
Journal of Automated Reasoning (2023) 67:25
https://doi.org/10.1007/s10817-023-09674-2

Binary Codes that do not Preserve Primitivity

Štěpán Holub1 ·Martin Raška1 · Štěpán Starosta2

Received: 31 January 2023 / Accepted: 12 June 2023 / Published online: 18 July 2023
© The Author(s) 2023

Abstract
A set of words X is not primitivity-preserving if there is a primitive list of length at least two
of elements from X whose concatenation is imprimitive. Here, a word or list is primitive if
it is not equal to a concatenation of several copies of a shorter word or list, and imprimitive
otherwise. We formalize a full characterization of such two-element sets {x, y} in the proof
assistant Isabelle/HOL. The formalization is based on an existing proof which we analyze
and simplify using some innovative ideas. Part of the formalization, interesting on its own, is
a description of the ways in which the square xx can appear inside a concatenation of words
x and y if |y| ≤ |x |. We also provide a formalized parametric solution of the related equation
x j yk = z�.

Keywords Binary code · Primitivity-preserving · Square interpretation

1 Introduction

Consider two words abba and b. It is possible to concatenate (several copies of) them as
b · abba · b, and obtain a power of a third word, namely a square bab · bab of bab. In
this paper, we describe a formalization in Isabelle/HOL of a full characterization of all ways
how this can happen for two words. The question is part of the difficult problem of solving
word equations. The simplest word equation is the commutation relation xy = yx , whose
solutions are characterized by the existence of a word t and non-negative integers m and n
such that x = tm and y = tn . In fact, this characterizes solutions of any non-trivial equation
in two variables. While the question of preserving primitivity is trivial for commuting words,

B Štěpán Holub
holub@karlin.mff.cuni.cz

Martin Raška
raska@karlin.mff.cuni.cz

Štěpán Starosta
stepan.starosta@fit.cvut.cz

1 Department of Algebra, Faculty of Mathematics and Physics, Charles University, Ke Karlovu
2027/3, 12116 Prague, Czech Republic

2 Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University
in Prague, Thákurova 9, 16000 Prague, Czech Republic

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-023-09674-2&domain=pdf

25 Page 2 of 27 S. Holub et al.

it becomes significantly more complicated in the case of non-commuting pairs, that is, in the
case of binary codes, which explains the title of this article.

The corresponding theory has a long history. The question can be formulated as solving
equations in three variables of the special form W (x, y) = z� where the left hand side
is a product of x’s and y’s, and � ≥ 2. The seminal result in this direction is the paper
by Lyndon and Schützenberger [20] from 1962, which solves the equation x j yk = z�,
with 2 ≤ j, k, �, in a more general setting of free groups. It was followed, in 1967, by a
partial answer to our question by Lentin and Schützenberger [18]. Solving an equation is
equivalent to finding a monoid whose generators satisfy the relation given by the equation. A
complete characterization ofmonoids generated by threewordswas provided byBudkina and
Markov[4]. The characterization was later, in 1976, reproved in a different way by Lentin’s
student Spehner in his Ph.D. thesis [25], which even explicitly mentions the answer to the
central question of this paper. See also a comparison of the two classifications by Harju and
Nowotka [9]. In 1985, the result was again reproved by Barbin-Le Rest and Le Rest [1],
this time specifically focusing on our question. Their paper contains a characterization of
binary interpretations of a square as a crucial tool (see Sect. 4). The latter combinatorial result
is interesting on its own, but is very little-known. In addition to the fact that, as far as we
know, the proof is not available in English, it has to be reconstructed from Théorème 2.1 and
Lemme 3.1 [1], it is long, technical and little structured, with many steps that require further
clarification. It is symptomatic, for example, that Maňuch [21] cites the claim as essentially
equivalent to his desired result but nevertheless provides a different, shorter but similarly
technical proof. We hope that a formalization of the result will make it more convincing and
approachable for the researchers and hence more widely known and used.

The proof we present here naturally contains some ideas of the original proof [1] but is sig-
nificantly different. Our main objective was to follow the basic methodological requirement
of a good formalization, namely to identify claims that are needed in the proof and formulate
them as separate lemmas and as generally as possible so that they can be reused not only in
the proof but also later. The resulting overall proof structure is new. In particular, we used the
idea of “gluing” words which in itself is not new but it is not used in the original proof at all.
The immediate consequence is that for our proof it is enough to consider the interpretation
of the square xx , while the original proof must consider several other configurations. The
analysis of the proof is therefore another important contribution of our formalization, besides
the mere certainty that there are no gaps in the proof. We also provide a complete parametric
solution of the equation x j yk = z� for arbitrary j , k and �, a classification which is not very
difficult, but maybe too complicated to be useful in a mere unverified paper form. We are not
aware of a previous publication of this parametric solution, although it could be reconstructed
from existing characterizations of monoids generated by three words mentioned above.

The formalization presented here is an organic part of a larger project of formalization of
combinatorics of words (see an introductory description [14] or the project repository [11]).
The presented version is archived [12]. The existence of the underlying library, which in turn
extends the theories of List and HOL-Library.Sublist from the standard Isabelle
distribution, critically contributes to a smooth formalization which is getting fairly close to
the way a human paper proof would look like, outsourcing technicalities to the (reusable)
background. We accompany claims in this text with names of their formalized counterparts.

Outline In Sect. 2 we introduce basic tools of combinatorics on words used in the paper.
The section can be therefore understood as a brief tutorial of combinatorics on words. In
Sect. 3 we introduce the main theorem of the paper, and outline its proof. The proof is then
completed in Sects. 4–7; see the end of Sect. 3 for more details. Section5 is dedicated to a
special case of uniform binary codes, which is interesting on its own, and is later used for

123

Binary Codes that do not Preserve Primitivity Page 3 of 27 25

conjugate words. Section8 provides some further details on the formalization of the result in
Isabelle/HOL.

This is an extended version of a conference paper with the same name [16]. The intro-
ductory Sect. 2 is an extension of the appendix of the conference paper. We also added to
the presentation many proofs omitted in the conference version. In particular, the substan-
tial part of the proof of the key Theorem 25 is given, including proofs of several auxiliary
lemmas. Numerous examples and figures were added. Section3 was extended by Lemma 10
containing a new complementary result. Sect. 5 about uniform codes is a new one. In Sect. 7,
we have added a passage about the non-overlapping set, which replaces and generalizes the
brief remark about sings-code in the conference paper.

2 Notation and Basics of Combinatorics onWords

In this section we introduce basic notation, and explain most elementary facts, ideas and
intuitions that we are going to use in the paper. For proofs and more details see [5, 19, 24].

2.1 Lists,Words andMonoids

Let � be a set, usually finite or countable, also called an alphabet.
Lists (i.e. finite sequences) [x1, x2, . . . , xn] of elements xi ∈ � are called words over

�. The length of a word u = [x1, x2, . . . , xn] is denoted |u| and equals n. The set of all
words over � is usually denoted as �∗, using the Kleene star. A notorious ambiguity of
this notation is related to the situation when we consider a set of words X ⊂ �∗, and are
interested in lists over X . They should be denoted as elements of X∗. However, X∗ usually
means something else (in the theory of rational languages), namely the set of all words in�∗
generated by the set X . To avoid the confusion, we will therefore follow the notation used
in the formalization in Isabelle, and write lists X instead, to make clear that the entries
of an element of lists X are themselves words. Note that �∗ is equivalent to lists�,
but we shall keep the former notation for the basic alphabet �. In order to further help to
distinguish words over the basic alphabet from lists over a set of words, we shall use boldface
variables for the latter. In particular, it is important to keep in mind the difference between
a letter a and the word [a] of length one, a distinction which is usually glossed over lightly
in the literature on combinatorics on words. The set of words over � generated by X is then
denoted as 〈X〉.

The (associative) binary operation of concatenation of two words u and v is denoted by
u ·v. We prefer this algebraic notation to the Isabelle’s original infix symbol @. Moreover, we
shall sometimes omit the dot as usual. With respect to this operation, the set �∗ is a monoid
(with the empty word as the neutral element), and 〈X〉 is a submonoid of�∗ for any X ⊆ �∗.

If u = [x1, x2, . . . , xn] ∈ lists X is a list of words, then we write concatu for
x1 · x2 · · · xn . If u is nonempty, its first element x1 is denoted hd u (head) and its last
element xn is denoted lastu. We write ε for the empty list (the empty word), and uk for the
concatenation of k copies of u (we use u@k in the formalization). We write u ≤p v, u <p v,
u ≤s v, u <s v, and u ≤ f v to say that u is a prefix, a strict prefix, a suffix, a strict suffix
and a factor (that is, a contiguous sublist) of v respectively. The longest common prefix of u
and v is denoted by u ∧p v. If u is a prefix of v or v is a prefix of u, we say that u and v are
prefix-comparable.

123

25 Page 4 of 27 S. Holub et al.

2.1.1 Primitivity

A word is primitive if it is nonempty and not a power of a shorter word. Otherwise, we call it
imprimitive. Each nonemptywordw is a power of a unique primitive word ρ(w), its primitive
root. For example, u = abab is imprimitive with ρ(u) = ab.

2.1.2 Periodic Root and Period

A word r is a periodic root of a word w if w <p r · w (note that r must be nonempty). This
is equivalent to w being a prefix of a sufficiently large power of r , and we shall sometimes
write rω as an abbreviation of “sufficiently large power” (which remains just a notation,
we do not deal with infinite words in this paper, nor in the formalization). Dual concept to
(prefix-)periodic root is the suffix-periodic root, characterized by w <s w · r . This is just
one instance of the natural duality given by the reversal (or mirror) symmetry, which is often
exploited in human proofs on an intuitive basis. See Sect. 8 for more details on how reversal
symmetry is used in our formalization.

If r is a periodic root of w, then we also say that w has a period |r |. Note that this is
equivalent to w having a suffix-periodic root r ′ with |r | = ∣

∣r ′∣∣.
A periodic root r of w need not be primitive, but it is always possible to consider the

corresponding primitive root ρ(r), which is also a periodic root of w. Note that any word has
infinitely many periodic roots since we allow r to be longer thanw. Nevertheless, a word can
havemore than one period even if we consider only periods shorter than |w|. For example, the
word aaabaa has periods 4 and 5, with corresponding periodic roots aaab and aaaba. Such
a possibility is controlled by the Periodicity Lemma, often called the Fine–Wilf Theorem [7]:

Lemma 1 (per-lemma-comm) If w ≤p uw and w ≤p vw, with |u| + |v| − gcd(|u| , |v|) ≤
|w|, then uv = vu.

This implies, together with Lemma 4 below, that the word aaabaa of length 7 is a word of
the greatest length with periods 4 and 5 that is not a power of a single letter. Usually, the
weaker test |u| + |v| ≤ |w| is sufficient to indicate that u and v commute.

2.1.3 Maximal Prefix

Given a word r , we define the maximal r-prefix of a word w as w ∧p rω. For example, if
r = ab, then the maximal r -prefix of ababaabab is ababa. Sometimes, the easiest way to
prove that two words are not equal is to show that they have different r -prefixes for a suitable
r , see the proof of Lemma 24 below.

2.1.4 Conjugation

We say that two words u and v are conjugate and write u ∼ v if u = rq and v = qr for
some words r and q . Note that conjugation is an equivalence whose classes are also called
cyclic words. For example, aab and aba are conjugate. They are elements of the conjugacy
class {aab, aba, baa}. A word u is a cyclic factor of w if it is a factor of some conjugate of
w. If |u| ≤ |w|, this is equivalent to u being a factor of ww.

Conjugation u ∼ v is characterized as follows:

Lemma 2 (conjugation) If uz = zv for nonempty u, then there exists words r and q and an
integer k such that u = rq, v = qr and z = (rq)kr .

123

Binary Codes that do not Preserve Primitivity Page 5 of 27 25

A word w has a periodic root r if it is a prefix of rω. If w is a factor, not necessarily a
prefix, of rω, then it has a periodic root which is a conjugate of r . In particular, if |u| = |v|,
then u ∼ v is equivalent to u and v each being a factor of a power of the other word . Note
also that if u ∼ v and u = tk , then v = sk for some s ∼ t .

2.1.5 Lyndon and Schützenberger

The following result [20], called the Lyndon–Schützenberger Theorem, has been mentioned
in the introduction:

Theorem 3 (Lyndon–Schutzenberger) If x j yk = z� with j ≥ 2, k ≥ 2 and � ≥ 2, then the
words x, y and z commute.

In the context of our paper, the preferred reading is the following: If x and y do not commute
(that is, they form a binary code, see below), and x j yk is imprimitive, then j = 1 or k = 1.

2.2 Binary Codes

2.2.1 Code

A set of words X is a code if its elements do not satisfy any nontrivial relation, that is, they are
a basis of a free monoid. A monoid M of words is free if and only if it satisfies the stability
condition which is the implication

u, v, uz, zv ∈ M ⇒ z ∈ M .

This is a useful characterization since it allows to recognize a free monoid without knowing
its basis. Yet another formulation is that concat is a bijection between lists X and 〈X〉
for a code X . The name “code” is motivated by the latter fact: any concatenation of a list of
elements of the code can be uniquely factorized (“decoded”) back into the original list.

2.2.2 Commutation

It can be shown that a two-element set {x, y} is a (binary) code if and only if x and y do not
commute. Therefore, if we say that B = {x, y} is a binary code, it is equivalent to saying that
xy �= yx , which is often preferred in the formalization. By the definition of code, the fact
means that two words commute if and only if they satisfy a nontrivial relation. This makes
commutation an important property, which can be characterized as follows:

Lemma 4 (comm) xy = yx if and only if x = tk and y = tm for some word t and some
integers k,m ≥ 0.

Since every nonempty word has a (unique) primitive root, the word t can be chosen primitive
(k or m can be chosen 0 if x or y is empty). This implies that two nonempty words x and y
commute if and only if ρ(x) = ρ(y). A useful consequence is that x and y commute if and
only if x j and yk commute, where 0 < k, j .

123

25 Page 6 of 27 S. Holub et al.

2.2.3 Synchronization

A crucial property of a primitive word t is that it cannot be a nontrivial factor of its own
square. More specifically, for a general word u, the equality u · u = p · u · s implies that all
three words p, s, u commute. Indeed, it follows that u · u · u = p · u · s · u = u · p · u · s, and
thus p · u = u · p and s · u = u · s. Therefore, p, s and u have a common primitive root t .
Hence, the presence of a nontrivial factor u inside uu can be obtained exclusively by a shift
by several t’s. Especially, if u is primitive, i.e., u = t , we either have p = u = t and s empty,
or vice versa. We shall refer to this idea of shifting by the primitive root as synchronization.
A slightly more general formulation, which can be seen as an instance of synchronization,
says that if w · v is a prefix of vω, then w and v commute.

2.2.4 Decoding Delay

Let x and y be two words that do not commute. Equivalently, let B = {x, y} be a binary
code. Then the longest common prefix (x · y) ∧p (y · x) of x · y and y · x , denote it α, is a
strict prefix of both x · y and y · x . Let cx and cy be distinct letters following α in x · y and
y · x respectively. A crucial property of α, not very difficult to prove, is that it is a prefix of
any sufficiently long word in 〈{x, y}〉. Moreover, if w = [u1, u2, . . . , un] ∈ lists {x, y} is
such that concatw is longer than α, then α · [cx] is a prefix of concatw if u1 = x and
α · [cy] is a prefix of concatw if u1 = y. That is why the length of α is sometimes called the
decoding delay of the binary code {x, y}. Note that the property indeed in particular implies
that {x, y} is a code, that is, it does not satisfy any nontrivial relation. For example, α = aba
if x = abaa and y = ab, with cx = a and cy = b. Suppose that we want to decode a word
starting with abaaabaa · · · ∈ 〈{x, y}〉, that is, we want to find its unique decomposition into
words x and y. We first see the prefix α = aba which says nothing about the decomposition
since it is common to all messages. It is followed by cx = a which indicates that the first
word in the decomposition is x .

The property is also behind our method mismatch (see Sect. 8). Finally, using this
property, the proof of the following lemma is straightforward.

Lemma 5 (bin-code-lcp-concat’) Let X = {x, y} be a binary code, and let w0,w1 ∈
lists X be such that concatw0 and concatw1 are not prefix-comparable. Then

(concatw0) ∧p (concatw1) = concat(w0 ∧p w1) · (xy ∧p yx).

3 Main Theorem

Let us introduce the central definition of the paper.

Definition 6 We say that a set X of words is primitivity-preserving if there is no list w ∈
lists X such that

• |w| ≥ 2;
• w is primitive; and
• concatw is imprimitive.

If X is not primitivity-preserving, then each primitive w ∈ lists X of length at least
two such that concatw is imprimitive will be called a witness (of the fact that X is not
primitivity-preserving).

123

Binary Codes that do not Preserve Primitivity Page 7 of 27 25

Note that our definition does not take into account singletonsw = [z]. In particular, X can be
primitivity-preserving even if some z ∈ X is imprimitive. For example, if X = {aa, b}, then
X is primitivity-preserving despite the fact that concatw of the primitive list w = [x] is
an imprimitive word aa. On the other hand, in the binary case, Theorem 7 gives conditions
under which x and y must be primitive if {x, y} is not primitivity-preserving.

Mitrana [22] shows that X is primitivity-preserving if and only if it is the minimal set
of generators of a “pure monoid”, cf. [3, p. 276]. The latter definition requires that even
individual code words are primitive, which is a significant difference from our definition
(see, in particular, the concept of a non-overlapping set in Sect. 7). Mitrana formulates the
primitivity of a set in terms of morphisms, that is, mappings h : A∗ → �∗ satisfying
h(u · v) = h(u) · h(v) for all u, v ∈ A∗. This is equivalent to our formulation in the
following way. Consider a binary alphabet A = {a, b}, and a morphism h : A∗ → �∗
defined by h : a �→ x, b �→ y. Then h represents our set X = {x, y}, and we can write, for
example, h(abaa) instead of concat[x, y, x, x]. The concept of preserving primitivity puts
our paper into a wider context of morphisms preserving a given property, most classically
square-freeness; see for example a characterization of square-free morphisms over three
letters by Crochemore [6].

The target claim of our formalization is the following characterization of lists witnessing
that a binary code is not primitivity-preserving:

Theorem 7 (bin-imprim-code)
Let B = {x, y} be a binary code that is not primitivity-preserving. Then there are integers

j ≥ 1 and k ≥ 1, with k = 1 or j = 1, such that the following conditions are equivalent for
any w ∈ lists B with |w| ≥ 2:

• w is primitive, and concatw is imprimitive;
• w is conjugate with [x] j [y]k .

Moreover, assuming |y| ≤ |x |,
• if j ≥ 2, then j = 2 and k = 1, and both x and y are primitive;
• if k ≥ 2, then j = 1 and x is primitive.

First, note that the integers j and k depend on the set B only. Consequently, the theorem
says that there is a unique witness of the form [x] j [y]k for a given B, and all witnesses are
conjugate with it.

Proof (overview) Let w be a witness. That is, |w| ≥ 2, w is primitive, and concatw is
imprimitive. Since [x] j [y]k and [y]k[x] j are conjugate, we can suppose, without loss of
generality, that |y| ≤ |x |.

First, we want to show that w is conjugate with [x] j [y]k for some j, k ≥ 1 such that
k = 1 or j = 1. Since w is primitive and of length at least two, it contains both x and y.
If it contains one of these letters exactly once, then w is clearly conjugate with [x] j [y]k for
j = 1 or k = 1. Therefore, the difficult part is to show that no primitive w with concatw
imprimitive can contain both letters at least twice. This is the main task of the rest of the
paper, which is finally accomplished by Theorem 25 claiming that lists that contain at least
two occurrences of x are conjugate with [x, x, y]. To complete the proof of the first part of
the theorem, it remains to show that j and k are unique for a given {x, y}. This follows from
Lemma 9.

Note that the imprimitivity ofconcatw, withw = [x] j [y]k , induces the equality x j yk =
z� for some z and � ≥ 2. The alreadymentioned seminal result of Lyndon and Schützenberger

123

25 Page 8 of 27 S. Holub et al.

(Theorem 3) shows that j and k cannot be simultaneously at least two, since otherwise x
and y commute. For the same reason, considering its primitive root, the word y is primitive
if j ≥ 2. Similarly, x is primitive if k ≥ 2. The primitivity of x when j = 2 is a part of
Theorem 25. ��

We start by giving a complete parametric solution of the equation x j yk = z� in the
following theorem. This will eventually yield, after the proof of Theorem 7 is completed,
a full description of not primitivity-preserving binary codes. Since the equation is mirror
symmetric, we omit symmetric cases by assuming |y| ≤ |x |.
Theorem 8 (LS-parametric-solution) Let j, k ≥ 1, � ≥ 2 and |y| ≤ |x |.

The equality x j yk = z� holds in exactly the following cases:

A. There exist a word r and integers m, n, t ≥ 0 such that

mj + nk = t�, and

x = rm, y = rn, z = r t ;
B. j = k = 1 and there exist non-commuting words r and q, and integers m, n ≥ 0 such

that

m + n + 1 = �, and

x = (rq)mr , y = q(rq)n, z = rq;
C. j = 1 and k ≥ 2 and there exist non-commuting words r and q such that

x = (qrk)�−1q, y = r , z = qrk;
D. j = 1 and k ≥ 2 and there exist non-commuting words r and q, an integer m ≥ 1 such

that

x = (qr(r(qr)m)k−1)�−2qr(r(qr)m)k−2rq, y = r(qr)m, z = qr(r(qr)m)k−1;
E. j = � = 2, k = 1 and there exist non-commuting words r and q and an integer m ≥ 2

such that

x = (rq)mr , y = qrrq, z = (rq)mrrq.

All the cases of the last theorem are illustrated in Fig. 1. See also Example 11.

Proof If x and y commute, then all threewords commute, hence they are powers of a common
word. A length argument yields the solution A.

Assume now that {x, y} is a code. It follows that z does not commute with x . We have
shown in the overview of the proof of Theorem 7 that j = 1 or k = 1 by the Lyndon–
Schützenberger Theorem 3. The solution is then split into several cases.
Case 1: j = k = 1.
Let m and r be such that zmr = x with r a strict prefix of z. By setting z = rq , we obtain
the solution B with n = � − m − 1.
Case 2: j ≥ 2, k = 1.
Since |y| ≤ |x | and � ≥ 2, we have

2 |z| ≤
∣
∣
∣z�

∣
∣
∣ =

∣
∣
∣x j

∣
∣
∣ + |y| < 2

∣
∣
∣x j

∣
∣
∣ ,

123

Binary Codes that do not Preserve Primitivity Page 9 of 27 25

Fig. 1 Illustration of the distinct cases of Theorem 8

hence z is a strict prefix of x j .
As x j has periodic roots both z and x , and z does not commute with x , the Periodicity

Lemma 1 implies
∣
∣x j

∣
∣ < |z| + |x |. That is, z = x j−1u, x j = zv and x = uv for some

nonempty words u and v. Since x j is a prefix of z�, we deduce that v is a prefix of z�−1, and
therefore also of x since x is a prefix of z. This implies that

x = uv = vu′

for some word u′. That is, the words u and u′ are conjugate by v. The characterization of
conjugate words yields u = rq , u′ = qr and v = (rq)nr for some words r , q and an integer
n. Moreover, since x and y do not commute, the words r and q are nonempty.

123

25 Page 10 of 27 S. Holub et al.

We have

j |x | + |y| =
∣
∣
∣x j y

∣
∣
∣ =

∣
∣
∣z�

∣
∣
∣ =

∣
∣
∣(x j−1u)�

∣
∣
∣ = �(j − 1) |x | + � |u| ,

and thus |y| = (� j − � − j) |x | + � |u|. From |y| ≤ |x |, |u| > 0, and � ≥ 2, we deduce that
� j − � − j is not positive. Since j, � ≥ 2, this implies j = � = 2. Then z = x j−1u = xu =
uvu. From x2y = z2, we have uvuvy = uvuuvu = uvuvu′u, hence y = u′u. Substituting
u = rq , u′ = qr , and v = (rq)nr , we obtain the solution E with m = n + 1, where m ≥ 2
follows from |y| ≤ |x |.
Case 3: j = 1, k ≥ 2, yk ≤s z.
We have z = qyk for some word q . Noticing that x = z�−1q and setting y = r yields the
solution C. The words r and q do not commute since x and y do not commute.
Case 4: j = 1, k ≥ 2, z <s yk .
This case is analogous to Case 2. Using the Periodicity Lemma 1, we obtain uyk−1 = z,
yk = vz, and y = vu with nonempty u and v. As v is a suffix of z�−1 and is shorter than
y, it is also a suffix of y, and we have y = vu = u′v for some u′ conjugate with u by v.
We therefore have nonempty words r and q such that u′ = rq , u = qr , and v = (rq)nr .
Using y = u′v, z = uyk−1 and z�−1 = xv, we obtain the solution D with m = n+ 1. Again,
the words r and q do not commute since x and y, which are generated by r and q , do not
commute.

The proof is completed by a direct verification of the converse. ��
The case analysis in the previous proof also shows that at most one of the cases holds for
given x , y and z.

Recall that Theorem 7 claims two things. First, if there is a wordw witnessing that {x, y}
is not primitivity-preserving, then w is conjugate with [x] j [y]k for some j and k. Second,
there is at most one such pair (j, k) for a given {x, y}, (and exactly one if {x, y} is not
primitivity-preserving). The next lemma proves the second claim.

Lemma 9 (LS-unique) Let B = {x, y} be a binary code. Assume j, k, j ′, k′ ≥ 1. If both
x j yk and x j ′ yk

′
are imprimitive, then j = j ′ and k = k′.

Proof Let z1, z2 be primitive words and �, �′ ≥ 2 be such that

x j yk = z�1 and x j ′ yk
′ = z�

′
2 . (1)

Since B is a code, the words x and y do not commute. We proceed by contradiction.
Case 1: First, assume that j = j ′ and k �= k′.
Let, without loss of generality, k < k′. From (1) we obtain z�1y

k′−k = z�
′
2 . The case k

′ −k ≥ 2
is impossible due to theLyndon–SchützenbergerTheorem3.Hence k′−k = 1. This is another
place where the formalization led to a simple and nice general lemma (easily provable by the
PeriodicityLemma1)whichwill turn out to beuseful also in the proof ofTheorem25.Namely,
the lemma imprim-ext-suf-comm claims that if both uv, and uvv are imprimitive, then
u and v commute (see also a comment in Sect. 8). We apply this lemma to u = x j yk−1 and
v = y, obtaining a contradiction to the assumption that x and y do not commute.
Case 2. The case k = k′ and j �= j ′ is symmetric to Case 1.
Case 3. Let finally j �= j ′ and k �= k′. The Lyndon–Schützenberger Theorem 3 implies
that either j or k is one, and similarly either j ′ or k′ is one. We can therefore assume that
k = j ′ = 1 and k′, j ≥ 2. Moreover, we can assume that |y| ≤ |x |. Indeed, in the opposite
case, we can consider the words ykx j and yk

′
x j ′ instead, which are also both imprimitive.

Theorem 8 now allows only the case E for the equality x j y = z�1. We therefore have
j = � = 2 and x = (rq)mr , y = qrrq for an integer m ≥ 2 and some non-commuting

123

Binary Codes that do not Preserve Primitivity Page 11 of 27 25

words r and q . Assume that z2 and rq have the same primitive root. Then qr = rq , since
|qr | = |rq| and y = qrrq is a suffix of z�

′
2 , a contradiction. Therefore z2 and rq do not

commute. Since y = qrrq is a suffix of z�2, this implies that z2 and rq do not commute.
Consider the word x · qr = (rq)mrqr , which is a prefix of xy, and therefore also of z�2. This
means that x · qr has two periodic roots, namely rq and z2, and the Periodicity Lemma 1
implies that |x · qr | < |rq| + |z2|. Hence x is shorter than z2. The equality xyk

′ = z�
′
2 , with

�′ ≥ 2, now implies on one hand that rqrq is a prefix of z2, and on the other hand that z2 is a
suffix of yk

′
. It follows that rqrq is a factor of (qrrq)k

′
. Hence rqrq and qrrq are conjugate

and qrrq is a square since rqrq is a square, see Sect. 2.1.4. Thus they both have a period of
length |rq|, which implies qr = rq , a contradiction. ��

A natural question is whether the property of being primitivity-preserving it algorith-
mically decidable for given {x, y}. It follows from Theorem 7 that it is enough to check
primitivity of elements from the set

{xxy} ∪ {xyk | k ≥ 1}.
From the computational point of view, we therefore need an upper bound on k in terms of
|x | and |y|. Such a bound is given by the following lemma.

Lemma 10 (LS-exp-le) Let B = {x, y} be a binary code and let x · yk = zl with k, � ≥ 2.
Then

k ≤ |x | − 4

|y| + 2.

Proof By Theorem 8, it is enough to consider cases C and D. In case C, using successively
� ≥ 2, |r | ≥ 1 and |q| ≥ 1, we have

|x | − 4

|y| + 2 = (� − 1)(|q| + k |r |) + |q| − 4

|r | + 2 ≥ 2 |q| + k |r | − 4

|r | + 2 ≥

≥ k + 2 + 2 |q| − 4

|r | ≥ k + 2 − 2

|r | ≥ k.

Similarly, in case D, using � ≥ 2 and |qr | ≥ 2, we have

|x | − 4

|y| + 2 = (� − 2)
∣
∣qr(r(qr)m)k−1

∣
∣ + 2 |qr | + (k − 2) |y| − 4

|y| + 2 ≥

≥ 2 |qr | + (k − 2) |y| − 4

|y| + 2 ≥ k + 2 |qr | − 4

|y| ≥ k.

��
Note that the bound is sharp since we have equality for � = 2 and |q| = |r | = 1 in both cases
as the following example points out.

Example 11 (examples-bound-optimality) For any k ≥ 2 the triples

x = 01k0 y = 1 z = 01k, (C)

x = 01(101)k−210 y = 101 z = 01(101)k−1 (D)

corresponding to cases C and D (with m = 1) of Theorem 8, satisfy |y| ≤ |x |, x · yk = z · z,
x · y �= y · x and k = (|x |−4)/|y| + 2.

123

25 Page 12 of 27 S. Holub et al.

We remark that the primitivity-preserving property is decidable for all finite sets due to the
characterization of star-free regular languages as those with aperiodic syntactic monoid. See
Mitrana [22, Corollary 6] for more details and further references.

The rest of the paper, and therefore also of the proof of Theorem 7, is organized as follows.
In Sect. 4, we introduce a general theory of interpretations, which is behind the main idea
of the proof. In Sect. 5, we apply it to the (relatively simple) case of a binary code with
words of the same length. In Sect. 6, we characterize the unique disjoint extendable {x, y}-
interpretation of the square of the longer word x . This is a result of independent interest, and
also the cornerstone of the proof of Theorem 7 which is completed in Sect. 7 by showing
that a list containing at least two x’s witnessing that {x, y} is not primitivity-preserving is
conjugate with [x, x, y].

4 Interpretations and theMain Idea

Let X be a code, and let u be a factor of concatw for some w ∈ lists X . The natural
question is to decide how u can be produced as a factor of words from X , or, in other words,
how it can be interpreted in terms of X . This motivates the following definition.

Definition 12 Let X be a set of words over �. We say that the triple (p, s,w) ∈ �∗ × �∗ ×
lists X is an X -interpretation of a word u ∈ �∗ if

• w is nonempty;
• p · u · s = concatw;
• p <p hd w and
• s <s lastw.

The definition is illustrated by the following figure, where w = [w1, w2, w3, w4]:

u
w1 w2 w3 w4

p s

The second condition of the definition motivates the notation p u s ∼I w for the situation
when (p, s,w) is an X -interpretation of u.

Remark 13 For sake of historical reference, we remark that our definition of X -interpretation
differs from the one used in [1]. The formulation in [1] of the situation depicted by the above
figure would be that u is interpreted by the triple (s′, w2 · w3, p′) where p · s′ = w1 and
p′ · s = w4. This is less convenient for two reasons. First, the decomposition of w2 · w3 into
[w2, w3] is only implicit here (and even possibly ambiguous if X is not a code). Second,
while it is required that the words p′ and s′ are a prefix and a suffix, respectively, of an
element from X , the identity of that element is left open, and has to be specified separately.

If u is a nonempty element of 〈X〉 and u = concatu for u ∈ lists X , then the X -
interpretation ε u ε ∼I u is called trivial. Note that the trivial X -interpretation is unique if
X is a code.

As nontrivial X -interpretations of elements from 〈X〉 are of particular interest, the fol-
lowing two concepts are useful.

Definition 14 An X -interpretation p u s ∼I w of u = concatu is called

• disjoint if concatw′ �= p · concatu′ whenever w′ ≤p w and u′ ≤p u;

123

Binary Codes that do not Preserve Primitivity Page 13 of 27 25

Fig. 2 Non-disjoint interpretation

Fig. 3 The situation prohibited by Lemma 15

• extendable if p ≤s wp and s ≤p ws for some elements wp, ws ∈ 〈X〉.
Informally, an interpretation is disjoint if no “edge” betweenwords inufits an “edge” between
words inw in the equality p ·concatu · s = concatw. That is, the equality does not split
in two shorter ones. Let, for example, x = 01101 and y = 01 and let u = [y, y]. Then the
interpretation

0110101101 ∼I [x, x]
of u = 0101 = concat[y, y] is not disjoint, see Fig. 2.Moreover, it is not extendable, since
101 is not a prefix of any word from 〈{x, y}〉. We could also argue that it is not extendable
because 011 is not a suffix of any word from 〈{x, y}〉. In contrast, the interpretation in Fig. 5
is disjoint and extendable.

Note that a disjoint X -interpretation is not trivial, and that being disjoint is relative to
a chosen factorization u of u (which is nevertheless unique if X is a code). It should be
clear from the definition in which way an extendable interpretation of concatu can be
“extended” into an X -interpretation of concatw.

The definitions above are naturally motivated by the main idea of the characterization of
sets X that do not preserve primitivity, which dates back to Lentin and Schützenberger [18].
If w is primitive while concatw is imprimitive, say concatw = z�, � ≥ 2, then the shift
by z provides a nontrivial and extendable X -interpretation of concatw. (In fact, there are
� − 1 such nontrivial interpretations). Moreover, the following lemma, formulated in a more
general setting of two lists w1 and w2, implies that the X -interpretation is disjoint if X is a
code.

Lemma 15 (shift-disjoint,shift-interpret) Let X be a code. Let w1,w2 ∈ lists X be such
that z · concatw1 = concatw2 · z where z /∈ 〈X〉. Then z · concat v1 �= concat v2,
whenever v1 ≤p wn

1 and v2 ≤p wn
2 , n ∈ N.

In particular concatu has a disjoint extendable X-interpretation for any nonempty
prefix u of w1.

Proof First, note that z · concatwn
1 = concatwn

2 · z for any n. Let wn
1 = v1 · v′

1 and
wn
2 = v2 · v′

2. If z ·concat v1 = concat v2, then also concat v′
2 · z = concat v′

1. This
contradicts z /∈ 〈X〉 by the stability condition. We have proved the first part of the lemma
excluding the situation illustrated by Fig. 3. The corresponding lemma in formalization is
shift-disjoint.

The second part is covered in the formalization by shift-interpret. An extend-
able X -interpretation of concatu is induced by the fact that concatu is a factor of

123

25 Page 14 of 27 S. Holub et al.

Fig. 4 Interpretation of concat u from Lemma 15

concat(w2 · w2). By Lemma 2, there are words q and r such that concatw1 = rq ,
concatw2 = qr and z = (rq)mr for some r . Since z /∈ 〈X〉, we deduce that also r /∈ X
and the assumptions of the present lemma are satisfied for r . We can therefore assume that
z = r . In particular, |z| < |concatw2| and z ·concatu is a prefix of concatw2

2. Let p,
v be such that

• p · v ≤ w2
2;• p is the maximum prefix of w2

2 such that concatp ≤p z; and
• p · v is the minimum prefix of w2

2 such that z · concatu ≤p concat(p · v),
and let p, s be words such that p ·concat u · s = concat v. The situation is illustrated by
Fig. 4. Here p and s satisfy concatp · p = z and z · concatu · s = concat(p · v). The
maximality of p, and the minimality of p · v also implies that p <p hd v and s <s last v.
Therefore we have p (concatu) s ∼I concat v. The interpretation is disjoint by the first
part of the proof. It is also extendable since s is a prefix of concat s, where u · s = w2

1, and
p is a suffix of w1. ��

Let B = {x, y} be a binary code. In order to apply the above lemma to the imprimitive
concatw = zk , 2 ≤ k, of a primitive w ∈ lists B, set w1 = w2 = w. Let us verify
the assumption z /∈ 〈B〉. If z = concat z, with z ∈ lists B, then concat(z · w) =
concat(w · z), hence z · w = w · z since B is a code. This implies that w and z have the
same primitive root. Since concat z is strictly shorter than concatw, we deduce that w
is not primitive, a contradiction.

See also Fig. 7 which illustrates our main application of the lemma with u = [x, x],
w1 = w2, and v = [x, y, x].

5 Uniform Binary Codes

In this section, we use the main idea in a relatively simple case of uniform binary codes, that
is, binary codes B = {x, y} with |x | = |y|. The key ingredient is the following technical
lemma characterizing possible {x, y}-interpretations of the word x · y in the uniform case.

Lemma 16 (uniform-square-interp) Let B = {x, y} be a binary code with |x | = |y|. Let
p (x · y) s ∼I v be a nontrivial B-interpretation. Then v = [x, y, x] or v = [y, x, y] and
x · y is imprimitive.
Proof We have p · x · y · s = concat v, where p and s are not empty (otherwise the
interpretation is trivial). Therefore 0 < |p · s| < 2 |x |, and a length argument yields that |v|
is three. A straightforward way to prove the claim is to consider all eight possible candidates.
If v = [x, y, x] or v = [y, x, y], then x · y is a nontrivial factor of its square (x · y) · (x · y),
which yields the imprimitivity of x · y (see Sect. 2.2.3).

The remaining six cases can be easily excluded one by one. In each case we obtain x = y,
a contradiction to B being a code.

123

Binary Codes that do not Preserve Primitivity Page 15 of 27 25

• If v = [x, x, x] then p · x · y · s = x · x · x implies, by synchronization (see Sect. 2.2.3),
that y · s and x commute, that is, x · y · s = y · s · x . This implies x = y due to |x | = |y|.
We can argue similarly for v = [y, y, y].

• If v = [x, x, y], then p · x · y · s = x · x · y implies that x = p · t for some word t . Then
p · p · t · y · s = p · t · p · t · y implies p · t = t · p and y · s = t · y. Therefore x ≤p t · x
and y ≤p t · y. This implies that both x and y have a periodic root t , and since they are
of the same length, we conclude x = y. A symmetric argument deals with v = [x, y, y].

• Let now v = [y, y, x]. Then p · x · y · s = y · y · x and y = p · t for some word t .
From p · x · p · t · s = p · t · p · t · x and |x | = |y| = |t · p| we deduce x = t · p. The
equality p · t · p · y · s = t · p · t · y · x now implies y = p · t = t · p = x . The last case
v = [x, x, y] is again symmetric.

��
The previous proof is interesting from the point of view of the formalization. It is a case
analysis in which each case is easy. It is nevertheless not always easy to check that the
case analysis is complete. See Sect. 8 for a custom method performing such a verification
in our formalization. Let us also remark that to show that v is indeed of length three, which
needs no further justification in a human proof, requires some effort in the formalization. The
difference reveals the often non-reflected intuition behind human dealing with small natural
numbers.

Lemma 16 immediately implies the following characterization of primitive uniform binary
morphisms (see [22, Theorem 10]).

Theorem 17 (bin-uniform-prim-morph) Let B = {x, y} be a binary code with |x | = |y|. The
code B is primitivity-preserving if and only if x · y is primitive.
Proof If B is primitivity-preserving, then x · y is primitive by definition.

Assume now that x · y is primitive and proceed by contradiction. Let w be primitive of
length at least two such that concatw is imprimitive. Then w contains both letters x and
y, hence it has either [x, y] or [y, x] as a factor. Conjugating w, we can assume that [x, y] is
a factor of w. The imprimitivity of concatw yields a nontrivial B-interpretation of x · y,
which implies that x · y is not primitive by Lemma 16, a contradiction. ��
The previous theorem can be reformulated as saying that an imprimitivity witness for a
uniform binary code must be of length two, which means that x · y (and hence also y · x)
must be imprimitive. Consequently, there is only one way to get a uniform binary code
not preserving primitivity: take an odd power of a primitive word of even length, and split
it in half. For example, the third power of the primitive word t = abba yields the code
{abbaab, baabba}, which is not primitivity-preserving.

Uniform binary codes also have the following property.

Lemma 18 (bin-uniform-imprim) Let B = {x, y} be a binary code with |x | = |y|. If x · y is
not primitive, then both x and y are primitive.

Proof Let x · y be imprimitive. Then there are words r and s and a positive integer i such
that r · s is the primitive root of x · y, x = (r · s)i · r and y = (s · r)i · s. Note that {r , s}
is a uniform binary code. Since r · s is primitive, the code {r , s} is primitivity-preserving by
Lemma 17. Since both [r , s]i · [r] and [s, r]i · [s] are primitive, we conclude that x and y,
their concatenations, are also primitive. ��

This immediately yields the following improved version of Theorem 17:

123

25 Page 16 of 27 S. Holub et al.

Fig. 5 Disjoint binary interpretation of a square

Theorem 19 (bin-uniform-prim-morph’) Let B = {x, y} be a binary code with |x | = |y|. If
x · y is primitive or if at least one of x and y is imprimitive, then B is primitivity-preserving.

We will later need the following corollary.

Lemma 20 (bin-imprim-not-conjug) Let B = {x, y} be a uniform binary code which is not
primitivity-preserving. Then x and y are not conjugate.

Proof ByTheorem17, theword x ·y is imprimitive. Let x and y be conjugate, and let x = p·q
and y = q · p. Since x · y = p · q · q · p is imprimitive, also p · p · q · q is imprimitive. Then
p and q commute by the Lyndon–Schützenberger Theorem 3, a contradiction to B being a
code. ��

6 Binary Interpretation of a Square

In Sect. 4, we have pointed out the main idea of the proof of our main goal, Theorem 7.
Namely, the fact that an imprimitive concatw of a primitive w ∈ lists{x, y} provides a
disjoint extendable {x, y}-interpretation ofconcat u for any factoru ofw.More specifically,
the plan is to apply this idea to u = [x, x]. Consequently, the core technical component of
the proof is a characterization of disjoint extendable {x, y}-interpretations of the square x2,
where {x, y} is a binary code, and |y| ≤ |x |. This is a very nice result which is relatively
simple to state but difficult to prove, and which is valuable on its own. As we mentioned
already, it can be obtained from Théorème 2.1 and Lemme 3.1 [1].

Theorem 21 (square-interp-ext.sq-ext-interp) Let B = {x, y} be a binary code such that
|y| ≤ |x |, both x and y are primitive, and x and y are not conjugate.

Let p (x · x) s ∼I w be a disjoint extendable B-interpretation. Then

w = [x, y, x], s · p = y, p · x = x · s.
In order to appreciate the connection of the theorem to the problem of preserving primitivity,
note that the definition of interpretation implies

p · x · x · s = x · y · x,
hence x · y · x = (p · x)2. This will turn out to be the only way how primitivity may not be
preserved if x occurs at least twice in w. Fig. 5 yields Here is an example with x = 01010
and y = 1001.

Proof of Theorem 21 By the definition of a disjoint interpretation, we have p · x · x · s =
concatw, where p �= ε and s �= ε. A length argument implies that w has length at
least three. Since a primitive word is not a nontrivial factor of its square, we have w =
[hd w] · [y]k · [lastw], with k ≥ 1. Since the interpretation is disjoint, we can split the
equality into p · x = hd w · ym · u and x · s = v · y� · lastw, where y = u · v, both u and
v are nonempty, and k = � + m + 1, as in Fig. 6.

123

Binary Codes that do not Preserve Primitivity Page 17 of 27 25

Fig. 6 Definition of u and v

Wewant to showhd w = lastw = x andm = � = 0. The situation ismirror symmetric
so we can prove claims for hd and for last two at a time. We proceed by contradiction
and exclude all unwanted situations. Some cases are concluded by showing that u and v

commute, which contradicts the fact that y is primitive.
If hd w = lastw = y, then x2 and yk+2 share a factor of length at least |x | + |y|.

Since x and y are primitive, this implies that they are conjugate, a contradiction. A similar
argument applies when � ≥ 1 and hd w = y (if m ≥ 1 and lastw = y respectively).
Therefore, in order to prove hd w = lastw = x , it remains to exclude the case hd w = y,
� = 0 and lastw = x (lastw = y, m = 0 and hd w = x respectively). This is covered
by one of the technical lemmas that we single out:

Lemma 22 (pref-suf-pers-short) Let x ≤p v · x, x ≤s r · u · v · u and |x | > |v · u| with
r ∈ 〈{u, v}〉. Then u · v = v · u.
Let us first explain how this lemma is used.With assumptions of the case we want to exclude,
we obtain x · s = v · x and p · x = ym+1 · u = ym · u · v · u. Since x is a factor of ym+2,
the inequality in |u · v| = |y| ≤ |x | becomes strict because we assume that x and y are
not conjugate. All hypotheses of Lemma 22 are therefore readily seen to be satisfied with
r = ym , the conclusion yielding a contradiction.

Proof of Lemma 22 The conclusion is trivial if u or v is empty. Assume they are nonempty.
From x ≤s r · u · v · u and |x | > |v · u|, we obtain a nonempty word q such that x = q · v · u
and q ≤s r ·u. From x ≤p v · x we have that x is a prefix of vω. The equality x = q ·v ·u now
implies, by synchronization, that q commutes with v and u ≤p v · u. Then also u ≤p t · u,
where t is the common primitive root of q and v. Moreover, t is a suffix of r · u, where
r ∈ 〈{u, t}〉. From the last fact, it is easy to see that t is a suffix of t · uk for some positive k,
which implies t ≤s t · u. From t ≤p u · t and t ≤s u · t , it follows that u commutes with t ,
and therefore also with v.

Lemma 22 exemplifies virtues of formalization. First, the very fact that it is formulated as a
general claim significantly improves the structure and readability of the proof of Theorem 21,
in particular since it will be used several times. Second, note that we used Lemma 22 in the
special case r = ym . Therefore, its independent formulation led to a generalization. Third,
the proof of Lemma 22 is relatively simple since it is formulated in terms of elementary
principles (which themselves are independent lemmas in the formalization).

Even the rest of the proof of Theorem 21, which we only sketch here, has, in our approach,
a similarly modular structure. We now have hd w = lastw = x , hence p · x = x · ym · u
and x · s = v · y� · x . The natural way to describe this scenario is to observe that x has both
the (prefix-)periodic root v · y�, and the suffix-periodic root ym · u.

Using again Lemma 22, we exclude situations when � = 0 and m ≥ 1 (m = 0 and � ≥ 1
resp.). It therefore remains to deal with the case when both m and � are positive. We divide
this into four lemmas according to the size of the overlap the prefix v · y� and the suffix ym ·u
have in x . More exactly, the cases are:

123

25 Page 18 of 27 S. Holub et al.

• ∣
∣v · y�

∣
∣ + |ym · u| ≤ |x | (no overlap)

• |x | <
∣
∣v · y�

∣
∣ + |ym · u| ≤ |x | + |u| (short overlap)

• |x | + |u| <
∣
∣v · y�

∣
∣ + |ym · u| < |x | + |u · v| (medium overlap)

• |x | + |u · v| ≤ ∣
∣v · y�

∣
∣ + |ym · u| (large overlap)

They are each solved by one auxiliary lemma. The first three cases yield that u and v commute,
the first one being a straightforward application of the Periodicity Lemma 1 since both
∣
∣v · y�

∣
∣ and |ym · u| are periods of x . The last one is an also straightforward application of

the synchronization idea. Namely, if the prefix v · y� and the suffix ym · u of x overlap by
at least |y|, then x is a factor of yω. Moreover, since v · u is both a prefix and a suffix of
x , we obtain that x commutes with v · u, a contradiction to x and y being primitive and not
conjugate.

The technical part of the whole proof is concentrated in lemmas dealing with the second,
and the third case (see lemmas short-overlap and medium-overlap in the theory
Binary-Square-Interpretation.thy), which shows that for the length conditions
referred to as “short overlap” and “medium overlap” above, the words u, v and x pairwise
commute. The corresponding proofs are again further analyzed and decomposed into more
general claims. The lemma short-overlap ultimately depends on the following technical
claim, which is proved using elementary tools:

Lemma 23 (uvu-pref-uvv) Let p · u · v · v · s = u · v · u · q where p is a prefix of u, both s
and q are prefixes of some words from 〈{u, v}〉, and |u| ≤ |s|. Then u and v commute.

This lemma is a natural ingredient of the whole proof, since it forbids a certain kind of overlap
within the language generated by the binary code {u, v}. Observe that p commutes with u ·v,
since p · u · v is a prefix of (u · v)2. This in particular simplifies the equality in the lemma
into p · v · s = u · q . We therefore once more formulate a general claim whose proof is a
relatively simple and intuitive application of the idea of comparison of maximal prefixes:

Lemma 24 (comm-puv-pvs-eq-uq) Let p · u · v = u · v · p and p · v · s = u · q where p is a
prefix of u, both s and q are prefixes of some words from 〈{u, v}〉, and |u| ≤ |s|. Then u and
v commute.

Proof (sketch) We compare maximal t-prefixes of p · v · s and u · q , where t is the common
primitive root of p and u ·v. Assume that u ·v and v ·u do not commute and letα = u ·v∧pv ·u.
Since t is the primitive root of u · v, we have that the maximal t-prefix of v · u is exactly α.
Using the decoding delay principle, we deduce that the maximal t-prefix of p · v · s is p · α.
On the other hand, the word u · α, which is a prefix of u · q , is also a prefix of tω since it is in
particular a prefix of (u ·v)2. The equality p ·v · s = u ·q therefore implies that p ·α = u ·α,
and u = p. Hence u and v commute. ��

We omit the proof of lemma medium-overlap which is of a similar nature and diffi-
culty.

This completes the proof of w = [x, y, x]. A byproduct of the proof is the description of
words x , y, p and s. Namely, there are non-commuting words r and t , and integers m, k and
� such that

x = (r t)m+1 · r , y = (tr)k+1 · (r t)�+1, p = (r t)k+1, s = (tr)�+1 .

The claim y = s · p is then equivalent to k = �, and it is an easy consequence of the
assumption that the interpretation is extendable. This completes the proof of Theorem 21.

123

Binary Codes that do not Preserve Primitivity Page 19 of 27 25

Fig. 7 Interpretation of xx induced by the shift by z

7 TheWitness with Two x’s

In this section, we characterize lists witnessing that {x, y} is not primitivity-preserving and
containing at least two x’s.

Theorem 25 (bin-imprim-longer-twice) Let B = {x, y} be a binary code such that |y| ≤ |x |.
Letw ∈ lists {x, y} be a primitive list which contains x at least twice such thatconcatw
is imprimitive.

Then w ∼ [x, x, y] and both x and y are primitive.

We divide the proof in three steps.

7.1 The Core Case

Wefirst prove the claimwith two additional assumptionswhichwill be subsequently removed.
Namely, the following lemma shows how the knowledge about the B-interpretation of x · x
from the previous section is used. The additional assumptions are displayed as items.

Lemma 26 (bin-imprim-primitive) Let B = {x, y} be a code with |y| ≤ |x | where
• both x and y are primitive,

and let w ∈ lists B be primitive such that concatw is imprimitive, and

• [x, x] is a cyclic factor of w.

Then w ∼ [x, x, y].
Proof Choosing a suitable conjugate of w, we can suppose, without loss of generality, that
[x, x] is a prefix of w. Now, we want to show w = [x, x, y]. By Lemma 20, we know that x
and y are not conjugate.

Let z be the primitive root of concatw, and let concatw = zk , 2 ≤ k. Since w is
primitive and {x, y} is a code, the word z is not in 〈{x, y}〉. Lemma 15 yields a disjoint
extendable B-interpretation of concatw. In particular, the induced disjoint extendable B-
interpretation of the prefix x · x is of the form p (x · x) s ∼I [x, y, x] by Theorem 21. Let p
be the (nonempty and strict) prefix of w such that concatp · p = z. Then p · [x, y, x] is a
prefix of w2,

concat(p · [x, y]) = z · xp, and concat[x, x, y] = (xp)2, (2)

see Fig. 7.
Proceed by contradiction and assume w �= [x, x, y]. Since both w and [x, x, y] are

primitive, this implies w · [x, x, y] �= [x, x, y] · w. Since {x, y} is a code, we also have

concat(w · [x, x, y]) �= concat([x, x, y] · w),

123

25 Page 20 of 27 S. Holub et al.

which yields that z and x · p do not commute using (2) a w = zk . Therefore {z, xp} is a
binary code, as well as {x, y}, and we can use its decoding delay property. Write

αz,xp = z · xp ∧p xp · z, and

αx,y = x · y ∧p y · x .
Then

αz,xp = zk · (xp)2 ∧p (xp)2 · zk =
= concat(w · [x, x, y]) ∧p concat([x, x, y] · w) =
= concat(w · [x, x, y] ∧p [x, x, y] · w) · αx,y,

(3)

where the last equality follows from Lemma 5. Similarly, we have

z · αz,xp = z · (zk ∧p xp) = zk · z · xp ∧p z · xp · zk =
= concat(w · p · [x, y]) ∧p concat(p · [x, y] · w) =
= concat(w · p · [x, y] ∧p p · [x, y] · w) · αx,y .

(4)

Again, the last equality follows from Lemma 5, but we have to verify the hypothesis that
concat(w · p · [x, y]) and concat(p · [x, y] ·w) are not comparable. This is equivalent to
w ·p · [x, y] �= p · [x, y] ·w since {x, y} is a code. This is further equivalent to p · [x, y] �= w
since w is primitive, and p · [x, y] is a strict prefix of w ·w. The possibility p = [x] leads to
the claim we want to prove (and which we presently assume not to be true). If p �= [x], then
p · [x, y] �= w follows from concat p · p = z and concatw = zk by a length argument:
the word concatw is longer than concatp · [x, y].

Denote

v1 = w · [x, x, y] ∧p [x, x, y] · w, v2 = w · p · [x, y] ∧p p · [x, y] · w.

From (3) and (4) we now have z ·concat v1 = concat v2. Sincew·[x, x, y] �= [x, x, y]·w
and w · p · [x, y] �= p · [x, y] · w we have v1 ≤p w · [x, x]. Therefore both v1 and v2 are
prefixes w3, a contradiction to Lemma 15. ��

7.2 Dropping the Primitivity Assumption

Wefirst deal with the situationwhen x and y are not primitive. A natural idea is to consider the
primitive roots of x and y instead of x and y. This means that we replace the listw withRw,
whereR is the morphism mapping [x] to [ρ(x)]ex and [y] to [ρ(y)]ey where x = ρ(x)ex and
y = ρ(y)ey . For example, if x = abab and y = aa, and w = [x, y, x] = [abab, aa, abab],
then Rw = [ab, ab, a, a, ab, ab].

Let us check which hypotheses of Lemma 26 are satisfied in the new setting, that is, for
the code {ρ(x), ρ(y)} and the list Rw. The following facts are straightforward:

• concatw = concat(Rw);
• if [c, c] is a cyclic factor w, where c ∈ {x, y}, then [ρ(c), ρ(c)] is a cyclic factor ofRw.

Let us consider the next required property:

• if w is primitive of length at least two, then Rw is also primitive. (∗)
First, note that the above property does not necessarily hold if w is a singleton. Indeed, the
situation we are dealing with here, namely that x or y is imprimitive, means that also R [x]
orR [y] is not primitive. However, we assume that some [c, c] is a factor of w, which means

123

Binary Codes that do not Preserve Primitivity Page 21 of 27 25

that w can be primitive only if it contains both letters. In our formalization, the required
property is proved for a more general class of codes (whose introduction was triggered by
the formalization of the present result). Namely we define a locale for non-overlapping sets,
sets in which two different elements have no overlap.

Definition 27 We say that a set C of words is non-overlapping if

• ε /∈ C ;
• if a nonempty word z is a suffix of u and a prefix of v, u, v ∈ C , then u = v;
• if u is a factor of v, then u = v.

Note that a non-overlapping set is a code, even a bifix code, that is, no two distinct code
words are prefix (suffix) comparable. From this it follows that concatu ≤p concat v
implies u ≤p v (concatu ≤s concat v implies u ≤s v) for any u, v ∈ listsC .
Moreover, a non-overlapping code has the following property, which can be seen as a weaker
version of a the self-synchronization property of codes (self-synchronizing codes are also
called comma-free codes, see [3, p. 285]). The property is weaker just because an element of
a non-overlapping code can be imprimitive, and hence a nontrivial factor of its own square.

Lemma 28 (non-overlapping.fac-concat-fac) Let C be a non-overlapping set. Assume that
u, v ∈ listsC and that u contains at least two distinct elements of C. If p ·concat u ·s =
concat v, then there existsp and s such thatp·u·s = v,concatp = p andconcat s = s.

Proof Let u1 · u2 = u be a factorization of u into nonempty lists such that lastu1 �=
hd u2. Then last(concat u1) �= hd (concat u2) since C is non-overlapping. The non-
overlapping property now implies that the edge between concatu1 and concatu2 must
correspond to an edge inside concat v. That is, there are lists v1 and v2 such that

p · concatu1 = concat v1, concatu2 · s = concat v2, and v1 · v2 = v .

Since C is a bifix code, we deduce that u1 is suffix of v1, and u2 is a prefix of v2, which
concludes the proof. ��

A non-overlapping set forms a primitivity-preserving set of words, which is stated as the
next theorem.

Theorem 29 (non-overlapping.prim-morph) Let C be a non-overlapping set. Let w ∈
listsC be a primitive list of length at least 2. Then concatw is primitive.

Proof Assume that concatw is not primitive. Hence there are k and z such that zk =
concatw with k ≥ 2. It follows that z · concatw · zk−1 = concat(w · w). As w is
primitive and of length at least 2, it contains two distinct elements of C . Hence, since C is
non-overlapping, by Lemma 28, there exists v such that v ≤p w · w and concat v = z.
Therefore, vk ∈ listsC . As concat(vk) = concatw, we conclude that vk = w, which
is a contradiction since w is primitive. ��

The previous lemma implies that the morphism R has the required property (∗). This
conclusion is straightforward but slightly technical. We use it as an opportunity to illustrate
several properties of morphisms on lists. We assume that x and y are of type ’a list.
Hence w is of type ’a list list andR is a morphism of type ’a list list ⇒ ’a
list list. The morphismR is defined by its coremappingRC of type ’a list ⇒ ’a
list list which maps x �→ [ρ(x)]ex and y �→ [ρ(y)]ey . The relation between R and
RC is given by

Rw = concat
(

map RC w
)

.

123

25 Page 22 of 27 S. Holub et al.

SinceRC x �= RC y, it is trivial that mapRC w (of type ’a list list list) is prim-
itive if and only if w (of type ’a list list) is primitive, for any w ∈ lists {x, y}.
Using the above example x = abab and y = aa, and w = [x, y, x] we have

RC x = [ab, ab], RC y = [a, a], map RC w = [[ab, ab], [a, a], [ab, ab]] ,
Rw = concat (map Rw) = [ab, ab, a, a, ab, ab].

Since x and y do not commute, we have ρ(x) �= ρ(y). Hence {[ρ(x)]ex , [ρ(y)]ey } is a non-
overlapping set. Theorem 29 now implies that Rw is primitive if w is primitive of length at
least two as required in (∗).

Consequently, the only missing hypothesis preventing the use of Lemma 26 is |y| ≤ |x |
since it may happen that |ρ(x)| < |ρ(y)|. In order to solve this difficulty, we shall ignore for
a while the length difference between x and y, and obtain the following intermediate lemma.

Lemma 30 (bin-imprim-both-squares, bin-imprim-both-squares-prim) Let B = {x, y} be a
binary code, and let w ∈ lists B be a primitive list such that concatw is imprimitive.
Then w cannot contain both [x, x] and [y, y] as cyclic factors.
Proof Assume that w contains both [x, x] and [y, y] as cyclic factors.

Consider the listRw and the code {ρ(x), ρ(y)}. SinceRw contains both [ρ(x), ρ(x)] and
[ρ(y), ρ(y)], Lemma 26 implies thatRw is conjugate either with the list [ρ(x), ρ(x), ρ(y)]
or with [ρ(y), ρ(y), ρ(x)], which is a contradiction with the assumed presence of both
squares. ��

7.3 Concluding the Proof by Gluing

It remains to deal with the existence of squares. We use an idea that is our main innovation
with respect to the proof from [1], and that contributes significantly to the reduction of the
length of the proof, and also to its increased clarity. Letw be a list over a set of words X . The
idea is to choose one of the words, say u ∈ X , and to concatenate (or “glue”) blocks of u’s
to words following them. For example, if w = [u, v, u, u, z, u, z], then the resulting list is
[uv, uuz, uz]. This procedure is in the general case well defined on lists whose last “letter”
is not the chosen one and it leads to a new alphabet {ui · v | v �= u}, which is a code if and
only if X is. This idea is used in an elegant proof of the Graph Lemma [2, 14]. Consider
the binary case, which is of interest here. If w does not contain a square of some letter, say
[x, x], then the new code is again binary, namely {x · y, y}. Moreover, the resulting glued list
w′ has the same concatenation, and it is primitive if (and only if) w is. Note that gluing is in
this case closely related to the Nielsen transformation y �→ x−1y known from the theory of
automorphisms of free groups.

Induction on |w| now easily leads to the proof of Theorem 25.

Proof of Theorem 25 Ifw contains y at most once, then we are left with the equation x j · y =
z�, � ≥ 2. The equality j = 2 follows from the Periodicity Lemma 1, see Case 2 in the proof
of Theorem 8.

Assume for contradiction that y occurs at least twice inw. Lemma 30 implies that at least
one square, [x, x] or [y, y] is missing as a cyclic factor. Let {x ′, y′} = {x, y} be such that
[x ′, x ′] is not a cyclic factor of w. We can therefore perform the gluing operation, and obtain
a new, strictly shorter list w′ ∈ lists {x ′ · y′, y′}. The longer element x ′ · y′ occurs at least
twice inw′, since the number of its occurrences inw′ is the same as the number of occurrences
of x ′ inw, the latter list containing both words at least twice by assumption. Moreover,w′ is

123

Binary Codes that do not Preserve Primitivity Page 23 of 27 25

primitive, and concatw′ = concatw is imprimitive. Therefore, by induction on |w|, we
have w′ ∼ [x ′ · y′, x ′ · y′, y′]. In order to show that this is not possible we can successfully
reuse the lemma imprim-ext-suf-comm mentioned in the proof of Lemma 9, this time
for u = x ′y′x ′ and v = y′. The words u and v do not commute because x ′ and y′ do not
commute. Since uv is imprimitive, the word uvv ∼ concatw′ is primitive. ��
This also completes the proof of our main goal, Theorem 7.

8 Additional Notes on the Formalization

The formalization is implemented in the proof assistant Isabelle/HOL [17, 23]. It is a part
of a larger combinatorics on words formalization project. The project’s most recent version
is published at GitLab [11] while the presented version is archived [12]. The formalization
of the presented results relies on the project’s backbone session, called CoW, a version of
which is also available in the Archive of Formal Proofs [10]. An overview of this session
is available in [14]. The formalization itself is available in the Archive of Formal Proofs as
a separate entry [13]. The backbone session covers all basics concepts used in this article,
including the Periodicity Lemma 1, and many more elementary concepts of combinatorics
on words. The concept of gluing used in Sect. 7.3 is covered by another session of the project,
Graph Lemma, and its theory Glued-Codes.

The main results of this article are in a separate session in two dedicated theories:
Binary-Square-Interpretation and Binary-Code-Imprimitive. The first
contains lemmas and locales dealing with {x, y}-interpretation of the square xx (for |y| ≤
|x |), culminating in Theorem 21. The latter contains Theorems 7 and 25. A third theory
Binary-Imprimitive-Decision covers Lemma 10 and Example 11. However, the
formalized proof of Lemma 10 is an alternative simple proof independent of the parametric
solution Theorem 8.

8.1 Formalization Highlights

Let us give a few concrete highlights of the formalization. We start by showing selected
statements and a definition. The main result, Theorem 7, is formalized as follows:
theorem bin-imprim-code: assumes x · y �= y · x and ws ∈ lists {x,y} and
2 ≤ |ws| and primitive ws and ¬ primitive (concat ws)
obtains j k where 1 ≤ j and 1 ≤ k and j = 1 ∨ k = 1
∧
ws. ws ∈ lists {x,y} ⇒ 2 ≤ |ws| ⇒
(primitive ws ∧ ¬ primitive (concat ws) ←→ ws ∼ [x]@j · [y]@k) and

|y| ≤ |x| ⇒ 2 ≤ j ⇒ j = 2 ∧ primitive x ∧ primitive y and
|y| ≤ |x| ⇒ 2 ≤ k ⇒ j = 1 ∧ primitive x

Definition 14 is not formalized directly as a definition, but as two locales:

123

25 Page 24 of 27 S. Holub et al.

Fig. 8 Highlights from the formalization in Isabelle/HOL

locale square-interp =
fixes x y p s ws
assumes
prim-x: primitive x and prim-y: primitive y and
y-le-x: |y| ≤ |x| and
ws-lists: ws ∈ lists {x,y} and
nconjug: ¬ x ∼ y and
disjoint: ∧

p1 p2. p1 ≤p [x,x] ⇒ p2 ≤p ws ⇒ p · concat p1 �= concat p2
and
interp: p (x·x) s ∼I ws

locale square-interp-ext = square-interp +
assumes p-extend: ∃ pe. pe ∈ 〈{x,y}〉 ∧ p ≤s pe and
s-extend: ∃ se. se ∈ 〈{x,y}〉 ∧ s ≤p se

Theorem 21 is then stated within the last locale:

theorem sq-ext-interp: ws = [x, y, x] s · p = y p · x = x · s
The next highlight is the usage of the reversed attribute — very useful tool, which is

part of the CoW session. The attribute produces a symmetrical fact where the symmetry is
induced by the mapping rev, i.e., the mapping which reverses the order of elements in a list.
For instance, the fact stating that if p is a prefix of v, then p a prefix of v · w, is transformed
by the reversed attribute into the fact saying that if s is a suffix of v, then s is a suffix of w · v.
The attribute is based on rewriting and relies on ad hoc defined (possibly conditional) rules
which induce the symmetry. In the example, the main reversal rule is

(rev u ≤p rev v) = u ≤s v.

The attribute is used frequently in the present formalization. For instance, Fig. 8 shows the
formalization of the proof of Cases 1 and 2 of Theorem 9. Namely, the proof of Case 2 is
smoothly deduced from the lemma that deals with Case 1, avoiding writing down the same
proof again up to symmetry.

123

Binary Codes that do not Preserve Primitivity Page 25 of 27 25

The third highlight of the formalization is the use of simple but useful proof methods.
The first method, called primitivity-inspection, is able to show primitivity or
imprimitivity of a given word.

Another method named list-inspection is used to deal with claims that consist of
straightforward verification of some property for a set of words given by their length and
alphabet. For instance, this method painlessly provides the case analysis needed in the proof
of lemma bin-imprim-both-squares-prim. Themethod automatically divides the
goal into eight (relatively easy) subgoals corresponding to eight possiblewords. This removes
the tedious verification that the case analysis is complete, which is typically rather implicit
in human proofs.

The last method we want to mention is mismatch. It is designed to prove that two
words commute using the decoding delay property of a binary code explained in Sect. 2.2.4.
Namely, if a product of words from {x, y} starting with x shares a prefix of length at least |xy|
with another product of words from {x, y}, this time starting with y, then x and y commute.
Examples of usage of the attribute reversed and all three methods are given in Fig. 8.

We conclude with an example, illustrating one of the main virtues of a good formalization,
namely identification of auxiliary claims, and their independent formulation in a general form.
As pointed out in the introduction, we see this aspect as our main contribution to the topic of
the present paper. Consider the lemma imprim-ext-suf-comm mentioned twice above
(see p. 12 and p. 28):

Lemma 31 (imprim-ext-suf-comm) Let both u · v and u · v · v be imprimitive. Then u and v

commute.

Proof Since u ·v and u ·v ·v are imprimitive, also v ·u and v ·u ·v are imprimitive. Let z1 be
the primitive root of v · u and z2 the periodic root of v · u · v. Note that z1 is a periodic root
of v · u · v. Hence z1 = z2 by the Periodicity Lemma 1. Indeed, both z1 and z2 are periodic
roots of v · u · v which is of length at least |z1| + |z2|. ��
In the formalization, this elegant proof is divided into several claims. First, imprim-ext-
suf-comm is proved as a consequence of imprim-ext-pref-comm which claims
that u and v commute if v · u and v · u · v are both imprimitive. The lemma
imprim-ext-pref-comm, in turn, is proved using per-le-prim-iff:

Lemma 32 (per-le-prim-iff) Let u be of length at least twice of the length of its periodic root
r . Then u is imprimitive if and only if it commutes with p.

The latter lemma is a specific application of the weak version of the Periodicity Lemma 1
as explained in the above proof of imprim-ext-suf-comm. We want to compare this
approach with the proof byMitrana [22, Theorem 5, p. 278], within which a claim equivalent
to our imprim-ext-suf-comm is proved ad hoc for two particular words. Consequently,
the fact, interesting in itself, cannot be reused, it makes the proof in which it is included harder
to parse, and, moreover, it is proved using particular properties of the two words, which are
not necessary for the claim (without making the proof easier at that).

8.2 Contribution to theMain Project

As mentioned above, the two dedicated theories containing the formalization of the main
results of this article rely on backbone sessions of the project of formalization of combina-
torics on words. In turn, the formalization presented in this paper led to an expansion of
those backbone sessions. Let us briefly list the main components of that expansion.

123

25 Page 26 of 27 S. Holub et al.

• extension of the reversal attribute in Reversal-Symmetry.thy to work with lists
of lists;

• substantial expansion of the elementary theory Equations-Basic.thy which pro-
vides auxiliary lemmas and definitions related to word equations;

• expansion of the elementary theory Lyndon–Schutzenberger.thy by the para-
metric solution of the equation x j yk = z�, specifically Theorem 8 and Lemma 9;

• substantial expansion of existing support for the idea of gluing as mentioned in Sect. 7
into a separate theory called Glued-Codes.thy (which is part of the session
CoW-Graph-Lemma);

• locale formalizing non-overlapping sets (Sect. 7.2).

9 Conclusion

The results presented in this paper have been known in some form since 1985 [1]. Never-
theless, their negligible use in literature proves that they have not been fully absorbed by the
community of combinatorics on words. Our own experience indicates that this is so at least
partly due to the complex nature and not sufficiently clear structure of the proof. Our effort
is an example of the crucial role a formalization can play in approaching this kind of results.
The formalization enforces a better proof structure, fills steps based on vague intuition with
clearly formulated lemmas, facilitates natural generalizations and allows for transparent and
systematic reuse of key ideas.

A broader context of the result we present in this paper are relations between small sets
of words, or, seen from another perspective, solutions of simple word equations [15]. As it is
often the case in combinatorics, and as the present paper shows, simply formulated problems
of this kind can be very difficult. The work described in this paper is a natural starting point
for exploring further problems from this area. A concrete example we have in mind, which
served as amotivation for the present work, is the classification of binary equality words. This
is a task still significantly more complex, in which a research unsupported by formalization
may easily reach the borderline of what is humanly feasible [8].

Acknowledgements The authors acknowledge support by the Czech Science Foundation Grant GAČR 20-
20621S.

Funding Open access publishing supported by the National Technical Library in Prague.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Barbin-Le Rest, E., Le Rest, M.: Sur la combinatoire des codes à deux mots. Theoret. Comput. Sci. 41,
61–80 (1985)

2. Berstel, J., Perrin, D., Perrot, J.F., Restivo, A.: Sur le théorème du défaut. J. Algebra 60(1), 169–180
(1979). https://doi.org/10.1016/0021-8693(79)90113-3

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/0021-8693(79)90113-3

Binary Codes that do not Preserve Primitivity Page 27 of 27 25

3. Berstel, J., Perrin, D., Reutenauer, C.: Codes and Automata. Cambridge University Press, Cambridge
(2010)

4. Budkina, L.G., Markov, A.A.: F-semigroups with three generators. Mat. Zametki 14, 267–277 (1973).
Translated from Mat. Zametki 14(2) (1973) 267–277

5. Choffrut, C., Karhumäki, J.: Handbook of formal languages, vol. 1, pp. 329–438. Springer, Berlin (1997).
Chap. Combinatorics of Words. https://www.springer.com/gp/book/9783642638633

6. Crochemore,M.: Sharp characterizations of squarefreemorphisms. Theoret. Comput. Sci. 18(2), 221–226
(1982). https://doi.org/10.1016/0304-3975(82)90023-8

7. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math. Soc. 16(1), 109
(1965). https://doi.org/10.1090/S0002-9939-1965-0174934-9

8. Hadravová, J., Holub, Š: Large simple binary equalitywords. Int. J. Found.Comput. Sci. 23(6), 1385–1403
(2012). https://doi.org/10.1142/S0129054112500207

9. Harju, T., Nowotka, D.: On the independence of equations in three variables. Theoret. Comput. Sci.
307(1), 139–172 (2003). https://doi.org/10.1016/S0304-3975(03)00098-7

10. Holub, Š., Raška, M., Starosta, Š.: Combinatorics on words basics. Archive of Formal Proofs (2021).
https://isa-afp.org/entries/Combinatorics_Words.html, Formal proof development

11. Holub, Š., Raška, M., Starosta, Š.: Combinatorics on words formalized. GitLab. https://gitlab.com/
formalcow/combinatorics-on-words-formalized (2023)

12. Holub, Š., Raška, M., Starosta, Š.: Combinatorics on words formalized. https://doi.org/10.5281/zenodo.
7897462

13. Holub, Š., Raška, M.: Binary codes that do not preserve primitivity. Archive of Formal Proofs (2023).
https://isa-afp.org/entries/Binary_Code_Imprimitive.html, Formal proof development

14. Holub, Š., Starosta, Š.: Formalization of basic combinatorics on words. In: Cohen, L., Kaliszyk, C. (eds.)
12th International Conference on Interactive TheoremProving (ITP 2021). Leibniz International Proceed-
ings in Informatics (LIPIcs), vol. 193, pp. 22–12217. Schloss Dagstuhl—Leibniz-Zentrum für Informatik,
Dagstuhl, Germany (2021). https://doi.org/10.4230/LIPIcs.ITP.2021.22 . https://drops.dagstuhl.de/opus/
volltexte/2021/13917

15. Holub, Š.: Commutation and beyond (extended abstract). In: Combinatorics on Words. Lecture Notes
in Comput. Sci., vol. 10432, pp. 1–5. Springer, Cham (2017). https://doi.org/10.1007/3-540-45005-X .
https://doi-org.ezproxy.is.cuni.cz

16. Holub, Š, Raška, M., Starosta, Š: Binary codes that do not preserve primitivity. In: Blanchette, J., Kovács,
L., Pattinson, D. (eds.) Automated Reasoning, pp. 369–387. Springer, Cham (2022)

17. Isabelle. https://isabelle.in.tum.de
18. Lentin, A., Schützenberger, M.-P.: A combinatorial problem in the theory of free monoids. In: Combina-

torial Mathematics and Its Applications (Proc. Conf., Univ. North Carolina), pp. 128–144. Univ. North
Carolina Press, Chapel Hill, N.C. (1969)

19. Lothaire, M.: Combinatorics on Words, p. 238. Cambridge Mathematical Library. Cambridge University
Press, Cambridge (1997). https://doi.org/10.1017/CBO9780511566097

20. Lyndon, R.C., Schützenberger, M.-P.: The equation am = bncp in a free group. Mich. Math. J. 9(4),
289–298 (1962). https://doi.org/10.1307/mmj/1028998766

21. Maňuch, J.: Defect effect of bi-infinite words in the two-element case. Discret. Math. Theoret. Comput.
Sci. 4(2), 273–290 (2001)

22. Mitrana, V.: Primitive morphisms. Inf. Process. Lett. 64(6), 277–281 (1997). https://doi.org/10.1016/
s0020-0190(97)00178-6

23. Nipkow,T., Paulson, L.C.,Wenzel,M.: Isabelle/HOL—AProofAssistant forHigher-OrderLogic. Lecture
Notes in Computer Science, vol. 2283. Springer, Heidelberg (2002)

24. Shallit, J.: A Second Course in Formal Languages and Automata Theory, 1st edn. Cambridge University
Press, Cambridge (2008)

25. Spehner, J.C.: Quelques problèmes d’extension, de conjugaison et de présentation des sous-monoïdes
d’un monoïde libre. PhD thesis, Université Paris VII, Paris (1976)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://www.springer.com/gp/book/9783642638633
https://doi.org/10.1016/0304-3975(82)90023-8
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1142/S0129054112500207
https://doi.org/10.1016/S0304-3975(03)00098-7
https://isa-afp.org/entries/Combinatorics_Words.html
https://gitlab.com/formalcow/combinatorics-on-words-formalized
https://gitlab.com/formalcow/combinatorics-on-words-formalized
https://doi.org/10.5281/zenodo.7897462
https://doi.org/10.5281/zenodo.7897462
https://isa-afp.org/entries/Binary_Code_Imprimitive.html
https://doi.org/10.4230/LIPIcs.ITP.2021.22
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://drops.dagstuhl.de/opus/volltexte/2021/13917
https://doi.org/10.1007/3-540-45005-X
https://doi-org.ezproxy.is.cuni.cz
https://isabelle.in.tum.de
https://doi.org/10.1017/CBO9780511566097
https://doi.org/10.1307/mmj/1028998766
https://doi.org/10.1016/s0020-0190(97)00178-6
https://doi.org/10.1016/s0020-0190(97)00178-6

	Binary Codes that do not Preserve Primitivity
	Abstract
	1 Introduction
	2 Notation and Basics of Combinatorics on Words
	2.1 Lists, Words and Monoids
	2.1.1 Primitivity
	2.1.2 Periodic Root and Period
	2.1.3 Maximal Prefix
	2.1.4 Conjugation
	2.1.5 Lyndon and Schützenberger

	2.2 Binary Codes
	2.2.1 Code
	2.2.2 Commutation
	2.2.3 Synchronization
	2.2.4 Decoding Delay

	3 Main Theorem
	4 Interpretations and the Main Idea
	5 Uniform Binary Codes
	6 Binary Interpretation of a Square
	7 The Witness with Two x's
	7.1 The Core Case
	7.2 Dropping the Primitivity Assumption
	7.3 Concluding the Proof by Gluing

	8 Additional Notes on the Formalization
	8.1 Formalization Highlights
	8.2 Contribution to the Main Project

	9 Conclusion
	Acknowledgements
	References

