
Journal of Automated Reasoning (2023) 67:27
https://doi.org/10.1007/s10817-023-09675-1

Cyclic Hypersequent System for Transitive Closure Logic

Anupam Das1 ·Marianna Girlando2

Received: 3 February 2023 / Accepted: 19 June 2023 / Published online: 16 August 2023
© The Author(s) 2023

Abstract
We propose a cut-free cyclic system for transitive closure logic (TCL) based on a form of
hypersequents, suitable for automated reasoning via proof search. We show that previously
proposed sequent systems are cut-free incomplete for basic validities from Kleene Algebra
(KA) and propositional dynamic logic (PDL), over standard translations. On the other hand,
our system faithfully simulates known cyclic systems for KA and PDL, thereby inheriting
their completeness results. A peculiarity of our system is its richer correctness criterion,
exhibiting ‘alternating traces’ and necessitating a more intricate soundness argument than
for traditional cyclic proofs.

Keywords Cyclic proofs · Transitive closure logic · Hypersequents · Propositional dynamic
logic · Proof theory

1 Introduction

Transitive closure logic (TCL) is the extension of first-order logic by an operator computing
the transitive closure of definable binary relations. It has been studied by numerous authors,
e.g. [15–17], and in particular has been proposed as a foundation for the mechanisation and
automation of mathematics [18].

Recently, Cohen and Rowe have proposed non-wellfounded and cyclic systems for TCL
[8, 10]. These systems differ from usual ones by allowing proofs to be infinite (finitely
branching) trees, rather than finite ones, under some appropriate global correctness condition
(the ‘progressing criterion’). One particular feature of the cyclic approach to proof theory is
the facilitation of automation, since complexity of inductive invariants is effectively traded
off for a richer proof structure. In fact this trade off has recently been made formal, cf. [1,
11], and has led to successful applications to automated reasoning, e.g. [6, 7, 25, 28, 29].

In this work we investigate the capacity of cyclic systems to automate reasoning in TCL
(refer to Fig. 1 for a summary of our contributions). Our starting point is the demonstration of

B Marianna Girlando
m.girlando@uva.nl

Anupam Das
a.das@bham.ac.uk

1 University of Birmingham, Birmingham, UK

2 ILLC, University of Amsterdam, Amsterdam, The Netherlands

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09675-1&domain=pdf
http://orcid.org/0000-0002-0142-3676
https://orcid.org/0000-0002-9384-1356

27 Page 2 of 40 A. Das, M. Girlando

Fig. 1 The diagram displays results from the literature together with our contributions, marked with (�).
Double arrows represent soundness and completeness results, which for PDL+ and the class of cyclic sequent
proofs LPD is known from [21] (cfr. Sect. 6.1). Hooked arrows represent simulations via translations: PDL+
can be simulated by TCL, under the standard translation (cfr. Sect. 3.2). TCG is the class of cyclic sequent
proofs for TCL, introduced in [10], that cannot simulate LPD proofs (cfr. Sect. 3.3). Our contribution is the
hypersequential and cyclic proof system HTC, for which we prove soundness (Sect. 5) and completeness via
simulation of LPD (Sect. 6). These results can be extended to full PDL and TCL= (with identity), indicated
by the right components of each node (in blue)

a key shortfall of Cohen and Rowe’s system: its cut-free fragment, here called TCG , is unable
to cyclically prove even standard theorems of relational algebra, e.g. (a ∪ b)∗ = a∗(ba∗)∗
and (aa ∪ aba)+ ≤ a+((ba+)+ ∪ a)) (Theorem 3.7). An immediate consequence of this is
that cyclic proofs of TCG do not enjoy cut-admissibility (Corollary 3.14). On the other hand,
these (in)equations are theorems of Kleene Algebra (KA) [19, 20], a decidable theory which
admits automation-via-proof-search thanks to the recent cyclic system of Das and Pous [13].

What is more, TCL is well-known to interpret Propositional Dynamic Logic (PDL), a
modal logic whose modalities are just terms of KA, by a natural extension of the ‘standard
translation’ from (multi)modal logic to first-order logic (see, e.g., [2, 3]). Incompleteness
of cyclic-TCG for PDL over this translation is inherited from its incompleteness for KA.
This is in stark contrast to the situation for modal logics without fixed points: the standard
translation from K (and, indeed, all logics in the ‘modal cube’) to first-order logic actually
lifts to cut-free proofs for a wide range of modal logic systems, cf. [22, 23].

A closer inspection of the systems for KA and PDL reveals the stumbling block to any
simulation: these systems implicitly conduct a form of ‘deep inference’, by essentially rea-
soning underneath ∃ and∧. Inspired by this observation, we propose a form of hypersequents
for predicate logic, with extra structure admitting the deep reasoning required.We present the
cut-free system HTC and a novel notion of cyclic proof for these hypersequents. In particular,
the incorporation of some deep inference at the level of the rules necessitates an ‘alternating’
trace condition corresponding to alternation in automata theory.

Our first main result is the Soundness Theorem (Theorem 5.1): non-wellfounded proofs
of HTC are sound for standard semantics. The proof is rather more involved than usual
soundness arguments in cyclic proof theory, due to the richer structure of hypersequents
and the corresponding progress criterion. Our second main result is the Simulation Theorem
(Theorem 6.1): HTC is complete for PDL over the standard translation, by simulating a cut-
free cyclic system for the latter. This result can be seen as a formal interpretation of cyclic
modal proof theory within cyclic predicate proof theory, in the spirit of [22, 23]. To simplify
the exposition, we shall mostly focus on equality-free TCL and ‘identity-free’ PDL during
this paper, though we indeed present an extension to the general case (for TCL with equality
and PDL with tests) towards the end of this paper in Sect. 7.

The paper is structured as follows. Section 2 introduces TCL, its semantics, and the
cyclic sequent calculus for TCL from Cohen and Rowe [10]. Section 3 introduces PDL+, the
identity-free version of PDL, and the standard translation, and shows that the cyclic system for

123

Cyclic Hypersequent System for Transitive Closure Logic Page 3 of 40 27

TCL by Cohen and Rowe is incomplete for PDL+. Section 4 presents the cyclic hypersequent
calculus for TCL, Sect. 5 shows that it is sound and Sect. 6 proves its completeness over
PDL+ with respect to the standard translation via a cyclic sequent calculus for PDL+. Finally,
Sect. 7 discusses the extension of our calculus to full TCL and PDL, and Sect. 8 presents
further insights and conclusions.

This paper is a full version of the conference paper [12] published at IJCAR ’22. It extends
the conference version by providing full definitions, detailed proofs and additional examples.

2 Preliminaries

We shall work with a fixed first-order vocabulary consisting of a countable set Pr of unary
predicate symbols, written p, q, etc., and of a countable set Rel of binary relation symbols,
written a, b, etc. We build formulas from this language differently in the modal and predicate
settings, but all our formulas may be formally evaluated within structures:

Definition 2.1 (Structures) A structure M consists of a set D, called the domain of M,
which we sometimes denote by |M |; a subset pM ⊆ D for each p ∈ Pr; and a subset
aM ⊆ D × D for each a ∈ Rel.

As above, we shall generally distinguish the words ‘predicate’ (unary) and ‘relation’
(binary). We could include further relational symbols too, of higher arity, but choose not to
in order to calibrate the semantics of both our modal and predicate settings.

2.1 Transitive Closure Logic

In addition to the language introduced at the beginning of this section, in the predicate setting
we further make use of a countable set of function symbols, written f i , g j , etc., where the
superscripts i, j ∈ N indicate the arity of the function symbol and may be omitted when it
is not ambiguous. Nullary function symbols (aka constant symbols), are written c, d etc. We
shall also make use of variables, written x, y, etc., typically bound by quantifiers. Terms,
written s, t, etc., are generated as usual from variables and function symbols by function
application. A term is closed if it has no variables.

We consider the usual syntax for first-order logic formulas over our language, with an
additional operator for transitive closure (and its dual). Formally TCL formulas, written
A, B, etc., are generated as follows:

A, B ::= p(t) | p̄(t) | a(s, t) | ā(s, t) | (A ∧ B) | (A ∨ B) | ∀x A | ∃x A |
TC(λx, y.A)(s, t) | TC(λx, y.A)(s, t)

Whenvariables x, y are clear fromcontext,wemaywriteTC(A(x, y))(s, t)orTC(A)(s, t)
instead of TC(λx, y.A)(s, t), as an abuse of notation, and similarly for TC. Without loss of
generality, we assume that the same variable cannot occur free and bound within the scope
of the quantifiers, TC- and TC-formulas. We write A[t/x] for the formula obtained from A
by replacing every free occurrence of the variable x by the term t . The choice of allowing
negation only on atomic proposition, and not including implication as a primitive operator in
the language, is motivated by the fact that we will opt for a one-sided definition of sequents.

Remark 2.2 (Equality) Note that we do not include term equality among our atomic formulas
at this stage. Later we shall indeed consider such extensions, for which the syntax and
semantics are as usual for predicate logic.

123

27 Page 4 of 40 A. Das, M. Girlando

Definition 2.3 (Duality) For a formula A we define its complement, Ā, by:
p(t) := p̄(t)
p̄(t) := p(t)

a(s, t) := ā(s, t)
ā(s, t) := a(s, t)

∀x A := ∃x Ā
∃x A := ∀x Ā

A ∧ B := Ā ∨ B̄
A ∨ B := Ā ∧ B̄

TC(A)(s, t) := TC(Ā)(s, t)

TC(A)(s, t) := TC(Ā)(s, t)

We shall employ standard logical abbreviations, e.g. A → B for Ā ∨ B. We may evaluate
formulas with respect to a structure, but we need additional data for interpreting function
symbols:

Definition 2.4 (Interpreting function symbols) Let M be a structure with domain D. An
interpretation is a map ρ that assigns to each function symbol f n a function Dn → D.
We may extend any interpretation ρ to an action on (closed) terms by setting recursively
ρ(f (t1, . . . , tn)) := ρ(f)(ρ(t1), . . . , ρ(tn)).

We only consider standard semantics in this work: TC (and TC) is always interpreted as
the real transitive closure (and its dual) in a structure, rather than being axiomatised by some
induction (and coinduction) principle.

In order to facilitate the formal definition of satisfaction, namely for the quantifier and
reflexive transitive closure cases, we shall adopt a standard convention of assuming among
our constant symbols arbitrary parameters from the model M. Formally this means that we
construe each v ∈ D as a constant symbol for which we shall always set ρ(v) = v.

Definition 2.5 (Semantics) Given a structureM with domain D and an interpretation ρ, the
judgementM, ρ |� A is defined as follows:

• M, ρ |� p(t) if ρ(t) ∈ pM.
• M, ρ |� p̄(t) if ρ(t) /∈ pM.
• M, ρ |� a(s, t) if (ρ(s), ρ(t)) ∈ aM.
• M, ρ |� ā(s, t) if (ρ(s), ρ(t)) /∈ aM.
• M, ρ |� A ∧ B ifM, ρ |� A and M, ρ |� B.
• M, ρ |� A ∨ B ifM, ρ |� A orM, ρ |� B.
• M, ρ |� ∀x A if, for every v ∈ D, we have M, ρ |� A[v/x].
• M, ρ |� ∃x A if, for some v ∈ D, we haveM, ρ |� A[v/x].
• M, ρ |� TC(A)(s, t) if there are v0, . . . , vn+1 ∈ D with ρ(s) = v0, ρ(t) = vn+1, such

that for every i ≤ n we haveM, ρ |� A(vi , vi+1).
• M, ρ |� TC(A)(s, t) if for all v0, . . . , vn+1 ∈ D with ρ(s) = v0 and ρ(t) = vn+1, there

is some i ≤ n such that M, ρ |� A(vi , vi+1).

IfM, ρ |� A for all M and ρ, we simply write |� A.

As expected, we have M, ρ |� TC(A)(s, t) just if M, ρ |� TC(Ā)(s, t), and so the two
operators are semantically dual. The following statement, that easily follows from the seman-
tics clauses defined above, demonstrates that TC and TC duly correspond to least and greatest
fixed points.

Fact 2.6 (TC and TC as least and greatest fixed points) The following hold, for arbitrary
M, ρ and x :

M, ρ |� TC(A)(s, t) ⇐⇒ M, ρ |� A(s, t) ∨ ∃x(A(s, x) ∧ TC(A)(x, t)), (1)

M, ρ |� TC(A)(s, t) ⇐⇒ M, ρ |� A(s, t) ∧ ∀x(A(s, x) ∨ TC(A)(x, t)). (2)

123

Cyclic Hypersequent System for Transitive Closure Logic Page 5 of 40 27

Fig. 2 Above: Sequent calculus TCG . The first two lines of the Figure contain the rules of the Tait-style sequent
system for first-order predicate logic, without equality. The constant symbol c in the ∀-rule and the TC-rule
is called an eigenvariable. Below: The standard rules for equality. When added to TCG , they give the sequent
calculus TC=

G . Colours define traces (see Remark 2.9)

We have included both TC and TC as primitive so that we can reduce negation to atomic
formulas, allowing a one-sided formulation of proofs. Let us point out that our TC operator
is not the same as Cohen and Rowe’s transitive ‘co-closure’ operator TCop in [9]. As they
already note there, TCop cannot be defined in terms of TC (using negations), whereas TC is
the formal De Morgan dual of TC and, in the presence of negation, are indeed interdefinable,
cf. Definition 2.3.

2.2 Cohen–Rowe Cyclic System for TCL

Cohen and Rowe proposed in [8, 10] a non-wellfounded sequent system for TCL (with
equality) extending a standard sequent calculus LK= for first-order logic with equality and
substitution by rules for TC inspired by its characterisation as a least fixed point, cf. Fact
2.6. A non-wellfounded proof system allows for infinitely long branches, provided that they
satisfy a logic-specific progress condition. Here we present a one-sided variation of (the
cut-free fragment of) their system, both with and without equality.

Definition 2.7 (System) A sequent, written �,� etc., is a set of formulas. The systems TCG

and TC=
G are given in Fig. 2: TC=

G consists of all the rules displayed, while TCG does not

include the = or = rules. TC(=)
G -preproofs are possibly infinite trees of sequents generated

by the rules of TC(=)
G (colours may be ignored for now). A preproof is regular if it has only

finitely many distinct sub-preproofs.

In Fig. 2 σ is a map (“substitution”) from constants to terms and other function symbols to
function symbols of the same arity, extended to terms, formulas and sequents in the natural
way. The substitution rule is redundant for usual provability, but facilitates the definition of
‘regularity’ in predicate cyclic proof theory.

The notions of non-wellfounded and cyclic proofs for TC(=)
G are formulated similarly to

those for first-order logic with (ordinary) inductive definitions [5]:

123

27 Page 6 of 40 A. Das, M. Girlando

Definition 2.8 (Traces and proofs)Given a TC(=)
G preproofD and a branchB = (ri)i∈ω (where

each ri is an inference step), a trace is a sequence of formulas of the form (TC(A)(si , ti))i≥k

such that for all i ≥ k either:

1. ri is not a substitution step and (si+1, ti+1) = (si , ti); or,
2. ri is a TC step with principal formula TC(A)(si , ti) and (si+1, ti+1) = (c, ti), where c is

the eigenvariable of ri ; or,
3. ri is a substitution step with respect to σ and (σ (si+1), σ (ti+1)) = (si , ti).

We say that the trace is progressing if the case 2 above happens infinitely often along it. A
TC(=)

G -preproof D is a proof if each of its infinite branches has a progressing trace. If D is

regular we call it a cyclic proof. We write TC(=)
G �cyc A if there is a cyclic proof in TC(=)

G of
A.

Remark 2.9 (Traces via colours) Fig. 2 codes the notion of trace by means of colours: along
any infinite branch a trace is a monochromatic sequence of formulas (with inference steps
as displayed in Fig. 2); if the trace hits a formula in the context � in the conclusion of an
inference step, it must hit the same formula in the premiss it follows.

Proposition 2.10 (Soundness, [8, 10]) If TC(=)
G �cyc A then |� A.

In fact (the equality-free version of) this result is subsumed by our main soundness result
for HTC (Theorem 5.1) and its simulation of TCG (Theorem 4.11). A partial converse of
Proposition 2.10 is available in the presence of a cut rule:

�, A Ā, �
cut

�,�′

Namely, cyclic TC(=)
G proofs are ‘Henkin complete’, i.e. complete for allmodels of a particular

axiomatisation of TCL (with or withour equality, resp.) based on (co)induction principles
[8, 10]. However, the counterexample we present in the next section implies that cut is not
eliminable (Corollary 3.14).

2.3 Differences to [8, 10]

Our formulation of TC(=)
G differs slightly from the original presentation in [8, 10], but in no

essential way. Nonetheless, let us survey these differences now.

One-Sided vs. Two-Sided

Cohen and Rowe employ a two-sided calculus as opposed to our one-sided one, but the differ-
ence is purely cosmetic. Sequents in their calculus are written A1, . . . , Am ⇒ B1, . . . , Bn ,
which may be duly interpreted in our calculus as Ā1, . . . , Ām, B1, . . . , Bn . Indeed we may
write sequents in this two-sided notation at times in order to facilitate the reading of a sequent
and to distinguish left and right formulas. For this reason, Cohen and Rowe do not include a
TC operator in their calculus, but are able to recover it thanks to a formal negation symbol,
cf. Definition 2.3.

123

Cyclic Hypersequent System for Transitive Closure Logic Page 7 of 40 27

TC vs. RTC

Cohen and Rowe’s system is originally called RTCG , rather using a ‘reflexive’ version RTC
of the TC operator. As they mention, this makes no difference in the presence of equality.
Semantically we have RTC(A)(s, t) ⇐⇒ s = t ∨ TC(A)(s, t), but this encoding does not
lift to proofs, i.e. the RTC rules of [8] are not locally derived in TC=

G modulo this encoding.
However, the encoding RTC(A)(s, t) := TC((x = y ∨ A))(s, t) suffices for this purpose.

Alternative Rules and Fixed Point Characterisations

Cohen and Rowe use a slightly different fixed point formula to induce rules for RTC and
RTC (i.e. RTC on the left) based on the fixed point characterisation,

RTC(A)(s, t) ⇐⇒ s = t ∨ ∃x(RTC(A)(s, x) ∧ A(x, t)), (1)

decomposing paths ‘from the right’ rather than the left. These alternative rules induce anal-
ogous notions of trace and progress for preproofs such that progressing preproofs enjoy a
similar soundness theorem, cf. Proposition 2.10. The reason we employ a slight variation of
Cohen and Rowe’s system is to remain consistent with how the rules of LPD+ (or LPD) and
HTC (or HTC=) are devised later. To the extent that we prove things about TC(=)

G , namely its
(cut-free) regular incompleteness in Theorem 3.7, the particular choice of rules turns out to
be unimportant. The counterexample we present there is robust: it applies to systems with
any (and indeed all) of the above rules.

3 Interlude: Motivation from PDL

Given the TCL sequent system proposed by Cohen and Rowe, why do we propose a hyperse-
quential system? Our main argument is that proof search in TC(=)

G is rather weak, to the extent
that cut-free cyclic proofs are unable to simulate a basic (cut-free) system for modal logic
PDL (regardless of proof search strategy). At least one motivation here is to ‘lift’ the stan-
dard translation from cut-free cyclic proofs for PDL to cut-free cyclic proofs in an adequate
system for TCL (with equality).

3.1 Identity-Free PDL

Identity-free propositional dynamic logic (PDL+) is a version of themodal logic PDLwithout
tests or identity, thereby admitting an ‘equality-free’ standard translation into predicate logic.
Formally, PDL+ formulas, written A, B, etc., and programs, written α, β, etc., are generated
by the following grammars:

A, B ::= p | p | A ∧ B | A ∨ B | [α]A | 〈α〉A

α, β ::= a | αβ | α ∪ β | α+

Remark 3.1 (Formula metavariables) We are using the samemetavariables A, B, etc. to vary
over both PDL+ and TCL formulas. This should never cause confusion due to the context in
which they appear.Moreover, this coincidence is suggestive, sincemany notions we consider,
such as duality and satisfaction, are defined in a way that is compatible with both notions of
formula.

123

27 Page 8 of 40 A. Das, M. Girlando

Definition 3.2 (Duality) For a formula A we define its complement, Ā, by:

¯̄p := p
A ∧ B := Ā ∨ B̄
A ∨ B := Ā ∧ B̄

[α]A := 〈α〉 Ā
〈α〉A := [α] Ā

We evaluate PDL+ formulas using the traditional relational semantics of modal logic,
by associating each program with a binary relation in a structure. Again, we only consider
‘standard’ semantics:

Definition 3.3 (Semantics) Fix a structure M with domain D. For elements v ∈ D and
programs α we define αM ⊆ D × D by:

• (aM is already given in the specification ofM, cf. Definition 2.1).
• (αβ)M := {(u, v) : there is w ∈ D s.t. (u, w) ∈ αM and (w, v) ∈ βM}.
• (α ∪ β)M := {(u, v) : (u, v) ∈ αM or (u, v) ∈ βM}.
• (α+)M := {(u, v) : there are w0, . . . , wn+1 ∈ D s.t. u = w0, v = wn+1 and for

every i ≤ n we have (wi , wi+1) ∈ αM}.
For elements v ∈ D and formulas A we also define the judgementM, v |� A by:

• M, v |� p if v ∈ pM.
• M, v |� p if v /∈ pM.
• M, v |� A ∧ B ifM, v |� A and M, v |� B.
• M, v |� A ∨ B ifM, v |� A orM, v |� B.
• M, v |� [α]A if for every (v,w) ∈ αM we have M, w |� A.
• M, v |� 〈α〉A if there exists (v,w) ∈ αM with M, w |� A.

IfM, v |� A for all M and v ∈ D, then we write |� A.

Note that we are overloading the satisfaction symbol |� here, for both PDL+ and TCL.
This should never cause confusion, in particular since the two notions of satisfaction are
‘compatible’, given that we employ the same underlying language and structures. In fact
such overloading is convenient for relating the two logics, as we shall now see.

3.2 The Standard Translation

The so-called “standard translation” of modal logic into predicate logic is induced by reading
the semantics of modal logic as first-order formulas. We now give a natural extension of this
that interprets PDL+ into TCL. At the logical level our translation coincides with the usual
one for basic modal logic; our translation of programs, as expected, requires the TC operator
to interpret the + of PDL+.

Definition 3.4 For a PDL+ formula A and program α, we define the standard translations
ST(A)(x) and ST(α)(x, y) as TCL-formulas with free variables x and x, y, resp., inductively
as follows,

ST(p)(x) := p(x) ST(a)(x, y) := a(x, y)

ST(p̄)(x) := p̄(x) ST(ā)(x, y) := ā(x, y)

ST(A ∨ B)(x) := ST(A)(x) ∨ ST(B)(x) ST(α ∪ β)(x, y) := ST(α)(x, y) ∨ ST(β)(x, y)

ST(A ∧ B)(x) := ST(A)(x) ∧ ST(B)(x) ST(αβ)(x, y) := ∃z(ST(α)(x, z) ∧ ST(β)(z, y))

ST(〈α〉A)(x) := ∃y(ST(α)(x, y) ∧ ST(A)(y)) ST(α+)(x, y) := TC(ST(α))(x, y)

ST([α]A)(x) := ∀y(ST(α)(x, y) ∨ ST(A)(y))

where we have written simply TC(ST(α)) instead of TC(λx, y.ST(α)(x, y)).

123

Cyclic Hypersequent System for Transitive Closure Logic Page 9 of 40 27

Example 3.5 By means of example, consider the following formulas:

ST([a ∪ b]q)(x) := ∀y((ā(x, y) ∧ b̄(x, y)) ∨ q(y)).

ST(〈(ab)+〉p)(x) := ∃y(TC(∃z(a(x, z) ∧ b(z, y))) ∧ p(y)).

It is routine to show that ST(A)(x) = ST(Ā)(x), by structural induction on A, justifying
our overloading of the notation Ā, in both TCL and PDL+. Yet another advantage of using the
same underlying language for both the modal and predicate settings is that we can state the
following (expected) result without the need for encodings, following by a routine structural
induction (see, e.g., [3]):

Theorem 3.6 For PDL+ formulas A, we have M, v |� A iff M |� ST(A)(v).

3.3 Cohen–Rowe System is Not Complete for PDL+

PDL+ admits a standard cut-free cyclic proof system LPD+ (see Sect. 6.1) which is both
sound and complete (cf. Theorem 6.4). However, a shortfall of TCG is that it is unable to
cut-free simulate LPD+. In fact, we can say something stronger:

Theorem 3.7 (Incompleteness) There exist a PDL+ formula A such that |� A but TCG �cyc

ST(A)(x) (in the absence of cut).

This means not only that TCG is unable to locally cut-free simulate the rules of LPD+, but
also that there are some validities for which there are no cut-free cyclic proofs at all in TCG .
One example of such a formula is:

〈(aa ∪ aba)+〉p → 〈a+((ba+)+ ∪ a)〉p. (2)

This formula is derived from the well-known PDL validity 〈(a ∪ b)∗〉p → 〈a∗(ba∗)∗〉p
by identity-elimination. This in turn is essentially a theorem of relational algebra, namely
(a ∪ b)∗ ≤ a∗(ba∗)∗, which is often used to eliminate ∪ in (sums of) regular expressions.
The same equation was (one of those) used by Das and Pous in [13] to show that the sequent
system LKA for Kleene Algebra is cut-free cyclic incomplete.

In the remainder of this subsection, we shall give a proof of Theorem 3.7. The argument
is much more involved than the one from [13], due to the fact we are working in predicate
logic, but the underlying basic idea is similar. At a very high level, the right-hand side of (2)
(viewed as a relational inequality) is translated to an existential formula ∃z(ST(a+)(x, z) ∧
ST((ba+)+ ∪a)(z, y) that, along some branch (namely the one that always chooses aa when
decomposing the LHS of (2)) can never be instantiated while remaining valid. This branch
witnesses the non-regularity of any proof.

3.3.1 Some Closure Properties for Cyclic Proofs

Demonstrating that certain formulas do not have (cut-free) cyclic proofs is a delicate task,
mademore so by the lack of a suitablemodel-theoretic account (indeed, cf. Corollary 3.14). In
order to do so formally, we first develop some closure properties of cut-free cyclic provability.

Proposition 3.8 (Inversions) We have the following:

1. If TCG �cyc �, A ∨ B then TCG �cyc �, A, B.

123

27 Page 10 of 40 A. Das, M. Girlando

2. If TCG �cyc �, A ∧ B then TCG �cyc �, A and TCG �cyc �, B.
3. If TCG �cyc �,∀x A(x) then TCG �cyc �, A(c), as long as c is fresh.

Proof Sketch All three statements are proved similarly.
For item 1, replace every direct ancestor of A ∨ B with A, B. The only critical steps are

when A ∨ B is principal, in which case we delete the step, or is weakened, in which case we
apply two weakenings, one on A and one on B. If the starting proof had only finitely many
distinct subproofs (up to substitution), say n, then the one obtained by this procedure has at
most 2n distinct subproofs (up to substitution), since we simulate a weakening on A ∨ B by
two weakenings.

For item 2, replace every direct ancestor of A ∧ B with A or B, respectively. The only
critical steps are when A ∧ B is principal, in which case we delete the step and take the left or
right subproof, respectively, or is weakened, in which case we simply apply a weakening on
A or B, respectively. The proof we obtain has at most the same number of distinct subproofs
(up to substitution) as the original one.

For item 3, replace every direct ancestor of ∀x A(x) with A(c). The only critical steps are
when ∀x A(x) is principal, in which case we delete the step and rename the eigenvariable in
the remaining subproof everywhere with c, or is weakened, in which case we simply apply a
weakening on A(c). The proof we obtain has at most the same number of distinct subproofs
(up to substitution) as the original one.

Proposition 3.9 (Predicate admissibility) Suppose TCG �cyc �, p(t) or TCG �cyc �, p̄(t),
where p̄ or p (respectively) does not occur in �. Then it holds that TCG �cyc �.

Proof sketch Delete every ancestor of p(t) or p̄(t), respectively. The only critical case is
when one of the formulas is weakened, in which case we omit the step. Note that there
cannot be any identity on p, due to the assumption on �, and by the subformula property.

3.3.2 Reducing to a Relational Tautology

Here, and for the remainder of this subsection, we shall simply construe PDL+ programs α

and formulas A as TCL formulas with two free variables and one free variable, respectively,
by identifying them with their standard translations ST(α)(x, y) and ST(A)(x), respectively.
This modest abuse of notation will help suppress much of the notation in what follows.

Lemma 3.10 If TCG �cyc (〈(aa ∪ aba)+〉p → 〈a+((ba+)+ ∪ a)〉p)(c) then also TCG �cyc

(aa ∪ aba)+(c, d) → (a+((ba+)+ ∪ a))(c, d).

Proof sketch Suppose TCG �cyc (〈(aa ∪ aba)+〉p → 〈a+((ba+)+ ∪ a)〉p)(c) so, by
unwinding the definition of ST and since duality commutes with the standard translation,
cf. Sect. 3.2, we have that TCG �cyc ([(aa ∪ aba)+] p̄)(c) ∨ (〈a+((ba+)+ ∪ a)〉p)(c). By
∨-inversion (Proposition 3.8.1) we have:

TCG �cyc ([(aa ∪ aba)+] p̄)(c), (〈a+((ba+)+ ∪ a)〉p)(c).

Again unwinding the definition of ST, and by the definition of duality, we thus have:

TCG �cyc ∀x((aa ∪ aba)+(c, x)) ∨ p̄(x)), ∃y((a+((ba+)+ ∪ a)(c, y)) ∧ p(y)).

Now, by ∀-inversion and ∨-inversion, Prop. 3.8, we have:
TCG �cyc (aa ∪ aba)+(c, d), p̄(d), ∃y((a+((ba+)+ ∪ a)(c, y)) ∧ p(y)).

123

Cyclic Hypersequent System for Transitive Closure Logic Page 11 of 40 27

Fig. 3 The adversarial model from Definition 3.12. Solid arrows represent aAn -relations, dashed arrows
bAn -relations

Without loss of generality we may instantiate the ∃y by d and so by ∧-inversion,
Prop. 3.8.2, we have:

TCG �cyc (aa ∪ aba)+(c, d), p̄(d), a+((ba+)+ ∪ a)(c, d).

Since there is no occurrence of p above, by Prop. 3.9 we conclude

TCG �cyc (aa ∪ aba)+(c, d), a+((ba+)+ ∪ a)(c, d),

as required.

3.3.3 Irregularity via an Adversarial Model

In the previous subsubsection we reduced the incompleteness of cut-free cyclic sequent
proofs for TCL over the image of the standard translation on PDL+ to the non-regular cut-
free provability of a particular relational validity. Unwinding this a little, the sequent that
we shall show has no (cut-free) cyclic proof in TCG can be written in ‘two-sided notation’
(cf. Sect. 2.3) as follows:

TC(aa ∨ aba)(c, d) ⇒ ∃z(a+(c, z) ∧ ((ba+)+ ∪ a)(z, d)). (3)

This two-sided presentation is simply a notational variant that allows us to more easily reason
about the proof search space (e.g. referring to ‘LHS’ and ‘RHS’). Formally:

Convention 3.11 (Two-sided notation) We may write � ⇒ � as shorthand for the sequent
�̄,�, where �̄ = { Ā : A ∈ �}. References to the ‘left-hand side (LHS)’ and ‘right-hand side
(RHS)’ have the obvious meaning, always with respect to the delimiter ⇒.

To facilitate our argument, we shall only distinguish sequents ‘modulo substitution’ rather
than allowing explicit substitution steps when reasoning about (ir)regularity of a proof.

We shall design a family of ‘adversarial’ models, and instantiate proof search to just these
models. In this way, we shall show that any non-wellfounded TCG proof of the sequent (3)
must have arbitrarily long branches without a repetition (up to substitution). Since TCG is
finitely branching, by König’s Lemma this means that any non-wellfounded TCG proof of
(3) has an infinite branch with no repetitions (up to substitution), as required.

Definition 3.12 (An adversarial model) For n ∈ N, define the structure An by:

• The domain of An is {u0, u′
0, . . . , un−1, u′

n−1, un, v}.
• aAn = {(ui , u′

i), (u
′
i , ui+1)}i<n .

• bAn = {(un, v)}.
Note that, since the sequent (3) that we are considering is purely relational, it does not

matter what sets An assigns to the predicate symbols, so we refrain from specifying such
data.

123

27 Page 12 of 40 A. Das, M. Girlando

Lemma 3.13 Let n ∈ N. Any TCG proof D of (3) has a branch with no repetitions (up to
substitutions) among its first n sequents.

Proof Set c0 = c. Consider some (possibly finite, but maximal) branch B = (ri)i≤ν (with
ν ≤ ω) of D satisfying:

• whenever TC on the LHS is principal (formally speaking, for a TC step), the right premiss
is followed; and,

• whenever (aa)(s, t) ∨ (aba)(s, t) is principal for any s and t on the LHS (formally
speaking, for a ∧ step) the left premiss (corresponding to (aa)(s, t)) is followed.

Let k ≤ n be maximal such that, for each i ≤ k, ri has principal formula on the LHS. Now:

1. For i ≤ k, each ri has conclusion with LHS of the form:

{� j (c j−1, c j)}l
j=1, TC(aa ∨ aba)(cl , d), (4)

for some l ≤ i and distinct c0, . . . , cl and where each � j (c j−1, c j) has the
form a(c j−1, c′

j−1), a(c′
j−1, c j) or a(c j−1, c′

j−1) ∧ a(c′
j−1, c j) or (aa)(c j−1, c j) or

(aa)(c j−1, c j) ∨ (aba)(c j−1, c j).
To see this, proceed by induction on i ≤ k:

• The base case is immediate, by setting l = 0.
• For the inductive step, note that the principal formula of ri must be on the LHS, since

i ≤ k. Thus by the inductive hypothesis the principal formula of ri must have the
form:
– a(c j−1, c′

j−1) ∧ a(c′
j−1, c j), in which case the premiss of ri (which is a ∨ step)

replaces it by a(c j−1, c′
j−1), a(c′

j−1, c j); or,
– (aa)(c j−1, c j), in which case the premiss of ri (which is a ∀ step) replaces it by

a(c j−1, c′
j−1) ∧ a(c′

j−1, c j), for c′
j−1 a fresh symbol; or,

– (aa)(c j−1, c j) ∨ (aba)(c j−1, c j), in which case, by definition of B, the B-
premiss of ri (which is a left-∨ step) replaces this formula by some a(c j−1, c j);
or,

– TC(aa ∨ aba)(cl , d) for some l ≤ i , in which case, by definition of B, the B-
premiss of ri (which is a left-TC step) replaces it by the cedent (aa)(cl , cl+1) ∨
(aba)(cl , cl+1), TC(aa ∨ aba)(cl+1, d).

2. Moreover, for i < i ′ ≤ k, the conclusion of ri and ri ′ are not equal (up to substitution).
To see this, note that any rule principal on an LHS of form (4) either decreases the size of
some � j (c j−1, c j) (when it is a∨,∀ or∧ step) or increases the number of eigenvariables
in the sequent (when it is a left TC step), in particular the index l of TC(aa ∨ aba)(cl , d,).

3. Since proofs must be sound for all models (by soundness), we shall work in An with
respect to an interpretation ρn satisfying ci �→ ui for i ≤ n and c′

i �→ u′
i for i < n and

d �→ v. It follows by inspection of (4) that, for i ≤ k, each formula on the LHS of the
conclusion of ri is true in (An, ρn).

4. Along B, the RHS cannot be principal unless l ≥ n in (4), so in particular k ≥ n. To see
this:

• Recall that the interpretation ρn assigns to c0, c′
0, . . . , c′

n−1, cn the worlds u0, u′
0,

. . . , u′
n−1, un respectively.

• If the existential formula on the RHS is instantiated by some ci or c′
i with i < n then

the resulting sequent is false in (An, ρn) (recall that, by Item 3, every formula on the
LHS is true, so we require the RHS to be true too). To see this, note that the RHS

123

Cyclic Hypersequent System for Transitive Closure Logic Page 13 of 40 27

in particular would imply (ba+)+(ci , d) or a(ci , d) or (ba+)+(c′
i , d) or a(c′

i , d).
However when i < n none of these formulas are true with respect to (An, ρn).

• If the existential formula on the RHS is instantiated by d then the resulting sequent
is again false, by the same analysis as above.

By Item 4, we have that k ≥ n and so, since we assumed k ≤ n at the start, indeed k = n.
Thus, by Item 1 and Item 2, there are no repeated sequents (up to substitution) in (ri)i≤n , as
required.

3.3.4 Putting It All Together

We are now ready to give the proof of the main result of this section.

Proof of Theorem 3.7, Sketch Since the choice of n in Lemma 3.13 was arbitrary, any TCG

proofD of (3)must have brancheswith arbitrarily long initial segments without any repetition
(up to substitution). Since the system is finitely branching, by König’s Lemma we have that
there is an infinite branch through D without any repetition (up to substitution), and thus D
is not regular. Thus TCG �cyc (3). Finally, by contraposition of Lemma 3.10, we have, as
required:

TCG �cyc (〈(aa ∪ aba)+〉p → 〈a+((ba+)+ ∪ a)〉p)(c).

An immediate consequence of Theorem 3.7 and Henkin-completeness of TCG with cut
[8, 10] is:

Corollary 3.14 The class of cyclic proofs of TCG does not enjoy cut-admissibility.

4 Hypersequent Calculus for TCL

In light of the preceding subsection, let us take a moment to examine how a ‘local’ simulation
of LPD+ by TCG fails, in order tomotivate themain system that we shall present. The program
rules, in particular the 〈 〉-rules, require a form of deep inference to be correctly simulated,
over the standard translation. For instance, let us consider the action of the standard translation
on two rules we shall see later in LPD+ (cf. Sect. 6.1):

�, 〈a0〉p
〈∪〉0

�, 〈a0 ∪ a1〉p
�

ST(�)(c), ∃x(a0(c, x) ∧ p(x))

ST(�)(c), ∃x((a0(c, x) ∨ a1(c, x)) ∧ p(x))

�, 〈a〉〈b〉p
〈 〉

�, 〈ab〉p
�

ST(�)(c), ∃y(a(c, y) ∧ ∃x(b(y, x) ∧ p(x)))

ST(�)(c), ∃x(∃y(a(c, y) ∧ b(y, x)) ∧ p(x))

The first case above suggests that any system to which the standard translation lifts must be
able to reason underneath ∃ and ∧, so that the inference indicated in blue is ‘accessible’ to
the prover. The second case above suggests that the existential-conjunctive meta-structure
necessitated by the first case should admit basic equivalences, in particular certain prenexing.
This section is devoted to the incorporation of these ideas (and necessities) into a bona fide
proof system.

123

27 Page 14 of 40 A. Das, M. Girlando

Fig. 4 Hypersequent calculus HTC, where σ is a substitution map from constants to terms and a renaming of
other function symbols and variables, extended to terms, formulas, cedents and hypersequents in the natural
way. For � set of formulas, fv(�) denotes the set of free variables occurring in formulas in �. Colours define
ancestry (see Remark 4.4)

4.1 Annotated Hypersequents

An annotated cedent, or simply cedent, written S, S′ etc., is an expression {�}x, where � is a
set of formulas and the annotation x is a set of variables. We sometimes construe annotations
as lists rather than sets when it is convenient, e.g. when taking them as inputs to a function.
Each cedent may be intuitively read as a TCL formula, under the following interpretation:

fm({�}x1,...,xn) := ∃x1 . . . ∃xn

∧
�.

When x = ∅ then there are no existential quantifiers above, and when � = ∅ we simply
identify

∧
� with �. We also sometimes write simply A for the annotated cedent {A}∅.

A (annotated) hypersequent, written S,S′ etc., is a set of annotated cedents. Each
hypersequent may be intuitively read as the disjunction of its cedents. Namely we set:
fm({�1}x1 , . . . , {�n}xn) := fm({�1}x1) ∨ . . . ∨ fm({�n}xn). With a slight abuse of notation,
we sometimes identify S and fm(S).

4.2 Non-wellfounded Hypersequent Proofs

We now present our hypersequential system for TCL and its corresponding notion of ‘non-
wellfounded proof’.

Definition 4.1 (System) The rules of HTC are given in Fig. 4 (the colours may be ignored for
now). A HTC preproof is a possibly infinite tree of sequents generated by the rules of HTC.
A preproof is regular if it has only finitely many distinct subproofs.

The substitution rule σ is needed to guarantee regularity of non-wellfounded branches.
While we have included an explicit substitution rule we shall, as in earlier sections, often
work ‘modulo substitution’ when writing down cyclic preproofs. Propositional rules, as well
as init, are standard, recalling the formula interpretation of hypersequents defined in the
previous section. The ∪ rule is the only branching rule of the system, while rule id allows us
to eliminate (bottom-up) a closed formula A from one of the cedents (thus from a conjunction,
wrt the formula interpretation) provided that the dual of A occurs in a singleton cedent with

123

Cyclic Hypersequent System for Transitive Closure Logic Page 15 of 40 27

empty annotation. The usual sequent rule for the existential quantifier is factored into two
HTC rules: ∃, which introduces a fresh variable in the annotation of a cedent, and inst, which
instantiates a variable in the annotation with a term. Similarly the usual sequent rule for
∧ is factored in HTC by the rules ∧ and ∪. The rules for TC and TC are induced by the
characterisation of TC as a least fixed point in (1). Note that the rules TC and ∀ introduce,
bottom-up, the fresh function symbol f , which plays the role of the Herbrand function of
the corresponding ∀ quantifier: just as ∀x∃x A(x) is equisatisfiable with ∀xA(f (x)), when
f is fresh, by Skolemisation, by duality ∃x∀x A(x) is equivalid with ∃xA(f (x)), when f is
fresh, by Herbrandisation. Note that the usual ∀ rule of the sequent calculus is just a special
case of this, when x = ∅, and so f is a constant symbol.

Our notion of ancestry, as compared to traditional sequent systems, must account for the
richer structure of hypersequents. Specifically, since formulas now occur within cedents,
tracing ancestry only for formulas no longer suffices. Instead, we define a notion of ancestry
for cedents, and then trace formulas within cedent-paths. In line with the formula interpreta-
tion, our notion of ‘progress’ needs to take into account all infinite traces occurring within
such cedent-paths.

Definition 4.2 (Ancestry for cedents) Fix an inference step r, as typeset in Fig. 4. We say
that a cedent S in a premiss of r is an immediate ancestor of a cedent S′ in the conclusion of
r if either:

1. r = σ and S = S′ ∈ S, i.e. S and S′ are identical ‘side’ cedents of r; or,
2. r = σ and S′ = σ(S).
3. r = id, r = σ , and S′ is the (unique) cedent distinguished in the conclusion of r, and S

is a cedent indicated in a premiss of r; or,
4. r = id and S is the (unique) cedent distinguished in the premiss of id and S′ is the cedent

{�, A}x dsitinguished in the conclusion of id.

Note in particular that in id, as typeset in Fig. 4, {�}x is not an immediate ancestor of
{ Ā}∅.

Definition 4.3 (Ancestry for formulas) Fix an inference step r, as typeset in Fig. 4. We say
that a formula F in a premiss of r is an immediate ancestor of a formula F ′ in the conclusion
of r if either:

(a) r = σ and F = F ′ occur in some cedent S ∈ S; or,
(b) r = σ and F ′ = σ(F) occurs in some S′ = σ(S) where F occurs in S ∈ S; or,
(c) r = ∪ and F = F ′ ∈ � or F = F ′ ∈ �; or,
(d) F is one of the formulas explicitly distinguished in the premiss of r and F ′ is the (unique)

formula explicitly distinguished in the conclusion of r.

Remark 4.4 (Ancestry via colours) Again we may understand cedent ancestry and formula
ancestry by the colouring in Fig. 4. A formula C in the premiss is an immediate ancestor of
a formula C ′ in the conclusion if they have the same colour; if C, C ′ ∈ � then we further
require C = C ′, and if C, C ′ occur in S then C = C ′ occur in the same cedent. A cedent S
in the premiss is an immediate ancestor of a cedent S′ in the conclusion if some formula in
S is an immediate ancestor of some formula in S′.

Immediate ancestry on both formulas and cedents is a binary relation, inducing a directed
graph whose paths form the basis of our correctness condition:

Definition 4.5 ((Hyper)traces) A hypertrace is a maximal path in the graph of immediate
ancestry on cedents.A trace is amaximal path in the graph of immediate ancestry on formulas.

123

27 Page 16 of 40 A. Das, M. Girlando

Thus, in the id rule, as typeset in Fig. 4, no (infinite) trace can include the distinguished
A or Ā. From the above definitions it follows that whenever a cedent S in the premiss of a
rule r is an immediate ancestor of a cedent S′ in the conclusion, then some formula in S is an
immediate ancestor of some formula in S′. Thus, for a hypertrace (Si)i<ω, there is at least
one trace (Fi)i<ω which lies ‘within’ or ‘along’ the hypertrace, i.e., such that Fi ∈ Si for all
i .

Definition 4.6 (Progress and proofs) Fix a preproof D. A (infinite) trace (Fi)i∈ω is pro-
gressing if there is k such that, for all i > k, Fi has the form TC(A)(si , ti) and is infinitely
often principal.1 A (infinite) hypertrace H is progressing if every infinite trace along it is
progressing. A (infinite) branch is progressing if it has a progressing hypertrace.D is a proof
if every infinite branch is progressing. If, furthermore, D is regular, we call it a cyclic proof.

We write HTC �nwf S (or HTC �cyc S) if there is a proof (or cyclic proof, respectively) in
HTC of the hypersequent S.

4.3 Some Examples

Let us consider some examples of cyclic proofs in HTC and compare the system to TCG . As
mentioned in Sect. 4.2, for convenience we here write cyclic (pre)proofs modulo substitution.

Example 4.7 (Fixed point identity) Here is a cyclic proof in TCG that reduces the identity
TC(a)(c, d), TC(ā)(c, d) to simpler identities,

id
a(c, d), ā(c, d)

TC
a(c, d), TC(ā)(c, d)

id
a(c, e), ā(c, e)

...
TC •

TC(a)(e, d), TC(ā)(e, d)
TC

a(c, e), TC(a)(e, d), TC(ā)(c, d)
TC •

TC(a)(c, d), TC(ā)(c, d)

where we have indicated roots of identical subproofs with •, and an infinite progressing trace
along the (unique) infinite branch in blue.

There is not much choice in the construction of this cyclic proof, bottom-up: we must
apply TC first and branch before applying TC differently on each branch. This cyclic proof
is naturally simulated by the following HTC one, where the progressing hypertrace (along
the unique infinite branch) is marked in blue:

init { }∅
id {a(c, d)}∅, {ā(c, d)}∅

TC {a(c, d)}∅, {TC(ā)(c, d)}∅

init { }∅
id {a(c, e)}∅, {ā(c, e)}∅

...
TC •{TC(a)(e, d)}∅, {TC(ā)(e, d)}∅∪ {a(c, e)}∅, {TC(a)(e, t)}∅, {ā(c, e), TC(ā)(e, d)}∅

inst {a(c, e)}∅, {TC(a)(e, t)}∅, {ā(c, x), TC(ā)(x, d)}x
TC {a(c, e)}∅, {TC(a)(e, t)}∅, {TC(ā)(c, d)}∅

2∪ {a(c, d), a(c, e)}∅, {a(c, d), TC(a)(e, d)}∅, {TC(ā)(c, d)}∅
TC •{TC(a)(c, d)}∅, {TC(ā)(c, d)}∅

1 In fact, by a a simple well-foundedness argument, it is equivalent to say that (Fi)i<ω is progressing if it is
infinitely often principal for a TC-formula.

123

Cyclic Hypersequent System for Transitive Closure Logic Page 17 of 40 27

Due to the granularity of the inference rules of HTC, we actually have some liberty in how
we implement such a derivation. Example, the HTC-proof below applies TC rules below TC
ones, and delays branching until the ‘end’ of proof search, which is impossible in TCG . The
only infinite branch, looping on •, is progressing by the blue hypertrace.

init { }∅

id {a(c, d)}∅, {ā(c, d)}∅

init { }∅

id {a(c, e)}∅, {ā(c, e)}∅

...
TC •{TC(a)(e, d)}∅, {TC(ā)(e, d)}∅

∪ {a(c, e)}∅, {TC(a)(e, d)}∅, {ā(c, e), TC(ā)(e, d)}∅

2∪ {a(c, d), a(c, e)}∅, {a(c, d), TC(a)(e, d)}∅, {ā(c, d)}∅, {ā(c, e), TC(ā)(e, d)}∅

inst {a(c, d), a(c, e)}∅, {a(c, d), TC(a)(e, d)}∅, {ā(c, d)}∅, {ā(c, x), TC(ā)(x, d)}x

TC {TC(a)(c, d)}∅, {ā(c, d)}∅, {ā(c, x), TC(ā)(x, d)}x

TC •{TC(a)(c, d)}∅, {TC(ā)(c, d)}∅

This is an example of the more general ‘rule permutations’ available in HTC, hinting at a
more flexible proof theory (we discuss this further in Sect. 8).

Let us now consider a more complex example whose relevance will become significant
shortly:

Example 4.8 We give a cyclic HTC proof D of the following hypersequent:

{TC(α)(c, d)}∅, {TC(a)(c, d)}∅, {TC(β)(c, d)}∅, {TC(a)(c, y), TC(β)(y, d)}y,

where α(c, d) = ST(aa ∪ aba)(c, d) and γ (c, d) = ST(ba+)(c, d).

Q1

Q2

Q3

.

.

. ◦{TC(α)(e, d)}∅, {TC(a)(e, d)}∅, {TC(γ)(e, d)}∅, {TC(a)(e, y), TC(γ)(y, d)}y

inst,id {a(e1, e)}∅, {TC(α)(e, d)}∅, {a(e1, z2), TC(a)(z2, d)}z2 , {a(e1, y), TC(γ)(y, d)}y , {a(e1, z3), TC(a)(z3, y), TC(γ)(y, d)}y,z3

TC {a(e1, e)}∅, {TC(α)(e, d)}∅, {a(e1, z2), TC(a)(z2, d)}z2 , {TC(a)(e1, y), TC(γ)(y, d)}y

TC,wk {a(e1, e)}∅, {TC(α)(e, d)}∅, {TC(a)(e1, d)}∅, {TC(a)(e1, y), TC(γ)(y, d)}y

inst,id {a(c, e1)}∅, {a(e1, e)}∅, {TC(α)(e, d)}∅, {a(c, z), TC(a)(z, d)}z , {a(c, z1), TC(a)(z1, y), TC(γ)(y, d)}y,z1

TC,wk {a(c, e1)}∅, {a(e1, e)}∅, {TC(α)(e, d)}∅, {a(c, z), TC(a)(z, d)}z , {TC(a)(c, y), TC(γ)(y, d)}y

TC,wk {a(c, e1)}∅, {a(e1, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∀,∨ ...
{aa(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

wk {aa(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∪ {aa(c, e), aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∧ ...
{α(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∪ {α(c, e)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∪ {α(c, d), α(c, e)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

TC ◦{TC(α)(c, d)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

where:

Q1 = {α(c, d)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(c, d)}∅,

{TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

Q2 = {α(c, e)}∅, {α(c, e)}∅, {TC(a)(c, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

Q3 = {aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, d)}∅,

{TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y .

We do not show the finite derivations of hypersequentsQ1 andQ2, but here is the subproof
of Q3:

123

27 Page 18 of 40 A. Das, M. Girlando

.

.

. ◦{TC(α)(e, d)}∅, {TC(a)(e, d)}∅{TC(γ)(e, d)}∅, {TC(a)(e, z), TC(γ)(z, d)}z
inst,id

{a(e2, e)}∅, {TC(α)(e, d)}∅, {a(e2, w)TC(a)(w, d)}w {a(e2, z), TC(γ)(z, d)}z , {a(e2, k), TC(a)(k, z), TC(γ)(z, d)}z,k
TC {a(e2, e)}∅, {TC(α)(e, d)}∅, {a(e2, w)TC(a)(w, d)}w {TC(a)(e2, z), TC(γ)(z, d)}z

TC,wk {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(e2, d)}∅{TC(a)(e2, z), TC(γ)(z, d)}z
inst,id {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {b(y, y1), TC(a)(y1, d)}y,y1 {b(y, z1), TC(a)(z1, z), TC(γ)(z, d)}y,z,z1∃,∧ ...

{b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {ST(ba+)(y, d)}y {ST(ba+)(y, z), TC(γ)(z, d)}y,z
TC {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(γ)(y, d)}y

inst,id {a(c, e1)}∅, {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {a(c, y), TC(γ)(y, d)}y
TC,wk {a(c, e1)}∅, {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

{a(c, e1)}∅, {b(e1, e2)}∅, {ba(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y
∀,∨ ...

{a(c, e1)}∅, {ba(e1, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y
∀,∨ ...

{aba(c, d)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y
wk {aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

{aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(α)(e, d)}∅, {TC(γ)(c, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

Note themultiple occurrences of the ‘backpointer’ ◦ (we have omitted explicit substitution
steps here), resulting in uncountably many infinite branches. Specifically, the preproof con-
tains two non-wellfounded branches: Q3 and the branch displayed in D. Both branches are
regular, as they are identical (modulo substitution) to the sequent generated in the last-but-one
bottom sequent in D. Since Q3 is generated by the branch displayed in D, and this latter is
repeated infinitely often, the preproof contains uncountably many infinite branches. In all
cases, the cedents marked in red induce progressing hypertraces along any infinite branch.

Finally, it is pertinent to revisit the ‘counterexample’ (2) from Sect. 3.3 that witnessed
incompleteness of TCG for PDL+. The following result is, in fact, already implied by our
later completeness result, Theorem 6.1, but it is useful to give it explicitly nonetheless:

Proposition 4.9 HTC �cyc ST((aa ∪ aba)+)(c, d) → ST(a+((ba+)+ ∪ a))(c, d).

Proof Using the abbreviations α(c, d) = ST(aa ∪ aba)(c, d) and β(c, d) = ST((ba+)+ ∪
a)(c, d), we give the following cyclic proof, where • marks roots of identical subproofs (we
omit explicit substitution steps),

R

R′

P

.

.

. •{TC(α)(e, d)}∅, {TC(a)(j, e), β(yd)}y
id {a(f , e)}∅, {TC(α)(e, d)}∅, {a(f , g), TC(a)(g, y), β(y, d)}y

inst [e/k]{a(f , e)}∅, {TC(α)(e, d)}∅, {a(f , k), TC(a)(k, y), β(y, d)}y,k
wk {a(f , e)}∅, {TC(α)(e, d)}∅, {a(f , y), β(y, d)}y , {a(f , k), TC(a)(k, y), β(y, d)}y,k
TC {a(f , e)}∅, {TC(α)(e, d)}∅, {TC(a)(f , y), β(y, d)}y

id {a(c, f)}∅, {a(f , e)}∅, {TC(α)(e, d)}∅, {a(c, f), TC(a)(f , y), β(y, d)}y
inst [f /z]{a(c, f)}∅, {a(f , e)}∅, {TC(α)(e, d)}∅, {a(c, z), TC(a)(z, y), β(y, d)}y,z

wk {a(c, f)}∅, {a(f , e)}∅, {TC(α)(e, d)}∅, {a(c, y), β(y, d)}y , {a(c, z), TC(a)(z, y), β(y, d)}y,z
TC {a(c, f)}∅, {a(f , e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y

∀,∨ ...
{aa(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y

∪ {aa(c, e), aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y
∧ ...

{α(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y
∪ {α(c, e)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(,̧y), β(y, d)}y

∪ {α(c, d), α(c, e)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y
TC •{TC(α)(c, d)}∅, {TC(a)(c, y), β(y, d)}y

∨,∃,∧ ...

{ST((aa ∪ aba)+)(c, d) ∨ ST(a+; ((ba+)+ ∪ a))(c, d)}∅

,

123

Cyclic Hypersequent System for Transitive Closure Logic Page 19 of 40 27

where the only infinite branch displayed has progressing hypertrace indicated in blue. R,R′
and P above are the following hypersequents:

R = {α(c, d)}∅, {α(c, d), TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y

R′ = {α(c, d)}∅, {α(c, d)}∅, {TC(a)(c, y), β(y, d)}y

P = {aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y .

R, R′ have finitary proofs, while P has a cyclic proof, shown below, which makes use of
Example 4.8 above. We use the following abbreviations:

α(c, d) = ST(aa ∪ aba)(c, d)

β(c, d) = ST((ba+)+ ∪ a)(c, d)

γ (c, d) = ST(ba+)(c, d)

Ex. 4.8

{TC(α)(e, d)}∅, {TC(a)(e, d)}∅, {TC(γ)(e, d)}∅, {TC(a)(e, z), TC(γ)(z, d)}z

inst,id {a(e2, e)}∅, {TC(α)(e, d)}∅, {a(e2, j), TC(a)(j, d)} j , {a(e2, z), TC(γ)(z, d)}z , {a(e2, w), TC(a)(w, z), TC(γ)(z, d)}z,w

TC,wk {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(e2, d)}∅, {a(e2, z), TC(γ)(z, d)}z , {a(e2, w), TC(a)(w, z), TC(γ)(z, d)}z,w

TC {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(e2, d)}∅, {TC(a)(e2, z), TC(γ)(z, d)}z

inst,id {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {b(e1, k), TC(a)(k, d)}k , {b(e1, z1), TC(a)(z1, z), TC(γ)(z, d)}z,z1
∃,∧ ...

{b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {ST(ba+)(e1, d)}∅, {ST(ba+)(e1, z), TC(γ)(z, d)}z

TC {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(γ)(e1, d)}∅

inst,id {a(c, e1)}∅, {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {a(c, y), TC(γ)(y, d)}y

TC,wk {a(c, e1)}∅, {b(e1, e2)}∅, {a(e2, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∀,∨ ..
{a(c, e1)}∅, {ba(e1, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

∀,∨ ..
{aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y

wk {aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), TC(γ)(y, d)}y , {TC(a)(c, y), a(y, d)}y

∨ ...
{aba(c, e)}∅, {TC(α)(e, d)}∅, {TC(a)(c, y), β(y, d)}y

4.4 On Cyclic-Proof Checking

In usual cyclic systems, checking that a regular preproof is progressing is decidable by
straightforward reduction to the universality of nondeterministicω-word-automata, with runs
‘guessing’ a progressing thread along an infinite branch. Our notion of progress exhibits an
extra quantifier alternation: we must guess an infinite hypertrace in which every trace is
progressing. Nonetheless, by appealing to determinisation or alternation, we can still decide
our progressing condition:

Proposition 4.10 Checking whether a cyclic HTC preproof is a proof is decidable.

Proof Sketch The result is proved using using automata-theoretic techniques. Fix a cyclic
HTC preproof D. First, using standard methods from cyclic proof theory, it is routine to
construct a nondeterministic Büchi automaton recognising non-progressing hypertraces of
D. The construction is similar to that recognising progressing branches in cyclic sequent
calculi, e.g. as found in [11, 14, 26], since we are asking that there exists a non-progressing
trace within a hypertrace. By Büchi’s complementation theorem and McNaughton’s deter-

123

27 Page 20 of 40 A. Das, M. Girlando

minisation theorem (see, e.g., [30] for details), we can thus construct a deterministic parity
automaton PH recognising progressing hypertraces.2

Now we can construct a nondeterministic parity automaton P recognising progressing
branches of D similarly to the previous construction, but further keeping track of states in
PH :

• P essentially guesses a progressing hypertrace along the branch input;
• at the same time, P runs the hypertrace-in-construction along PH and keeps track of the

state therein;
• acceptance forP is inherited directly fromPH , i.e. a run is accepting just if the hypertrace

guessed along it is accepted by PH .

Now it is clear that P accepts a branch of D if and only if it is progressing. Assuming that P
also accepts any ω-words over the underlying alphabet that are not branches ofD (by adding
junk states), we have thatD is a proof (i.e. each of its infinite branches is progressing) if and
only if P is universal. For additional material and results on infinite word automata refer to
[4, 30].

4.5 Simulating Cohen–Rowe

As we mentioned earlier, cyclic proofs of HTC indeed are at least as expressive as those of
Cohen and Rowe’s system by a routine local simulation of rules:

Theorem 4.11 If TCG �cyc A then HTC �cyc A.

Proof Sketch LetD be a TCG cyclic proof. We can convert it to a HTC cyclic proof by simply
replacing each sequent A1, . . . , An by the hypersequent {A1}∅, . . . , {An}∅ and applying
some local corrections. In what follows, if � = A1, . . . , An , let us simply write S� for
{A1}∅, . . . , {An}∅.

• Any id step of D must be amended as follows:

id
�, p(t), p̄(t)

�
init { }∅

id {p(t)}∅, { p̄(t)}∅

wk
S�, {p(t)}∅, { p̄(t)}∅

• Any ∨ step of D becomes a correct ∨ step of HTC or HTC=.
• Any ∧ step of D must be amended as follows:

�, A �, B
∧

�, A ∧ B
�

S�, {A}∅ S�, {B}∅

∪
S�, {A, B}∅

∧
S�, {A ∧ B}∅

• Any ∃ step of D must be amended as follows:

�, A(t)
∃
�, ∃x A(x)

�
S�, {A(t)}∅

inst
S�, {A(x)}x

∃
S�, {∃x A(x)}∅

2 This is perhaps an overkill step, but allows us to easily deal with the issue of alternation in the progressing
condition.

123

Cyclic Hypersequent System for Transitive Closure Logic Page 21 of 40 27

• Any ∀ step of D becomes a correct ∀ step of HTC or HTC=.
• Any TC0 step of D becomes a correct TC0 step of HTC.
• Any TC1 step of D must be amended as follows:

�, A(s, r) �, TC(A)(r , t)
TC1

�, TC(A)(s, t)
�

S�, {A(s, r)}∅ S�, {TC(A)(r , t)}∅

∪
S�, {A(s, r), TC(A)(r , t)}∅

inst
S�, {A(s, x), TC(A)(x, t)}x

TC1
S�, {TC(A)(s, t)}∅

• Any TC step of D must be amended as follows:

�, A(s, t) �, A(s, c), TC(A)(c, t)
TC

�, TC(A)(s, t)

�
S�, {A(s, t)}∅ S�, {A(s, c)}∅, {TC(A)(c, t)}∅

2∪
S�, {A(s, t), A(s, c)}∅, {A(s, t), TC(A)(c, t)}∅

TC
S�, {TC(A)(s, t)}∅

Particular inspection of the TC case shows that progressing traces of TCG induce progressing
hypertraces of HTC. Also, since each of the cases above maps an inference step of TCG to a
fixed finite gadget in HTC, regularity is preserved too.

5 Soundness of HTC

This section is devoted to the proof of the first of our main results:

Theorem 5.1 (Soundness) If HTC �nwf S then |� S.

The argument is quite technical due to the alternating nature of our progress condition. In
particular the treatment of traces within hypertraces requires a more fine grained argument
than usual, bespoke to our hypersequential structure.

5.1 Some Conventions on (Pre)proofs and Semantics

First, we work with proofs without substitution, in order to control the various symbols
occurring in a proof.

Throughout this section, we shall fix a HTC preproof D of a hypersequent S. We start by
introducing some additional definitions and propositions.

Proposition 5.2 If HTC �nwf S then there is also a HTC proof of S that does not use the
substitution rule.

Proof Sketch We appeal to a coinductive argument, applying a meta-level substitution opera-
tion on proofs to admit each substitution step. Productivity of the translation is guaranteed by
the progressing condition: each infinite branch must, at the very least, have infinitely many
TC steps.

The utility of this is that we can now carefully control the occurrences of eigenfunctions
in a proof so that, bottom-up, they are never ‘re-introduced’, thus facilitating the definition
of interpretations on them.

123

27 Page 22 of 40 A. Das, M. Girlando

Throughout this section, we shall allow interpretations to be only partially defined, i.e.
they are now partial maps from the set of function symbols of our language to appropriately
typed functions in the structure at hand. Typically our interpretations will indeed interpret
the function symbols in the context in which they appear, but as we consider further function
symbols it will be convenient to extend an interpretation ‘on the fly’. This idea is formalised
in the following definition:

Definition 5.3 (Interpretation extension) Let M be a structure and ρ, ρ′ be two (partial)
interpretations over |M|.We say that ρ′ is an extension of ρ, written ρ ⊆ ρ′, if ρ′(f) = ρ(f),
for all f in the domain of ρ.

Finally, we assume that the free and bound variables occurring in a hypersequent at the
root a (pre)proof are all pairwise distinct, and that whenever we apply rule ∃ or rule TC
(resp. rule ∀ or rule TC) to a hypersequent S occurring in a branch, the rule introduces in the
premiss a variable (resp. a function symbol) that does not appear in any hypersequent in the
branch from the root up to S, included. This strong freshness requirement guarantees that
each function and variable symbol is uniquely interpreted in the countermodel that we are
going to construct.

5.2 Constructing a ‘Countermodel’Branch

Recall that we have fixed at the beginning of this section a HTC preproofD of a hypersequent
S. Let us fix some structureM× and an interpretation ρ0 such that ρ0 |� S (withinM×). As
we shall prove in the following Lemma, since each rule is locally sound, by contraposition
we can continually choose ‘false premisses’ to construct an infinite ‘false branch’:

Lemma 5.4 (Countermodel branch) There is a branch B× = (Si)i<ω of D and an interpre-
tation ρ× such that, with respect to M×:

1. ρ× |� Si , for all i < ω;
2. Suppose that Si concludes a TC step, as typeset in Fig. 4, and ρ× |� TC(Ā)(s, t) [d/x].

If n is minimal such that ρ× |� Ā(di , di+1) for all i < n, ρ×(s) = d0 and ρ×(t) =
dn, and n > 1, then ρ×(f)(d) = d1,3 so that ρ× |� Ā(s, f (x))[d/x], and ρ× |�
TC(Ā)(f (x), t)[d/x].
Intuitively, our interpretation ρ× is going to be defined as the limit of a chain of ‘partial’

interpretations (ρi)i<ω, with each ρi |� Si (with respect toM×). Referring to Item 2, when-
ever some TC-formula is principal, we shall always choose ρi+1 to assign to it a falsifying
path of minimal length (if one exists at all), with respect to an assignment d to variables x in
the annotation of its cedent. It is crucial at this point that our definition of ρ× is parametrised
by such assignments.

Proof of Lemma 5.4 We construct B× and ρ× simultaneously. In fact we shall define a chain
of interpretations ρ0 ⊆ ρ1 ⊆ ρ2 ⊆ · · · such that, for each i , M×, ρi |� Si . We will define
ρ× as the limit of this chain. We distinguish cases according to the rule ri that Si concludes.
For the case of weakening, Si+1 is the unique premiss of the rule, and ρi+1 = ρi . We now
give all the other cases:

� Case (∪)

S1 = Q, {�1}x1 S2 = Q, {�2}x2∪
Si = Q, {�1, �2}x1,x2

3 To be clear, we here choose an arbitrary such minimal ‘ Ā-path’ to set d1.

123

Cyclic Hypersequent System for Transitive Closure Logic Page 23 of 40 27

By assumption, ρi |� Q and ρi |� ∀x1 ∀x2(∨ �1 ∨ ∨
�2). Set ρi+1 = ρi . By the truth

condition for ∀, we have that for allm-tuples d1 ∈|M×| and n-tuples d2 ∈|M×|, for n =|x1 |,
m =|x2 |:

ρi+1 |�
∨

�1 ∨
∨

�2 [d1/x1][d2/x2].
By the truth condition associated to ∨ we can conclude that, for all d1, d2, either:

ρi+1 |�
∨

�1 [d1/x1][d2/x2] or ρi+1 |�
∨

�2 [d1/V1][d2/V2].
Since x1 ∩ fv(�2) = ∅ and x2 ∩ fv(�1) = ∅, the above is equivalent to:

ρi+1 |�
∨

�1 [d1/x1] or ρi+1 |�
∨

�2 [d2/x2].
And, since this holds for all choices of d1 and d2, we can conclude that:

ρi+1 |� ∀x1(
∨

�1) or ρi+1 |� ∀x2(
∨

�2).

Take Si+1 to be the Sk such that ρi+1 |� ∀xk(
∨

�k), for k = {1, 2}.
For all the remaining cases, Si+1 is the unique premiss of the rule ri . Moreover, for x the

unique (possibly empty) annotation explicitly indicated in the remaining rules, let n =| x |
and d ∈|M×|n .

� Cases (∧), (∨), (∃), (id) and (TC)

Si+1 = Q, {�, A, B}x
∧
Si = Q, {�, A ∧ B}x

Si+1 = Q, {�, A}x, {�, B}x
∨

Si = Q, {�, A ∨ B}x
Si+1 = Q, {�, A(y)}x,y

∃
Si = Q, {�, ∃x(A(x))}x

Si+1 = Q, {�}x
id
Si = Q, {�, A}x, {A}∅

Si+1 = Q, {�, A(s, t)}x, {�, A(s, z), TC(A)(z, t)}x,z
TC

Si = Q, {�, TC(A)(s, t)}x
For all these cases set ρi+1 = ρi . The formula interpretation of the conclusion log-

ically implies the formula interpretation of the premiss. Thus, from M×, ρi |� Si we
have that M×, ρi+1 |� Si+1. Let us justify this explicitly for the cases (∃), (id) and (TC).
(∃) By assumption, ρi |� Q and ρi |� ∀x(∨ � ∨ ∀x(A(x))). We have ρi+1 |� Q.

By prenexing the quantifier and variable renaming we obtain ρi+1 |� ∀x∀y(
∨

�∨ A(y)).
(id) By assumption, ρi |� Q and ρi |� ∀x(∨ � ∨ A) and ρi |� A. By the truth condition

for ∀ we have that, for all choices of d, it holds that:

ρi+1 |�
∨

� ∨ A [d/x].
By the truth condition for ∨, for every choice of d:

ρi+1 |�
∨

� [d/x] or ρi+1 |� A [d/x].
Since fv(A) ∩ x = ∅, the above is equivalent to:

ρi+1 |�
∨

� [d/x] or ρi+1 |� A.

By assumption, ρi+1 |� A. Thus, the second disjunct cannot hold, and we have that
ρi+1 |� ∨

� [d/x]. Since this holds for all choices of d, we conclude that ρi+1 |� ∀x(∨ �).
(TC) By assumption, ρi |� Q and ρi |� ∀x(∨ � ∨ TC(A)(s, t)). Recall that

TC(A)(s, t)) := TC(A)(s, t). We reason as follows:

ρi+1 |� ∀x(
∨

� ∨ TC(A)(s, t))

123

27 Page 24 of 40 A. Das, M. Girlando

ρi+1 |� ∀x(
∨

� ∨ (A(s, t) ∧ ∀z(A(s, z) ∨ TC(A)(z, t)))) (�)

ρi+1 |� ∀x((
∨

� ∨ A(s, t)) ∧ (
∨

� ∨ ∀z(A(s, z) ∨ TC(A)(z, t))))

ρi+1 |� ∀x((
∨

� ∨ A(s, t)) ∧ ∀z(
∨

� ∨ A(s, z) ∨ TC(A)(z, t)))

ρi+1 |� ∀x(
∨

� ∨ A(s, t)) ∧ ∀x∀z(
∨

� ∨ A(s, z) ∨ TC(A)(z, t)) (∗)

ρi+1 |� ∀x(
∨

� ∨ A(s, t)) and ρi+1 |� ∀x∀z(
∨

� ∨ A(s, z) ∨ TC(A)(z, t)).

In the above, step (�) follows from the inductive definitionofTC, and step (∗) is obtainedby
distributing ∀ over∧, i.e., bymeans of the classical theorem ∀x(A∧ B) → (∀x(A)∧∀x(B)).
The other steps are either standard theorems or follow from the truth conditions of the logical
operators.

For the three remaining cases of (inst), (∀) and (TC), ρi+1 extends ρi by adequately
interpreting the new function symbols introduced, bottom-up:

� Case (inst)

Si+1 = Q, {�(t)}x
inst

Si = Q, {�(y)}x,y

By assumption, ρi |� Q and ρi |� ∀x∀x(
∨

�(x)). Thus, for all choices of d, we have
that ρi |� ∀x(

∨
�(x)) [d/x]. By the truth condition for ∀, this means that, for all d ∈|M×|,

ρi |� ∨
�(x) [d/x][d/x]. Take ρi+1 to be any extension of ρi that is defined on the language

of Si+1. That is, if f is a function symbol in t to which ρi already assigns a map, then ρi+1

assigns to it that same map. Otherwise, ρi+1 assigns an arbitrary map to f .
It follows that ρi+1 |� fm(Q) and ρi+1 |� ∨

�(t)[d/x] and, since this holds for all d, we
have that ρi+1 |� ∀x(∨ �(t)). Thus ρi+1 |� Si+1.

� Case (∀)

Si+1 = Q, {�, A(f (x))}x
∀
Si = Q, {�,∀x(A(x))}x

By assumption, ρi |� Q and ρi |� ∀x(∨ � ∨ ∃x(A(x)). By the truth condition for ∀ and
∨, for all choices of d we have:

ρi |�
∨

� [d/x] or ρi |� ∃x(A(x)) [d/x].
We define ρi+1 to extend ρi by defining ρi+1(f) as follows. Let d ⊆|M× |. If ρi |�∨
� [d/x] then we may set ρi+1(f)(d) to be arbitrary. We still have ρi+1 |� ∨

� [d/x],
as required. Otherwise ρi |� ∃x(A(x)) [d/x]. By the truth condition for ∃, there is a d ∈|
M× | such that ρi |� A(x) [d/x][d/x]. In this case, we define ρi+1(f)(d) = d , so that
ρi+1 |� A(f (x)) [d/x]. So, for all d, we have that ρi+1 |� ∨

� ∨ A(f (x)) [d/x], and so
ρi+1 |� ∀x(∨ � ∨ A(f (x))). Thus, ρi+1 |� Si+1, as required.

� Case (TC)

Si+1 = Q, {�, A(s, t), A(s, f (x))}x, {�, A(s, t), TC(A)(f (x), t)}x
TC

Si = Q, {�, TC(A)(s, t)}x

By assumption, ρi |� Q and ρi |� ∀x(∨ �∨TC(A)(s, t))which, by definition of duality,
means ρi |� ∀x(∨ � ∨ TC(A)(s, t)). By the truth conditions for ∨ we have, for all d:

1) ρi |�
∨

� [d/x] or 2) ρi |� TC(Ā)(s, t) [d/x].

123

Cyclic Hypersequent System for Transitive Closure Logic Page 25 of 40 27

We define ρi+1 to extend ρi by defining ρi+1(f) as follows. Let d ⊆ M×. If 1) holds,
then we may set ρi+1(f)(d) to be an arbitrary element of |M×|. Otherwise, 2) must hold, so
by the truth conditions for TC there is a A-path between ρi (s) and ρi (t) of length greater or
equal than 1, i.e. there are elements d0, . . . , dn , with n > 0 and ρi (s) = d0 and ρi (t) = dn ,
such that ρi |� Ā(di , di+1) for all i < n. We select a shortest such path, i.e. one with smallest
possible n > 0. There are two cases:

(i) if n = 1, then already ρi |� Ā(s, t)[d/x], so we may set ρi+1(f)(d) to be arbitrary;
(ii) otherwise n > 1 and we set ρi+1(f)(d) = d1, so that ρi+1 |� Ā(s, f (x))[d/x] and

ρi+1 |� TC(Ā)(f (x), t)[d/x].
We have considered all the rules, so the construction of B× and the all ρi ’s is complete.

From here, note that we have ρi ⊆ ρi+1, for all i < ω. Thus we can construct the limit
ρ× = ⋃

i<ω ρi .

5.3 Canonical Assignments Along Countermodel Branches

Let us now fix B× and ρ× as provided by Lemma 5.4 above. Moreover, let us hence-
forth assume that D is a proof, i.e. it is progressing, and fix a progressing hypertrace
H = ({�i }xi)i<ω along B×. In order to carry out an infinite descent argument, we will
need to define a particular trace along this hypertrace that ‘preserves’ falsity, bottom-up.
This is delicate since the truth values of formulas in a trace depend on the assignment of
elements to variables in the annotations. A particular issue here is the instantiation rule inst,
which requires us to ‘revise’ whatever assignment of y we may have defined until that point.
Thankfully, our earlier convention on substitution-freeness and freshness of the variables
introduced by quantifiers and transitive closure rules inD facilitates the convergence of this
process to a canonical such assignment:

Definition 5.5 (Assignment) We define δH : ⋃
i<ω

xi →|M× | by δH(x) := ρ(t) if x is

instantiated by t in H; otherwise δH(x) is some arbitrary d ∈|M×|.

Note that δH is indeed well-defined, thanks to the convention that each quantifier and
transitive closure rule introduces only variables that do not appear in previous sequents in the
derivation branch. In particular we have that each variable x is instantiated atmost once along
a hypertrace. Henceforth we shall simply write ρ, δH |� A(x) instead of ρ |� A(δH(x)).
Working with such an assignment ensures that false formulas along H always have a false
immediate ancestor:

Lemma 5.6 (Falsity throughH) If ρ×, δH |� F for some F ∈ �i , then F has an immediate
ancestor F ′ ∈ �i+1 with ρ×, δH |� F ′.

Proof Suppose that F is a formula occurring in some cedent {�i }xi in Si , such that ρ×, δH |�
F . We show how to choose a F ′ satisfying the conditions of the Lemma.We distinguish cases
according to the rule ri that {�i }xi concludes. Propositional cases are routine as well as ∪,
since the failed branch has been chosen during the construction of B×. For the weakening
rule, observe that we could not have chosen a hypertrace going through the structure which
gets weakened, as by assumption the hypertrace is infinite. We show the remaining cases. It
can be easily checked that, given a formula F such that ρ×, δH |� F , the formula F ′ is an
immediate ancestor of F .

123

27 Page 26 of 40 A. Das, M. Girlando

�Case (∃). Suppose {�i }xi = {�, ∃x(A(x))}x and {�i+1}xi+1 = {�, A(y)}x,y . By assump-
tion, ρ× |� ∀x(∨ � ∨∀x(A(x))). By the truth condition for ∀we obtain that, for all n-tuples
d of elements of |M×|, for n =|x |, it holds that:

ρ× |�
∨

� ∨ ∀x(A(x)) [d/x]. (5)

By definition, δH assigns a value in the domain to all the variables occurring in annotations
alongH. From (5) and the truth condition for ∨ it follows that:

ρ×, δH |�
∨

� or ρ×, δH |� ∀x(A(x)).

If F ∈ �, by hypothesis we have that ρ×, δH |� F and we set F ′ = F . Otherwise, F =
∃x(A(x)) and ρ×, δH |� ∀x(A(x)). By the truth condition for ∀ we have ρ×, δH |� A(y),
so we set F ′ = A(y).

� Case (inst). Suppose {�i }xi = {�(y)}x,y and {�i+1}xi+1 = {�(t)}x. By construction,
ρ× |� ∀x∀y(

∨
�(y)). Reasoning as in the previous case, from the truth condition for ∀

it follows that ρ×, δH |� ∨
�(y). If F does not contain y, then ρ×, δH |� F , and we set

F ′ = F . Otherwise, if F contains y, then ρ×, δH |� F(y). By Lemma 5.4, ρ× assigns a
value to t , and by Definition 5.5, since y is instantiated with t along H, δH(y) = ρ×(t).
Therefore we have ρ×, δH |� F(t) so we set F ′ = F(t).

�Case (id). Suppose {�i }xi = {�, A}x and {�i+1}xi+1 = {�}x. Observe that the hypertrace
H could not have gone through the structure {A}∅ occurring in the conclusion of the rule,
because by assumptionH is infinite. Moreover, by construction the formula interpretation of
all the cedents along B× is not valid, and thus ρ× |� {A}∅. This implies that ρ× |� A and
so:

ρ×, δH |�
∨

�.

So we have that F ∈ � and ρ×, δH |� F . Set F ′ = F .
� Case (TC). Suppose {�i }xi = {�, TC(A)(s, t)}x. By assumption, ρ× |� ∀x(∨ � ∨

TC(A)(s, t)). Thus, we have that:

ρ×, δH |�
∨

� or ρ×, δH |� TC(A)(s, t).

From the inductive definition of TC and the truth condition for ∧, the second disjunct is
equivalent to:

ρ×, δH |� A(s, t) and ρ×, δH |� ∀z(A(s, z) ∨ TC(A)(z, t)). (6)

There are two cases to consider, since the premiss of the rule has two cedents that the
hypertraceH could follow:

(i) {�i+1}xi+1 = {�, A(s, t)}x. By construction, ρ× |� ∀x(∨ � ∨ A(s, t)), and thus
ρ×, δH |� ∨

� ∨ A(s, t). If F ∈ �, then ρ×, δH |� F . Set F = F ′. Otherwise,
F = TC(A)(s, t) and ρ×, δH |� F . By (6) we have that ρ×, δH |� A(s, t). Set
F ′ = A(s, t).

(ii) {�i+1}xi+1 = {�, A(s, z), TC(A)(z, t)}x,z . By construction, we have that ρ× |�
∀x∀z(

∨
� ∨ (A(s, z)∨TC(A)(z, t))). Since z does not occur free in �, this is equivalent

to ρ×, δH |� ∨
� ∨ ∀z(A(s, z) ∨ TC(A)(z, t)). If F ∈ � and ρ×, δH |� F , set F ′ = F .

Suppose F = TC(A)(s, t) and ρ×, δH |� F . From (6) we have:

ρ×, δH |� A(s, z) ∨ TC(A)(z, t).

123

Cyclic Hypersequent System for Transitive Closure Logic Page 27 of 40 27

If ρ×, δH |� A(s, z), set F ′ = A(s, z). Otherwise, if ρ×, δH |� TC(A)(z, t), set F ′ =
TC(A)(z, t).

� Case (∀). Suppose {�i }xi = {�,∀x(A(x))}x and {�i+1}xi+1 = {�, A(f (x))}x. By
assumption, ρ× |� ∀x(∨ � ∨ ∃x(A(x))) and, from the truth conditions for ∀ and ∨:

ρ×, δH |�
∨

� or ρ×, δH |� ∃x(A(x)).

If F ∈ � and ρ×, δH |� F , set F ′ = F , since x does not occur in �. Otherwise, F =
∀x(A(x)) and ρ×, δH |� ∃x(A(x)). By definition of ρ× and δH we have ρ×, δH |� A(f (x)),
so we set F ′ = A(f (x)).
� Case (TC). Suppose {�i }xi = {�, TC(A)(s, t)}x. By assumption, ρ× |� ∀x(∨ � ∨
TC(A)(s, t)), that is, ρ× |� ∀x(∨ � ∨ TC(A)(s, t)). Thus, we have that:

ρ×, δH |�
∨

� or ρ×, δH |� TC(A)(s, t).

We need to consider two cases, depending on which cedent the hypertraceH follows:

(i) {�i+1}xi+1 = {�, A(s, t), A(s, f (x))}x. If F ∈ � set F = F ′. By assumption it fol-
lows that ρ×, δH |� F . Otherwise, F = TC(A)(s, t) and by assumption ρ×, δH |�
TC(A)(s, t). By the inductive definition of TC and the truth condition for ∨, this is
equivalent to:

ρ×, δH |� A(s, t) or ρ×, δH |� ∃z(A(s, z) ∧ TC(A)(z, t)).

If ρ×, δH |� A(s, t), set F ′ = A(s, t). Otherwise, ρ×, δH |� ∃z(A(s, z)∧ TC(A)(z, t)).
Let δH(x) = d. According to the definition of ρ× at the (TC) step, since ρ×, δH |� ∨

�

and ρ×, δH |� A(s, t), then ρ×(f)(d) is defined as in case 2), subcase (ii). Thus,
ρ×(f)(d) is an element d ∈|M× | such that ρ×, δH |� A(s, f (x)) and ρ×, δH |�
TC(A)(f (x), t). Set F ′ = A(s, f (x)).

(ii) {�i+1}xi+1 = {�, A(s, t), TC(A)(f (x), t)}x. The proof proceeds exactly as in the previ-
ous case except for the very last step, where F ′ is set to be TC(A)(f (x), t).

5.4 Putting It All Together

Note how rule inst of Fig. 4 is handled in the proof above: if F ∈ �(y) then we can choose
F ′ = F[t/y] which, by definition of δH, has the same truth value. By repeatedly applying
Lemma 5.6 we obtain:

Proposition 5.7 (False trace) There exists an infinite trace τ× = (Fi)i<ω through H such
that, for all i , it holds that M×, ρ×, δH |� Fi .

Proof Sketch We inductively define τ× as follows. By assumption,M×, ρ× |� S0, and thus
in particular ρ× |� ∀x0(∨ �0). Thus, for all n-tuples d of elements of |M×|, for n =|x0 |,
we have that ρ× |� ∨

�0 [d/x0]. Since δH assigns a value to all variables occurring in
annotations of cedents in H, ρ×, δH |� ∨

�0. Take F0 ∈ �0 such that M×, ρ×, δH |� F0.
From here we define each successive Fi by appealing repeatedly to Lemma 5.6 above.

We are now ready to prove our main soundness result.

Proof of Theorem 5.1 Fix the infinite trace τ× = (Fi)i<ω through H obtained by Proposi-
tion 5.7. Since τ× is infinite, by definition of HTC proofs, it needs to be progressing, i.e.,

123

27 Page 28 of 40 A. Das, M. Girlando

it is infinitely often TC-principal and there is some k ∈ N s.t. for i > k we have that
Fi = TC(A)(si , ti) for some terms si , ti .

To each Fi , for i > k, we associate the natural number ni measuring the ‘ Ā-distance
between si and ti ’. Formally, ni ∈ N is least s.t. there are d0, . . . , dni ∈|M×| with ρ×(si) =
d0, ρ×(ti) = dni and, for all i < ni , ρ×, δH |� Ā(di , di+1). Our aim is to show that
(ni)i>k has no minimal element, contradicting wellfoundness of N. For this, we establish the
following two local properties:

1. (ni)i>k is monotone decreasing, i.e., for all i > k, we have ni+1 ≤ ni ;
2. Whenever Fi is principal, we have ni+1 < ni .

We prove item 1 and item 2 by inspection onHTC rules.We start with item 2. Suppose Fi =
TC(A)(s, t) is the principal formula in an occurrence of tc so Fi+1 = TC(A)(f (x), t), for
some x. Moreover, by construction ρ×, δH |� TC(A)(s, t) and ρ×, δH |� TC(A)(f (x), t).
We have to show that ni , the A-distance between f (x) and t , is strictly smaller than ni+1,
the A-distance between s and t , wrt. ρ× and δH.

Let δH(x) = d. By case (TC) of Lemma 5.4, and since ρ×, δH |� TC(A)(f (x), t), there
is a shortest A-path between ρ×(s) and ρ×(t), composed of n > 1 elements d0, . . . , dn , with
ρ×(s) = d0 and ρ×(t) = dn , and ρ×(f)(d) = d1. Consequently, it holds that ρ×, δH |�
A(s, f (x)) and ρ×, δH |� TC(A)(f (x), t). Thus, there is an A-edge between ρ×(s) and
ρ×(f)(d), and ρ×(f)(d) is one edge closer to ρ×(t) in one of the shortest A-paths between
ρ×(s) and ρ×(t). We conclude that ni+1 is exactly ni − 1, and ni+1 < ni .

To prove item 1, suppose that Fi is not principal in the occurrence ri of aHTC rule. Suppose
ri is inst, Fi = TC(A)(s, x), Fi+1 = TC(A)(s, t), and x gets instantiated with t by inst. By
construction, ρ×, δH |� TC(A)(s, x). Let ni be the distance between ρ×(s) and δH(x). By
definition, δH(x) = ρ×(t). Thus, the distance between ρ×(s) and ρ×(t) is ni+1 = ni . In all
the other cases, Fi = TC(A)(s, t) = Fi+1, and thus ni+1 = ni .

So (ni)i>k is monotone decreasing by item 1 but cannot converge by item 2, and by
definition of progressing trace. Thus (ni)k<i has no minimal element, yielding the required
contradiction.

6 Completeness for PDL+, Over the Standard Translation

In this section we give our next main result:

Theorem 6.1 (Completeness for PDL+) For a PDL+ formula A, if |� A then HTC �cyc

ST(A)(c).

The proof is by a direct simulation of a cut-free cyclic system for PDL+ that is complete.
We shall briefly sketch this system below.

6.1 Cyclic System for PDL+

The system LPD+, shown in Fig. 5, is the natural extension of the usual sequent calculus for
basic multimodal logic K by rules for programs. In Fig. 5, �,� etc. range over sets of PDL+
formulas, and we write 〈a〉� as a shorthand for {〈a〉B : B ∈ �}. (Regular) preproofs for this
system are defined just like for HTC or TCG .

The notion of ancestry for formulas is colour-coded in Fig. 5 as before: a formula C in
a premiss is an immediate ancestor of a formula C ′ in the conclusion if they have the same

123

Cyclic Hypersequent System for Transitive Closure Logic Page 29 of 40 27

Fig. 5 Rules of LPD+

colour; if C, C ′ ∈ � then we furthermore require C = C ′. More formally (and without
relying on colours):

Definition 6.2 (Immediate ancestry) Fix a preproofD. We say that a formula occurrence C
is an immediate ancestor of a formula occurrence D inD if C and D occur in a premiss and
the conclusion, respectively, of an inference step r of D and:

• If r is a ka step then, as typeset in Fig. 5:

– D is 〈a〉B for some B ∈ � and C is B; or,
– D is [a]A and C is A.

• If r is not a k-step then:

– C and D are occurrences of the same formula; or,
– D is principal and C is auxiliary in r, i.e. as typeset in Fig. 5, C and D are the

(uniquely) distinguished formulas in a premiss and conclusion, respectively;

Definition 6.3 (Non-wellfounded proofs) Fix a preproof D of a sequent �. A thread is a
maximal path in its graph of immediate ancestry. We say a thread is progressing if it has a
smallest infinitely often principal formula of the form [α+]A.

D is a proof if every infinite branch has a progressing thread. If D is regular, we call it a
cyclic proof and we may write LPD+ �cyc �.

Soundness of cyclic-LPD+ is established by a standard infinite descent argument, but is
also implied by the soundness of cyclic-HTC (Theorem 5.1) and the simulation we are about
to give (Theorem 6.1), though this is somewhat overkill. Completeness may be established
by the game theoretic approach of Niwinskí and Walukiewicz [24], as carried out by Lange
in [21], or by the purely proof theoretic techniques of Studer [27]. Either way, both results
follow immediately by a standard embedding of PDL+ into the (guarded) μ-calculus and
its known completeness results [24, 27], by way of a standard ‘proof reflection’ argument:
μ-calculus proofs of the embedding are ‘just’ step-wise embeddings of LPD+ proofs.

Theorem 6.4 (Soundness and completeness, essentially from [21]) Let A be a PDL+ formula.
|� A iff LPD+ �cyc A.

6.2 Examples of Cyclic Proofs in LPD+

Before giving our main simulation result, let us first see some examples of proofs in LPD+,
in particular addressing the ‘counterexample’ from Sect. 3.3.

123

27 Page 30 of 40 A. Das, M. Girlando

Example 6.5 Below is a cyclic LPD+ proof of the LPD+ sequent:

[(aa ∪ aba)+]p, 〈a+〉p, 〈(ba+)+〉p, 〈a+〉〈(ba+)+〉p.

We use the following abbreviations: α = (aa ∪ aba)+ and β = (ba+)+. Moreover, we
sometimes use rule 〈+〉, which is derivable from rules 〈+〉0 and 〈+〉1, keeping in mind that
LPD+ sequents are sets of formulas:

�, 〈α〉A, 〈α〉〈α+〉A
〈+〉

�, 〈α+〉A

Similarly for rule ∨. There are uncountably many infinite branches, but each such branch
is supported by the infinite thread induced by the blue-coloured formulas. � is sequent
[aa ∪ aba]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p, derivable by means of a finite derivation (which we
do not show).

�

.

.

. ◦[α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p
ka [a][α]p, 〈a〉〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉1 [a][α]p, 〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉 [a][α]p, 〈a+〉p, 〈a+〉〈β〉p
ka [a][a][α]p, 〈a〉〈a+〉p, 〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉1 [a][a][α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p[;] [aa][α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p

.

.

. ◦[α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p
ka [a][α]p, 〈a〉〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉1 [a][α]p, 〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉 [a][α]p, 〈a+〉p, 〈a+〉〈β〉p

kb [b][a][α]p, 〈b〉〈a+〉p, 〈b〉〈a+〉〈β〉p
2〈;〉 [b][a][α]p, 〈ba+〉p, 〈ba+〉〈β〉p〈+〉 [b][a][α]p, 〈β〉p
ka [a][b][a][α]p, 〈a+〉p, 〈β〉p, 〈a〉〈β〉p〈+〉0 [a][b][a][α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p

2[;] [aba][α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p[∪] [aa ∪ aba][α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p[+] ◦[α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p

Example 6.6 Below we give a cyclic LPD+ proof of formula (2), which witnesses the incom-
pleteness of TCG without cut:

〈(aa ∪ aba)+〉p → 〈a+((ba+)+ ∪ a)〉p.

We employ the same shorthands as in the previous example, i.e., α = (aa ∪ aba)+
and β = (ba+)+. The progressing thread along the unique infinite branch displayed (not
including those from Example 6.5), looping on •, is coloured blue.

�′

.

.

. •[α]p, 〈a+〉〈β ∪ a〉p
ka [a][α]p, 〈a〉〈a+〉〈β ∪ a〉p〈+〉1 [a][α]p, 〈a+〉〈β ∪ a〉p

ka [a][a][α]p, 〈a〉〈a+〉〈β ∪ a〉p〈+〉1 [a][a][α]p, 〈a+〉〈β ∪ a〉p[;] [aa][α]p, 〈a+〉〈β ∪ a〉p

Ex. 6.5

[α]p, 〈a+〉p, 〈β〉p, 〈a+〉〈β〉p
kb [a][α]p, 〈a〉〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉1 [a][α]p, 〈a+〉p, 〈a〉〈β〉p, 〈a〉〈a+〉〈β〉p〈+〉 [a][α]p, 〈a+〉p, 〈a+〉〈β〉p

kb [b][a][α]p, 〈b〉〈a+〉p, 〈b〉〈a+〉〈β〉p
2〈;〉 [b][a][α]p, 〈ba+〉p, 〈ba+〉〈β〉p〈+〉 [b][a][α]p, 〈β〉p〈∪〉0 [b][a][α]p, 〈β ∪ a〉p

ka [a][b][a][α]p, 〈a〉〈β ∪ a〉p〈+〉0 [a][b][a][α]p, 〈a+〉〈β ∪ a〉p
2[;] [aba][α]p, 〈a+〉〈β ∪ a〉p[∪] [aa ∪ aba][α]p, 〈a+〉〈β ∪ a〉p[+] •[α]p, 〈a+〉〈β ∪ a〉p〈;〉 [α]p, 〈a+(β ∪ a)〉p∨ [α]p ∨ 〈a+(β ∪ a)〉p

123

Cyclic Hypersequent System for Transitive Closure Logic Page 31 of 40 27

Here �′ is the sequent [aa ∪ aba]p, 〈a+〉〈β ∪ a〉p, which has a finite derivation:

init
p, p

ka [a]p, 〈a〉p
〈∪〉 [a]p, 〈β ∪ a〉p

ka [a][a]p, 〈a〉〈β ∪ a〉p
〈+〉0 [a][a]p, 〈a+〉〈β ∪ a〉p

[;] [aa]p, 〈a+〉〈β ∪ a〉p

init
p, p

ka [a]p, 〈a〉p
〈+〉0 [a]p, 〈a+〉p

kb [b][a]p, 〈b〉〈a+〉p
〈;〉 [b][a]p, 〈ba+〉p

〈+〉0 [b][a]p, 〈β〉p
〈∪〉 [b][a]p, 〈β ∪ a〉p

ka [a][b][a]p, 〈a〉〈β ∪ a〉p
〈+〉0 [a][b][a]p, 〈a+〉〈β ∪ a〉p
2[;] [aba]p, 〈a+〉〈β ∪ a〉p

[∪] [aa ∪ aba]p, 〈a+〉〈β ∪ a〉p

6.3 A ‘Local’ Simulation of LPD+ by HTC

In this subsection we show that LPD+-preproofs can be stepwise transformed into HTC-
preproofs, with respect to the standard translation. In order to produce our local simulation,
we need a refined version of the standard translation, incorporating the structural elements
of hypersequents.

In the definitions below we are often using arbitrarily chosen variables (e.g. “fresh vari-
ables”) and constant symbols.Weassume these choices donot breakour previous assumptions
on variables and constants occurring in hypersequents (refer to Sect. 5.1).

Definition 6.7 (Hypersequent translation for formulas) For x a variable and A a PDL+
formula, we define the hypersequent translation of A, denoted by HT(A)(c), by induction on
the complexity of A as follows, for ◦ ∈ {∧,∨}, with d always a fresh constant symbol and
y always a fresh variable:

A = p or A = B ◦ C, HT(A)(x) := {ST(A)(x)}∅

A = [α]B, HT(A)(x) := {ST(α)(x, d)}∅,HT(B)(d)

A = 〈α〉B, HT(A)(x) := {ST(α)(x, y),CT(B)(y)}xB ,y

where the cedent translation CT(B)(t) and xB are defined as follows:

• if B = p or B = C ◦ D or B = [β]C , then:

CT(B)(t) := ST(B)(y) and xB = ∅.

• if B = 〈β〉C then, for z a fresh variable:

CT(B)(y) := ST(β)(y, z),CT(C)(z) and xB = xC , z.

Proposition 6.8 For S a hypersequent, and A a PDL+ formula:

1. There is a finite HTC-derivation from S,HT(A)(c) to S, {CT(A)(c)}xA ; and,
2. There is a finite HTC-derivation from S, {CT(A)(c)}xA to S, {ST(A)(c)}∅.

123

27 Page 32 of 40 A. Das, M. Girlando

Proof By induction on the complexity of A. If A is atomic, a conjunction or a disjunc-
tion, then HT(A)(c) = {CT(A)(c)}xA = {ST(A)(c)}∅. If A = [α]B, then {CT(A)(c)}xA =
{ST(A)(c)}∅. If A = 〈α1〉 . . . 〈αn〉B, for 1 ≤ n, then {CT(A)(y)}xA = HT(A)(c), and
xA = {y1, . . . , yn}, for y1, . . . , yn variables that do not occur in B. The remaining cases are
shown below. The double line in the derivation below denotes n − 1 occurrences of rules
∃,∧, and IH indicates appeal to the inductive hypothesis.

S,HT([α]B)(c)
...
S, {ST(α)(c, d)}∅,HT(B)(d)

IH
S, {ST(α)(c, d)}∅, {ST(B)(d)}∅

∨
S, {ST(α)(c, d) ∨ ST(B)(d)}∅

∀
S, {∀y(ST(α)(c, y) ∨ ST(B)(y))}∅

...
S, {CT([α]B)(c)}∅

S, {CT(〈α1〉 . . . 〈αn〉B)(yn)}y1,...,yn

..
S, {ST(α1)(c, y1), . . . , ST(αn)(yn−1, yn), ST(B)(yn)}y1,...,yn

∃,∧
S, {ST(α)(c, y1), ST(〈α2〉 . . . 〈αn〉B)(y1)}y1

∧
S, {ST(α)(c, y1) ∧ ST(〈α2〉 . . . 〈αn〉B)(y1)}y1

∃
S, {∃y1(ST(α1)(c, y1) ∧ ST(〈α2〉 . . . 〈αn〉B)(y1))}y1
...

S, {ST(〈α1〉 . . . 〈αn〉B)(c)}∅

Definition 6.9 (HT-translation) Let D be a PDL+ preproof. We shall define a HTC preproof
HT(D)(c) of the hypersequent HT(A)(c) by a local translation of inference steps. Formally
speaking, the well-definedness of HT(D)(c) is guaranteed by coinduction: each rule of D is
translated into a (nonempty) derivation.

id
�, p, p

�

init { }∅

id {p(c)}∅, {p(c)}∅

wk
HT(�)(c), {p(c)}∅, {p(c)}∅

...
HT(�)(c),HT(p)(c),HT(p)(c)

�
wk

�, A
�

HT(�)(c)
wk

HT(�)(c),HT(A)(c)

�, Ai∨i i ∈ {0, 1}
�, A0 ∨ A1

�

HT(�)(c),HT(Ai)(c)
Pr.6.8

HT(�)(c), {ST(Ai)(c)}∅

∨i
HT(�)(c), {ST(A0)(c) ∨ ST(A1)(c)}∅

...
HT(�)(c),HT(A0 ∨ A1)(c)

�, A �, B
∧

�, A ∧ B
�

HT(�)(c),HT(A)(c)
Pr.6.8

HT(�)(c), {ST(A)(c)}∅

HT(�)(c),HT(B)(c)
Pr.6.8

HT(�)(c), {ST(B)(c)}∅

∪
HT(�)(c), {ST(A)(c), ST(B)(c)}∅

∧
HT(�)(c), {ST(A)(c) ∧ ST(B)(c)}∅

..
HT(�)(c),HT(A ∧ B)(c)

123

Cyclic Hypersequent System for Transitive Closure Logic Page 33 of 40 27

B1, . . . , Bk, A
ka 〈a〉B1, . . . , 〈a〉Bk, [a]A

�

HT(B1)(c), . . . ,HT(Bk)(c),HT(A)(c)[d/c]
HT(B1)(d), . . . ,HT(Bk)(d),HT(A)(d)∨,∀

{CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk ,HT(A)(d)
wk

{CT(B1)(d)}xB1 , . . . , {CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)∪
{CT(B1)(d)}xB1 , . . . , {ST(a)(c, d),CT(Bk)(d)}xBk , {ST(a)(c, d)}∅,HT(A)(d)

inst
{ST(a)(c, y),CT(B1)(y)}xB1

,y
, . . . , {ST(a)(c, y),CT(Bk)(y)}xBk

,y
, {ST(a)(c, d)}∅,HT(A)(d)

..
HT(〈a〉B1)(c), . . . ,HT(〈a〉Bk)(c),HT([a]A)(c)

where (omitted) left-premisses of ∪ steps are simply proved by wk, id, init.
�, [α]A �, [β]A

[∪]
�, [α ∪ β]A

�

HT(�)(c),HT([α]A)(c)
...
HT(�)(c), {ST(α)(c, d)}∅,HT(A)(d)

HT(�)(c),HT([β]A)(c)
...
HT(�)(c), {ST(β)(c, d)}∅,HT(A)(d)

∪
HT(�)(c), {ST(α)(c, d), ST(β)(c, d)}∅,HT(A)(d)

∧
HT(�)(c), {ST(α)(c, d) ∧ ST(β)(c, d)}∅,HT(A)(d)
..

HT(�)(c),HT([α ∪ β]A)(c)

�, 〈αi 〉A
〈∪〉i i ∈ {0, 1}

�, 〈α0 ∪ α1〉A
�

HT(�)(c),HT(〈αi 〉A)(c)
..
HT(�)(c), {ST(αi)(c, y),CT(A)(y)}xB ,y

∨i
HT(�)(c), {ST(α0)(c, y) ∨ ST(α1)(c, y),CT(A)(y)}xA,y
..

HT(�)(c),HT(〈α0 ∪ α1〉A)(c)

�, [α][β]A
[]

�, [αβ]A
�

HT(�)(c),HT([α][β]A)(c)
..
HT(�)(c), {ST(α)(c, e)}∅, {ST(β)(e, d)}∅,HT(A)(d)

∨
HT(�)(c), {ST(α)(c, e) ∨ ST(β)(e, d)}∅,HT(A)(d)

∀
HT(�)(c), {∀z(ST(α)(c, z) ∨ ST(β)(z, d))}∅,HT(A)(d)
...

HT(�)(c),HT([α; β]A)(c)

�, 〈α〉〈β〉A
〈〉

�, 〈αβ〉A
�

HT(�)(c),HT(〈α〉〈β〉A)(c)
...
HT(�)(c), {ST(α)(c, z), ST(α)(z, y),CT(A)(y)}xA,y,z

∧
HT(�)(c), {ST(α)(c, z) ∧ ST(α)(z, y),CT(A)(y)}xA,y,z

∃
HT(�)(c), {∃z(ST(α)(c, z) ∧ ST(α)(z, y)),CT(A)(y)}xA,y
..

HT(�)(c),HT(〈α; β〉A)(c)

�, 〈α〉A
〈+〉0

�, 〈α+〉A
�

HT(�)(c),HT(〈α〉A)(c)
...
HT(�)(c), {ST(α)(c, y),CT(A)(y)}xA,y

wk
HT(�)(c), {ST(α)(c, y),CT(A)(y)}xA,y, {ST(α)(c, z), TC(ST(α))(z, y),CT(A)(y)}xA,y,z

tc
HT(�)(c), {TC(ST(α))(c, y),CT(A)(y)}xA,y
...

HT(�)(c),HT(〈α+〉A)(c)

123

27 Page 34 of 40 A. Das, M. Girlando

�, 〈α〉〈α+〉A
〈+〉1

�, 〈α+〉A
�

HT(�)(c),HT(〈α〉〈α+〉A)(c)
...
HT(�)(c), {ST(α)(c, z), TC(ST(α))(z, y),CT(A)(y)}xA,y,z

wk
HT(�)(c), {ST(α)(c, y),CT(A)(y)}xA,y, {ST(α)(c, z), TC(ST(α))(z, y),CT(A)(y)}xA,y,z

tc
HT(�)(c), {TC(ST(α))(c, y),CT(A)(y)}xA,y
...

HT(�)(c),HT(〈α+〉A)(c)

�, [α]A �, [α][α+]A
[+]

�, [α+]A
�

E
E′

HT(�)(c),HT([α][α+]A)(c)
..
HT(�)(c), {ST(α)(c, f)}∅, {TC(ST(α))(f , d)}∅,HT(A)(d)

∪
HT(�)(c), {ST(α)(c, f)}∅, {ST(α)(c, d), TC(ST(α))(f , d)}∅,HT(A)(d)

∪
HT(�)(c), {ST(α)(c, d), ST(α)(c, f)}∅, {ST(α)(c, d), TC(ST(α))(f , d)}∅,HT(A)(d)

TC
HT(�)(c), {TC(ST(α))(c, d)}∅,HT(A)(d)
...

HT(�)(c),HT([α+]A)(c)

where E, E′ derive HT(�)(c),HT([α]A)(c) using wk-steps.
By applying the above translation to each rule of a PDL+ cyclic proof D of A, we obtain

a preproof HT(D)(c) of HT(A)(c). The last step, from HT(A)(c) to ST(A)(c), follows from
Prop. 6.8.

Remark 6.10 (Deeper inference) Observe that HTC can also simulate ‘deeper’ program rules
than are available in LPD+.

For example a rule
�, 〈α〉〈βi 〉A

�, 〈α〉〈β0 ∪ β1〉A
maybe simulated too (similarly for []). Thus 〈a+〉〈b〉p →

〈a+〉〈b ∪ c〉p admits a finite proof in HTC (under ST), rather than a necessarily infinite (but
cyclic) one in LPD+.

6.4 Justifying Regularity and Progress

Proposition 6.11 If D is regular, then so is HT(D)(c).

Proof sketch Notice that each step inD is translated to a finite derivation in HT(D)(c). Thus,
if D has only finitely many distinct subproofs, then also HT(D)(c) has only finitely many
distinct subproofs, modulo applications of the substitution rule.

Proposition 6.12 If D is progressing, then so is HT(D)(c).

Proof sketch We need to show that every infinite branch of HT(D)(c) has a progressing
hypertrace. Since the HT translation is defined stepwise on the individual steps of D, we can
associate to each infinite branch B of HT(D)(c) a unique infinite branch B′ of D. Since D
is progressing, let τ = (Fi)i<ω be a progressing thread along B′. By inspecting the rules of
LPD+ (and by definition of progressing thread), for some k ∈ N, each Fi for i > k has the
form: [αi,1] · · · [αi,ni][α+]A, for some ni ≥ 0. So, for i > k, HT(Fi)(di) has the form:

{ST(αi,1)(c, di,1)}∅, . . . , {ST(αi,ni)(di,ni −1, di,ni)}∅, {TC(ST(α))(di,ni , di)}∅,HT(A)(di).

123

Cyclic Hypersequent System for Transitive Closure Logic Page 35 of 40 27

By inspection of the HT-translation (Definition 6.9) whenever Fi+1 is an immediate
ancestor of Fi in B′, there is a path from the cedent {TC(ST(α))(di+1,ni+1 , di+1)}∅ to
the cedent {TC(ST(α))(di,ni , di)}∅ in the graph of immediate ancestry along B. Thus,
since τ = (Fi)i<ω is a trace along B′, we have a (infinite) hypertrace of the form
Hτ := ({�i , TC(ST(α))(di,ni , di)}∅)i>k′ along B.

By construction �i = ∅ for infinitely many i > k′, and soHτ has just one infinite trace.
Moreover, by inspection of the [+] step in Definition 6.9, this trace progresses in B every
time τ does in B′, and so progresses infinitely often. Thus, H is a progressing hypertrace.
Since the choice of the branch B of D was arbitrary, we are done.

6.5 Putting It All Together

We can now finally conclude our main simulation theorem:

Proof of Theorem 6.1 Let A be a PDL+ formula s.t. |� A. By the completeness result for
LPD+, Theorem 6.4, we have that LPD+ �cyc A, say by a cyclic proof D. From here we
construct the HTC preproof HT(D)(c) which, by Propositions 6.11 and 6.12, is in fact a
cyclic proof of HT(A)(c). Finally, we apply Proposition 6.8 to obtain a cyclic HTC proof of
ST(A)(c).

7 Extension by Equality: Simulating Full PDL

We now briefly explain how our main results are extended to the ‘reflexive’ version of TCL,
which we denote by TCL=, whose language extends that of TCL by adding atomic formulas
of the form s = t and s = t .

7.1 Hypersequential Systemwith Equality

The calculus HTC= extends HTC by the rules:

S, {�}x
=
S, {t = t, �}x

S, {�(s),�(s)}x
=
S, {�(s), s = t}x, {�(t)}x (7)

The notion of immediate ancestry for formulas and cedents is colour-coded in (7) just as
we did for HTC in Sect. 4.2. Formally:

Definition 7.1 (Ancestry for cedents, HTC=) Let r be a HTC= inference step, as typeset in
Fig. 4 or (7). We say that a cedent S in a premiss of r is an immediate ancestor of a cedent
S′ in the conclusion of r if any of the conditions in Definition 4.2 applies (where in 3. we
further ask that r is not =), or the following holds:

5. r is = and S is the (unique) cedent distinguished in the premiss of = and S′ is the cedent
{�(s), s = t}x distinguished in the conclusion of =.

Definition 7.2 (Ancestry for formulas, HTC=) Let r be a HTC= inference step, as typeset in
Fig. 4 or (7). We say that a formula F in a premiss of r is an immediate ancestor of a formula
F ′ in the conclusion of r if any of the conditions from Definition 4.3 applies, or the following
holds:

(e) r is = and F ∈ �(s) and F ′ is s = t .

123

27 Page 36 of 40 A. Das, M. Girlando

The resulting notions of (pre)proof, (hyper)trace and progress are as in Definition 4.6.
Specifically, we have that in rule = as typeset in (7), no infinite trace can include formula
t = t . Moreover, in rule = no infinite trace can include formulas in �(t), while all formulas
occurring in �(s) belong to a trace where s = t belongs.

Remark 7.3 The simulation of TCG by HTC also extends to their reflexive system RTCG ,
in the presence of equality. For this we must define their operator RTC(λx, y.A)(s, t) :=
TC(λx, y.(x = y ∨ A))(s, t). Semantically, it is correct to set RTC(A)(s, t) to be s = t ∨
TC(A)(s, t), but this encoding does not lift to the Cohen-Rowe rules for RTC.

7.2 Extending the Soundness Argument

Understanding that structures interpret= as true equality, a modular adaptation of the sound-
ness argument for HTC, cf. Sect. 5, yields:

Theorem 7.4 (Soundness of HTC=) If HTC= �nwf S then |� S.

Proof Sketch In the soundness argument for HTC, in Lemma 5.4, we must further consider
cases for equality as follows:

� Case (=)

Si+1 = Q, {�}x
=
Si = Q, {t = t, �}x

By assumption, ρi |� Q and ρi |� {�, t = t}x, i.e., ρi |� ∀x(∨ � ∨ t = t). Since
fv(t) ∩ x = ∅, this is equivalent to ρi |� ∀x(∨ �). We set ρi+1 = ρi and conclude that
ρi+1 |� {�}x.

� Case (=)

S = Q, {�(s),�(s)}x
=
Si = Q, {�(s), s = t}x, {�(t)}x

By assumption, ρi |� Q and ρi |� {�(s), s = t}x and ρi |� {�(t)}x. Thus,
ρi |� ∀x(

∨
�(s) ∨ s = t) and ρi |� ∀x(

∨
�(t))

Set ρi+1 = ρi . If ρi |� ∀x(∨ �(s)), then ρi+1 |� ∀x(∨ �(s)∨∨
�(s)), and thus ρi+1 |�

{�(s)∨ �(s)}x. Otherwise, if ρi |� ∀x(s = t), we can safely substitute term t with term s in
the second conjunct, obtaining ρi+1 |� ∀x(∨ �(s)). Thus, ρi+1 |� ∀x(∨ �(s) ∨ ∨

�(s)),
and ρi+1 |� {�(s) ∨ �(s)}x.

For the construction of the ‘false trace’ in Lemma 5.6 we add the following cases for
equality:

� Case (=). Suppose {�i }xi = {t = t, �}x. By assumption, ρ× |� ∀x(t = t ∨ ∨
�) and

thus ρ×, δH |� t = t or ρ×, δH |� ∨
�. Since the first disjunct cannot hold, the trace cannot

follow the formula t = t . Thus, if F = C for some C occurring in � and ρ×, δH |� C , set
F ′ = F and conclude that ρ×, δH |� C .

� Case (=). The hypertrace H cannot go through the structure {�(t)}x, because by
hypothesisH is infinite. Thus, {�i }xi = {�(s), s = t}x. By assumption, we have that either:

ρ×, δH |�
∨

�(s) or ρ×, δH |� s = t .

123

Cyclic Hypersequent System for Transitive Closure Logic Page 37 of 40 27

If F = C(s) for some C(s) in �(s) and ρ×, δH |� F , set F ′ = F . Otherwise, if
ρ×, δH |� ∨

�(s), then ρ×, δH |� s = t and F is s = t . At every occurrence of rule = all
the formulas occurring in �(s) are immediate ancestors of s = t . Moreover, by assumption
ρ× |� ∀x(∨ �(t)). By the truth condition associated to ∀ and since x is contained in the
domain of δH, we have that ρ×, δH |� ∨

�(t). Since ρ×, δH |� s = t , we conclude that
ρ×, δH |� ∨

�(s). Thus, there exists a D(s) ∈ �(s) such that ρ×, δH |� ∨
D(s). Set

F ′ = D(s).

7.3 Completeness for PDL (with Tests)

Turning to the modal setting, PDL may be defined as the extension of PDL+ by including a
program A? for each formula A. Semantically, we have A?M = {(v, v) : M, v |� A}. From
here we may define ε := �? and α∗ := (ε ∪ α)+. Again, while it is semantically correct to
set α∗ = ε ∪ α+, this encoding does not lift to the standard sequent rules for ∗.

The system LPD is obtained from LPD+ by including the rules:

�, A �, B
〈?〉

�, 〈A?〉B

�, Ā, B
[?]

�, [A?]B

The notion of ancestry for formulas is defined as for LPD+ (Definition 6.2) and colour-
coded in the rules. The resulting notions of (pre)proof, thread and progress are as in
Definition 6.3. We write LPD �cyc A if there is a cyclic proof of A in LPD. Just like for
LPD+, a standard encoding of LPD into the μ-calculus yields its soundness and complete-
ness, thanks to known sequent systems for the latter, cf. [21, 24, 27].

Theorem 7.5 (Soundness and completeness, essentially from [21]) Let A be a PDL formula.
|� A iff LPD �cyc A.

Again, a modular adaptation of the simulation of LPD+ by HTC, cf. Sect. 6, yields:

Theorem 7.6 (Completeness for PDL) Let A be a PDL formula. If |� A then HTC= �cyc

ST(A)(c).

Proof sketch To show completeness, we must add the the cases for the test rules to Defini-
tion 6.9:

�, A �, B
〈?〉

�,�, 〈A?〉B
�

HT(�)(c),HT(A)(c)
Pr.6.8

HT(�)(c), {ST(A)(c)}∅

HT(�)(c),HT(B)(c)
Pr.6.8

HT(�)(c), {CT(B)(c)}xB

=
HT(�)(c), {c = c,CT(B)(x)}xB

inst
HT(�)(c), {c = y,CT(y)(B)}xB ,y

∪
HT(�)(c),HT(�)(c), {c = y, ST(A)(c),CT(B)(y)}xB ,y

∧
HT(�)(c),HT(�)(c), {c = y ∧ ST(A)(c),CT(B)(y)}xB ,y
..

HT(�)(c),HT(�)(c),HT(〈A?〉B)(c)

�, A
[?]0

�, [A?]B
�

HT(�)(c),HT(A)(c)
Pr.6.8

HT(�)(c), {ST(A)(c)}∅

wk
HT(�)(c), {ST(A)(c)}∅,HT(B)(d)

∨
HT(�)(c), {c = d ∨ ST(A)(c)}∅,HT(B)(d)
..

HT(�)(c),HT([A?]B)(c)

123

27 Page 38 of 40 A. Das, M. Girlando

�, B
[?]1

�, [A?]B
�

HT(�)(c),HT(B)(c)
=
HT(�)(c), {c = d}∅,HT(B)(d)

∨
HT(�)(c), {c = d ∨ ST(A)(c)}∅,HT(B)(d)
..

HT(�)(c),HT([A?]B)(c)

8 Conclusions

In this work we proposed a novel cyclic system HTC for Transitive Closure Logic (TCL)
based on a form of hypersequents. We showed a soundness theorem for standard semantics,
requiring an argument bespoke to our hypersequents. Our system is cut-free, rendering it
suitable for automated reasoning via proof search. We showcased its expressivity by demon-
strating completeness for PDL, over the standard translation. In particular, we demonstrated
formally that such expressivity is not available in the previously proposed system TCG of
Cohen and Rowe (Theorem 3.7). Our system HTC locally simulates TCG too (Theorem 4.11).

As far as we know, HTC is the first cyclic system employing a form of deep inference
resembling alternation in automata theory, e.g. wrt. proof checking, cf. Proposition 4.10. It
would be interesting to investigate the structural proof theory that emerges from our notion
of hypersequent. As hinted at in Example 4.7, HTC exhibits more liberal rule permutations
than usual sequents, so we expect their focussing and cut-elimination behaviours to similarly
be richer, cf. [22, 23].

Finally, our work bridges the cyclic proof theories of (identity-free) PDL and (reflexive)
TCL. With increasing interest in both modal and predicate cyclic proof theory, it would be
interesting to further develop such correspondences.

Acknowledgements This work was supported by a UKRI Future Leaders Fellowship, ‘Structure vs Invariants
in Proofs’, project reference MR/S035540/1, and by the HORIZON-MSCA-2021-PF-01-01 project ‘CYclic
DErivations for Recursive operators’, project ID 101064105.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Berardi, S., Tatsuta, M.: Classical system of Martin-Lof’s inductive definitions is not equivalent to cyclic
proofs. CoRR. http://arXiv.org/abs/1712.09603 (2017)

2. Blackburn, P., van Benthem, J.: Modal logic: a semantic perspective. In: Blackburn, P., van Benthem,
J.F.A.K., Wolter, F. (eds.) Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3,
pp. 1–84. North-Holland, Amsterdam (2007)

3. Blackburn, P., De Rijke, M., Venema, Y.: Modal Logic, vol. 53. Cambridge University Press, Cambridge
(2002)

4. Bojańczyk,M.,Czerwiński,W.:AnAutomataToolbox. LectureNotes. https://www.mimuw.edu.pl/bojan/
paper/automata-toolbox-book (2018)

5. Brotherston, J., Simpson, A.: Sequent calculi for induction and infinite descent. J. Log. Comput. 21(6),
1177–1216 (2011)

123

http://creativecommons.org/licenses/by/4.0/
http://arXiv.org/abs/1712.09603
https://www.mimuw.edu.pl/bojan/paper/automata-toolbox-book
https://www.mimuw.edu.pl/bojan/paper/automata-toolbox-book

Cyclic Hypersequent System for Transitive Closure Logic Page 39 of 40 27

6. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs in separation logic.
In: Bjørner, N., Sofronie-Stokkermans, V. (eds.) Automated Deduction—CADE-23—23rd International
Conference on Automated Deduction, Wroclaw, Poland, July 31–August 5, 2011. Proceedings. Lecture
Notes in Computer Science, Vol. 6803, pp. 131–146. Springer, Berlin (2011). https://doi.org/10.1007/
978-3-642-22438-6_12

7. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover. In: Jhala, R., Igarashi,
A. (eds.) Programming Languages and Systems—10th Asian Symposium, APLAS 2012, Kyoto, Japan,
December 11–13, 2012. Proceedings. Lecture Notes in Computer Science, Vol. 7705, pp. 350–367.
Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-35182-2_25

8. Cohen, L., Rowe, R.N.S.: Uniform inductive reasoning in transitive closure logic via infinite descent. In:
Ghica, D.R., Jung, A. (eds.) 27th EACSL Annual Conference on Computer Science Logic, CSL 2018,
September 4–7, 2018, Birmingham, UK. LIPIcs, Vol. 119, pp. 17–11716. Schloss Dagstuhl, Leibniz-
Zentrum für Informatik (2018). https://doi.org/10.4230/LIPIcs.CSL.2018.17

9. Cohen, L., Rowe, R.N.S.: Integrating induction and coinduction via closure operators and proof cycles. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) Automated Reasoning—10th International Joint Conference,
IJCAR 2020, Paris, France, July 1–4, 2020, Proceedings, Part I. Lecture Notes in Computer Science, Vol.
12166, pp. 375–394. Springer, Berlin (2020). https://doi.org/10.1007/978-3-030-51074-9_21

10. Cohen, L., Rowe, R.N.: Non-well-founded proof theory of transitive closure logic. ACM Trans. Comput.
Logic 21(4), 1–31 (2020)

11. Das, A.: On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci. 16, 1 (2020). https://
doi.org/10.23638/LMCS-16(1:1)2020

12. Das, A., Girlando, M.: Cyclic proofs, hypersequents, and transitive closure logic. In: Blanchette, J.,
Kovács, L., Pattinson, D. (eds.) Automated Reasoning, pp. 509–528. Springer, Cham (2022)

13. Das, A., Pous, D.: A cut-free cyclic proof system for kleene algebra. In: Automated Reasoning with
Analytic Tableaux and Related Methods: 26th International Conference, TABLEAUX 2017, Brasília,
Brazil, September 25–28, 2017, Proceedings, pp. 261–277. Springer (2017)

14. Dax, C., Hofmann, M., Lange, M.: A Proof System for the Linear Time μ-Calculus. vol. 4337, pp.
273–284 (2006). https://doi.org/10.1007/11944836_26

15. Grädel, E.: On transitive closure logic. In: Börger, E., Jäger, G., Büning, H.K., Richter, M.M. (eds.)
Computer Science Logic, 5thWorkshop, CSL ’91, Berne, Switzerland, October 7–11, 1991, Proceedings.
Lecture Notes in Computer Science, vol. 626, pp. 149–163. Springer, Berlin (1991). https://doi.org/10.
1007/BFb0023764

16. Gurevich, Y.: Logic and the Challenge of Computer Science, pp. 1–57. Computer Science Press, Rockville
(1988)

17. Immerman, N.: Languages that capture complexity classes. SIAM J. Comput. 16(4), 760–778 (1987).
https://doi.org/10.1137/0216051

18. Kamareddine, F.D. (ed.): Transitive Closure and the Mechanization of Mathematics, pp. 149–171.
Springer, Dordrecht (2003)

19. Kozen, D.: A completeness theorem for kleene algebras and the algebra of regular events. In: Proceedings
of the Sixth Annual Symposium on Logic in Computer Science (LICS ’91), Amsterdam, TheNetherlands,
July 15–18, 1991, pp. 214–225. IEEE Computer Society, Washington, DC (1991)

20. Krob, D.: Complete systems of b-rational identities. Theor. Comput. Sci. 89(2), 207–343 (1991). https://
doi.org/10.1016/0304-3975(91)90395-I

21. Lange, M.: Games for modal and temporal logics. PhD thesis (2003)
22. Marin, S., Miller, D., Volpe, M.: A focused framework for emulating modal proof systems. In: Beklemi-

shev, L.D., Demri, S., Maté, A. (eds.) Advances in Modal Logic 11, Proceedings of the 11th Conference
on "Advances in Modal Logic," Held in Budapest, Hungary, August 30–September 2, 2016, pp. 469–488.
College Publications, England and Wales. http://www.aiml.net/volumes/volume11/Marin-Miller-Volpe.
pdf (2016)

23. Miller,D.,Volpe,M.: Focused labeled proof systems formodal logic. In: Logic for Programming,Artificial
Intelligence, and Reasoning, pp. 266–280. Springer (2015)

24. Niwiński, D., Walukiewicz, I.: Games for the mu-calculus. Theoret. Comput. Sci. 163(1), 99–116 (1996).
https://doi.org/10.1016/0304-3975(95)00136-0

25. Rowe, R.N.S., Brotherston, J.: Automatic cyclic termination proofs for recursive procedures in separation
logic. In: Bertot, Y., Vafeiadis, V. (eds.) Proceedings of the 6th ACM SIGPLAN Conference on Certified
Programs and Proofs, CPP 2017, Paris, France, January 16–17, 2017, pp. 53–65. ACM, NewYork (2017).
https://doi.org/10.1145/3018610.3018623

26. Simpson, A.: Cyclic arithmetic is equivalent to peano arithmetic. In: Esparza, J., Murawski, A.S. (eds.)
Foundations of SoftwareScience andComputationStructures—20th InternationalConference, FOSSACS
2017, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

123

https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-35182-2_25
https://doi.org/10.4230/LIPIcs.CSL.2018.17
https://doi.org/10.1007/978-3-030-51074-9_21
https://doi.org/10.23638/LMCS-16(1:1)2020
https://doi.org/10.23638/LMCS-16(1:1)2020
https://doi.org/10.1007/11944836_26
https://doi.org/10.1007/BFb0023764
https://doi.org/10.1007/BFb0023764
https://doi.org/10.1137/0216051
https://doi.org/10.1016/0304-3975(91)90395-I
https://doi.org/10.1016/0304-3975(91)90395-I
http://www.aiml.net/volumes/volume11/Marin-Miller-Volpe.pdf
http://www.aiml.net/volumes/volume11/Marin-Miller-Volpe.pdf
https://doi.org/10.1016/0304-3975(95)00136-0
https://doi.org/10.1145/3018610.3018623

27 Page 40 of 40 A. Das, M. Girlando

Uppsala, Sweden, April 22–29, 2017, Proceedings. Lecture Notes in Computer Science, vol. 10203, pp.
283–300 (2017). https://doi.org/10.1007/978-3-662-54458-7_17

27. Studer, T.: On the proof theory of the modal mu-calculus. Stud. Logica. 89(3), 343–363 (2008)
28. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer programs with cyclic

proof. In: deMoura, L. (ed.) Automated Deduction—CADE 26—26th International Conference on Auto-
mated Deduction, Gothenburg, Sweden, August 6–11, 2017, Proceedings. Lecture Notes in Computer
Science, vol. 10395, pp. 491–508. Springer, Berlin (2017). https://doi.org/10.1007/978-3-319-63046-
5_30

29. Tellez, G., Brotherston, J.: Automatically verifying temporal properties of pointer programs with cyclic
proof. J. Autom. Reason. 64(3), 555–578 (2020)

30. Thomas, W.: Languages, automata, and logic. In: Rozenberg, G., Salomaa, A. (eds.) Handbook of Formal
Languages, pp. 389–455. Springer, Berlin (1997)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/978-3-319-63046-5_30

	Cyclic Hypersequent System for Transitive Closure Logic
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Transitive Closure Logic
	2.2 Cohen–Rowe Cyclic System for TCL
	2.3 Differences to CohenRowe18:cyclicspstcl,cohen2020non
	One-Sided vs. Two-Sided
	TC vs. RTC
	Alternative Rules and Fixed Point Characterisations

	3 Interlude: Motivation from PDL
	3.1 Identity-Free PDL
	3.2 The Standard Translation
	3.3 Cohen–Rowe System is Not Complete for PDL+
	3.3.1 Some Closure Properties for Cyclic Proofs
	3.3.2 Reducing to a Relational Tautology
	3.3.3 Irregularity via an Adversarial Model
	3.3.4 Putting It All Together

	4 Hypersequent Calculus for TCL
	4.1 Annotated Hypersequents
	4.2 Non-wellfounded Hypersequent Proofs
	4.3 Some Examples
	4.4 On Cyclic-Proof Checking
	4.5 Simulating Cohen–Rowe

	5 Soundness of HTC
	5.1 Some Conventions on (Pre)proofs and Semantics
	5.2 Constructing a `Countermodel' Branch
	5.3 Canonical Assignments Along Countermodel Branches
	5.4 Putting It All Together

	6 Completeness for PDL+, Over the Standard Translation
	6.1 Cyclic System for PDL+
	6.2 Examples of Cyclic Proofs in LPD+
	6.3 A `Local' Simulation of LPD+ by HTC
	6.4 Justifying Regularity and Progress
	6.5 Putting It All Together

	7 Extension by Equality: Simulating Full PDL
	7.1 Hypersequential System with Equality
	7.2 Extending the Soundness Argument
	7.3 Completeness for PDL (with Tests)

	8 Conclusions
	Acknowledgements
	References

