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Abstract
The Isabelle Higher-order Tarski–Grothendieck object logic includes in its foundations both
higher-order logic and set theory, which allows importing the libraries of Isabelle/HOL and
Isabelle/Mizar. The two libraries, however, define all the basic concepts independently, which
means that the results in the two are disconnected. In this paper, we align significant parts
of these two libraries, by defining isomorphisms between their concepts, including the real
numbers and algebraic structures. The isomorphisms allow us to transport theorems between
the foundations and use the results from the libraries simultaneously.

Keywords Higher-order logic · Set theory · Transport

1 Introduction

Among the various foundations for formal proofs, set theory on top of higher-order logic
has been tried a number of times in systems such as HOLZF [42], ProofPeer [43], Egal [10],
and Isabelle/Mizar [28]. This foundation is attractive for formalization, as it offers a natural
mathematical foundation combined with the automation present in HOL.

The formal proof libraries of Isabelle/HOL [55] and that of Mizar [4, 16] are among the
largest proof libraries in existence today. Indeed, the HOL library together with the Archive
of Formal Proofs consist of more than 100,000 theorems [6], while the Mizar Mathematical
Library (MML) contains 59,000 theorems. Furthermore, the results contained in the libraries
are incomparable: Almost all of theMizar library concerns itself with mathematics, while the
majority of the Isabelle/AFP library are results closer to computer science [6]. For example,
the Mizar library includes results about lattice theory [9], topology, and manifolds [46] not
present in the Isabelle library, while the Isabelle library has many results related to algorithms
not in the MML [13, 36, 37].
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In our previouswork [7], we have presented amodel of higher-order Tarski–Grothendieck,
which justifies the use of higher-order logic formalizations with set theory-based ones simul-
taneously. This model will allow us to combine the results present in these twomajor Isabelle
libraries. We will specify isomorphisms between various basic types present in the libraries,
such as functions and lists, leading to isomorphisms between various number structures
including the real numbers, and algebraic structures. The last requires mappings between
extensible soft record types and Isabelle type classes [24].

We will use the isomorphisms to transport proved theorem including the theorems of
Lagrange, Bertrand, cases of Fermat’s last theorem and the Intermediate Value Theorem. We
will also merge the formalizations of groups and rings in the two libraries.

This paper is an extended version of our paper presented at ITP 2019 [7]. In particular the
new content presented is as follows:

– we specify the alignments between many more complex types in the two proof libraries
including the rationals and the real numbers;

– we transfer more advanced theorems between the two foundations, including the inter-
mediate value theorem in the merged HOL-Set theory library, together with a large set
of theorems that connect Dedekind cuts with Cauchy sequences; and

– we complete the model of higher-order Tarski–Grothendieck presented in our previous
work [7], by justifying that the Grothendieck-style axioms are equivalent to the Tarski
style (for example used in the Mizar Mathematical Library), formalizing the relationship
between them in Isabelle.

The rest of the paper is structured as follows. In Sect. 2, we introduce the Isabelle HOTG
foundations, which will be the basis for all the work, we describe the various axiomatizations
of higher-order Tarski–Grothendieck (HOTG) and prove some of them to be equivalent.
The basics of the aligned libraries are presented in Sect. 3. The subsequent Sects. 4 and 5, 6
discuss our isomorphisms between the different types concerning functions, numbers, and
algebra respectively. Section7 shows practical examples of theorems we can move using
the isomorphisms. Section8 discusses the Tarski–Grothendieck equivalence proofs. Finally,
Sect. 9 discusses the relatedwork on combining foundations and Sect. 10 presents the existing
automated transfer methods in higher-order logic and discusses the limitations of the current
work in this respect.

2 Isabelle and Isabelle/Mizar

The Isabelle logical framework’s meta-logic Pure is a variant of simple type theory with
shallow polymorphism. The framework provides functionality that makes it convenient to
define object logics, namely allowing easily defining their types, objects, and inference rules
as well as their notations. Isabelle/HOL is today the most developed Isabelle object logic.
Further Isabelle object logics [48] include constructive type theory or untyped set theory [49].

As Isabelle/HOL is relatively well known and documented, we assume that the reader
is familiar with the HOL foundations, Isabelle’s basic commands (such as definition and
theorem) and the basic Isabelle objects (numbers and lists). For details, we refer the reader
to the Isabelle Manual [54].

The details of Isabelle/Mizar’s design and implementation have been presented previously
[28], therefore, we present only the main commands needed for understanding the current
paper. Isabelle/Mizar can be loaded on top of Isabelle/FOL or Isabelle/HOL. It re-uses the
type of propositions of the underlying basic logic (o of FOL or bool of HOL) and its basic
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propositional connectives (negation, conjunction, disjunction, implication), as well as the
polymorphic equality present there. However, as the intention of Isabelle/Mizar is to provide
a sofly-typed set theory, the universal and existential quantifiers are actually bounded quan-
tifiers that for each quantified object require the type over which it ranges (e.g., ∀x being
Nat. …). These propositional and predicate quantifiers together with quality are sufficient
for representing firest-order logic with quality and to represent Jaśkowski [26] style natural
deduction proofs present in Mizar.

To introduce the soft type system, a meta logic type of soft-types ty is declared together
with the an infix operator is that corresponds to the element satisfying the predicate associated
with a type. Types can be combined with an intersection operator (e.g., x is even | number)
and can be negated (e.g., y is non-negative) with natural semantics to these operations. The
meta-logic abstractions can be used to parametrize the types by other types or even by terms
(e.g., A is m,n-matrix corresponds to m-by-n matrices). To improve automation, the user
can prove properties of types, including inhabited and sethood. The first one is useful for
eliminating quantifiers, whereas the latter is useful for forming compregension operators.
Finally, a choice operator (denoted the on the level of types allows for getting a term of a
given type). For example, given the type of sets, that is intersected with empty, it is possible
to define the empty set as the empty | set.

The Isabelle/Mizar object logic subsequently introduces the axioms of set theory, specif-
ically, the Tarski–Grothendieck axioms. In particular, the Fraenkel axiom is sufficient to
construct set comprehensions written as {F(x)where x be Element-of X: P(x)} (called Fraenkel
terms) for a given set X , function F and predicate P . In the Mizar language, it is not always
possible to define such a functor for arbitrary X , F , P , to avoid inconsistency (variants
of Russell’s paradox), however, with the help of sethood safe comprehension terms can be
interpreted. In Isabelle/Mizar the semantics of comprehension are defined with sethood as a
precondition, which means that the property is only valid for terms for which sethood has
been proved. This completes the axiomatic part of the object logic, and subsequent parts are
introduced as definitional extensions. In particular, the possibility for users to define all kinds
types and objects, as well as syntax that allows an easier interaction with softly-typed set
theory will be added in this way.

Isabelle/Mizar allows four kinds of user-level definitions corresponding to the same four
kinds of user-level definitions in Mizar [16]. Defining predicates is not different from the
usual Isabelle definitions. We present the definition of a set theoretic functor by the example
of the set theoretic union of two sets1:

mdef xboole-0-def-3 (infixl ∪ 65) where
mlet X be set, Y be set
func X ∪ Y → set means λit.

∀ x. x in it ←→ x in X ∨ x in Y

The mdef command starts with the handle used to refer to the definition, followed by an
optional notation (union denoted by infix ∪), a typing environment in which the definition is
made (mlet) and then the actual defined operator is given after the keyword func. The return
type is given after the keyword →. A definition by means is supposed to correspond to a
concept where the it has the desired property. The user needs to show the existence and the
uniqueness as proof obligations. When the user completes these proofs, the Isabelle/Mizar

1 The Isabelle definitions and lemmas that directly correspond to the definitions and lemmas in the Mizar
Mathematical Library have been names with the same identifiers in order to ease comparison. For example
the Isabelle/Mizar definition xboole-0-def-3 directly corresponds to the MML definition XBOOLE_0:def_3
(colon is not allowed in Isabelle labels).
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definition package introduces the identifier together with the theorems corresponding to the
property of the object and its type for further use. Functors can also be defined by equals
where the term is given directly in a given environment and with a given return type of the
defined term. There, the obligation is to show that the result has the return type.

Type definitions are similar. In order to make type inference and checking automatable,
types are divided into modes (more primitive types that are known to be inhabited) and
attributes (the types that are used to restrict other types with intersection). Consider for
example the definition of the type of a finite sequences over the type D (which are the
set-theoretic equivalents of polymorphic lists used are often used in formal proofs):

mdef finseq-1-def-4 (FinSequence−of -) where
mlet D be object
mode FinSequence−of D → FinSequence means

(λit. rng it ⊆ D)

Again mlet introduces an environment (these are preconditions for the definitional the-
orems but can be used in the proofs) and the definition can describe the desired properties
that all objects of the defined type must have. After the proof obligation (non-emptiness)
is proved, definitional theorems are derived and given to the user. The already mentioned
attributes are also similar. They restrict a given type to a subtype. An example type intro-
duced with the help of an attribute is the type of relations. First, the attribute Relation_like is
introduced, which can be later used to define the type of relations as just an abbreviation, as
follows.

mdef relat-1-def-1 (Relation-like) where
attr Relation-like for set means

(λit. ∀ x. x in it −→ (∃ y, z. x =S [y, z])) ..
This approach allows for all definitions and operations defined for aRelation to also imme-

diately be available for a Function, which is defined as a type restriction using the attribute
Function_like. The type FinSequence is similarly defined by the attribute FinSequence_like
as follows:

mdef funct-1-def-1 (Function-like) where
attr Function-like for set means

(λit. ∀ x,y1,y2 being object.
[x,y1] in it ∧ [x,y2] in it −→ y1 =S y2) ..

mdef finseq-1-def-2 (FinSequence−like) where
attr FinSequence−like for Relation means

(λit. ∃ n be Element−of NAT . dom it =S Seg n) ..

abbreviation Relation ≡ Relation-like | set

abbreviation Function ≡ Function-like | Relation

abbreviation FinSequence ≡ FinSequence−like | Function
Finally, Isabelle/Mizar introduces themtheorem command, that is similar to the standard

theorem command, but additionally allows the introduction of soft-type assumptions with
themlet keyword and hiding these from the user as long as the automated type inference can
handle these. Additionally to imitate the Mizar automation the mby proof method has been
included, that combines type inference with Isabelle’s auto proof method.

Parallel to the system development, the Mizar community puts a significant effort into
building the Mizar Mathematical Library (MML) [4]. Parts of the MML library (including
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numbers or parts of algebra) have been translated to Isabelle/Mizar [29] and are being used
in the current paper.

3 Proof Integration

The Isabelle higher-orderTarski–Grothendieck foundations allow the import of results proved
in higher-order logic and in set theory. This is possible both theoretically (we have previously
presented amodel that supports the combined foundation [7] and discussed its adequacymore
in Sect. 8) and practically, that is the Isabelle logical framework allows us to import various
results from the two libraries of Isabelle/HOL and Isabelle/Mizar in the same environment.
Note, however, that the imported developments are initially disconnected. In this and the next
sections, we will define transfer methods between these results. These will allow us to use
theorems proved in one of the foundations using the term language of the other.

All the definitions and theorems presented in these sections have been formalized in
Isabelle and will be presented close to the Isabelle notation. The Isabelle environment will
import both Isabelle/HOL [41] and Isabelle/Mizar [28] object logics along with a number of
results formalized in the standard libraries of the two. Isabelle distinguishes between meta-
level implication (�⇒) and object-level implication (−→) and our notation in examples
below reflects this distinction. The remaining notations will follow first-order conventions.
In particular, the symbols =H and =S will refer to the HOL and set-theoretic equality
operations respectively. Then, be is the Mizar infix operator for specifying the type of a set
in the Mizar intersection type system [31].

In order to transfer results between the foundations, we will first define bijections between
types that are isomorphic. We will next show that these bijections preserve various constants
and operators. This will allow us to transfer results using higher-order rewriting, in the style
of quotient packages for HOL [23, 34] and the Isabelle transfer package [21]. Note, that we
are not able to use these packages directly. We discuss this in Sect. 10.

In theMizar set theory there are often twoways to express domains of objects. It is already
the case for the natural numbers, where it is common to reason both about the type of the
natural numbers and the members of the set of natural numbers. This is necessary since the
arguments of all operations must be sets, while the reasoning engine allows more advanced
reasoning steps for types [4].We, therefore, define two operators, one that specifies a bijection
between a HOL type and a set-theoretic set and one that specified a bijection between a HOL
type and a set-theoretic type. The definitions are analogous and we show only the former one
here. We will define an isomorphism between a type σ and a set d ∈ �ι to be a pair ( f , g)
of functions (at the type theory level) where f maps sets to objects of type σ and g maps
objects of type σ to sets in such a way that objects of type σ (in the type theory) correspond
uniquely to elements of d (in the set theory).

Definition 3.1 Let σ be a type, d ∈ �ι be a set and s2h ∈ �ι⇒σ and h2s ∈ �σ⇒ι be
functions. The predicate beIsoS〈h2s, s2h, d〉 holds whenever all of the following hold:

– ∀x : σ.s2h(h2s(x)) =H x ,
– ∀x : ι.x ∈ d −→ h2s(s2h(x)) =S x ,
– ∀x : σ.h2s(x) ∈ d .

In Isabelle the definition appears as follows:

definition beIsoS(h2s,s2h,d) ←→ ((∀ Ly. s2h(h2s(y)) =H y) ∧
(∀ x:Element−of d. h2s(s2h(x)) =S x)∧ (∀ Ly. h2s(y) in d))
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The existence of a bijection does not immediately imply the inhabitation of the type/set.
However, as types need to be non-empty in both formalisms, we can derive this result as
below. For space reasons we only present the statements, all the theorems are proved in our
formalization.

theorem beIsoS-d:
beIsoS(h2s,s2h,d) �⇒ d is non empty

4 Integrating Basic Infrastructure: Functions and Lists

We will denote the morphisms from set theory to HOL with the prefix s2h and the inverse
ones with the prefix h2s. We will initially give the complete types for readability, omitting
them later, where the types are clear. The first type, for which we build an isomorphism, is
the type of functions. In order to transfer a function of the type α → β between set theory
and HOL, we will require isomorphisms for the types α and for the type β.

In order to transfer a set-theoretic function (set of pairs) to HOL, given transfer functions
on the range, on the domain, and the function itself, we return the lambda expression, that
given a HOL input to the function, transfers it, applies the function to it and transfers it back.
The formal definition is as follows.

definition s2hf :: (Set ⇒ b) ⇒ (a ⇒ Set) ⇒ Set ⇒ (a ⇒ b) (s2h f (-,-,-)) where
s2h f (s2hr,h2sd,f ) =H (λx. s2hr(f .(h2sd(x))))

Similarly, to build a set-theoretic function (set of pairs) given a HOL function and the
transfer operations, and the domain, we directly build this set:

definition h2sf :: (Set ⇒ a) ⇒ (b ⇒ Set) ⇒ Set ⇒ (a ⇒ b) ⇒ Set (h2s f (-,-,-,-)) where
h2s f (s2hd,h2sr,d,f ) =S the set−of−all [x,h2sr(f (s2hd(x)))] where x be Element−of d

Weare then able to directly show that these two functions are inverses of each other on their
domains. We also show the existence of an isomorphism, and show that this isomorphism
preserves the function application operation:

theorem beIsoT-Function:
assumes beIsoS(h2sd,s2hd,d) beIsoS(h2sr,s2hr,r)
shows beIsoT(λf . h2s f (s2hd,h2sr,d,f ),λf . s2h f (s2hr,h2sd,f ),Function−of d,r)

theorem HtoSappl:
assumes beIsoS(h2sd,s2hd,d) and beIsoS(h2sr,s2hr,r)
shows h2s f (s2hd,h2sr,d,f ).h2sd(x) =S h2sr(f (x))

Isabelle/HOL lists are realized as a polymorphic algebraic datatype, corresponding to
functional programming language lists. MML lists (called finite sequences, FinSequence)
are functions from an initial segment of the natural numbers. Higher-order lists behave like
stacks, with access to the top of the stack, whereas for the set-theoretic ones the natural
operations are the restriction or extension of the domain.

To build a bijection between these types, we note that the Cons operator corresponds to the
concatenation of a singleton list and the second argument. Since the list type is polymorphic
(in the shallow polymorphism sense used in HOL), in order to build this bijection, we also
need to map the actual elements of the list. Therefore the bijection on lists will be parametric
on a bijection on elements:

fun h2sfs :: (a ⇒ Set) ⇒ a List.list ⇒ Set (h2sL (-,-))where
h2sL (h2s, Nil) =S <∗>

| h2sL (h2s, Cons(h, t)) =S ((<∗h2s(h)∗>) ˆM (h2sL (h2s, t)))
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Where<∗> and ˆM represent theMizar empty sequence and the concatenation of sequences
respectively. The converse operation needs to decompose a sequence into its first element
x.1S and the remainder of the sequence shifted by one /ˆM1S . We define this operation
in Isabelle/Mizar and complete the definition. Isabelle will again require us to show the
termination of the function, which can be done by induction on the length of the list/sequence:

function s2hl :: (Set ⇒ a) ⇒ Set ⇒a List.list (s2hL (-,-)) where
¬ x be FinSequence �⇒ s2hL (s2h,x) =H undefined

| s2hL (s2h,<∗>) =H Nil
| x be FinSequence �⇒ x �= <∗> �⇒ s2hL (s2h,x) =H Cons (s2h(x.1S ), s2hL (s2h,x/ˆM1S ))

For the transformation introduced above, we can show that if we have a good homomor-
phism between the elements of the lists, then lists over this type are homomorphic with finite
sequences.

We can again show that this homomorphism preserves various basic operations, such as
concatenation, the selection of n-th element, length, etc.

theorem s2hL-Prop:
assumes p be FinSequence and q be FinSequence and n be Nat and n in len p
shows length(s2hL (s2h,p)) =H s2hIN(len p)

s2hL (s2h,pˆMq) =H s2hL (s2h,p) @ s2hL (s2h,q)
s2hL (s2h,p) ! s2hIN(n) =H s2h(p. (succ n))

Note, that the sequences in the Mizar library, FinSequence, are indexed starting at 1,
whereas Isabelle/HOL’s nth starts from 0, which justifies the usage of a shift (succ n). Fur-
thermore, since Mizar Mathematical Library uses natural numbers in the Peano sense, the
expression n in len p actually means n < len p. To actually use these in order to move the-
orems between the libraries we show how the morphisms interact with the operations. For
example, for reverse these are:

theorem rev-Rev:
assumes p be FinSequence
shows rev(s2hL (s2h,p)) =H s2hL (s2h,Rev p)

theorem Rev-rev:
Rev(h2sL (h2s,p)) =S h2sL (h2s,rev(p))

Moving a polymorphic statement from the Isabelle/HOL library to Isabelle/Mizar requires
an additional assumption about the existence of an isomorphismon the parametrized type. The
usual statement about the length of a reversed list, therefore becomes (of course this simple
statement is already available in the Isabelle/Mizar library, and can be used by referring to
finseq_5_def_3, but its simplicity is good to demonstrate moving polymorphic statements):

theorem
assumes p be FinSequence−of d and beIsoS(h2s,s2h,d)

shows len Rev p =S len p
using Rev-rev[of h2s s2hL (s2h, p)]

len-length[of h2s s2hL (s2h, p)]
len-length[of h2s rev(s2hL (s2h, p))]
by (simp only: length-rev FLF-prop[OF assms])
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We also show the proof here. It is still straightforward, just like the other proofs of the
moved statements given the morphisms, but with polymorphism it no longer follows by
higher-order rewriting.

5 Numbers

The way numbers are constructed in set-theory based libraries is very different from the
majority of the libraries based on HOL or type-theory. In particular, in Isabelle/Mizar sub-
sequently defined number types are extended (in the sense of set-theoretic subset) by new
elements. This is as opposed to hard-type-based systems, in which subsequently defined
number types are independent and projections or coercions which preserve the functions
are necessary. In particular, Isabelle/Mizar’s real numbers are constructed as Dedekind cuts.
Note, however, that the cuts corresponding to the rational numbers are replaced by the rational
numbers themselves, in order to preserve the inclusion Q ⊂ R.

A second, less important, distinction is the fact that in the Mizar library the non-negative
types (N,Q≥0,R≥0) are constructed first. After this, the negative reals are built asKuratowski
pairs of the singleton zero and the positive element. Finally, the rationals and integers are
subsets of the set of all reals. In particular, the sets N,Q≥0,R≥0,R are already constructed
with the basic operations on these sets and addition, subtraction, multiplication directly re-
use the real operations. The only additional thing to prove is that the types are preserved, so
for example the addition of integers returns a real that is also an integer.

The inclusions, together with the order of the construction are depicted in Fig. 1. In order
to realize this construction in Isabelle/Mizar, we first define the set of the natural numbers,
as the smallest limit ordinal. The formal definition is as follows:

mdef ordinal1-def-11 (omega) where
func omega → set means (λit.
0S in it ∧ it be limit-ordinal ∧ it be Ordinal ∧
(∀A:Ordinal. 0S in A ∧ A is limit-ordinal −→ it ⊆ A))

The definition introduces the constant (zero-argument functor) omega of the Mizar type
set, which satisfies the condition specified after the keyword means, that is, the defined
constant it is a limit ordinal with 0S as a member, and it is the smallest such set (considering
set inclusion). As a reminder, the mdef command requires the formalization to specify the
existence of the constant (proof is only included in the formalization), which is a consequence
of the Tarski universe property and its uniqueness.

On the other hand, the Isabelle natural numbers are a subtype of the type of individuals.
In order to merge these two different approaches, we specified a functor that preserves zero
and the successor. Note that the functor is specified only for the type of the natural numbers
which in Isabelle/HOL is implicit, but in the softly-typed set theory needs to be written and
checked explicitly. This is the reason for having an undefined case, which as we will see
later, still gives an isomorphism.

Fig. 1 The inclusions between the sets in the Mizar Mathematical Library. The arrows show the construction
order between the sets in the MML and our Isabelle set formalization

123



Combining Higher-Order Logic... Page 9 of 23 20

h2sN(n) =S
{
0S if n =H 0H,

SS(h2sN(k)) if n =H SH(k) for some H-natural k.

s2hN(n) =H

⎧⎨
⎩
0H if n =S 0S ,

SH(s2hN(k)) if n =S SS(k) for some S-natural k,
undefined otherwise.

The functor and its inverse are formally defined in Isabelle as follows

fun h2sn :: nat ⇒ Set (h2sIN(-)) where
h2sIN(0::nat) =S 0S | h2sIN(Suc(x)) =S succ h2sIN(x)

function s2hn :: Set ⇒ nat (s2hIN(-)) where
¬x be Nat �⇒ s2hIN(x) =H undefined

| s2hIN(0S ) =H 0
| x be Nat �⇒ s2hIN(succ(x)) =H Suc(s2hIN(x))

Note that h2sIN is defined only on the HOL natural numbers (nat), while s2hIN is defined on
all sets and its definition is only meaningful for arguments that are of the type Nat. The soft-
type system ofMizar requires us to give this assumption explicitly here, but it can normally be
hidden in the contexts where the argument type is restricted appropriately. Isabelle requires
us to prove the termination of the definition, which can be done using the proper subset
relation defined on natural numbers in the Peano sense.

Using the induction principles for natural numbers present in both libraries, we can show
the property beIsoS(h2sIN , s2hIN ,NAT), where NAT is the set of all Nat. In particular, it gives a
bijection (note the hidden type restriction to sets of type nat). We show also that the functors
h2sIN, s2hIN preserve all the basic operations.

theorem Nat-to-Nat:
fixes x::nat and y::nat
assumes n be Nat and m be Nat
shows h2sIN(x +H y) =S h2sIN(x) +S IN h2sIN(y)

s2hIN(n +S IN m) =H s2hIN(n) +H s2hIN(m)

h2sIN(x ∗H y) =S h2sIN(x) ∗S IN h2sIN(y)
s2hIN(n ∗S IN m) =H s2hIN(n) ∗H s2hIN(m)

x < y ←→ h2sIN(x) ⊂ h2sIN(y)
n ⊂ m ←→ s2hIN(n) < s2hIN(m)

x dvd y ←→ h2sIN(x) divides h2sIN(y)
n divides m ←→ s2hIN(n) dvd s2hIN(m)

prime(x) ←→ h2sIN(x) is primeS
n is primeS ←→ prime(s2hIN(n))

5.1 Isabelle/Mizar Number Hierarchy

After the natural numbers, MML constructs the non-negative rationals as pairs of relatively
prime naturals. Additionally, to preserve the set-theoretic inclusion of the set of natural
numbers, not only pairs with the denominator zero but also those with denominator one
are excluded and the original natural numbers added. We follow the same construction in
Isabelle/Mizar.

mdef arytm-3-def-7 (RAT≥0) where
func RAT≥0 → set equals
({[i,j] where i be Element−of NAT, j be Element−of NAT :

i,j are−coprime & j �= 0S } \ the set−of−all [k,1S ] where k be Element−of NAT) ∪ NAT
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Non-negative real numbers are constructed in a similar way. To the set of non-negative
rationals, we add Dedekind cuts corresponding to the positive irrational numbers. A standard
definition of Dedekind cuts is used, only restricted to non-negative rationals. We assume that
a proper subset A of non-negative rationals is a cut, if it is closed under smaller elements
(∀r, s:Element−of RAT≥0 . r in A ∧ s ≤Q≥0

r −→ s in A) and for every element in the set A

there is a larger element in the set A (∀r :Element−of RAT≥0. r in A −→(∃s:Element−of
RAT≥0.s in A ∧ r <Q≥0

s)). Note that RAT≥0 fulfills this condition, however, it is not a
proper subset of non-negative rationals. In contrast, in this approach, the empty set is a
Dedekind cut, but we do not need to add it in the construction of REAL≥0, since empty
corresponds to zero.

mdef arytm-2-def-1(DEDEKIND-CUTS) where
func DEDEKIND-CUTS → Subset−Family−of RAT≥0 equals
{ A where A be Subset−of RAT≥0:
∀ r: Element−of RAT≥0. r in A −→

(∀ s: Element−of RAT≥0. s ≤Q≥0
r −→ s in A) ∧

(∃ s: Element−of RAT≥0. s in A ∧ r <Q≥0
s)} \ {RAT≥0}

In order to preserve the inclusion between the rationals and reals, again the non-negative
real numbers are obtained as a union of the non-negative rationals as defined above and the
Dedekind cuts corresponding to the irrational numbers, that is cuts that cannot be realized in
the form {s where s be Element−of RAT+: s <Q≥0

q} where q is rational.

mdef arytm-2-def-2 (REAL≥0) where
func REAL≥0 → set equals (RAT≥0 ∪ DEDEKIND-CUTS) \
{{s where s be Element−of RAT≥0: s <Q≥0

t} where t be Element−of RAT≥0: t �= 0S }
Finally, the complete reals (REAL) are constructed by adding the negative real numbers.

In the Mizar set theory the negative numbers are represented by the pairs [0S ,r], where r is a
positive real number. For this, we add the pairs corresponding to r, where r is a non-negative
real and then remove the pair [0S ,0S ] to avoid duplicating 0. The sets of rationals and integers
are then appropriate subsets of the set REAL. Of course, it would be possible to build these
sets directly, together with their respective arithmetic operations, however, this would require
the introduction of different symbols for these operations in the different datatypes. The
Isabelle/Mizar formalization only temporarily introduces the operations Q≥0,R≥0 which
will almost never be used in the library, and the operations for the type R, which will be
directly reused for Z and Q. In particular, this allows using the operations in the context of
homomorphisms between integers, rationals, and reals.

mdef numbers-def-1 (REAL) where
func REAL → set equals

REAL≥0∪[:{0S },REAL≥0:] \ {[0S ,0S ]}

mdef numbers-def-3 (RAT) where
func RAT → set equals

RAT≥0∪[:{0S },RAT≥0:] \ {[0S ,0S ]}

mdef numbers-def-4 (INT) where
func INT → set equals

NAT∪[:{0S },NAT :] \ {[0S ,0S ]}
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5.2 Integrating Numbers

Given the Isabelle/Mizar number hierarchy specified in the previous section, we can start
building bridges between the types. We start with the integers. The set-theoretic definition
is again different from the one used in Isabelle/HOL. There, an equivalence relation (equal
modulo the difference) is defined on pairs of natural numbers, and the quotient package [34]
is used to construct the new type. Still, it is straightforward to define a bijection between
the two, using the constructed bijections between natural numbers. We also show that these
bijections preserve all the basic operators.

function h2sZ :: int ⇒ Set (h2sZZ(-))where
x ≥ 0 �⇒ h2sZZ(x) =S h2sIN(nat(x))

| x < 0 �⇒ h2sZZ(x) =S −S IR h2sIN(nat(−H(x)))

function s2hZ :: Set ⇒ int (s2hZZ(-))where
¬x is Integer �⇒ s2hZZ(x) =H undefined

| x is natural �⇒ s2hZZ(x) =H int(s2hIN(x))
| x is Integer & not x is natural �⇒ s2hZZ(x) =H −H (int(s2hIN(−S IR x)))

theorem beIsoS-INT :
beIsoS(h2sZZ,s2hZZ,INT)

For the rational numbers, we construct the natural bijection h2sQ , s2hQ using the bijections
between the integers and the unique representation of any rational as an irreducible fraction.
We again show that the operations behave well on arbitrary (including reducible) fractions.

theorem s2hQI:
fixes n::nat
shows n �=H 0 −→ Fract(i,n) =H s2hQ (h2sZ(i) /Q h2sZ(n))

theorem s2hQM:
i is Integer ∧ n is Nat ∧ n �= {} −→ s2hQ (i /Q n) =H Fract(s2hZZ(i),s2hZZ(n))

The constructions of the real numbers are significantly different in the two considered proof
libraries. Indeed, in Isabelle/HOL reals are quotients of Cauchy sequences whereas theMML
one uses Dedekind cuts. More precisely, in the MML, Dedekind cuts are used to construct
the irrational, and operations on them are defined on the cuts. To build a homomorphism
between the two definitions and to use it for all the operators requires considering cases,
namely whether the given argument is a rational number of a cut. The same is true for the
results of the operators.

To ease these constructions we first introduce two operators: DEDEKIND_CUT which
transforma real number to aDedekind cut, i.e., for positive rationals it associates to the number
r the cut {s where s be Element−of RAT≥0 : s <Q≥0

r}, and for irrational numbers, which are
already cuts, it is the identity. We also define the inverse operator GLUE, which transforms
cuts that can be represented in the form {s where s be Element−of RAT≥0 :s <Q≥0

r} for a
rational r, returns r, and is the identity otherwise.

mdef arytm-2-def-3 (DEDEKIND-CUT-) where
mlet x be Element−of REAL≥0

func DEDEKIND-CUT x →
Element−of DEDEKIND-CUTS means

λit. ∃ r:Element−of RAT≥0. x =S r ∧
it = {s where s be Element−of RAT≥0: s <Q≥0

r}
if x in RAT≥0

otherwise λit. it =S x
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mdef arytm-2-def-4 (GLUED -) where
mlet x be Element−of DEDEKIND-CUTS
func GLUED x → Element−of REAL≥0 means
λit. ∃ r : Element−of RAT≥0. it = r ∧
(∀ s : Element−of RAT≥0. s in x ←→ s <Q≥0

r)
if ∃ r : Element−of RAT≥0. ∀ s : Element−of RAT≥0.

s in x ←→ s <Q≥0
r

otherwise λ it. it = x

Wewill now construct the homomorphism between the real number representations. Con-
sider a non-empty Dedekind cut A. We observe, that by multiplying all the elements of A by a
positive rational q, we obtain a non-empty Dedekind cut. We denote this cut by q ∗D A. Next,
we denote by maxIN A the largest natural number in the set A. Consider the sequence of non-

negative rationals
{
maxIN (2n ∗D A)

2n

}
n∈IN. It easily follows that this sequence is non-decreasing

and that for every n ≤ k it is true that

maxIN (2n ∗D A)

2n
≤ maxIN (2k ∗D A)

2k
≤ maxIN (2n ∗D A)

2n
+ 1

2n

which shows that this sequence is a Cauchy sequence.
This allows us to associate any positive real number with a Cauchy sequence of rationals:

mdef Rat2C(rC - 110) where
mlet r be Element−of REAL≥0

func rC r → Function−of NAT,RAT means
λit. ∀ n:Nat. it. n = (maxIN ( ( 2S |ˆ n) ∗D (DEDEKIND-CUT r))) /Q ( 2S |ˆ n)
Using the previously defined homomorphisms between the naturals and rationals aswell as

between the types of functions (Sect. 4 and previous subsections of Sect. 5), we can transform
this set-theoretic function to a HOL one. We show that this transformation preserves Cauchy
convergence:

definition s2hseq :: Set ⇒ (nat ⇒ rat) (s2hseq(-)) where
s2hseq(f ) =H s2hf (s2hQ,h2sn,f )

theorem MICauchy:
assumes f is Function−of NAT,RAT
shows f is CauchyS ←→ Real.cauchy (s2hseq(f ))

Which allows us to define the final homomorphism that given a set-theoretic real trans-
forms it to a HOL real.

function s2hR :: Set ⇒ real (s2hIR(-))where
¬x is MReal �⇒ s2hIR(x) =H undefined

| x is Element−of REAL≥0 ∧ x �=0S �⇒ s2hIR(x) =H Real.Real(s2hseq(rC x))
| x is Element−of REAL≥0 ∧ x=0S �⇒ s2hIR(x) =H 0
| x is MReal ∧ x �=0S ∧ ¬ x is Element−of REAL≥0 �⇒
s2hIR(x) =H −H Real.Real(s2hseq(rC(−S IR x)))

where for non-negative real number x, we use it to produce the sequence of rational numbers
rC x, which are subsequently transformed to a sequence of HOL reals s2hseq(rC x), and finally
we return the abstraction of the Cauchy sequence class to which the sequence belongs.
For negative real numbers, we use minus twice, analogously to the integer and rational
constructions. −H (...( −S IR x))
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In order to build the inverse transformation, we will construct the Dedekind cut based
on a real number. First, for any real number r, we start with one of the Cauchy sequence
real2seqL(r) belonging to its equivalence class r. We consider the equivalence of this
sequence in set theory: h2sseq(r). This sequence is non-decreasing and has non-negative
values if r is non-negative. Additionally, if r is positive, this sequence h2sseq(r) is also
positive starting from some index. This means that for any positive real r, the sequence
{s where s be Element−of RAT≥0 : s <Q≥0

h2sseq(r).n }n∈IN is non-empty (from some posi-
tion, to be precise when h2sseq(r).n �=0S ) and non-decreasing and its union (seq2Dedekind) is a
Dedekind cut.

definition real2seqL :: real ⇒ (nat⇒rat) where
real2seqL(r) =H (λn::nat. Fract(�r ∗H (2ˆn)�,2ˆn))

definition h2sseq :: real ⇒ Set (h2sseq(-)) where
h2sseq(r) = h2sf (s2hn,h2sQ,NAT,real2seqL(r))

mdef seq2Dedekind where
mlet f be Function−of NAT, RAT
func seq2Dedekind(f ) → Subset−of RAT≥0 means

λit. ∀ x:Element−of RAT≥0. x in it ←→ (∃ k:Nat. x <IR (f .k))

The final transformation that given a HOL real number extracts its Cauchy sequence and
transforms it to an Isabelle/Mizar real is:

function h2sR :: real ⇒ Set (h2sIR(-))where
x > 0 �⇒ h2sIR(x) = GLUED(seq2Dedekind(h2sseq(x)))

| x =H 0 �⇒ h2sIR(x) = 0S
| x < 0 �⇒ h2sIR(x) = −S IR GLUED(seq2Dedekind(h2sseq(−H x)))

The two defined operations s2hIR and h2sIR are not as straightforward as for the naturals or
rationals. We do nonetheless prove (details are only in the formalization) that they do indeed
give an isomorphism and that this isomorphism preserves the basic arithmetic operations and
the standard less than order.

theorem beIsoS-Real:
beIsoS(h2sR,s2hR,REAL)

theorem Real-to-Real:
fixes x::real and y::real
assumes r be MReal and s be MReal
shows h2sIR(x +H y) =S h2sIR(x) +S IR h2sIR(y)

s2hIR(r +S IR s) =H s2hIR(r) +H s2hIR(s)
h2sIR(x ∗H y) =S h2sIR(x) ∗S IR h2sIR(y)
s2hIR(r ∗S IR s) =H s2hIR(r) ∗H s2hIR(s)
x ≤ y ←→ h2sIR(x) ≤IR h2sIR(y)
r ≤IR s ←→ s2hIR(r) ≤ s2hIR(s)

We are now ready to practically move proved theorems about numbers between HOL and
Isabelle/Mizar.

6 Algebra

The structure representations used in higher-order logic and set theory are usually different.
This will be particularly visible when it comes to algebraic structures. In the Isabelle/HOL
formalization, algebraic structures are type-classes while in set theory a common approach
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would be partial functions. We will illustrate the difference on the example of groups. A type
α forms a group when we can indicate a binary function on this type that will serve as the
group operation satisfying the group axioms. On the other hand, in the usual set-theoretic
approach a group in set theory would consist of an explicitly given set (the carrier), and the
group operation.With an intersection type system, the fact that the given set with an operation
is a group is specified by intersecting the type of structures with the types that specify their
individual properties (i.e., a group is a non-empty associative Group-like multMagma)

There are two more differences in the particular formalizations we consider, that we will
not focus on, but we will only mention them in this paragraph and consider them only in
the formalization. First, the existence and uniqueness of the neutral element can be either
assumed in the group specification or derived from the axioms. We will not focus on that,
as this is only the choice of a group axiomatization. Second, in the Mizar library, there are
two theories of groups: additive groups and multiplicative groups. Rings and fields inherit
the latter, while some group-theoretic results are derived only for the former. Even if the
Isabelle/HOL group includes a field for the unit, we will ignore it in the morphism, since the
set-theoretic definition does not use one. The neutral element along with the other properties
is, however, necessary to justify that the result of the morphism is a group in the set-theoretic
sense.

definition h2sg (h2sG (-,-,-,-)) where
h2sG (s2hc,h2sc,c,g) =S [#
carrier �→ c;
multF �→ h2sBinOp(s2hc,h2sc,c,mult(g)) #]

definition s2hg (s2hG (-,-,-)) where
s2hG (s2hc,h2sc,g) =H Igroup(
Collect(λx. h2sc(x) in the carrier of g),
s2hBinOp(s2hc,h2sc,the multF of g),
s2hc(1.g))

For the dualmorphism, we indicate the result of the operation selecting the neutral element
(1.g) as the field needed in the construction of the type-class element. With its help, we can
justify that the fields of the translated structure are translations of the fields.

theorem s2hg-Prop:
assumes beIsoS(h2sc,s2hc,c) and g be Group
and the carrier of g =S c
and x ∈ carrierI(s2hG (s2hc, h2sc, g))
y ∈ carrierI(s2hG (s2hc, h2sc, g))

shows one(s2hG (s2hc,h2sc,g)) =H s2hc(1.g)
x ⊗s2hG (s2hc,h2sc,g) y =H s2hc(h2sc(x) ⊗g h2sc(y))
group (s2hG (s2hc,h2sc,g))

A number of proof assistant systems based both on higher-order logic (including
Isabelle/HOL) and set theory (including Mizar) support inheritance between their algebraic
structures. As part of our work aligning the libraries we also want to verify that such inher-
itance is supported in the combined library. For this, we align the ring structures present in
the two libraries. The isomorphism between the structures is defined in a similar way to the
one for groups, we refer the interested reader to our formalization.

We can show that themorphisms form an isomorphism and derive some basic preservation
properties. The most basic one is the fact that the isomorphism preserves being a ring.

theorem s2hr-Prop:
assumes beIsoS(h2sc,s2hc,c) and r be Ring
and the carrier of r =S c
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and x ∈ carrierI(s2hR(s2hc,h2sc,r)) y ∈ carrierI(s2hR(s2hc,h2sc,r))
shows zero(s2hR(s2hc,h2sc,r)) =H s2hc(0r )

one(s2hR(s2hc,h2sc,r)) =H s2hc(1r )
x ⊕s2hR(s2hc,h2sc,r) y =H s2hc(h2sc(x) ⊕r h2sc(y))
x ⊗s2hR(s2hc,h2sc,r) y =H s2hc(h2sc(x) ⊗r h2sc(y))
ring (s2hR(s2hc,h2sc,r))

Finally, we introduce the equivalent of the definition of the integer ring introduced in the
MML in [52]. We have previously discussed the semantics of Mizar structures and the way
they are represented in Isabelle/Mizar in [27].Here,with the previously defined isomorphisms
for the subfields, we can show that s2hR and h2sR determine an isomorphism between the
fields of the rings developed in Isabelle/HOL and the Mizar Mathematical Library.

mdef int-3-def-3 (ZZ−ring) where
func ZZ−ring → strict(doubleLoopStr) equals [#
carrier �→ INT;
addF �→ addint;
ZeroF �→ 0S ;
multF �→ multint;
OneF �→ 1S#]

theorem H-Zring-to-S-Zring:
h2sR(s2hZZ, h2sZZ,INT,Z) =S ZZ−ring
s2hR(s2hZZ, h2sZZ, ZZ−ring) =H Z

7 Integrated Libraries: Practical Examples

We are now ready to use the existence of isomorphisms to automatically transform theorems
about continuity of functions, including the Intermediate Value Theorem and the theorem
that states that the image of a closed interval is a closed interval:

theorem continuous-atM:
fixes f a
assumes f be Function−of REAL,REAL a is MReal
shows isCont(s2h f IR(f ),s2hR(a)) ←→ f is-continuous-in a

theorem continuous-atI:
fixes f ::real⇒real
shows isCont(f,a) ←→ (h2s f IR(f )) is-continuous-in (h2sR(a))

theorem IVTmiz:
∀ f :Function−of REAL,REAL. ∀ a,b,v:MReal. f . a ≤IR v & v ≤IR f . b & a ≤IR b &

f is-continuous-on [.a, b.] −→
(∃ x:MReal. a ≤IR x & x ≤IR b & f . x = v)

theorem IVT-img:
∀ f :Function−of REAL,REAL. ∀ a,b:MReal.

a ≤IR b ∧ f is-continuous-on [.a, b.] −→
(∃ c,d:MReal. c ≤IR d ∧ f .: [. a, b .] =S [. c, d .])
We also show the projection theorem, which again states that the homomorphisms agree

and do not require any projections:

theorem
n is Nat �⇒ of-nat(s2hIN(n)) =H of-int(s2hZZ(n))
i is Integer �⇒ of-int(s2hZZ(i)) =H of-rat(s2hQ (i))
q is Rat �⇒ of-rat(s2hQ (q)) =H s2hIR(q)
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It is now possible to translate the Lagrange’s Four Squares theorem and Bertrand’s postu-
late between the libraries. We can prove the Isabelle/Mizar counterpart of the Isabelle/HOL
theorem only using higher-order rewriting and the above properties.

theorem LagrangeFourSquares:
∀ n:Nat. ∃ a,b,c,d:Nat.
a ∗S IN a +S IN b ∗S IN b +S IN c ∗S IN c +S IN d ∗S IN d =S n

theorem Bertrand:
∀ n:Nat. 1S ⊂ n −→

(∃ p:Nat. p be primeS ∧ n ⊂ p ∧ p ⊂ (2S ∗S IN n))

This allows translating the proved Fermat’s last theorem for powers divisible by 3 and 4
from Isabelle/HOL to Isabelle/Mizar. The original proof involved quite some computation
and therefore has not been attempted in Mizar so far. However, thanks to the isomorphisms,
the translated version can be proved automatically (higher-order rewriting combined with
Isabelle/Mizar type automation):

theorem Fermat-divides-3-4:
∀ x,y,z:Integer. ∀ n:Nat.
(3S divides n ∨ 4S divides n) ∧ (x Iˆ n) +S IR (y Iˆn) =S z Iˆn
−→ x ∗S IR y ∗S IR z =S 0S

theorem Fermat-3:
∀ x:Integer. ∀ y:Integer. ∀ z:Integer.

(x Iˆ 3S ) +S IR (y Iˆ3S ) = z Iˆ 3S −→ x ∗S IR y ∗S IR z =S 0S

theorem rev-Rev:
assumes p be FinSequence
shows rev(s2hL (s2h,p)) =H s2hL (s2h,Rev p)

8 Tarski’s Axiom vs. Grothendieck Universes

The theoretical part of our previous work [7] formally introduced a foundation for computer
verified proofs based on higher-order Tarski–Grothendieck set theory (HOTG) and prove that
this theory has amodel if a 2-inaccessible cardinal exists.Referring to the former as the axioms
of Tarski–Grothendieck is, however, slightly misleading, as there are two not immediately
equivalent families of axioms. In particular, the two axiom families are equivalent assuming
the axiom of choice. Additionally, the axiom of choice is a consequence of the Tarski axioms,
but it is not the case for the Grothendieck formulation. Both of these facts are now also
formalized in Isabelle, and shortly discussed in this section.

The formalization done in this section is done independently from Isabelle/HOL or
Isabelle/Mizar as its goal is to formally justify that Tarski’s axiomA is valid in the model pro-
posed in [7]. Recall, that Tarski’s axiom A is used in the Mizar library and in Isabelle/Mizar,
whereas the existence of a Grothendieck universe is used for example in Egal.

Tarski’s Axiom A states that every set N is a member of some Tarski universe M which
is closed under subsets, powersets, and every subset of the universe is either a member of the
universe or is equipotent with that universe. To state this formally, the equipotence between
the sets X and Y can be defined by a set of Kuratowski pairs, which defines a bijection from
X to Y using only a minimal set of definitions, as it is done for example in the MML:
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definition Tarski-axiom-A where
Tarski-axiom-A ≡ ∀ N . ∃ M.

N ∈ M ∧
(∀ X Y . X ∈ M ∧ Y ⊆ X −→ Y ∈ M)∧
(∀ X. X ∈ M −→ Pow X ∈ M)∧
(∀ X. X ⊆ M −→ (∃ b. b: bij X M) ∨ X ∈ M)

In the Grothendieck approach, for an arbitrary set X , we can explicitly obtain the
Grothendieck universe UnivX . The universe UnivX is transitive (Trans (Univ X)), closed
under union, powerset, and replacement (ZFclosed (Univ X)) and it is the smallest set (w.r.t.
set inclusion) having these properties.

axiomatization
Univ :: set ⇒ set where
UnivIn: X ∈ Univ X and
UnivTransSet: Trans (Univ X) and
UnivZF: ZFclosed (Univ X) and
UnivMin: X ∈ U ∧ Trans U ∧ ZFclosed U �⇒ Univ X ⊆ U

To compare these two axiomatizations, we have previously shown in the higher-order logic
of Egal that every Grothendieck universe, under the axiom of choice assumption, satisfies
Tarski’s Axiom A (see [8]), but, not vice versa. Tarski universes, as opposed to Grothendieck
universes, might not be transitive. We constructed such a Tarski universe of a set N that is a
proper subset of UnivN in [47] in the first-order logic of Mizar, as well as proved that UnivN
included in every Tarski universe of a set N if N is transitive.

In particular, using these properties, we proved in Isabelle that assuming HOTG and the
axiom of choice, Univ N is a Tarski universe, i.e., that in the model [7], Tarski’s Axiom A is
valid. Rather than repeat the proofs already described in [8] we show the final statement that
we proved under the axiom of choice as rendered by Isabelle:

definition AC-axiom where
AC-axiom ≡ ∀ X. {} /∈ X −→ (∃ f . (f ∈ X → ⋃

X) ∧ (∀A. A∈ X −→ f‘ A ∈ A))

theorem
AC-axiom −→ Tarski-axiom-A

In order to even more closely show the adequacy of the HOTG model for importing the
Isabelle/HOL proofs, one might also consider polymorphism, which is present in the foun-
dations of the HOL families of provers. Andrew Pitts has provided a custom semantics to
HOL that factors in polymorphism [50]. We however believe, that since the polymorphism in
HOL is shallow (rank-one), it can be considered a notation for monomorphic HOL, namely
all proofs can be translated to monomorphic ones and that the Grothendieck universes offer
enough room for the quantification incurred by polymorphism. Extending the model to sup-
port all the custom extensions present in Isabelle/HOL (such as e.g., type classes [22] or local
type definitions [30]) is left as future work.

9 RelatedWork

Since proof assistants based on plain higher-order logic lack the full expressivity of set
theory, the idea of adding set theory axioms on top of HOL has been tried multiple times.
Gordon [17] discusses approaches to combine the power of HOL and set theory. Obua has
proposed HOLZF [42], where Zermelo-Fraenkel axioms are added on top of Isabelle/HOL.
With this, he was able to show results on partisan games, that would be hard to show in
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plain higher-order logic. Later, as part of the ProofPeer project [43], the combination of HOL
with ZF became the basis for an LCF system, reducing the proofs in the higher-order logic
part to a minimum (again, since there was no guarantee, that combining the results is safe).
Kunčar [35] attempted to import the Tarski–Grothendieck-based library into HOL Light.
Here, the set-theoretic concepts were immediately mapped to their HOL counterparts, but it
soon came out that without adding the axioms of set theory the systemwas not strong enough.
Brown [10] proposed the Egal system which again combines a specification of higher-order
logic with the axioms of set theory. The system uses explicit universes, which is in fact
the same presentation as given in this work. This work therefore also gives a model for the
Egal system. Finally, we have specified [28] and imported [29] significant parts of the Mizar
library into Isabelle. In this work, we only use the specification of Mizar in Isabelle and the
re-formalized parts of the MML.

The idea to combine proof assistant libraries across different foundations also arose in
the Flyspeck project [18] formalizing the proof of the Kepler conjecture [20]. Krauss and
Schropp [33] specified and implemented a translation from Isabelle/HOL proof terms to
set-theoretic proved theorems. The translation is sound and only relies on the Isabelle/ZF
logic, however, it is too slow to be useful in practice, in fact, it is not possible to translate
the basic Main library of Isabelle/HOL into set theory in reasonable time2 It is also possible
to deep embed multiple libraries in a single meta-theory. Rabe [51] does this practically
in the MMT framework deep embedding various proof assistant foundations and providing
category-theoretic mappings between some foundations. Logical frameworks allow import-
ing multiple libraries at the same time. In the Dedukti framework, Assaf and Cauderlier [1, 2]
have combined properties originating from the Coq library and the HOL library. Both were
imported in the same system, based on the λ� calculus modulo, however, the two parts of
the library relied on different rewrite rules.

Most implementations of set theory in logical frameworks could implicitly use some
higher-order features of the framework, as this is already used for the definition of the
object logic. The definition of the Zermelo-Fraenkel object logic [49] in Isabelle uses lambda
abstractions and higher-order applications for example to specify the quantifiers. This is also
the case in Isabelle/TLA [38]. These object logics are normally careful to restrict the use of
higher-order features to a minimum, however, the system itself does not restrict this usage.

The first author together with Gauthier [15] has previously proposed heuristics for auto-
matically finding alignments across proof assistant libraries. Such alignments, even without
merging the libraries can be useful for conjecturing new properties [39] as well as improving
proof assistant automation [14].

The fact that Grothendieck universes are the same as transitive Tarski classes has been
formalized by Carneiro in Metamath.3

10 Automated Transfer and Limitations of CurrentWork

In this section, we discuss transfer in higher-order logic based systems, transport in intuition-
istic type theory, and the limitations of the current work when it comes to automating the
transfer of theorems between the foundations.

2 As part of an ongoing project to export Isabelle proof to Dedukti and the project exporting Isabelle to
MMT [32] some of the proofs in Isabelle/Main are being currently optimized.
3 http://us.metamath.org/mpeuni/grutsk.html.
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Automating the transfer of theorems between different types in higher-order logic has
a long history. Today, higher-order rewriting-based packages for the creation of quotient
types are present in the libraries of most HOL-based proof assistants. These packages can
automatically translate theorems from the raw types to the quotient types.

For example, HOL Light [19] includes the quot.ml package already since the nineties.
This package defines two ML functions: lift_function and lift_theorem. The
former automatically defines constants (often of higher-order function types) in a quotient
type based on corresponding constants in a raw type. The latterML function uses higher-order
rewriting to transfer theorems that use the lifted constants to raw ones.

The procedure has been further improved by Homeier [23] in HOL4. The HOL4 quotient
package allows an explicit declaration of properties of functions and relations (preserves and
respects properties). These allow for quotients for polymorphic types. A similar architecture
has been considered in the initial quotient package for Isabelle/HOL co-developed by the
first author [34]. By further considering the interplay between the transfer in the outside and
inside types it is possible to automatically quotient lists into finite sets with operations such
as concatenation of a list of lists automatically translated into a finite set union.

The Isabelle/HOL quotient package has been modularized by Huffman and Kunčar [21].
The functionality has been separated into two packages: lifting and transfer. Lifting
allows the automated translation of definitions in a source type to definitions in a target
type (including quotient-based definitions). Transfer uses higher-order rewriting to move
theorems between types. This modular construction allows the use of transfer also for cases
of isomorphic types (including almost isomorphic ones, as was already the case for example
with quotients), but where the target is actually not defined as a quotient of the source type.

A further improvement to the transfer mechanism in Isabelle/HOL has been developed by
Kuncar and Popescu [30] in their work on local type definitions. There, the transfer package is
extended to allow relativizing type-based statements to more set-based forms in a principled
way.

In the context of intuitionistic type theory, translating theorems from types to their quo-
tients is much more complex. This is because of the more intricate nature of equality in
type theories, which in particular does not allow replacing equal things in all contexts (all
above HOL packages rely not only on the axiom of choice but also on extensionality). An
traditional approach to moving theorems between types that allows computation has been
the use of setoids. This allows moving some theorems to quotients for example in the CoRN
project [12].

More recently, foundations based on homotopy type theory [3] have been proposed. There,
propositional equality between terms is interpreted as homotopy. The univalence axiom of
Voevodsky [53] assumed in such foundations allows transporting properties and structures
expressed over isomorphisms and equivalences. In its simplest variant, transport in HoTT/UF
is an operation that takes a type family P : A → U , a path a = b in A, and returns a
function Pa → Pb [40]. This allows transport between isomorphic types but does not take
computation into account. This is further extended in cubical type theories [11]. There, it is
possible to directly manipulate n-dimensional cubes based on an interpretation of dependent
type theory in a cubical set model. Cubical type theories furthermore are specified in a way
that allows Voevodsky’s axiom to be provable. Transport in cubical type theories [5] can take
as input a line of types A : I → U . This more primitive transport operation can however
take computation into account. We are not aware of any automated tactics/packages allowing
for transport of theorems between types in the same way as it is possible in Isabelle/HOL’s
transfer package.
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The work presented here, similar to the higher-order automated transfer packages, uses
higher-order rewriting to translate the statements between the HOL types and the set-based
representation, however, we have not been able to use the Isabelle transfer package for this.
The reason for this is that on theMizar side additional typing predicates are needed to express
soft types and reasoning about these types is necessary. The Mizar soft types are additionally
dependent. As such, we combine higher-order rewriting with our dedicated Isabelle/Mizar
tactic for proving the Mizar type obligations (themty tactic). As the tactic is responsible for
Prolog-style type inference on the predicate level integrating its use with the existing Isabelle
transfer package would be rather involved.

In principle, the equivalences provided by the isomorphisms allow translating the state-
ments both in the assumptions and in the conclusions, however, we cannot directly use the
transfer package, since type constraints not present on the term level in HOL correspond to
explicit typing judgments in the set-theoretic types. Consider the isomorphism between the
Mizar finite sequences and Isabelle/HOL lists. All the proved statements require the Mizar
dependently typed assumptions stating that an argument is of a finite sequence type over some
Mizar domain l be FinSequence-of t as well as an additional isomorphism for the domain.
We have added the necessary assumptions to the theorems, and in the automated proofs, the
Isabelle/Mizar type inference (including the automated proof of Mizar type inhabitation) is
necessary to fulfill these obligations. We believe, that is it possible to augment the lifting
and transfer packages to add soft type constraints on the term level and fulfill them wherever
possible. The details are however unclear and are left as future work.

11 Conclusion

We have used Isabelle HOTG to combine results proved in TG set theory with results proved
in higher-order logic. This allows us to combine large parts of two major proof assistant
libraries: the Mizar Mathematical library and the Isabelle/HOL library. Supplementary to the
theorems and proofs coming from both, we define a number of isomorphisms that allow us to
translate theorems proved in part of one of these libraries and use them in the corresponding
part of the other library.

As part of the library merging, we have formally defined and proved in Isabelle the neces-
sary concepts. Apart from porting proofs to Isabelle/Mizar, the isomorphism formalizations
and the theorems moved using those amount to 10179 lines of proofs. The formalization is
available at:

http://cl-informatik.uibk.ac.at/cek/ckkp-jar2022-hotg.tgz
Apart from higher-order and set-theoretic foundations, the third most commonly used

foundation is dependent type theory. The most important future work direction would inves-
tigate combining the results proved herewith those proved in such type-theoretic foundations.

So far, we have mostly moved results that have been proved in HOL to set theory. It
could be also interesting to transfer the Brouwer’s theorem for n-dimensional case (the fixed
point theorem [44], the topological invariance of degree, and the topological invariance of
dimension [45]) that are essential to define and develop topological manifolds since theMizar
library results on manifolds are much developed than those in Isabelle/HOL [25].

Funding This work has been supported by the European Research Council (ERC) Starting Grant Number
714034 SMART, the Polish National Science Center granted by decision n◦DEC-2015/19/D/ST6/01473, and
the COST Action CA20111 Number E-COST-GRANT-CA20111-9d20b2ad. Open access funding provided
by University of Innsbruck and Medical University of Innsbruck.

123

http://cl-informatik.uibk.ac.at/cek/ckkp-jar2022-hotg.tgz


Combining Higher-Order Logic... Page 21 of 23 20

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Assaf, A., Cauderlier, R.: Mixing HOL and Coq in Dedukti. In: Kaliszyk, C., Paskevich, A. (eds.) Proof
eXchange for Theorem Proving (PxTP 2015), vol. 186 of EPTCS, pp. 89–96 (2015)

2. Assaf,A.:A framework for defining computational higher-order logics. (Un cadre de définition de logiques
calculatoires d’ordre supérieur). PhD thesis, École Polytechnique, Palaiseau, France (2015)

3. Awodey, S: Type theory and homotopy. In: Dybjer, P., Lindström, S., Palmgren, E., Sundholm, G. (eds.)
Epistemology versus Ontology - Essays on the Philosophy and Foundations of Mathematics in Honour of
Per Martin-Löf, vol. 27 of Logic, Epistemology, and the Unity of Science, pp. 183–201. Springer (2012)
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27. Kaliszyk, C., Pąk,K.: Isabelle formalization of set theoretic structures and set comprehensions. In: Blamer,

J., Kutsia, T., Simos, D. (eds.) Mathematical Aspects of Computer and Information Sciences, MACIS
2017, vol. 10693 of LNCS. Springer (2017)
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