as required by the definition
of relational structures:

NONEMPTY_MAXIMAL_CONSISTENT (sources)
� ∀p. ¬(|-- p)

�⇒ ∃M. MAXIMAL_CONSISTENT p M ∧
MEM (Not p) M ∧
(∀q. MEM q M �⇒ q SUBSENTENCE p)

Next,wehave todefine anR satisfying the conditionsC2.a andC2b for aGL_STANDARD_FRAME;
the following does the job:

let GL_STANDARD_REL = new_definition (sources)
‘GL_STANDARD_REL p w x ⇐⇒
MAXIMAL_CONSISTENT p w ∧
(∀q. MEM q w �⇒ q SUBSENTENCE p) ∧
MAXIMAL_CONSISTENT p x ∧
(∀q. MEM q x �⇒ q SUBSENTENCE p) ∧
(∀B. MEM (Box B) w �⇒ MEM (Box B) x ∧ MEM B x) ∧
(∃E. MEM (Box E) x ∧ MEM (Not (Box E)) w)‘;;

Notice that the last two lines of this definition assure that the condition C2.a is satisfied, i.e.,
that we considering irreflexive transitive frames. Condition C2.b also needs to be satisfied:
our ACCESSIBILITY_LEMMA assures that13

13 Notice that we only need to prove the right-to-left direction of condition C2.b, since the converse is given
by the second last requirement in the definition GL_STANDARD_FRAMES. We can formally prove the former
by reasoning within GL, and using, in particular, the scheme GL and the derivability of �p → �p ∧ ��p
(GL_dot_box).

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=485-545
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=547-563
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=569-574

Mechanising Gödel–Löb Provability Logic... Page 15 of 34 29

ACCESSIBILITY_LEMMA (sources)
� ∀p M w q.

¬(|-- p) ∧
MAXIMAL_CONSISTENT p M ∧
(∀q. MEM q M �⇒ q SUBSENTENCE p) ∧
MAXIMAL_CONSISTENT p w ∧
(∀q. MEM q w �⇒ q SUBSENTENCE p) ∧
MEM (Not p) M ∧
Box q SUBFORMULA p ∧
(∀x. GL_STANDARD_REL p w x �⇒ MEM q x)
�⇒ MEM (Box q) w,

Such a “standard” accessibility relation (together with the set of the specific maximal con-
sistent lists we are dealing with) defines then a structure in ITF with the required properties
in order to satisfy the relation GL_STANDARD_FRAME:

ITF_MAXIMAL_CONSISTENT (sources)
� ∀p. ¬(|-- p)

�⇒ ITF ({M MAXIMAL_CONSISTENT p M ∧
(∀q. MEM q M �⇒ q SUBSENTENCE p)},

GL_STANDARD_REL p),

Notice that we might easily modify the formal proofs of conditions C1, C2.b and C3
when dealing with different axiomatic systems, e.g. K, K4, T, S4, B, S5, as it happens at
the informal level in Boolos [8]. In fact, for each of each systems, we would only have
to modify the definition of the “standard relation” (in particular, the last two lines of our
GL_STANDARD_REL) and the parts of code in the proof of the accessibility lemma where
we need to reason within the specific axiomatic calculus under investigation. For each of
these additional logics, a semantic condition on standard frames (line 4 of the definition
GL_STANDARD_FRAME) would then been defined formalising what [8, Chap. 5] reports on
the topic.

4.3 Truth Lemma and Completeness

For our ideal model, it remains to reduce the semantic relation of forcing to the more tractable
one of membership to the specific world. More formally, we prove—by induction on the
complexity of the subformula q of p—that if GL � p, then for any world w of the standard
model, q holds in w iff q is member of w:14

GL_truth_lemma (sources)
� ∀W R p V q.

¬(|-- p) ∧
GL_STANDARD_MODEL p (W,R) V ∧
q SUBFORMULA p
�⇒ ∀w. w ∈ W �⇒ (MEM q w ⇐⇒ holds (W,R) V q w),

Finally, we can prove the main result: if GL � p, then the list [Not p] is consistent, and by
applyingEXTEND_MAXIMAL_CONSISTENT, we obtain amaximal consistent listXw.r.t.p

14 As before, this formal proof can be adapted to the other six modal systems mentioned at the end of the
previous section.

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=630-774
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=576-628
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=319-477

29 Page 16 of 34 M. Maggesi, C. Perini Brogi

that extends it, so that, by applying GL_truth_lemma, we have that X � p in our standard
model. The corresponding formal proof reduces to the application of those previous results
and the appropriate instantiations:

COMPLETENESS_THEOREM (sources)
� ∀p. ITF |= p �⇒ (|-- p),

Notice that the family of frames ITF is polymorphic, but, at this stage, our result holds
only for frames on the domain form list: the explicit type annotation would be

ITF : (form list->bool)#(form list->form list->bool)->bool

This is not an intrinsic limitation: the next section is devoted to generalising this theorem to
frames on an arbitrary domain.

4.4 Generalizing via Bisimulation

As we stated before, our theorem COMPLETENESS_THEOREM provides the modal com-
pleteness for GL with respect to a semantics defined using models built on the type :form
list. This result would suffice to provide a (very non-optimal) bound on the complexity
of GL : Testing the validity of a formula of size n requires considering all models with
cardinality k, for any k ≤ 2n !.

The same completeness resultmust also holdwhen consideringmodels built on any infinite
type. To obtain a formal proof of this fact, we need to establish a correspondence between
models built on different types. It is well-known that a good way to make rigorous such a
correspondence is through the notion of bisimulation [75].

In our context, given two frames (W1,R1) and (W2,R2) sitting respectively on types
:A and :B, each with an evaluation function V1 and V2, a bisimulation is a binary relation
Z:A->B->bool that relates two worlds w1:A and w2:B when they can simulate each
other. The formal definition is as follows:

BISIMIMULATION (sources)
� BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z ⇐⇒

(∀w1:A w2:B.
Z w1 w2
�⇒ w1 ∈ W1 ∧ w2 ∈ W2 ∧

(∀a:string. V1 a w1 ⇐⇒ V2 a w2) ∧
(∀w1’. R1 w1 w1’

�⇒ ∃w2’. w2’ ∈ W2 ∧ Z w1’ w2’
∧ R2 w2 w2’) ∧

(∀w2’. R2 w2 w2’
�⇒ ∃w1’. w1’ ∈ W1

∧ Z w1’ w2’ ∧ R1 w1 w1’))

Then, we say that two worlds are bisimilar if there exists a bisimulation between them:

let BISIMILAR = new_definition (sources)
‘BISIMILAR (W1,R1,V1) (W2,R2,V2) (w1:A) (w2:B) ⇐⇒
∃Z. BISIMIMULATION (W1,R1,V1) (W2,R2,V2) Z ∧ Z w1 w2‘;;

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=830-840
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=274-281
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=302-304

Mechanising Gödel–Löb Provability Logic... Page 17 of 34 29

The key fact is that the semantic predicate holds respects bisimilarity:

BISIMILAR_HOLDS (sources)
� ∀W1 R1 V1 W2 R2 V2 w1:A w2:B.

BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2
�⇒ (∀p. holds (W1,R1) V1 p w1 ⇐⇒

holds (W2,R2) V2 p w2)

From this, we can prove that bisimilarity preserves validity. The precise statements are the
following:

BISIMILAR_HOLDS_IN (sources)
� ∀W1 R1 W2 R2.

(∀V1 w1:A.
∃V2 w2:B. BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)

�⇒ (∀p. holds_in (W2,R2) p �⇒ holds_in (W1,R1) p)

BISIMILAR_VALID (sources)
� ∀L1 L2.

(∀W1 R1 V1 w1:A.
L1 (W1,R1) ∧ w1 ∈ W1
�⇒ ∃W2 R2 V2 w2:B.

L2 (W2,R2) ∧
BISIMILAR (W1,R1,V1) (W2,R2,V2) w1 w2)

�⇒ (∀p. L2 |= p �⇒ L1 |= p)

In the last theorem, recall that the statement L(W,R) means that (W R) is a frame in the
class of frames L.

Finally, we can explicitly define a bisimulation between ITF-models on the type :form
list and on any infinite type :A. From this, it follows at once the desired generalization of
completeness for GL:

COMPLETENESS_THEOREM_GEN (sources)
� ∀p. INFINITE (:A) ∧ ITF:(A->bool)#(A->A->bool)->bool |= p

�⇒ |-- p

Furthermore, from the proof that the relation

λw1 w2. MAXIMAL_CONSISTENT p w1 ∧
(∀q. MEM q w1 �⇒ q SUBSENTENCE p) ∧
w2 ∈ GL_STDWORLDS p ∧
set_of_list w1 = w2

defines a bisimulation between the ITF-standard model based on maximal consistent lists of
formulas and the model based on corresponding sets of formulas, we obtain the traditional
version ofmodal completeness, corresponding to theoremGL_COUNTERMODEL_FINITE_
SETS (sources) in our code. That, in turn, would enhance the complexity measure of deriv-
ability in GL as one would expect: now, in order to check whether a formula with size n
is a theorem of Gödel–Löb logic, one may forget about the order of the subsentences, and
consider all ITF-models with cardinality k, for any k ≤ 2n .

123

https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=311-315
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=317-321
https://archive.softwareheritage.org/swh:1:cnt:e96b1bf9513c5683d53e971912903fc13d21b282;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/modal.ml;lines=323-332
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=846-892
https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=1052-1073

29 Page 18 of 34 M. Maggesi, C. Perini Brogi

5 Decidability via Proof Theory

By using our EXTEND_MAXIMAL_CONSISTENT lemma, we succeeded in giving a rather
neat mechanised proof of completeness w.r.t. relational semantics for GL.15 Since the rela-
tional countermodelwe construct is finite, we can safely claim16 that the finitemodel property
holds for GL.

As an immediate corollary, we have that theoremhood in GL is decidable, and, in prin-
ciple, we could implement a decision procedure for that logic in OCaml. Our theorem
GL_COUNTERMODEL_FINITE_SETS would also provide an explicit bound on the com-
plexity of that task.

A naive approach to the implementation would proceed as follows.
We define the tactic NAIVE_GL_TAC and its associated rule NAIVE_GL_RULE that

perform the following steps:

1. Apply the completeness theorem w.r.t. finite sets;
2. Unfold some definitions;
3. Try to solve the resulting semantic problem using first-order reasoning.

Here is the corresponding code.

let NAIVE_GL_TAC : tactic = (sources)
MATCH_MP_TAC GL_COUNTERMODEL_FINITE_SETS THEN
REWRITE_TAC[valid; FORALL_PAIR_THM; holds_in; holds;

ITF; GSYM MEMBER_NOT_EMPTY] THEN
MESON_TAC[];;

let NAIVE_GL_RULE tm = prove(tm, REPEAT GEN_TAC
THEN GL_TAC);;

The above strategy can already prove some lemmas common to normalmodal logics automat-
ically but require some effort when derived in an axiomatic system. As an example, consider
the following GL-lemma:

GL_box_iff_th (sources)
� ∀p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

When developing a proof of it within the axiomatic calculus, we need to “help” HOL Light
by instantiating several further GL-lemmas so that the resulting proof script consists of ten
lines of code. On the contrary, our rule is able to check it in a few steps:

NAIVE_GL_RULE
‘!p q. |-- (Box (p <-> q) --> (Box p <-> Box q))‘;;

0..0..1..6..11..19..32..solved at 39
0..0..1..6..11..19..32..solved at 39
val it : thm =

|- !p q. |-- (Box (p <-> q) --> (Box p <-> Box q))

15 For the completeness w.r.t. transitive Noetherian frames, it is common—see the textbooks [8, 69]—to
reason on irreflexive transitive finite structures and derive the result as a corollary of completeness w.r.t. the
latter class.
16 After Harrop [36].

123

https://archive.softwareheritage.org/swh:1:cnt:157e9cb72fd39cbce15433fd62df9fa3fb310ed3;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/completeness.ml;lines=898-902
https://archive.softwareheritage.org/swh:1:cnt:e42639c66fe78808c04d8bedbb9ce84131562084;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/gl.ml;lines=900-911

Mechanising Gödel–Löb Provability Logic... Page 19 of 34 29

In spite of this, the automation offered by MESON tactic is often unsuccessful, even on trivial
lemmas. For instance, the previous procedure is not even able to prove the basic instance
Gödel-Löb scheme

GL � �(�⊥ −→ ⊥) −→ �⊥ .

This suggests that NAIVE_GL_TAC is based on a very inadequate strategy.
A better approach would consist of introducing an OCaml bound function on the size of

the frames onwhich the validity of a formula A has to be checked, according to the cardinality
remarks we made at the end of Sect. 4.4.

That is, for sure, a doable way to solve the task, but we were looking for a more principled
and modern approach.

That is where structural proof theory has come to the rescue.

5.1 Bits of Structural Proof Theory

In very abstract terms, a deductive system consists of a set of starting formal expressions
together with inference rules. Its principal aim is to find proofs of valid expressions w.r.t. a
given logic L. A proof (or derivation) in a deductive system is obtained by application of
the inference rules to starting expressions, followed by further application of the inference
rules to the conclusion, and so on, recursively. A theorem (or lemma) in such a system is the
formal expression obtained after a finite run of the procedure just sketched.

Such a definition captures the system GL, and the derivability relation formalised in HOL
Light by the predicate |- - of Sect. 3. Our previous remarks on GL-lemmas make explicit
that this kind of deductive system has shortcomings that its computerisation per se cannot
overcome.

The proof-theoretic paradigm behind GL and, more generally, axiomatic calculi could
be called synthetic: proof search in such systems is not guided by the components of the
formula one wishes to prove. The human prover and the proof assistant dealing with a formal
derivability relation have to guess both the correct instances of the axiom schemas and the
correct application order of inference rules required in the proof.

A better paradigm is provided by Gentzen’s sequent calculi, introduced first in [22, 23].
Thatworkmarks the advent of structural proof theory and the definite shift from investigations
in synthetic deductive systems to analytic ones. Gentzen’s original calculi have been further
refined by Ketonen [41] and Kleene [42] into the so-called G3-style systems.

In those systems, a sequent is a formal expression with shape

� ⇒ �,

where�,� are finite multisets—i.e. finite lists modulo permutations—of formulas of a given
language. The symbol ⇒ reflects the deducibility relation at the meta-level in the object
language. � is called the antecedent of the sequent; � is its consequent.

A derivation in a G3-style sequent calculus is a finite rooted tree labelled with sequents
such that:

• its leaves are labelled by initial sequents (the starting formal expressions of the abstract
deductive system);

• its intermediate nodes are labelled by sequents obtained from the sequent(s) labelling the
node(s) directly above by a correct application of an inference rule of the calculus;

• its root is the conclusion of the derivation, and it is called the end-sequent.

123

29 Page 20 of 34 M. Maggesi, C. Perini Brogi

Fig. 1 Rules of the calculus G3cp

Figure 1 summarises the calculus G3cp for classical propositional logic. For each rule,
one distinguishes:

• its main formula, which is the formula occurring in the conclusion and containing the
logical connective naming the rule;

• its active formulas, which are the formulas occurring in the premise(s) of the rule;
• its context, which consists of the formulas occurring in the premise(s) and the conclusion,

untouched by the rule.

G3-style systems are the best available option for (efficiently) automating decision proce-
dures: once an adequate—i.e. sound and complete—G3-calculus for a given logic L has been
defined, in order to decide whether a formula is a theorem of L it suffices to start a root-first
proof search of that exact formula in the related G3-calculus.

This is so because, by design, good G3-style systems satisfy the following desiderata:

1. Analyticity: Each formula occurring in a derivation is a subformula of the formulas
occurring lower in the derivation branch. This means that no guesses are required to the
prover when developing a formal proof in the G3-calculus;

2. Invertibility of all the rules:For each rule of the system, the derivability of the conclusion
implies the derivability of the premise(s). This property avoids backtracking on the proof
search. It also means that at each step of the proof search procedure no bit of information
gets lost, so that the construction of one derivation tree is enough to decide the derivability
of a sequent;

123

Mechanising Gödel–Löb Provability Logic... Page 21 of 34 29

3. Termination: Each proof search must come to an end. If the procedure’s final state
generates a derivation, the end-sequent is a theorem; otherwise, it is generally possible
to extract a refutation of the sequent from the failed proof search.17

Satisfaction of all those desiderata by a pure Gentzen-style sequent calculus has been
considered for long almost a mirage for non-classical logics. Times have changed with the
advent of internalisation techniques of semantic notions in sequent calculi for non-classical
logics.

The starting point of that perspective is still the basic G3-paradigm, but the formalism of
the sequent system is extended either by

• enriching the language of the calculus itself (explicit internalisation); or by
• enriching the structure of sequents (implicit internalisation).

The implicit approach adds structural connectives to sequents other than ‘⇒’ and com-
mas.18 Most G3-style calculi obtained this way provide, in general, very efficient decision
procedures for the related logics. However, they are sometimes rather hard to design and
might lack an additional and highly valuable desideratum of modularity.

The explicit approach reverses the situation. Explicit internalisation uses specific items to
represent semantic elements; the formulas of the basic language are then labelled by those
items and have shape e.g. x : A. That expression formalises the forcing relation we rephrased
in Sect. 2.2, and classical propositional rules operate within the scope of labels. Furthermore,
to handle modal operators, the antecedent of any sequent may now contain relational atoms
of shape x Ry, or any other expression borrowed from the semantics for the logic under
investigation.

The rules for the modalities formalise the forcing condition for each modal connective.
For instance, the rules in Fig. 2 define the labelled sequent calculus G3K.

Extensions of theminimal normalmodal logicK are obtained by rules for relational atoms,
formalising the characteristic properties of each specific extension. For instance, the system
G3K4 for the logic K4 is defined by adding to G3K the rule

x Rz, x Ry, yRz, � ⇒ �
Trans

x Ry, yRz, � ⇒ �

Labelled sequent calculi do satisfy, in general, the basic desiderata of G3-style systems
and are rather modular.19 However, since analyticity holds in a less strict version than the
subformula principle mentioned in the previous definition, termination of proof search is
sometimes hard to prove and, in many cases, produces complexity results far from optimal.

In the present paper, internalisation is considered only in its explicit version for some
syntactic economy: we adopted Negri’s labelled sequent calculus [53] to achieve our goal of
implementing a decision algorithm for GL.

Before proceeding, let us clarify the methodology behind labelled sequents for normal
modal logics.

17 Notice, however, that sometimes the invertibility of a rule could break termination of the proof search, as
witnessed by L → in G3ip for intuitionistic propositional logic [74].
18 Refer to e.g. Avron[2], Mints [51, 52], and Pottinger [70], as well as Restall [71], Kurokawa [45], Marin
and Straßburger [49]. For its direct generalisation by nested sequents refer to e.g. Kashima [40], Brünnler [9],
as well as Poggiolesi [66–68] and Olivetti and Pozzato [63].
19 Their origin dates back to Kanger [39], followed by the refinements in Kripke [44], Fitting [19], and
Gabbay [20]. However, labelled sequent calculi have been established as a well-structured methodology after
Negri [53]. Extensions, refinements, and further results have since been obtained for many logics. Refer to
e.g. [55, 56], Poggiolesi [11, 68].

123

29 Page 22 of 34 M. Maggesi, C. Perini Brogi

Fig. 2 Rules of the calculus G3K

For those logics, labelled sequent calculi are based on a language LLS which extends L
with a set of world labels and a set of relational atoms of the form x Ry for world labels x, y.
Formulas of LLS have only two possible forms

x : A or x Ry,

where A is a formula of L.
Sequents are now pairs � ⇒ � of multisets of formulas of LLS .
Accordingly, the rules for all logical operators are based on the inductive definition of the

forcing relation between worlds and formulas of L, here denoted by x : A. In particular, the
forcing condition for the � modality

x � �A iff for all y, if x Ry, then y � A

determines the following rules:

x Ry, � ⇒ �, y : A R�(y!)
� ⇒ �, x : �A

y : A, x Ry, x : �A, � ⇒ �
L�

x Ry, x : �A, � ⇒ �

with the side condition for R� that y does not occur in �,�.

123

Mechanising Gödel–Löb Provability Logic... Page 23 of 34 29

Fig. 3 Additional rules for the calculus G3KGL

This is the very general framework behind the labelled sequent calculus G3K for the
basic normal modal logic K we defined in Fig. 2. The results presented by Negri and von
Plato in [57, Chap. 6] assure that any extension of K that is semantically characterised
by (co)geometric frame conditions20 can also be captured by an extension of G3K with
appropriate (co)geometric rules.

Any of such extensions will keep the good structural properties of G3cp. Most relevantly,
proving termination of the proof search in these calculi provides a neat proof of decidability
for the corresponding logics, which allows the direct construction of a countermodel for a
given formula generating a failed proof search. In many cases, such a proof of decidability
is obtained as follows: because of the structural correspondence between the proof tree
generated during a backward proof search and the relational frames at the semantic level,
proving the finite model property (hence, decidability) for a given logic reduces to proving
that the such a root-first search generates only a finite number of new labels; in general, a
specific proof search strategy needs to be defined for each system under consideration, in
order to prevent looping interactions of (some of) the rules of the given calculus. A detailed
account of the methodology is given in Garg et al. [21].

6 Implementing G3KGL

The frame conditions characterising GL—i.e. Noetherianity and transitivity, or, equivalently,
irreflexivity, transitivity and finiteness—cannot be expressed by a (co)geometric implication
since finiteness and Noetherianity are intrinsically second order.

Therefore it is not possible to define a labelled sequent calculus forGLby simply extending
G3K with naive semantic rules.

Nevertheless, it is still possible to internalise the possible world semantics by relying on
a modified definition of the forcing relation—valid for ITF models—in which the standard
condition for � is substituted by the following

x � �A iff for all y, if x Ry and y � �A, then y � A. (1)

Following Negri [53], this suggests modifying the R� rule according to the right-to-left
direction of (1).

The resulting labelled sequent calculusG3KGL is then characterised by the initial sequents,
the propositional rules and the L� in Fig. 2 together with the rules in Fig. 3.

The rule R�Löb obeys to the side condition of not being y free in �,�, in line with the
universal quantifier used in the forcing condition.

20 Recall that a frame condition is said to be geometric [58] when it has shape ∀�x(ϕ → ψ), where ϕ, ψ are
first-order formulas that do not contain universal quantifiers or implications. This means that the semantics
behind the logical system is a geometric theory in the sense explained in [15].

123

29 Page 24 of 34 M. Maggesi, C. Perini Brogi

In Negri [54], it is proven that G3KGL has good structural properties. Moreover, in the
same paper, it is easily shown that the proof search in this calculus is terminating. Its failure
allows to construct a countermodel for the formula at the root of the derivation tree: it suffices
to consider the top sequent of an open branch, and assume that all the labelled formulas and
relational atoms in its antecedent are true, while all the labelled formulas in its consequent
are false. Termination is assured by imposing saturation conditions on sequents that might
prevent the application of useless rules, according to the Schütte-Takeuti-Tait reduction for
classicalG3 calculi. The reader is referred to Negri [54] for a detailed description of the proof
search algorithm for G3KGL.
This way, a syntactic proof of decidability for GL is obtained.

6.1 How to Use G3KGL

It is not hard to see how to use both our formalisation of modal completeness and the already
known proof theory for G3KGL to the aim of implementing a decision algorithm in HOL
Light for GL: our predicate holds (W,R) V A x corresponds precisely to the labelled
formula x : A. Thus we have three different ways of expressing the fact that a world x forces
A in a given model 〈W , R, V 〉:

Semantic notation x � A
Labelled sequent calculus notation x : A
HOL Light notation holds (W,R) V A x

This correspondence suggests that a deep embedding of G3KGL is unnecessary. Since
internalising possible world semantics in sequent calculi is, in fact, a syntactic formalisation
of that very semantics, we can use our own formalisation in HOL Light of validity in Kripke
frames and adapt the goal stack mechanism of the theorem prover to develop G3KGL proofs
by relying on that very mechanism.

That adaptation starts with generalising the standard tactics for classical propositional
logic already defined in HOL Light.

Let us call any expression of forcing in HOL Light notation a holds-proposition.
As an abstract deductive system, the logical engine underlying the proof development in

HOL Light consists of a single-consequent sequent calculus for higher-order logic. We must
work on a multi-consequent sequent calculus made of multisets of holds-propositions and
(formalised) relational atoms. To handle commas, we recur to the logical operators of HOL
Light: a comma in the antecedent is formalised by a conjunction; in the consequent, it is
formalised by disjunction.

Since we cannot directly define multisets, we need to formalise the sequent calculus rules
to operate on lists and handle permutations through standard conversions of a goal with the
general shape of an n-ary disjunction of holds-propositions, for n ≥ 0.

The intermediate tactics we now need to define operate

• on the components of a general goal-term consisting of a finite disjunction of holds-
propositions: these correspond to the labelled formulas that appear on the right-hand side
of a sequent of G3KGL so that some of our tactics can behave as the appropriate right
rules of that calculus;

123

Mechanising Gödel–Löb Provability Logic... Page 25 of 34 29

• on the list of hypotheses of the goal stack, which correspond to the labelled formulas and
possible relational atoms that occur on the left-hand side of a sequent of G3KGL, so that
some of our tactics can behave as the appropriate left rules of that calculus.

In order to make the automation of the process easier, among the hypotheses of each goal
stack, we make explicit the assumptions about the transitivity of the accessibility relation, the
left-to-right direction of the standard forcing condition for the �, and, separately, the right-
to-left direction of the forcing condition for the same modality in ITFmodels. This way, the
formal counterparts of, respectively, Trans, L�, and R�Löb can be executed adequately by
combining standard tactics of HOL Light.

Our classical propositional tactics implement, for purely practical reasons, left and right
rules for the (bi) implication-free fragment of L. Therefore, the only intermediate tactics
determining a branching in the derivation tree—i.e. the generation of subgoals in HOL Light
goal-stack—are those corresponding to L∨ and R∧. The translation of a formula of LLS ,
given as a goal, to its equivalent formula in the implemented fragment is produced by our
conversion HOLDS_NNFC_UNFOLD_CONV (sources). A similar conversion is defined for
the labelled formulas that appear among the hypotheses, i.e. on the left-hand side of our
formal sequents.

Specific tactics handle left rules for propositional connectives: each is defined by using
HOL Light theorem tactic(al)s, which can be thought of as operators on a given goal, taking
theorems as input to apply a resulting tactic to the latter. For instance, the left rule for negation
L¬ is defined by

let NEG_LEFT_TAC : thm_tactic =(sources)
let pth = MESON [] ‘¬P �⇒ (P ∨ Q) �⇒ Q‘ in
MATCH_MP_TAC o MATCH_MP pth

which uses the propositional tautology ¬P �⇒ (P ∨ Q) �⇒ Q in an MP rule instantiated
with a negated holds-proposition occurring among the hypotheses; then it adds the holds-
proposition among the disjuncts of the new goal, as expected.R¬ is defined analogously by
NEG_RIGHT_TAC (sources).

On the contrary, L∨ andR∧ are implemented by combining theorem tactic(al)s based on
the basic operators CONJ_TAC and DISJ_CASES.

Modal rules are handled employing the explicit hypotheses we previously mentioned to
deal withL� andR�Löb. The same approach also works for the rule Trans, which we handle
through a theorem tactical ACC_TCL (sources) operating on the relational atoms among the
hypotheses of a current goal stack.

This basically completes the formalisation—or shallow embedding—of G3KGL in HOL
Light.

6.2 Design of the Proof Search

Our efforts now turn to run, inHOLLight, an automated proof searchw.r.t. the implementation
of G3KGL we have sketched in the previous section.
We can again rely on theorem tactic(al)s to build the main algorithm, but we need to define
them recursively this time.

First, we have to apply recursively the left rules for propositional connectives, as well as
theL� rule: this is made possible by the theorem tacticHOLDS_TAC (sources). Furthermore,
we need to saturate the sequents w.r.t. the latter modal rule, by considering all the possible

123

https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=128-131
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=112-114
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=101-105
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=167-170
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=174-176

29 Page 26 of 34 M. Maggesi, C. Perini Brogi

relational atoms and applications of the rule for transitivity, and, eventually, further left rules:
that is the job of the theorem tactic SATURATE_ACC_TAC (sources).

After that, it is possible to proceedwith theR�Löb: that is triggedby theBOX_RIGHT_TAC
(sources), which operates by applying (the implementation of) R�Löb after SATURATE_
ACC_TAC and HOLDS_TAC.

At this point, it is possible to optimise the application of BOX_RIGHT_TAC by applying
the latter tactic after a “sorting tactic” SORT_BOX_TAC (sources): that tactic performs a con-
version of the goal term and orders it so that priority is given to negated holds-propositions,
followed by those holds-propositions formalising the forcing of a boxed formula. Each of
these types of holds-propositions are sorted furthermore as follows:

holds WR V p w precedes holds WR V q w if p occurs free in q and q does
not occur free in p; or if p is “less than”qw.r.t. the structural ordering of types provided
by the OCaml module Pervasives.

We programmed the tacticGL_TAC to perform the complete proof search; from that tactic,
we define the expected GL_RULE (sources).

To keep it short, our tactic works as expected:

1. Given a formula A ofL,let-terms are rewritten togetherwith definablemodal operators,
and the goal is set to |- A;

2. Amodel 〈W , R, V 〉 and aworldw ∈ W—whereW sits on the typenum—are introduced.
The main goal is now holds (W,R) V A w;

3. Explicit additional hypotheses are introduced to be able to handle modal and relational
rules, as anticipated before;

4. All possible propositional rules are applied after unfolding the modified definition of the
predicate holds given by HOLDS_NNFC_UNFOLD_CONV. This assures that at each
step of the proof search, the goal term is a finite conjunction of disjunctions of positive and
negative holds-propositions. As usual, priority is given to non-branching rules, i.e. to
those that do not generate subgoals. Furthermore, the hypothesis list is checked, andTrans
is applied whenever possible; the same holds for L�, which is applied any appropriate
hypothesis after the tactic triggering transitivity. Each new goal term is reordered by
SORT_BOX_TAC, which always precedes the implementation of R�Löb.

The procedure is repeated starting from step 2. The tactic governing this repetition is FIRST
o map CHANGED_TAC, which triggers the correct tactic—corresponding to a specific step
of the very procedure—in GL_STEP_TAC (sources) that does not fail.

At each step,moreover, the following condition is checkedbycallingASM_REWRITE_TAC:

Closing The same holds-proposition occurs both among the current hypotheses and the
disjuncts of the (sub)goal; or holds (W,R) V False x occurs in the current
hypothesis list for some label x.

This condition states that the current branch is closed, i.e. an initial sequent has been reached,
or the sequent currently analysed has a labelled formula x : ⊥ in the antecedent.

Termination of the proof search is assured by the results presented in [54]. Therefore, we
can justify our choice to conclude GL_TAC by a FAIL_TAC that, when none of the steps
2–4 can be repeated during a proof search, our algorithm terminates, informing us that a
countermodel for the input formula can be built.

That is exactly the job of our GL_BUILD_COUNTERMODEL (sources) tactic: it considers
the goal state which the previous tactics of GL_TAC stopped at; collects all the hypotheses,
discarding the meta-hypotheses; and negates all the disjuncts constituting the goal term.

123

https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=183-185
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=188
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=223-227
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=270-277
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=238-241
https://archive.softwareheritage.org/swh:1:cnt:4af3d48af0f8b3c2dcef2680c9814f57c342ae2a;origin=https://github.com/jrh13/hol-light;visit=swh:1:snp:fe1b3b83e1dd2bde44d3698f723b25c949de2851;anchor=swh:1:rev:ab57c07ff0105fef75a9fcdd179eda0d26854ba3;path=/GL/decid.ml;lines=253-264

Mechanising Gödel–Löb Provability Logic... Page 27 of 34 29

Again, by referring to the results in [54, 58], we know that this information suffices to the
user to construct a relational countermodel for the formula A given as input to our theorem
prover for GL.

6.3 Some Examples

Because of its adequate arithmetical semantics, Gödel–Löb logic reveals an exceptionally
simple instrument to study the arithmetical phenomenon of self-reference, as well as Gödel’s
results concerning (in)completeness and (un)provability of consistency.

From a formal viewpoint, an arithmetical realisation ∗ in Peano arithmetic (PA)21 of our
modal language consists of a function commuting with propositional connectives and such
that (�A)∗ := Bew(�A∗�), where Bew(x) is the formal provability predicate for PA.

Under this interpretation,wewill readmodal formulas as follows: We tested our procedure

�A A is provable in PA
¬�¬A A is consistent with PA
¬�A A is unprovable in PA
�¬A A is refutable in PA
(�A) ∨ (�¬A) A is decidable in PA
(¬�A) ∧ (¬�¬A) A is undecidable in PA
�(A ↔ B) A and B are equivalent over PA
�⊥ PA is inconsistent
¬�⊥, ♦� PA is consistent

GL_RULE on some examples.22 First, as a sanity check, we applied it to all the schemas
(including axioms but excluding rules) that were initially proven directly in the GL calculus
(see our discussion in Sect. 3.2). In total, 56 such lemmas were (re-)proven by our procedure
in about 3.5 seconds.

Next, we used the procedure to prove some other results of meta-mathematical relevance;
for instance:

Undecidability of consistency. If PA does not prove its inconsistency, then its consistency is
undecidable. The corresponding modal formula is

¬(��⊥) → ¬(�¬�⊥) ∧ ¬(�¬¬�⊥)

Undecidability of Gödel’s formula. The formula stating its own unprovability is undecidable
in PA, if the latter does not prove its inconsistency. The corresponding modal formula is

�(A ↔ ¬�A) ∧ ¬��⊥ → ¬�A ∧ ¬�¬A

Reflection and iterated consistency.

�((�p → p) → ♦♦�) → ♦♦� → �p → p

Formalised Gödel’s second incompleteness theorem. In PA, the following is provable: If PA
is consistent, it cannot prove its own consistency. The corresponding modal formula is

¬�⊥ → ¬�♦�
21 Actually, we may consider any �1-sound arithmetical theory T extending I�1 [76].
22 The sources of our tests are available in file GL/tests.ml.

123

29 Page 28 of 34 M. Maggesi, C. Perini Brogi

For the reader’s sake, we describe for this specific example the main steps constituting
both the decision procedure (GL_RULE) and the shallow embedding of G3KGL in the
interactive proof mechanism of HOL Light. First, the goal is set to

‘|---(Not Box False --> Not Box Diam True)‘

Then, by applying the completeness theorem and unfolding and sorting the disjuncts
(HOLDS_NNFC_UNFOLD_CONV, and SORT_BOX_TAC discussed above), we obtain
the following goal stack:

0 [‘w IN W‘] (w)
‘¬holds (W,R) V (Box Not Box Not True) w ∨
holds (W,R) V (Box False) w‘

Next, by using R¬ (NEG_RIGHT_TAC), we have

0 [‘w IN W‘] (w)
1 [‘holds (W,R) V (Box Not Box Not True) w‘] (holds)

‘holds (W,R) V (Box False) w‘

Now, we can trigger R�Löb followed by L� (BOX_RIGHT_TAC), to obtain:

0 [‘w IN W‘] (w)
1 [‘holds (W,R) V (Box Not Box Not True) w‘] (holds)
2 [‘y IN W‘]
3 [‘R w y‘] (acc)
4 [‘holds (W,R) V (Box False) y‘] (holds)

‘holds (W,R) V (Box Not True) y ∨
holds (W,R) V False y‘

By now, the second disjunct is deleted, and by applyingR�Löb followed byR¬, we are
done by L⊥ (closing condition by ASM_REWRITE_TAC).

As already discussed, most of these proofs seem to be unfeasible using a generic proof
search approach such as the one implemented by MESON or METIS, either axiomatically or
semantically (see Sect. 3.2 and the beginning of Sect. 5, respectively). Thus, obtaining the
formal proof in HOL Light of some of the above four results using more basic techniques
can be challenging. Our procedure can prove them in a few seconds.

Finally, we tested the ability of our procedure to find countermodels. For instance, consider
this reflection principle, which is a non-theorem in GL:

�(�p ∨ �¬p) → (�p ∨ �¬p)

Our procedure fails (meaning it does not produce a theorem) on this formula and warns the
user that a countermodel has been constructed. As expected, the structure that the counter-

123

Mechanising Gödel–Löb Provability Logic... Page 29 of 34 29

model constructor GL_BUILD_COUNTERMODEL returns is the one that can be graphically
rendered as

y�p y′
�p

w

7 RelatedWork

Our formalisation gives a mechanical proof of completeness for GL in HOL Light which
sticks to the original Henkin’s method for classical logic. In its standard version, its nature is
synthetic and intrinsically semantic [18]. As we stated before, it is the core of the canonical
model construction for most normal modal logics.

That approach does not work forGL because of its non-compactness. This issue is usually
sidestepped by restricting to a finite subformula universe, as done in Boolos [8]. Nevertheless,
we build the subformula universe in our mechanised proof by recurring to a restricted version
of Henkin’s construction without resorting to the syntactic manipulations that are proof-
sketched in [8, Chap. 5].

As far as we know, no other mechanised proof of modal completeness for GL has been
given before, despite there exist formalisations of similar results for several other logics.

In particular, both Doczkal and Bard [13], and Doczkal and Smolka [14] deal with com-
pleteness and decidability of non-compact modal systems—namely, converse PDL and CTL,
respectively. They use Coq/SSReflect to give constructive proofs of completeness on the basis
of Kozen and Parikh [43] for PDL and Emerson and Halpern [16] for CTL. Moreover, they
propose a simulation of natural deduction for their formal axiomatic systems to make the
proof development of lemmas in the Hilbert calculi that are required in the formalisation of
completeness results easier. Their methodology is based on a variant of pruning [38], and
the proposed constructive proof of completeness provides an algorithm to build derivations
in the appropriate axiomatic calculi for valid formulas.

Formal proof of semantic completeness for classical logic has defined an established trend
in interactive theorem proving since Shankar [72], where a Hintikka-style strategy is used to
define a theoremhood checker for formulas built up by negation and disjunction only.

A very general treatment of systems for classical propositional logic is given in Michaelis
and Nipkow [50]. They investigate an axiomatic calculus in Isabelle/HOL along with natural
deduction, sequent calculus, and resolution system, and completeness is proven by Hintikka-
style method for sequent calculus first, to be lifted then to the other formalisms through
translations of each system into the others. Their formalisation is more ambitious than ours,
but, at the same time, it is focused on a very different aim. A similar overview of meta-
theoretical results for several calculi formalised in Isabelle/HOL is given in Blanchette [7],
who provides a more general investigation, though unrelated to modal logics.

Regarding intuitionistic modalities, Bak [3] gives a constructive proof of completeness
for IS4 w.r.t. a specific relational semantics verified in Agda. It uses natural deduction and
applies modal completeness to obtain a normalisation result for the terms of the associated
λ-calculus.

Bentzen [6] presents a Henkin-style completeness proof for S5 formalised in Lean. That
work applies the standard method of canonical models—since S5 is compact.

123

29 Page 30 of 34 M. Maggesi, C. Perini Brogi

More recently, Xu andNorrish [77] used theHOL4 theoremprover to treatmodel theory of
modal systems. For future work, it might be interesting to use their formalisation along with
the main lines of our implementation of axiomatic calculi to merge the two presentations—
syntactic and semantic—exhaustively.

Our formalisation, however, has been led by the aimof developing a (prototypical) theorem
prover in HOL Light for normal modal logics. The results concerning GL that we have
presented here can be considered a case study of our original underlying methodology.

Automated deduction for modal logic has become a relevant scientific activity recently.
An exhaustive comparison of our prover with other implementations of modal systems is
beyond our scope. Nevertheless, we care to mention at least three different development
lines on that trend.

Thework [30] byGoré andKikkert consists of a highly efficient hybridism of SAT solvers,
modal clause-learning, and tableauxmethods for modal systems. That prover deals with min-
imal modal logic K and its extensions T and S4. The current version of their implementation
does not produce proof or a countermodel for the input formula; however, the code is publicly
available, and minor tweaks should make it do so.

The conference paper [26] by Girlando and Straßburger presents a theorem prover for
intuitionistic modal logics implementing proof search for Tait-style nested sequent calculi in
Prolog. Because of the structural properties of those calculi, that prover returns, for each input
formula, a proof in the appropriate calculus or a countermodel extracted from the failed proof
search in the system. Similar remarks could be formulated for the implementation described
in [27] concerning several logics for counterfactuals.

The latter formalisations are just two examples of an establishedmodus operandi in imple-
menting proof search in extended sequent calculi for non-classical logics by using the mere
depth-first search mechanism of Prolog. Other instances of that line are e.g. [1, 24, 25][59–
62], and [12]. None of those provers deals explicitly with GL, but that development approach
would find no issue formalising G3KGL too.

Similar remarks about Papapanagiotou and Fleuriot [64] could be made. They propose
a general framework for object-level reasoning with multiset-based sequent calculi in HOL
Light. More precisely, they present a deep embedding of those systems by defining an appro-
priate relation between multisets in HOL Light and encode two G1 calculi: a fragment of
intuitionistic propositional logic and its Curry-Howard analogous type theory. Specific tactics
are then defined to perform an interactive proof search of a given sequent. For our purposes, it
might be interesting to check whether their implementation may be of some help to enhance
the performance and functionality of our prototypical theorem prover.23

It is worth noticing that the paper [31] by Goré et al. formalises directly in Coq the
G3-style calculus GLS and proves that the system is structurally complete; most notably,
it gives a computer checked proof that the cut rule is admissible in that calculus, and by
this formalisation, it clarifies many aspects of the structural analysis of this logic that had
remained opaque at the “pencil and paper” level.24

A specific tableaux based theorem prover for GL is described in Goré and Kelly [29],
where they also discuss many efficiency related aspects of their artifact.

When writing this prototype, we aimed at high flexibility in experimenting with the cer-
tification of GL tautologies and with constructing possible countermodels to a modal input

23 One might say that the framework of [64] is similar to the works in Prolog for aiming a direct deep
embedding of a sequent calculus, but it is also close to our implementation for adopting the LCF approach
and for choosing HOL Light as the environment.
24 We are deeply grateful to an anonymous reviewer for pointing to this work on formalised proof theory for
provability logics.

123

Mechanising Gödel–Löb Provability Logic... Page 31 of 34 29

formula. The current stage of the artefact is heavily based on the HOL Light tactic machinery
and is slightly naive in some aspects, most notably concerning efficiency. A more mature
approach would provide a dedicated procedure for the search phase, which uses the tactic
mechanism in the last stage of its execution, as done in tactics such as METIS, MESON or
ARITH, implemented, for instance, by Harrison [33], Hurd [37], and Färber and Kaliszyk
[17].

An immediate step would be to enhance the implementation of formal proofs in G3KGL so
that derivation trees are represented as proof objects in the HOL Logic and checked by our
procedure. Incidentally, this would constitute an alternative implementation of the labelled
sequent calculus using the paradigm of deep embedding instead of shallow embedding.
Moreover, we could use it to construct concrete proof trees for G3KGL. The ideal goal would
be to make the prover run in PSPACE.

We also intend to measure the performance of our prototype—and its eventual definitive
version—using a benchmark set forGL inBalsiger et al. LogicsWorkbenchs [4], and compare
it with, e.g. Goré and Kelly’s theorem prover.

Moving from the experiments about GL we propose in the present work, we plan to
develop a more general mechanism to deal with (ideally) the whole set of normal modal
logics within HOL Light. At the same time, we intend to add the necessary machinery to
check the generated countermodels without affecting the program’s performance.

Author Contributions Both authors contributed equally to this work.

Funding Open access funding provided by Università degli Studi di Firenze within the CRUI-CARE Agree-
ment. First author is supported by project PRIN2017 “Real and Complex Manifolds: Topology, Geometry and
holomorphic dynamics” (code 2017JZ2SW5), and by GNSAGA of INdAM. Second author is supported by
project PRIN2017 “IT Matters: Methods and Tools for Trustworthy Smart systems” (code 2017FTXR7S).

Declarations

Conflict of interest The authors declare that they have no competing interests as defined by Springer, or other
interests that might be perceived to influence the results and/or discussion reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alenda, R., Olivetti, N., Pozzato, G.L.: CSL-lean: a theorem-prover for the logic of comparative concept
similarity. Electron. Notes Theor. Comput. Sci. 262, 3–16 (2010)

2. Avron, A.: The method of hypersequents in the proof theory of propositional non-classical logics. In:
Logic: from Foundations to Applications: European Logic Colloquium, pp. 1–32 (1996)

3. Bak, M.: Introspective Kripke models and normalisation by evaluation for the λ�-calculus. In: 7thWork-
shop on Intuitionistic Modal Logic and Applications (IMLA 2017). https://github.com/mietek/imla2017/
blob/master/doc/imla2017.pdf

4. Balsiger, P., Heuerding, A., Schwendimann, S.: A benchmark method for the propositional modal logics
K, KT, S4. J. Autom. Reason. 24(3), 297–317 (2000)

123

http://creativecommons.org/licenses/by/4.0/
https://github.com/mietek/imla2017/blob/master/doc/imla2017.pdf
https://github.com/mietek/imla2017/blob/master/doc/imla2017.pdf

29 Page 32 of 34 M. Maggesi, C. Perini Brogi

5. Beklemishev, L., Visser, A.: Problems in the logic of provability. In:Mathematical Problems fromApplied
Logic I, pp. 77–136. Springer, Cham (2006)

6. Bentzen, B.: A Henkin-style completeness proof for the modal logic S5. CoRR (2019). arXiv:1910.01697
7. Blanchette, J.C.: Formalizing the metatheory of logical calculi and automatic provers in Isabelle/HOL

(invited talk). In: Proceedings of the 8th ACMSIGPLAN International Conference on Certified Programs
and Proofs, CPP 2019, pp. 1–13. Association for Computing Machinery, New York (2019)

8. Boolos, G.: The Logic of Provability. Cambridge University Press, Cambridge (1995)
9. Brünnler, K.: Deep sequent systems for modal logic. Arch. Math. Logic 48(6), 551–577 (2009)

10. Copeland, B.J.: The genesis of possible worlds semantics. J. Philos. Logic 31(2), 99–137 (2002)
11. Dalmonte, T., Olivetti, N., Negri, S.: Non-normal modal logics: Bi-neighbourhood semantics and its

labelled calculi. In: Advances in Modal Logic 2018. AIX-MARSEILLE UNIVERSITÉ (2018)
12. Dalmonte, T., Negri, S., Olivetti, N., Pozzato, G.L.: Theorem proving for non-normal modal logics. In:

OVERLAY 2020, Udine, Italy, September 2021
13. Doczkal, C., Bard, J.: Completeness and decidability of converse pdl in the constructive type theory of

Coq. In: Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and
Proofs, CPP 2018, pp. 42–52. Association for Computing Machinery, New York (2018)

14. Doczkal, C., Smolka, G.: Completeness and decidability results for CTL in constructive type theory. J.
Autom. Reason. 56(3), 343–365 (2016)

15. Dyckhoff, R., Negri, S.: Geometrisation of first-order logic. Bull. Symb. Logic 21(2), 123–163 (2015)
16. Emerson, E.A., Halpern, J.Y.: Decision procedures and expressiveness in the temporal logic of branching

time. J. Comput. Syst. Sci. 30(1), 1–24 (1985)
17. Färber, M., Kaliszyk, C.: Metis-based paramodulation tactic for HOL Light. GCAI 36, 127–136 (2015)
18. Fitting, M., Mendelsohn, R.L.: First-Order Modal Logic, vol. 277. Springer, Dordrecht (2012)
19. Fitting, M.: Proof Methods for Modal and Intuitionistic Logics, vol. 169. Springer, Dordrecht (2013)
20. Gabbay, D.M.: Labelled Deductive Systems. Oxford Logic Guides, vol. 33(1). Oxford University Press,

Oxford (1996)
21. Garg, D., Genovese, V., Negri, S.: Countermodels from sequent calculi in multi-modal logics. In: 2012

27th Annual IEEE Symposium on Logic in Computer Science, pp. 315–324 (2012)
22. Gentzen, G.: Untersuchungen über das logische Schließen I. Math. Z. 39, 176–210 (1935)
23. Gentzen, G.: Untersuchungen über das logische Schließen II. Math. Z. 39, 405–431 (1935)
24. Giordano, L., Gliozzi, V., Olivetti, N., Pozzato, G.L.: Analytic tableaux for KLMpreferential and cumula-

tive logics. In: International Conference on Logic for Programming Artificial Intelligence and Reasoning,
pp. 666–681. Springer, Berlin (2005)

25. Giordano,L.,Gliozzi,V., Pozzato,G.L.:KLMLean2.0: a theoremprover forKLMlogics of nonmonotonic
reasoning. In: International Conference on Automated Reasoning with Analytic Tableaux and Related
Methods, pp. 238–244. Springer, Cham (2007)

26. Girlando, M., Straßburger, L.: Moin: a nested sequent theorem prover for intuitionistic modal logics
(system description). In: International Joint Conference on Automated Reasoning, pp. 398–407. Springer,
Cham (2020)

27. Girlando, M., Lellmann, B., Olivetti, N., Pesce, S., Pozzato, G.L.: Calculi, countermodel generation and
theorem prover for strong logics of counterfactual reasoning. J. Logic Comput., 01, exab084 (2022)

28. Gödel, K.: Eine Interpretation des Intuitionistischen Aussagenkalküls. Ergebnisse eines Mathematischen
Kolloquiums 4, 39–40 (1933). English translation, with an introductory note by A.S. Troelstra. Kurt
Gödel, Collected Works, vol. 1, pp. 296–303 (1986)

29. Goré, R., Kelly, J.: Automated proof search in Gödel–Löb provability logic. In: Abstract, British Logic
Colloquium (2007)

30. Goré, R., Kikkert, C.: CEGAR-Tableaux: improved modal satisfiability via modal clause-learning and
SAT. In: International Conference onAutomatedReasoningwithAnalytic Tableaux andRelatedMethods,
pp. 74–91. Springer, Cham (2021)

31. Goré, R., Ramanayake, R., Shillito, I.: Cut-elimination for provability logic by terminating proof-search:
formalised and deconstructed using coq. In: Das, A., Negri, S. (eds.) Automated Reasoning with Analytic
Tableaux and Related Methods, pp. 299–313. Springer, Cham (2021)

32. Hakli, R., Negri, S.: Does the deduction theorem fail for modal logic? Synthese 187(3), 849–867 (2012)
33. Harrison, J.: Optimizing proof search in model elimination. In: Automated Deduction-Cade-13: 13th

International Conference on Automated Deduction New Brunswick. NJ, USA, July 30–August 3, 1996
Proceedings, vol. 13, pp. 313–327. Springer, Dordrecht (1996)

34. Harrison, J.: HOL Light tutorial (2017). http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
35. Harrison, J.: The HOL Light Theorem Prover (2022). https://github.com/jrh13/hol-light
36. Harrop, R.: On the existence of finite models and decision procedures for propositional calculi. Math.

Proc. Camb. Philos. Soc. 54(1), 1–13 (1958)

123

http://arxiv.org/abs/1910.01697
http://www.cl.cam.ac.uk/~jrh13/hol-light/tutorial.pdf
https://github.com/jrh13/hol-light

Mechanising Gödel–Löb Provability Logic... Page 33 of 34 29

37. Hurd, J.: First-order proof tactics in higher-order logic theorem provers. In: Design and Application of
Strategies/Tactics in Higher Order Logics, Number NASA/CP-2003-212448 in NASATechnical Reports,
pp. 56–68 (2003)

38. Kaminski, M., Schneider, T., Smolka, G.: Correctness and worst-case optimality of Pratt-style decision
procedures for modal and hybrid logics. In: International Conference on Automated Reasoning with
Analytic Tableaux and Related Methods, pp. 196–210. Springer, Berlin (2011)

39. Kanger, S.: Provability in Logic. Stockholm Studies in Philosophy. Almqvist and Wiksell, Stockholm
(1957)

40. Kashima, R.: Cut-free sequent calculi for some tense logics. Studia Logica 53, 119–135 (1994)
41. Ketonen, O.: Untersuchungen Zum Prädikatenkalkul. J. Symbol. Logic 10(4), 127–130 (1945)
42. Kleene, S.C.: Permutability of inferences in Gentzen’s calculi LK and LJ. Memoirs Am. Math. Soc. 10,

1–26 (1952)
43. Kozen, D., Parikh, R.: An elementary proof of the completeness of PDL. Theor. Comput. Sci. 14(1),

113–118 (1981)
44. Kripke, S.A.: Semantical analysis of intuitionistic logic I. In: Studies in Logic and the Foundations of

Mathematics, vol. 40, pp. 92–130. Elsevier, Amsterdam (1965)
45. Kurokawa, H.: Hypersequent calculi for modal logics extending S4. In: JSAI International Symposium

on Artificial Intelligence, pp. 51–68. Springer, Cham (2013)
46. Ladner, R.E.: The computational complexity of provability in systems ofmodal propositional logic. SIAM

J. Comput. 6(3), 467–480 (1977)
47. Lambek, J., Scott, P.J.: Introduction to Higher-Order Categorical Logic, vol. 7. Cambridge University

Press, Cambridge (1988)
48. Maggesi, M., Perini Brogi, C.: A formal proof of modal completeness for provability logic. In: Cohen, L.,

Kaliszyk, C. (eds.) 12th International Conference on Interactive Theorem Proving (ITP 2021). Leibniz
International Proceedings in Informatics (LIPIcs), vol. 193, pp. 26:1–26:18, Dagstuhl, Germany. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, Wadern (2021)

49. Marin, S., Straßburger, L.: Label-free modular systems for classical and intuitionistic modal logics. In:
Advances in Modal Logic, vol. 10. Groningen, The Netherlands (2014)

50. Michaelis, J., Nipkow, T.: Formalized proof systems for propositional logic. In: Abel, A., Nordvall Fors-
berg, F., Kaposi, A. (eds.) 23rd Int. Conf. Types for Proofs and Programs (TYPES 2017). LIPIcs, vol.
104, pp. 6:1–6:16. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Wadern (2018)

51. Mints, G.: Short Introduction to Modal Logic. Center for the Study of Language and Information Publi-
cation Lecture Notes, Cambridge University Press, Cambridge (1992)

52. Mints, G., Feys, R.: Sistemy Lyuisa i sistema T (Supplement to the Russian Translation). In: Feys, R.
(ed.) Modal Logic, pp. 422–509. Nauka, Moscow (1974)

53. Negri, S.: Proof analysis in modal logic. J. Philos. Logic 34(5), 507–544 (2005)
54. Negri, S.: Proofs and countermodels in non-classical logics. Logica Univ. 8(1), 25–60 (2014)
55. Negri, S.: Proof theory for non-normal modal logics: the neighbourhood formalism and basic results.

IfCoLog J. Logics Appl. 4(4), 1241–1286 (2017)
56. Negri, S., Pavlović, E.: Proof-theoretic analysis of the logics of agency: the deliberative stit. Studia Logica

109(3), 473–507 (2021)
57. Negri, S., von Plato, J.: Structural Proof Theory. Cambridge University Press, Cambridge (2008)
58. Negri, S., von Plato, J.: Proof Analysis: A Contribution to Hilbert’s Last Problem. Cambridge University

Press, Cambridge (2011)
59. Olivetti, N., Pozzato, G.L.: CondLean: a theorem prover for conditional logics. In: International Con-

ference on Automated Reasoning with Analytic Tableaux and Related Methods, pp. 264–270. Springer,
Berlin (2003)

60. Olivetti, N., Pozzato, G.L.: CondLean 3.0: Improving CondLean for stronger conditional logics. In:
International Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pp.
328–332. Springer, Berlin (2005)

61. Olivetti, N., Pozzato, G.L.: Theorem proving for conditional logics: CondLean and GoalDuck. J. Appl.
Non-Classical Logics 18(4), 427–473 (2008)

62. Olivetti, N., Pozzato, G.L.: NESCOND: an implementation of nested sequent calculi for conditional
logics. In: International Joint Conference on Automated Reasoning, pp. 511–518. Springer, Cham (2014)

63. Olivetti, N., Pozzato, G.L.: A standard internal calculus for Lewis’ counterfactual logics. In: Interna-
tional Conference on Automated Reasoning with Analytic Tableaux and Related Methods, pp. 270–286.
Springer, Cham (2015)

64. Papapanagiotou, P., Fleuriot, J.: Object-level reasoning with logics encoded in HOL light. In: 15th Fif-
teenth Workshop on Logical Frameworks and Meta-Languages: Theory and Practice, pp. 18–34. Open
Publishing Association (2021)

123

29 Page 34 of 34 M. Maggesi, C. Perini Brogi

65. Perini Brogi, C.: Investigations of proof theory and automated reasoning for non-classical logics. PhD
thesis, DiMa – Department of Mathematics, Universitá degli studi di Genova (2022)

66. Poggiolesi, F.: Themethod of tree-hypersequents formodal propositional logic. In: TowardsMathematical
Philosophy, pp. 31–51. Springer, Dordrecht (2009)

67. Poggiolesi, F.: Gentzen Calculi for Modal Propositional Logic, vol. 32. Springer, Dordrecht (2010)
68. Poggiolesi, F.: Natural deduction calculi and sequent calculi for counterfactual logics. Studia Logica

104(5), 1003–1036 (2016)
69. Popkorn, S.: First Steps in Modal Logic. Cambridge University Press, Cambridge (1994)
70. Pottinger, G.: Uniform, cut-free formulations of T, S4 and S5. J. Symbol. Logic 48(3), 900 (1983)
71. Restall, G.: Proofnets for S5: sequents and circuits for modal logic. In: Dimitracopoulos, C., Newelski,

L., Normann, D. (eds.) Logic Colloquium 2005, pp. 151–172. Cambridge University Press, Cambridge
(2007)

72. Shankar, N.: Towards mechanical metamathematics. J. Autom. Reason. 1(4), 407–434 (1985)
73. Solovay, R.M.: Provability interpretations of modal logic. Isr. J. Math. 25(3–4), 287–304 (1976)
74. Troelstra, A.S., Schwichtenberg, H.: Basic Proof Theory, 2nd ed.. Cambridge Tracts in Theoretical Com-

puter Science, vol. 43. Cambridge University Press, Cambridge (2000)
75. van Benthem, J., Blackburn, P.: Modal logic: a semantic perspective. In: Handbook of Modal Logic,

vol. 3, pp. 1–84. Elsevier, Amsterdam (2007)
76. Verbrugge, R.L.C.: Provability logic. In: Zalta, E.N. (ed.) The Stanford Encyclopedia of Philosophy, fall,

2017th edn. Stanford University, Stanford, Metaphysics Research Lab (2017)
77. Xu, Y., Norrish, M.: Mechanised modal model theory. In: Peltier, N., Sofronie-Stokkermans, V. (eds.)

Automated Reasoning, pp. 518–533. Springer, Cham (2020)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

	Mechanising Gödel–Löb Provability Logic in HOL Light
	Abstract
	1 Introduction
	1.1 HOL Light Notation

	2 Basics of Modal Logic
	2.1 Language and Semantics Defined
	2.2 Frames for GL

	3 Axiomatizing GL
	3.1 Soundness Lemma
	3.2 GL-Lemmas

	4 Modal Completeness
	4.1 Maximal Consistent Lists
	4.2 Maximal Extensions
	4.3 Truth Lemma and Completeness
	4.4 Generalizing via Bisimulation

	5 Decidability via Proof Theory
	5.1 Bits of Structural Proof Theory

	6 Implementing G3KGL
	6.1 How to Use G3KGL
	6.2 Design of the Proof Search
	6.3 Some Examples

	7 Related Work
	References

