
Journal of Automated Reasoning (2023) 67:1
https://doi.org/10.1007/s10817-022-09648-w

A Formalization and Proof Checker for Isabelle’s Metalogic

Simon Roßkopf1 · Tobias Nipkow1

Received: 19 October 2021 / Accepted: 20 July 2022 / Published online: 12 December 2022
© The Author(s) 2022

Abstract
Isabelle is a generic theorem prover with a fragment of higher-order logic as a metalogic
for defining object logics. Isabelle also provides proof terms. We formalize this metalogic
and the language of proof terms in Isabelle/HOL, define an executable (but inefficient) proof
term checker and prove its correctness w.r.t. the metalogic. We integrate the proof checker
with Isabelle and run it on a range of logics and theories to check the correctness of all the
proofs in those theories.

Keywords Theorem proving · Higher-order logic · Isabelle · Proofchecker · Metalogic

1 Introduction

One of the selling points of proof assistants is their trustworthiness. Yet in practice, soundness
problems do come up in most proof assistants. Harrison [15] distinguishes errors in the logic
and errors in the implementation (and cites examples). Our work contributes to the solution
of both problems for the proof assistant Isabelle [35]. Isabelle is a generic theorem prover:
it implementsM, a fragment of intuitionistic higher-order logic, as a metalogic for defining
object logics. Its most developed object logic is HOL, and the resulting proof assistant is
called Isabelle/HOL [27, 28]. The latter is the basis for our formalizations.

Our first contribution is the first complete formalization of Isabelle’s metalogic. Thus our
work applies to all Isabelle object logics, e.g., not only HOL but also ZF. Of course Paulson
[36] describes M precisely, but only on paper. More importantly, his description does not
yet cover polymorphism and type classes, which were introduced later [29]. The published
account of Isabelle’s proof terms [7] is also silent about type classes, yet type classes are a
significant complication. We do, however, not formalize the theory extension mechanisms
(e.g., for constant definitions) on top of the logic.

Our second contribution is a verified (against M) and executable checker for Isabelle’s
proof terms. We have integrated the proof checker with Isabelle. Thus, we can guarantee that

B Simon Roßkopf
rosskops@in.tum.de
https://www21.in.tum.de/∼rosskops/

Tobias Nipkow
https://www21.in.tum.de/∼nipkow/

1 Department of Informatics, Technical University of Munich, Munich, Germany

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09648-w&domain=pdf
http://orcid.org/0000-0002-7955-8749
http://orcid.org/0000-0003-0730-515X

1 Page 2 of 21 S. Roßkopf, T. Nipkow

every theorem whose proof our proof checker accepts is provable in our definition ofM. So
far we are able to check the correctness of moderately sized theories across the full range of
logics implemented in Isabelle.

Although Isabelle follows the LCF-architecture (theorems that can only be manufactured
by inference rules) it is based on an infrastructure optimized for performance. In particular,
this includes multithreading, which is used in the kernel and has once led to a soundness
issue.1 Therefore we opt for the “certificate checking” approach (via proof terms) instead of
verifying the implementation.

This is the first work that deals directly with what is implemented in Isabelle as opposed
to a study of the metalogic that Isabelle is meant to implement. Instead of reading the imple-
mentation, you can now read and build on the more abstract formalization in this paper. The
correspondence of the two can be established for each proof by running the proof checker.

Our formalization reflects the ML implementation of Isabelle’s terms and types and some
other data structures. Thus, a few implementation choices shine through, e.g., De Bruijn
indices. This is necessary because we want to integrate our proof checker as directly as
possible with Isabelle, with as little unverified glue code as possible, for example, no trans-
lation between De Bruijn indices and named variables. We refer to this as our intentional
implementation bias. In principle, however, one could extend our formalization with different
representations (e.g., named terms) and prove suitable isomorphisms.

Our work is purely proof theoretic; semantics is out of scope.
This paper is an extended version of a conference paper [30] presented at CADE 28. In

addition to the material covered in the conference paper, it includes

• A section describing some useful derived rules in our inference system (Sect. 7)
• A more detailed description of the executable proofchecker and its verification (Sect. 8)
• An updated formalization, including an updated, more natural formalization of the order-

sorted signatures (Sect. 4), generic variable types, explicitly finite data structures, and
updated proof terms.

1.1 RelatedWork

Harrison [15] was the first to verify some of HOL’s metatheory and an implementation of a
HOL kernel in HOL itself. Kumar et al. [20] formalized HOL including definition principles,
proved its soundness and synthesized a verified kernel of a HOL prover down to the machine
language level. Abrahamsson [1] verified a proof checker for the OpenTheory [17] proof
exchange format for HOL.

Wenzel [43] showed how to interpret type classes as predicates on types. We follow
his approach of reflecting type classes in the logic but cannot remove them completely
because of our intentional implementation bias (see above). Kunčar and Popescu [21–24]
focus on the subtleties of definition principles for HOLwith overloading and prove that under
certain conditions, type and constant definitions preserve consistency. Åman Pohjola et al.
[3] formalize some of this work by Kunčar and Popescu [21, 24].

Adams [2] presents HOLZero, a basic theorem prover for HOL that addresses the problem
of how to ensure that parser and pretty-printer do not misrepresent formulas.

Let us now move away from Isabelle and HOL. Barras verified fragments of Coq in Coq
[4, 5]. Sozeau et al. [41] present the first implementation of a type checker for the kernel
of Coq that is proved correct in Coq with respect to a formal specification. Carneiro [8] has

1 https://mailmanbroy.in.tum.de/pipermail/isabelle-dev/2016-December/007251.html.

123

https://mailmanbroy.in.tum.de/pipermail/isabelle-dev/2016-December/007251.html

A Formalization and Proof... Page 3 of 21 1

implemented a highly performant proof checker for a multi-sorted first-order logic and is in
the process of verifying it in its own logic. Davis developed the bootstrapping theorem prover
Milawa [9] and, together with Myreen, showed its soundness down to machine code [10].

We formalize a logic with bound variables, and there is a large body of related work
that deals with this issue (e.g., [11, 18, 42]) and a range of logics and systems with special
support for handling bound variables (e.g., [38–40]).We found that De Bruijn indices worked
reasonably well for us.

2 Preliminaries

Isabelle types are built from type variables, e.g., ′a and (postfix) type constructors, e.g.,
′a list ; the function type arrow is ⇒. Isabelle also has a type class system explained later.
The notation t ::τ means that term t has type τ . Isabelle/HOL provides types ′a set and
′a list of sets and lists of elements of type ′a. They come with the following vocabulary:
function set (conversion from lists to sets), (#) (list constructor), (@) (append), |xs| (length
of list xs), xs ! i (the i th element of xs starting at 0), list-all2 p [x1, . . ., xm] [y1, . . ., yn]
= (m = n ∧ p x1 y1 ∧ . . . ∧ p xn yn), (>>=) (monadic bind) and other self-explanatory
notation.

There is also the predefined data type

datatype ′a option = None | Some ′a

The type τ 1 ⇀ τ 2 abbreviates τ 1 ⇒ τ 2 option, i.e., partial functions, which we callmaps.
Maps have a domain and a range:

dom m = {a | m a �= None} ran m = {b | ∃a. m a = Some b}
It must be noted that in our formalization, we are not using sets/maps directly, but subtypes

for finite sets/maps. This simplifies some proofs and code generation; however, there is less
material about them readily available. Luckily, we can easily make use of material for general
sets/maps using Isabelle’s Lifting and Transfer packages[16].

Logical equivalence is written = instead of ←→.

3 Types and Terms

A name is simply a string. Variables have (Isabelle/HOL level) type ′v; their inner structure
is immaterial for the presentation of the logic. We only require ′v to be infinite, to always
guarantee a supply of fresh variables. We encode this using a type class for infinite types.

The logic has three layers: terms are classified by types as usual, but in addition, types are
classified by sorts. A sort is simply a set of classes and classes are just strings. We discuss
sorts in detail later.

Types (typically denoted by T , U , …) are defined like this:

datatype ′v t yp = Ty name (′v t yp list) | Tv ′v sort

where Ty κ [T 1,...,T n] represents the Isabelle type (T 1,. . .,T n) κ and Tv a S represents a
type variable a of sort S—sorts are directly attached to type variables and contribute to their
identity. The notation T → U is short for Ty "fun" [T ,U], where "fun" is the name of the
function type constructor.

Isabelle’s terms are simply typed lambda terms in De Bruijn notation:

123

1 Page 4 of 21 S. Roßkopf, T. Nipkow

datatype ′v term = Ct name (′v t yp) | Fv ′v (′v t yp) | Bv nat
| Abs (′v t yp) (′v term) | (·) (′v term) (′v term)

A term (typically r , s, t , u …) can be a typed constant Ct c T or free variable Fv v T , a bound
variable Bv n (a De Bruijn index), a typed abstraction Abs T t or an application t · u. We call
an occurrence of a bound variable Bv i in some term t loose if the occurrence is not enclosed
in at least i + 1 abstractions.

The term-has-type proposition has the syntax T s
τ t : T where T s is a list of types, the
context for the type of the bound variables.

_
τ Ct _ T : T _
τ Fv _ T : T i < |T s|
T s
τ Bv i : T s ! i

T # T s
τ t : T ′

T s
τ Abs T t : T → T ′
T s
τ u : U Ts
τ t : U → T

T s
τ t · u : T
We define
τ t : T = []
τ t : T .
Function fv :: ′v term ⇒ (′v × ′v t yp) set collects the free variables in a term. Because

bound variables are indices, fv t is simply the set of all (v, T) such that Fv v T occurs in t .
The type is an integral part of a variable.

A type substitution is a function � of type ′v ⇒ sort ⇒ ′v t yp. It assigns a type to each
type variable and sort pair. We write � $$ T or � $$ t for the overloaded function which
applies a type substitution to all type variables (and their sort) occurring in a type or term.
The type instance relation is defined like this:

T 1 � T 2 = (∃�. � $$ T 2 = T 1)

We also need to β-contract a term Abs T t · u to something like “t with Bv 0 replaced by u.”
We define a function subst-bv such that subst-bv u t is that β-contractum. The definition of
subst-bv is shown in the Appendix and can also be found in the literature (e.g., [33]).

In order to abstract over a free (term) variable, there is a function bind-fv (v, T) t that
(roughly speaking) replaces all occurrences of Fv v T in t by Bv 0. Again, see the Appendix
for the definition. This produces (if Fv v T occurs in t) a term with a loose Bv 0. Function
Abs-fv binds it with an abstraction:

Abs-fv v T t = Abs T (bind-fv (v, T) t)

While this section described the syntax of types and terms, they are not necessarilywellformed
and should be considered pretypes/preterms. The wellformedness checks are described later.

4 Classes and Sorts

Isabelle has a built-in system of type classes [32] as in Haskell 98 except that class con-
straints are directly attached to variable names: our Tv a [C,D,. . .] corresponds to Haskell’s
(Ca, Da, ...) => ... a A sort is Isabelle’s terminology for a set of (class)
names, e.g., {C,D,. . .}, which represent a conjunction of class constraints. In our work,
variables S, S′ etc. stand for sorts.

Apart from the usual application in object logics, type classes also serve an important
metalogical purpose: they allow us to restrict, for example, quantification in object logics to
object-level types and rule out meta-level propositions.

123

A Formalization and Proof... Page 5 of 21 1

Isabelle’s type class system was first presented in a programming language context [31,
34]. We give the first machine-checked formalization. The central data structure is a so-
called order-sorted signature. Intuitively, it is composed of a set of classes, a partial subclass
ordering on them and a set of type constructor signatures. A type constructor signature
κ :: (S1, . . ., Sk) c for a type constructor κ states that applying κ to types T 1, . . ., T k such
that T i has sort Si (defined below) produces a type of class c. Formally:

type_synonym osig =
(name set × (name × name) set × (name × sort list × class) set)

The projection functions are called classes, subclass and tcsigs.
The subclass ordering sub can be extended to a subsort ordering as follows:

S1 ≤sub S2 = (∀c2∈S2. ∃c1∈S1. c1 ≤sub c2)

The smaller sort needs to subsume all the classes in the larger sort. In particular
{c1} ≤sub {c2} iff (c1, c2) ∈ sub.

Now we can define a predicate has-sort that checks whether, in the context of some
order-sorted signature (cl,sub,tcs), a type fulfills a given sort constraint:

S ≤sub S′

has-sort (cl, sub, tcs) (Tv a S) S′
∀c∈S. ∃Ss. (κ, Ss, c) ∈ tcs ∧ list-all2 (has-sort (cl, sub, tcs)) T s Ss

has-sort (cl, sub, tcs) (Ty κ T s) S

The rule for type variables uses the subsort relation and is obvious. A type (T 1, . . ., T n) κ

has sort {c1, . . .} if for every ci there is a signature κ :: (S1, . . ., Sn) ci and
has-sort(cl, sub,tcs) T j S j for j = 1, . . ., n.

We normalize a sort by removing “superfluous” class constraints, i.e., retaining only those
classes that are not subsumed by other classes. This gives us unique representatives for sorts
which we call normalized:

normalize-sort sub S = {c ∈ S | ¬ (∃c′∈S. c′ �= c ∧ (c′, c) ∈ sub)}
normalized-sort sub S = (normalize-sort sub S = S)

We work with normalized sorts because it simplifies the derivation of efficient executable
code later on.

Now we can define wellformedness of an osig:

wf-osig (cl, sub, tcs) = (wf-subclass cl sub ∧ wf-tcsigs cl sub tcs)

A subclass relation is wellformed if it is a partial order where reflexivity is restricted to the
set of classes cl.Wellformedness of type constructor signatures (wf-tcsigs) is more complex.
The conditions are the following:

• The following property requires a) that for any κ :: (...) c1 there must be a κ :: (...) c2 for
every superclass c2 of c1 and b) coregularity which guarantees the existence of principal
types [14, 31]:

∀(κ, Ss1, c1)∈tcs.
∀c2. (c1, c2) ∈ sub −→

(∃Ss2. (κ, Ss2, c2) ∈ tcs ∧ list-all2 (sort-leq sub) Ss1 Ss2)

• A type constructor must always take the same number of argument types:

∀κ Ss1 c1 Ss2 c2.
(κ, Ss1, c1) ∈ tcs ∧ (κ, Ss2, c2) ∈ tcs −→ |Ss1| = |Ss2|

123

1 Page 6 of 21 S. Roßkopf, T. Nipkow

• Sorts must be normalized and must exist in cl:

∀(κ, Ss, c)∈tcs. ∀S∈Ss. wf-sort cl sub S
where wf-sort cl sub S = (normalized-sort sub S ∧ S ⊆ cl)

• The argument sorts uniquely determine the class of the constructed type:

∀(κ, Ss1, c)∈tcs. ∀Ss2. (κ, Ss2, c) ∈ tcs −→ Ss2 = Ss1

These conditions are used in a number of places to show that the type system is well behaved.
For example, has-sort is upward closed:

wf-osig (cl, sub, tcs) ∧ has-sort (cl, sub, tcs) T S∧S ≤sub S′
−→ has-sort (cl, sub, tcs) T S′

5 Signatures

A signature consists of a map from constant names to their (most general) types, a map
from type constructor names to their arities, and an order-sorted signature:

type_synonym ′vsignature = (name ⇀ ′v t yp) × (name ⇀ nat) × osig

The three projection functions are called const-type, type-arity and osig. We now define
a number of wellformedness checks w.r.t. a signature �. We start with wellformedness of
types, which essentially requires that all type constructors have correct arity and all type
variables have wellformed sort constraints:

type-arity � κ = Some |T s| ∀T∈T s. wf-type � T

wf-type � (Ty κ T s)
wf-sort (classes (osig �)) (subclass (osig �)) S

wf-type � (Tv a S)

Wellformedness of a term essentially just says that all types in the term are wellformed and
that the type T ′ of a constant in the term must be an instance of the type T of that constant
in the signature: T ′ � T .

wf-type � T

wf-term � (Fv v T)
wf-term � (Bv n)

const-type � s = Some T wf-type � T ′ T ′ � T

wf-term � (Ct s T ′)
wf-term � t wf-term � u

wf-term � (t · u)

wf-type � T wf-term � t

wf-term � (Abs T t)

These rules only check whether a term conforms to a signature, not that the contained types
are consistent. Combining wellformedness and
τ yields welltypedness of a term:

wt-term � t = (wf-term � t ∧ (∃T .
τ t : T))

Wellformedness of a signature � = (ct f , ar f , oss) where oss = (cl, sub, tcs) is defined
as follows:

wf-sig � = ((∀T∈ran ct f . wf-type � T) ∧
(wf-osig oss ∧ (∀(κ, Ss, c)∈tcs. ar f κ = Some |Ss|))

123

A Formalization and Proof... Page 7 of 21 1

In words: all types in ct f are wellformed, oss is wellformed, and the type constructors in tcs
are exactly those that have a matching arity in ar f .

6 Logic

Isabelle’s metalogicM is an extension of the logic described by Paulson [36]. It is a fragment
of intuitionistic higher-order logic. The basic types and connectives ofM are the following:

Concept Representation Abbreviation
Typeofpropositions Ty "prop" [] prop
Implication Ct "imp" (prop → prop → prop) �⇒
Universal quantifier Ct "all" ((T → prop) → prop)

∧
T

Equality Ct "eq" (T → T → prop) =T

The type subscripts of
∧

and ≡ are dropped in the text if they can be inferred.
Readers familiar with Isabelle syntax must keep in mind that for readability we use the

symbols
∧
, �⇒ and ≡ for the encodings of the respective symbols in Isabelle’s metalogic.

We avoid the corresponding metalogical constants completely in favor of HOL’s ∀, −→, =,
and inference rule notation.

The provability judgment of M is of the form �,	
 t where � is a theory, 	 (the
hypotheses) is a set of terms of type prop, and t a term of type prop.

A theory is a pair of a signature and a set of axioms:

type_synonym ′v theory = ′v signature × ′v term set

The projection functions are sig and axioms. We extend the notion of wellformedness from
signatures to theories:

wf-theory (�, axs) =
(wf-sig � ∧ (∀p∈axs. wt-term � p ∧
τ p : prop) ∧ is-std-sig � ∧ eq-axs ⊆ axs)

The first two conjuncts need no explanation. Predicate is-std-sig (not shown) requires the
signature to have certain minimal content: the basic types (→, prop) and constants (≡,

∧
,

�⇒) of M and the additional types and constants for type class reasoning from Sect. 6.3.
Our theories also need to contain a minimal set of axioms. The set eq-axs is an axiomatic
basis for equality reasoning and will be explained in Sect. 6.2.

Wewill now discuss the inference system in three steps: the basic inference rules, equality,
and type class reasoning.

6.1 Basic Inference Rules

The axiom rule states that wellformed type-instances of axioms are provable:

wf-theory � t ∈ axioms � wf-inst (sig �) �

�,	
 � $$ t

where � :: ′v ⇒ sort ⇒ ′v t yp is a type substitution and $$ denotes its application (see
Sect. 3). The types substituted into the type variables need to be wellformed and conform to
the sort constraint of the type variable:

123

1 Page 8 of 21 S. Roßkopf, T. Nipkow

wf-inst � � =
(∀v S. � v S �= Tv v S −→ has-sort (osig �) (� v S) S ∧ wf-type � (� v S))

The conjunction only needs to hold if� actually changes something, i.e., if� v S �= Tv v S. This
condition is not superfluous because otherwise has-sort oss (Tv v S) S andwf-type� (Tv v S)

only hold if S is wellformed w.r.t �.
Note that there are no extra rules for general instantiation of type or term variables. Type

variables can only be instantiated in the axioms. Term instantiation can be performed using
the

∧
introduction and elimination rules.

The assumption rule allows us to prove terms already in the hypotheses:

wf-term (sig �) t
τ t : prop t ∈ 	

�,	
 t

Both
∧

and �⇒ are characterized by introduction and elimination rules:

wf-theory � �,	
 t (x, T) /∈ FV 	 wf-type (sig �) T

�,	

∧

T (Abs-fv x T t)

�,	

∧

T (Abs T t)
τ u : T wf-term (sig �) u

�,	
 subst-bv u t
wf-theory � �,	
 u wf-term (sig �) t
τ t : prop

�,	 − {t}
 t �⇒ u
�,	1
 t �⇒ u �,	2
 t

�,	1 ∪ 	2
 u

where FV 	 = (
⋃

t∈	 fv t).

6.2 Equality

Most rules about equality are not part of the inference system but are axioms (the set eq-axs
mentioned above). Consequences are obtained via the axiom rule.

The first three axioms express that = is reflexive, symmetric, and transitive:

x ≡ x x ≡ y �⇒ y ≡ x x ≡ y �⇒ y ≡ z �⇒ x ≡ z

The next two axioms express that terms A and B of type prop are equal iff they imply each
other:

A ≡ B �⇒ A �⇒ B (A �⇒ B) �⇒ (B �⇒ A) �⇒ A ≡ B

The last equality axioms are congruence rules for application and abstraction:

f ≡ g �⇒ x ≡ y �⇒ (f · x) ≡ (g · y)
∧

(Abs T ((f · Bv 0) ≡ (g · Bv 0)))
�⇒ Abs T (f · Bv 0) ≡ Abs T (g · Bv 0)

Paulson [36] gives a slightly different congruence rule for abstraction,which allows to abstract
over an arbitrary, free x in f ,g. We are able to derive this rule in our inference system.

Finally, there are the lambda calculus rules. There is no need for α conversion because
α-equivalent terms are already identical thanks to the De Bruijn indices for bound variables.
For β and η conversion the following rules are added. In contrast to the rest of this subsection,
these are not expressed as axioms.

123

A Formalization and Proof... Page 9 of 21 1

wf-theory �

wt-term (sig �) (Abs T t) wf-term (sig �) u
τ u : T
�,	
 (Abs T t · u) ≡ subst-bv u t

(β)

wf-theory � wf-term (sig �) t
τ t : T → T ′

�,	
 Abs T (t · Bv 0) ≡ t
(η)

Rule (β) uses the substitution function subst-bv as explained in Sect. 3 (and defined in the
Appendix).

Rule (η) requires a few words of explanation. We do not explicitly require that t does not
contain Bv 0. This is already a consequence of the precondition that
τ t : T → T ′: it implies
that t is closed. For that reason, it is perfectly unproblematic to remove the abstraction above
t .

6.3 Type Class Reasoning

Wenzel [43] encoded class constraints of the form “type T has class C” in the term language
as follows. There is a unary type constructor named "i tsel f " and T itself abbreviates Ty
"i tsel f " [T]. The notation TYPET itself is short for Ct "t ype" (T itself) where "t ype" is the
name of a constant. You should view TYPET itself as the term-level representation of type T .

Next we represent the predicate “is of class C” on the term level. For this, we define
some fixed injective mapping const-of-class from class to constant names. For each new
class C , a new constant const-of-class C of type T itself → prop is added. The term
Ct (const-of-class C) (T itself → prop) · TYPET itself represents the statement “type T has
class C”. This is the inference rule deriving such propositions:

wf-theory �

const-type (sig �) (const-of-class C) = Some (′a itself → prop)
wf-type (sig �) T has-sort (osig (sig �)) T {C}

�,	
 Ct (const-of-class C) (T itself → prop) · TYPET itself

This is how the has-sort inference system is integrated into the logic.

This concludes the presentation of M. We have shown some minimal sanity properties,
incl. that all provable terms are of type prop and wellformed:

�,	
 t −→
τ t : prop ∧ wf-term (sig �) t

The attentive reader will have noticed that we do not require unused hypotheses in 	 to be
wellformed and of type prop. Similarly, we only require wf-theory � in rules that need it to
preserve wellformedness of the terms and types involved. To restrict to wellformed theories
and hypotheses, we define a top-level provability judgment that requires wellformedness:

�,	

 t = (wf-theory � ∧ (∀h∈	. wf-term (sig �) h ∧
τ h : prop) ∧ �,	
 t)

7 Admissible Rules

Reasoning directly with these basic rules can be very tedious. In the following, we discuss
some useful admissible rules that we frequently encountered during our formalization work
and sketch their formal proofs.

123

1 Page 10 of 21 S. Roßkopf, T. Nipkow

As already mentioned, our inference system has no inbuilt way of performing term sub-
stitutions and one has to simulate them using

∧
-introductions and eliminations. This can be

particularly annoying when performing simultaneous substitutions, as one needs to ensure
that no interferences occur. We define a function subst-term which takes a list of (vari-
able,term) pairs, an association list, and substitutes them simultaneously into a term and
prove the following corresponding rule:

wf-theory �

�,	
 B tinst-ok (sig �) insts fst ‘ insts ∩ FV 	 = ∅
�,	
 subst-term insts B

where tinst-ok requires there to be only one instantiation per variable and for the terms to be
wellformed and of the same type as their corresponding variable. The last condition ensures
that we do not substitute into variables occurring in an assumption. To prove this rule, we start
with the special case of a single instantiation, which is performed by a single

∧
-introduction

followed by a
∧
-elimination. To use this result to prove our desired rule, we need to perform

the simultaneous instantiations sequentially. This is not possible in general, as they might
interfere with one another. To remedy this, we decompose the substitution process into two
phases: First we replace all variables we want to substitute into with distinct, fresh variables.
Then we modify the original instantiations, so they substitute into their corresponding new
variables instead. As these are fresh, they do not occur in the substituted terms. Therefore,
no interference occurs and we can perform both phases sequentially.

Another useful derived result is the weakening rule, which tells us that correct inferences
remain correct when adding additional (superfluous) assumptions:

�,	
 B wf-term (sig �) A
τ A : prop
�,{A} ∪ 	
 B

We prove this rule by rule induction on �,	
 B. Most cases do not interact with 	 at
all and are, therefore, trivial. The only interesting case is the one for

∧
-introduction, where,

once again, variable capture causes trouble. To prove this case, we would like to use the
corresponding

∧
-introduction rule, but the added assumption A might contain the variable

we want to bind. To fix this problem, we use the substitution rule proved above to rename
the problematic variable in A. As we cannot use this rule to substitute into the hypotheses,
we use implication rules to move A into the proposition on the right side of the turnstile.

Another major source of complications is equality reasoning. We start by providing cor-
responding proof rules for each equality axiom, making them easier to use. For example, the
resulting rule for reflexivity looks like this:

wf-theory �

∀A∈	. wf-term (sig �) A ∧
τ A : prop wt-term (sig �) t

�,	
 t ≡ t

The proofs for all these rules are very similar.We first prove them for an empty set of assump-
tions, to, once again, avoid accidental variable capturing. For this, we use the axiom rule and
the derived simultaneous term instantiation rule to substitute the correct types and terms into
the axiom. Then we allow for arbitrary (well typed) assumptions using the weakening rule.

By just combining these equality rules and rules of the inference systemone can derive new
rules, like for example, Paulson’s original congruence for abstraction. Such derivations are,
however, complicated by having to propagate the wellformedness conditions of all involved

123

A Formalization and Proof... Page 11 of 21 1

objects, which makes them lengthy. As they also clutter the presentation, we will not show
themfor the rest of this section and assume that all involvedobjects in the rules arewellformed.

A last derived rule, which will be useful later, is the fact that β-reduction preserves
provability. Our inference system already contains a rule concerning β-reduction but it can
only be applied at the top of a term.

We first define an inductive notion of a β-step, based on a formalization by Nipkow [33].

Abs T s · t →β subst-bv t s
s →β t

s · u →β t · u
s →β t

u · s →β u · t
s →β t

Abs T s →β Abs T t

This allows us to state a more useful β rule, which proves equality of two terms if they
just differ by a single beta step, regardless of where it occurs.

t →β u

�,	
 t ≡ u

We naturally want to prove this statement by induction over (→β). Because (→β) is defined
by four rules, there are four cases. The first case allows application of the β rule of the
inference system, the next two use the congruence rule for applications and the respective
induction hypotheses. However, the last case is a problem, as descending under an abstraction
can expose previously bound variables, which means we cannot apply our proof rules. To
remedy this, we replace the now loose variable with a fresh free variable and perform our
reasoning with the again wellformed term. The following rule justifies this transformation
and is readily proved by combining basic and derived inference rules:

(x, τ ′) /∈ FV 	 ∪ fv s ∪ fv t
�,	
 subst-bv (Fv x τ ′) s ≡ subst-bv (Fv x τ ′) t

�,	
 Abs τ ′ s ≡ Abs τ ′ t
However, applying this rule makes it impossible to use the induction hypothesis as adding

the substitution changes the shape of the goal. The solution is to generalize the β rule to
reflect that one might have passed abstractions and substituted the respective loose variables
by new fresh variables:

set vs ∩ (fv t ∪ FV) = ∅ t →β u

�,	
 subst-bvs (map (λ(v, τ). Fv v τ) vs) t ≡
subst-bvs (map (λ(v, τ). Fv v τ) vs) u

This rule uses the subst-bvs function, which behaves like the previously seen subst-bv
function, only instantiating multiple loose variables simultaneously. We can prove that it
is possible to merge the call to subst-bv, arising in the problematic case with the other sub-
stitutions. Therefore, we are now able to apply the induction hypothesis. The original rule is
the special case for an empty list of variables.

A similar approach was taken to prove that η reduction preserves provability. Because of
symmetry, we have also proved that β/η expansion preserves provability, or combined that
β/η convertibility does not affect provability.

8 Proof Terms and Checker

Berghofer and Nipkow [7] added proof terms to Isabelle. We present an executable checker
for these proof terms that is proved sound w.r.t. the above formalization of the metalogic.

123

1 Page 12 of 21 S. Roßkopf, T. Nipkow

Berghofer and Nipkow also developed a proof checker but it is unverified and checks the
generated proof terms by feeding them back through Isabelle’s unverified inference kernel.

It is crucial to realize that all we need to knowabout the proof term checker is the soundness
theorem below. The internals are, from a soundness perspective, irrelevant, which is why we
can get away with sketching them informally. For this reason, we will not give definitions
for all involved functions in the following presentation, preferring informal descriptions (all
definitions are of course part of the formalization). This is in contrast to the logic itself, which
acts like a specification, which is why we presented it in detail.

This is our data type of proof terms:

datatype ′v proof term = PAxm name (((′v × sort) × ′v t yp) list)
| PThm name (((′v × sort) × ′v t yp) list) | PBound nat
| Abst (′v t yp) (′v proof term) | AbsP (′v term) (′v proof term)

| Appt (′v proof term) (′v term) | AppP (′v proof term) (′v proof term)

| OfClass (′v t yp) name | Hyp (′v term)

These proof terms are not designed to record proofs in our inference system, but to mirror
the proof terms generated by Isabelle. Nevertheless, the constructors of our proof terms
correspond roughly to the rules of the inference system. As the axiom rule of our inference
system allows for type instantiations, PAxm contains an axiom and a type substitution. This
substitution is encoded as an association list instead of a function. The axiom is referenced by
name. During proof checking, amapping from names to terms is provided. PThm represents a
(previously proved) theorem, containing the same information as a PAxm constructor. While
we treat theorems as axioms, they use a different constructor, as axioms and theorems make
use of different namespaces in the implementation. AbsP and Abst correspond to introduction
of �⇒ and

∧
, AppP and Appt correspond to the respective eliminations. Hyp and PBound

relate to the assumption rule, where Hyp refers to a free assumption while PBound contains
a De Bruijn index referring to an assumption added during the proof by an AbsP constructor.
OfClass denotes a proof that a type belongs to a given type class.

Isabelle looks at termsmodulo αβη-equivalence and, therefore, does not save β or η steps,
while they are explicit steps in our inference system. Therefore we have no constructors
corresponding to the (β) and (η) rules. The remaining equality axioms are naturally handled
by the PAxm constructor.

In the rest of this section, we discuss how to derive an executable proof checker. Exe-
cutability means that the checker is defined as a set of recursive functions that Isabelle’s code
generator can translate into one of a number of target languages, in particular its implemen-
tation language SML [6, 12, 13].

Because of the approximate correspondence between proof term constructors and infer-
ence rules, implementing the proof checker largely amounts to providing executable versions
of each inference rule, as in LCF: each rule becomes a function that checks the side condi-
tions, and if they are true, computes the conclusion from the premises given as arguments.
However, as the checked proof terms are not for our exact inference system but the imple-
mentation, there is some additional work to perform. The heart of our checker is a recursive
function, where var is a concrete type of variables discussed further down:

replay::var theory
⇒ var typ list ⇒ var term list ⇒ var proof term ⇒ var term option

It takes a theory, a context (see below), a list of current assumptions and a proof term and
returns the certified proposition for a valid proof term or None for an invalid one. We now

123

A Formalization and Proof... Page 13 of 21 1

discuss some of the more involved implementation steps and illustrate them with some cases
of the replay function.

First, aswe saveonly namesof axioms and theorems in the proof terms, not the propositions
themselves, we need a way to look these up. Therefore, our proof checker actually uses a
slightly different theory type than the one show before:

type_synonym ′v theory′ =
′v signature × ((name ⇀ ′v term) × (name ⇀ ′v term))

It replaces the set of axioms with two (finite) maps. These allow efficient, name-based
lookup of the actual axiom/theorem. We use two maps, as the Isabelle implementation uses
distinct namespaces for axioms and theorems. The set of axioms in the original type can be
recovered as the union of the ranges of the two maps. In the following, we will hide this
implementation detail and use the original theory type.

The type var of variables is defined as follows:

type_synonym indexname = (name × int)
datatype var = Free name | Var indexname | Internal nat
The constructors Free and Var are “inherited” from the Isabelle implementation of type

term. Both represent free variables but the ones represented by Var can be instantiated by
unification. We added a third constructor, not present in Isabelle, which we use for easy
generation of fresh variables by simply counting up.

Such internal variables are generated only when visiting an Abst constructor (
∧
-

introduction) during the traversal. Abst constructors introduce
∧
-quantifiers, which even-

tually bind variables present in the contained proof term. The proof terms generated by
Isabelle already use De Bruijn notation for these variables, so descending under Abst con-
structor can produce loose variables. For each of them, we add an internal variable to the
context, which contains exactly the types of Abst-bound variables passed while descend-
ing into the proof term. To obtain a fresh variable, we use the size of the current context.
Conceptually, when passing an Abst constructor, our proof checker substitutes the newly
generated variable for this index everywhere in the proof term, then replays the proof, and
binds the variable again in the result, therefore, always working with closed terms. However,
performing this substitution first would require an extra traversal of the proof term at each
Abst constructor. To avoid this, we remember all passed Abst constructors and substitute the
corresponding variables simultaneously.

replay � vs Hs (Abst T p) =
(if wf-type (sig �) T
then map-option (λt .

∧
T (Abs-fv (Internal |vs|) T t)) (replay � (T # vs) Hs p)

else None)

Such substitutions happen at the AbsP (�⇒-introduction) and the Appt (
∧
-elimination) case,

by means of the subst-bvs function. Note that, somewhat counterintuitively, the innermost
abstraction/lowest De Bruijn index corresponds to the highest internal name. We only show
the AbsP case here:

replay � vs Hs (AbsP t p) =
(let t ′ = subst-bvs (map-index (λi T . Fv (Internal (|vs| − Suc i)) T) vs) t;

rep = replay � vs (t ′ # Hs) p
in if
τ t ′ : prop ∧ wf-term (sig �) t ′ then map-option ((�⇒) t ′) rep else None)

We have shown that the result of running replay does not contain any internal variables (as
long as the inputs do not contain any).

123

1 Page 14 of 21 S. Roßkopf, T. Nipkow

As already mentioned, term instantiations can be performed by means of the
∧

rules.
However, the proof terms generated by Isabelle do not use these rules when instantiating
term variables in axioms. Instead, all variables in an axiom are assumed to already have
been universally quantified, so that only the elimination step remains. For our checker, this
means we need to also

∧
-quantify all free variables when handling a PAxm constructor. A

pitfall here is the order in which we quantify the free variables. The structure of the proof
terms expects them to occur in the order given by a reverse inorder traversal of the axiom.
As theorems are treated as just another kind of axioms, PThm is handled analogously.

replay � _ _ (PAxm n T is) =
(if inst-ok (sig �) T is
then map-option (λt . all-close (subst-typ T is t)) (axioms � n) else None)

To model Isabelle’s view of terms modulo αβη-equivalence, we sometimes βη normalize
our terms (α-equivalence is for free thanks to De Bruijn notation) during the reconstruction
of the proof. This is necessary when replaying an AppP constructor because checking the
conditions of the corresponding implication elimination rule requires checking equality of
two terms. For all other constructors, no equality checks are necessary. To avoid repeatedly
traversing the terms we only normalize in the AppP case and work with possibly non-βη

normalized terms in all other cases.

replay � vs Hs (AppP p1 p2)=
let rep1 = replay � vs Hs p1 >>= beta-eta-norm;

rep2 = replay � vs Hs p2 >>= beta-eta-norm
in case (rep1, rep2) of

(Some (A �⇒ B), Some A′) ⇒
if A=A′ then Some B else None

| − ⇒ None

For our soundness proof of the checker, we need to verify that these normalizations preserve
provability. For this, we show that they can be expressed as a finite number of β reduction
steps, followed by a finite number of η reduction steps. These steps can then be justified
using the rules presented in Sect. 7, yielding us the desired result.

wf-theory � ∧ (∀A∈	. wt-term (sig �) A ∧
τ A : prop) ∧
�,	
 t ∧ beta-eta-norm t = Some u −→
�,	
 u

For our replay function to be executable, all constructs used by it must be executable as well.
Aswe are continuously using explicitly finite data structures in the definition of (order sorted)
signatures, Isabelle’s code generator needs no further help handling them. Still, the represen-
tation of type constructor signatures in Sect. 4 as an unstructured set tcs does not facilitate
efficient access to relevant information. In particular, to compute has-sort oss (Ty κ Ts) S,
one needs to find the signatures for κ required to fulfill all class constraints in S. This means
searching all of tcs for each constraint. To speed this up, we define an alternative representa-
tionTCS, inspired by the Isabelle implementation, which the code generator can transparently
use as a replacement. This TCS component has type name ⇀ (class ⇀ sort list), and it
first groups all signatures by type constructor and then allows finding necessary argument
sort constraints by passing an expected return class. More formally, TCS represents the set of
all type constructor signatures κ :: (Ss) c such that TCS κ = Some dm and dm c = Some Ss.

123

A Formalization and Proof... Page 15 of 21 1

We can therefore recreate the equivalent but more intuitive, original version tcs the following
way:

tcs ={(κ, Ss, c) | ∃dm. TCS κ = Some dm ∧ dm c = Some Ss}
We also need to make the inductive wellformedness checks for sorts, types, terms, signa-
tures and theories executable. Mostly, this amounts to providing recursive versions for their
inductive definitions and proving them equivalent. A problematic point is the definition of the
type instance relation (�), which contains an (unbounded) existential quantifier. Tomake this
executable, we provide an implementation which tries to compute a suitable type substitution
by matching the types.

In the end, we obtain an executable proof checker

check-proof � P p =
(wf-theory � ∧
(∀h∈hyps P. wf-term (sig �) h ∧
τ h : prop) ∧ replay-norm � P = Some p)

where replay-norm � P = (replay � [] (hyps P) P >>= beta-eta-norm). This final βη nor-
malization step is once again necessary to account for possible different but αβη-equivalent
results.

check-proof checks wellformedness of theory � and the hypotheses and then checks if
proof P proves the given proposition p. The latter check is important because the Isabelle
theorems that we check contain both a proof and a proposition that the theorem claims to
prove. As one of our main results, we can prove the correctness of our checker:

check-proof � P p −→ �,hyps P

 p

The proof itself is conceptually simple and proceeds by induction over the structure of the
computation of replay. For each proof constructor we need to show that there are correspond-
ing inference rules in our system for each step taken by the functional version replay. Most
of the proof effort goes into a large library of results about terms, types, signatures, substi-
tutions, wellformedness etc. required for this proof. In particular, we need to prove derived
rules characterizing all the technical operations we use, similar to Sect. 7.

9 Size and Structure of the Formalization

All material presented so far has been formalized in Isabelle/HOL. The definition of the
inference system (incl. types, terms etc.) resides in a separate theory Core that depends
only on the basic library of Isabelle/HOL. It takes about 300 LOC and is fairly high level
and readable – we presented most of it. This is at least an order or magnitude smaller than
Isabelle’s inference kernel (which is not clearly delineated) – of course, the latter is optimized
for performance. Its abstract type of theorems alone takes about 2,500 LOC, not counting
any infrastructure of terms, types, unification etc.

The whole formalization consists of 12,000 LOC. The main components are:

• Almost half the formalization (5,500 LOC) is devoted to providing a library of operations
on types and terms and their properties. This includes, among others, executable func-
tions for type checking, different types of substitutions, abstractions, the wellformedness
checks, and β and η reductions.

• Proving admissible rules of our inference system takes up 3,000 LOC. A large part of
this is deriving rules for equality and the β and η reductions. Weakening rules are also
derived.

123

1 Page 16 of 21 S. Roßkopf, T. Nipkow

• Making the wellformedness checks for (order-sorted) signatures and theories as well as
the type instance checks executable takes 1,800 LOC.

• Definition and correctness proof for the checker builds on the above material and take
only about 500 additional LOC.

• Around 1,000 LOC are spent on preliminary material, most importantly results about
finite sets and maps, transferred from existing material for general sets and maps.

10 Integration with Isabelle

As explained above, Isabelle generates SML code for the proof checker. This code has its
own definitions of types, terms etc. and needs to be interfaced with the corresponding data
structures in Isabelle. This step requires 150 lines of handwritten SML code (glue code) that
translates Isabelle’s data structures into the corresponding data structures in the generated
proof checker such that we can feed them into check-proof. We cannot verify this code and
therefore aim to keep it as small and simple as possible. This is the reason for the previously
mentioned intentional implementation bias we introduced in our formalization. We describe
now how the various data types are translated.We call a translation trivial if it merely replaces
one constructor by another, possibly forgetting some information.

The translation of types and terms is trivial as their structure is almost identical in the two
settings.

Proof term translation is trivial except for two special cases. So-called “oracles” (typically
the result of unfinished proofs, i.e. ,“sorry” on the user level) are rejected (but none of the
theories we checked contain oracles). Furthermore, translating previously proved lemmas
requires some additional name handling work. Also remember that the translation of proofs
is not safety critical because all that matters is that in the end we obtain a correct proof of
the claimed proposition.

Wealso provide functions to translate relevant content from the background theory: axioms
(including previously proved theorems) and (order-sorted) signatures. This mostly amounts
to extracting association lists from efficient internal data structures. Translating the axioms
also involves translating some alternative internal representation of type class constraints into
their standard form presented in Sect. 6.3.

The checker is integrated into Isabelle by calling it every time a new named theorem has
been proved. The set of theorems proved so far is added to the axiomatic basis for this check.
Cyclic dependencies between lemmas are ruled out by this ordering because every theorem
is checked before being added to the axiomatic basis. However, an explicit cyclicity check
is not part of the formalization (yet), which speaks only about checking single proofs.

11 Running the Proof Checker

We run this modified Isabelle with our proof checker on multiple theories in various object
logics contained in the Isabelle distribution. A rough overview of the scope of the covered
material for some logics and the required running times can be found in the following table.
The running times are the total times for running Isabelle, not just the proof checking, but
the latter takes over 90% of the time. All tests were performed on an Intel Core i7-9750H
CPU running at 2.60GHz and 32GB of RAM.

123

A Formalization and Proof... Page 17 of 21 1

Logic LOC Time
FOL 4,500 40 s
ZF 55,000 12min
HOL 29,000 110min

We can check the material in several smaller object logics in their entirety. One of the larger
such logics is first-order logic (FOL). These logics do not develop any applications but FOL
comes with proof automation and theories testing that automation, in particular Pelletier’s
collection of problems that were considered challenges in their day [37]. Because the proofs
are found automatically, the resulting proof terms will typically be quite complex and good
test material for a proof checker.

The logic ZF (Zermelo-Fraenkel set theory) builds on FOL but contains real applications
and is an order of magnitude larger than FOL. We are able to check all material formalized
in ZF in the Isabelle distribution.

Isabelle’s most frequently used and largest object logic is HOL. We managed to check
some of the initial theories of the main library. These theories contain the basic logic and
among others the libraries of sets, functions, orderings, lattices, groups, rings, fields and
natural numbers. The formalizations are non-trivial and make heavy use of Isabelle’s type
classes.

Why is checking material in ZF easier than in HOL? Profiling revealed that the proof
checker spends a lot of time in functions that access the signature, especially the wellformed-
ness checks. One reason for this is inefficient data structures (e.g., association lists) and thus
the running time depends heavily on the size of the signature and increases with every new
constant, type and class. This is aggravated by our current approach which exports the cur-
rent state of the background theory and has to ensure its wellformedness before each check.
Furthermore, there is no sharing of any kind in terms/types and their wellformedness checks.
Because ZF is free of polymorphism and type classes, these checks are much simpler. Lastly,
the presence of type classes also increases the size of the involved proofterms. These effects
can also be seen purely in the HOL material. For example, despite having similar sizes and
containing roughly the same number of theorems, checking the material on rings takes about
10 times as long as the one on natural numbers.

12 Trust Assumptions

We need to trust the following components outside of the formalization:

• The verification (and code generation) of our proof checker in Isabelle/HOL. This is
inevitable, one has to trust some theorem prover to start with. We could improve the
trustworthiness of this step by porting our proofs to the verified HOL prover by Kumar
et al. [20] but its code generator produces CakeML [19], not SML.

• The unverified glue code in the integration of our proof checker into Isabelle (Sect. 10).

Because users currently cannot examine Isabelle’s internal data structures that we start
from, they have to trust Isabelle’s front end that parses and transforms some textual input
file into internal data structures. One could add a (possibly verified) presentation layer that
outputs those internal representations into a readable format that can be inspected, while
avoiding the traps Adams [2] is concerned with.

123

1 Page 18 of 21 S. Roßkopf, T. Nipkow

13 FutureWork

Our primary focus will be on scaling up the proof checker to not just deal with all of HOL
but with real applications (including itself!). There is a host of avenues for exploration. Just
to name a few promising directions: more efficient data structures than association lists (e.g.,
via existing frameworks [25, 26]); caching of wellformedness checks for types and terms;
exploiting sharing within terms and types (tricky because our intentionally simple glue code
creates copies); working with the compressed proof terms [6] that Isabelle creates by default
instead of uncompressing them as we do now.

We will also upgrade the formalization of our checker from individual theorems to sets
of theorems, explicitly checking cyclic dependencies (which are currently prevented by the
glue code, see Sect. 10).

A presentation layer as discussed in Sect. 12 would not just allow the inspection of the
internal representation of the theories but could also be extended to the proofs themselves,
thus, permitting checkers to be interfacedwith Isabelle on a textual level instead of on internal
data structures.

Another possible next stepwould be to formalize the theory extensionmechanisms includ-
ing verified cyclicity checks. It would also be nice to have a model-theoretic semantics for
M. We believe that the work by Kunčar and Popescu [21–24] could be adapted from HOL
to M for these purposes.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10817-022-09648-w.

Acknowledgements We thank Kevin Kappelmann, Magnus Myreen, Larry Paulson, Andrei Popescu, Makar-
ius Wenzel, and the anonymous reviewers for their comments. Supported by Wirtschaftsministerium Bayern
under DIK-2002-0027//DIK0185/03 and DFG GRK 2428 ConVeY

Funding Open Access funding enabled and organized by Projekt DEAL.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Appendix

subst-bv u t = subst-bv2 t 0 u

subst-bv2 (Bv i) n u = (if i < n then Bv i else if i = n then u else Bv (i − 1))
subst-bv2 (Abs T t) n u = Abs T (subst-bv2 t (n + 1) (lift u 0))
subst-bv2 (f · t) n u = subst-bv2 f n u · subst-bv2 t n u
subst-bv2 t _ _ = t

lift (Bv i) n = (if n ≤ i then Bv (i + 1) else Bv i)
lift (Abs T t) n = Abs T (lift t (n + 1))
lift (f · t) n = lift f n · lift t n
lift t _ = t

123

https://doi.org/10.1007/s10817-022-09648-w
https://doi.org/10.1007/s10817-022-09648-w
http://creativecommons.org/licenses/by/4.0/

A Formalization and Proof... Page 19 of 21 1

bind-fv T t = bind-fv2 T 0 t

bind-fv2 var n (Fv v T) = (if var = (v, T) then Bv n else Fv v T)

bind-fv2 var n (Abs T t) = Abs T (bind-fv2 var (n + 1) t)
bind-fv2 var n (f · u) = bind-fv2 var n f · bind-fv2 var n u
bind-fv2 _ _ t = t

tinst-ok � insts ≡
distinct (map fst insts) ∧ list-all (λ((v, T), t). wf-term � t ∧
τ t : T) insts

subst-term _ (Ct c T) = Ct c T
subst-term insts (Fv idn T) = subst_ f v idn T insts
subst-term _ (Bv n) = Bv n
subst-term insts (Abs T t) = Abs T (subst-term insts t)
subst-term insts (t · u) = subst-term insts t · subst-term insts u

subst-bvs s t = subst-bvs2 t 0 s

subst-bvs2 (Bv i) n us =
(if i < n then Bv i
(else if i − n < |us| then us ! (i − n) else Bv (i − |us|))
subst-bvs2 (Abs T t) n us = Abs T (subst-bvs2 t (n + 1) (map (λt . lift t 0) us))
subst-bvs2 (f · t) n us = subst-bvs2 f n us · subst-bvs2 t n us
subst-bvs2 t _ _ = t

References

1. Abrahamsson, O.: A verified proof checker for higher-order logic. J. Log. Algebraic Methods Program.
112, 100530 (2020). https://doi.org/10.1016/j.jlamp.2020.100530

2. Adams, M.: HOL Zero’s solutions for Pollack-inconsistency. In: Blanchette, J.C., Merz, S. (eds.) Interac-
tive Theorem Proving. Lect. Notes in Comp. Sci., vol. 9807, pp. 20–35. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-43144-4_2

3. Åman Pohjola, J., Gengelbach, A.: Amechanised semantics for HOLwith ad-hoc overloading. In: Albert,
E., Kovács, L. (eds.) LPAR 2020: 23rd International Conference on Logic for Programming, Artificial
Intelligence and Reasoning. EPiC Series in Computing, vol. 73, pp. 498–515. EasyChair, online (2020).
https://doi.org/10.29007/413d

4. Barras, B.: Coq en coq. technical report 3026. Technical report, INRIA (1996)
5. Barras, B.: Verification of the interface of a small proof system in coq. In: Giménez, E., Paulin-Mohring,

C. (eds.) Types for Proofs and Programs, pp. 28–45. Springer, Berlin (1998)
6. Berghofer, S., Nipkow, T.: Executing higher order logic. In: Callaghan, P., Luo, Z., McKinna, J., Pollack,

R. (eds.) Types for Proofs and Programs (TYPES 2000). Lect. Notes in Comp. Sci., vol. 2277, pp. 24–40.
Springer, Berlin (2002). https://doi.org/10.1007/3-540-45842-5_2

7. Berghofer, S., Nipkow, T.: Proof terms for simply typed higher order logic. In: Harrison, J., Aagaard,
M. (eds.) Theorem Proving in Higher Order Logics. Lect. Notes in Comp. Sci., vol. 1869, pp. 38–52.
Springer, Berlin (2000). https://doi.org/10.1007/3-540-44659-1_3

8. Carneiro, M.M.: Metamath zero: designing a theorem prover prover. In: Benzmüller, C., Miller, B.R.
(eds.) Intelligent Computer Mathematics, CICM 2020. Lect. Notes in Comp. Sci., vol. 12236, pp. 71–88.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53518-6_5

9. Davis, J.: A self-verifying theorem prover. PhD thesis, The University of Texas at Austin (2009)
10. Davis, J., Myreen, M.: The reflective Milawa theorem prover is sound (down to the machine code that

runs it). J. Automated Reason. 55, 117–183 (2015). https://doi.org/10.1007/s10817-015-9324-6
11. Gheri, L., Popescu, A.: A formalized general theory of syntax with bindings: extended version. J. Auto-

mated Reason. 64(4), 641–675 (2020). https://doi.org/10.1007/s10817-019-09522-2
12. Haftmann, F., Krauss, A., Kunčar, O., Nipkow, T.: Data refinement in Isabelle/HOL. In: Blazy, S., Paulin-

Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving (ITP 2013). Lect. Notes in Comp. Sci.,
vol. 7998, pp. 100–115. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-39634-2_10

123

https://doi.org/10.1016/j.jlamp.2020.100530
https://doi.org/10.1007/978-3-319-43144-4_2
https://doi.org/10.1007/978-3-319-43144-4_2
https://doi.org/10.29007/413d
https://doi.org/10.1007/3-540-45842-5_2
https://doi.org/10.1007/3-540-44659-1_3
https://doi.org/10.1007/978-3-030-53518-6_5
https://doi.org/10.1007/s10817-015-9324-6
https://doi.org/10.1007/s10817-019-09522-2
https://doi.org/10.1007/978-3-642-39634-2_10

1 Page 20 of 21 S. Roßkopf, T. Nipkow

13. Haftmann, F., Nipkow, T.: Code generation via higher-order rewrite systems. In: Blume, M., Kobayashi,
N., Vidal, G. (eds.) Functional and Logic Programming (FLOPS 2010). Lect. Notes in Comp. Sci., vol.
6009, pp. 103–117. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12251-4_9

14. Haftmann, F., Wenzel, M.: Constructive type classes in isabelle. In: Altenkirch, T., McBride, C. (eds.)
Types for Proofs and Programs, TYPES2006. Lect. Notes inComp. Sci., vol. 4502, pp. 160–174. Springer,
Berlin (2006). https://doi.org/10.1007/978-3-540-74464-1_11

15. Harrison, J.: Towards self-verification of HOL Light. In: Furbach, U., Shankar, N. (eds.) In: Proceedings
of the Third International Joint Conference, IJCAR 2006. Lect. Notes in Comp. Sci., vol. 4130, pp.
177–191. Springer, Seattle (2006). https://doi.org/10.1007/11814771_17

16. Huffman, B., Kunčar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In:
Gonthier, G., Norrish, M. (eds.) Certified Programs and Proofs, pp. 131–146. Springer, Cham (2013).
https://doi.org/10.1007/978-3-319-03545-1_9

17. Hurd, J.: OpenTheory: package management for higher order logic theories. In: Reis, G.D., Théry, L.
(eds.) Workshop on Programming Languages for Mechanized Mathematics Systems (ACM SIGSAM
PLMMS 2009), pp. 31–37 (2009)

18. Journal of Automated Reasoning: Special Issue: Theory and Applications of Abstraction, Substitution
and Naming. https://link.springer.com/journal/10817/volumes-and-issues/49-2

19. Kumar, R., Myreen, M.O., Norrish, M., Owens, S.: CakeML: a verified implementation of ML. In:
Principles of Programming Languages (POPL), pp. 179–191. ACM Press, New York (2014). https://doi.
org/10.1145/2535838.2535841

20. Kumar, R., Arthan, R., Myreen, M.O., Owens, S.: Self-formalisation of higher-order logic—semantics,
soundness, and a verified implementation. J. Automated Reason. 56(3), 221–259 (2016). https://doi.org/
10.1007/s10817-015-9357-x

21. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. In: Urban, C., Zhang, X. (eds.)
Interactive Theorem Proving, ITP 2015. Lect. Notes in Comp. Sci., vol. 9236, pp. 234–252. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22102-1_16

22. Kunčar, O., Popescu, A.: Comprehending Isabelle/HOL’s consistency. In: Yang, H. (ed.) Programming
Languages and Systems, ESOP 2017. Lect. Notes in Comp. Sci., vol. 10201, pp. 724–749. Springer,
Berlin (2017). https://doi.org/10.1007/978-3-662-54434-1_27

23. Kunčar, O., Popescu, A.: Safety and conservativity of definitions in HOL and Isabelle/HOL. Proc. ACM
Program. Lang. 2(POPL), 24-12426 (2018). https://doi.org/10.1145/3158112

24. Kunčar, O., Popescu, A.: A consistent foundation for Isabelle/HOL. J. Automated Reason. 62(4), 531–555
(2019). https://doi.org/10.1007/s10817-018-9454-8

25. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann, M., Paulson, L.C. (eds.)
Interactive Theorem Proving, ITP 2010. Lect. Notes in Comp. Sci., vol. 6172, pp. 339–354. Springer,
Berlin, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_24

26. Lochbihler, A.: Light-weight containers for Isabelle: efficient, extensible, nestable. In: Blazy, S., Paulin-
Mohring, C., Pichardie, D. (eds.) Interactive Theorem Proving, ITP 2013. Lect. Notes in Comp. Sci., vol.
7998, pp. 116–132. Springer, Berlin (2013). https://doi.org/10.1007/978-3-642-39634-2_11

27. Nipkow, T., Klein, G.: Concrete Semantics with Isabelle/HOL. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-10542-0

28. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL—A Proof Assistant for Higher-Order Logic. Lect.
Notes in Comp. Sci., vol. 2283. Springer, Berlin (2002). https://doi.org/10.1007/3-540-45949-9

29. Nipkow, T., Paulson, L.C.: Isabelle-91. In: Kapur, D. (ed.) Automated Deduction—CADE-11. Lect.
Notes in Comp. Sci., vol. 607, pp. 673–676. Springer, Berlin (1992). https://doi.org/10.1007/3-540-
55602-8_201

30. Nipkow, T., Roßkopf, S.: Isabelle’s metalogic: formalization and proof checker. In: Platzer, A., Sutcliffe,
G. (eds.) AutomatedDeduction—CADE28, pp. 93–110. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-79876-5_6

31. Nipkow, T., Snelting, G.: Type classes and overloading resolution via order-sorted unification. In: Hughes,
J. (ed.) Proc. 5thACMConf. Functional ProgrammingLanguages andComputerArchitecture. Lect. Notes
in Comp. Sci., vol. 523, pp. 1–14. Springer, Berlin (1991). https://doi.org/10.1007/3540543961_1

32. Nipkow, T.: Order-sorted polymorphism in Isabelle. In: Huet, G., Plotkin, G. (eds.) Logical Environments,
pp. 164–188. Cambridge University Press, Cambridge (1993)

33. Nipkow, T.: More Church-Rosser proofs (in Isabelle/HOL). J. Automated Reason. 26, 51–66 (2001).
https://doi.org/10.1007/3-540-61511-3_125

34. Nipkow, T., Prehofer, C.: Type reconstruction for type classes. J. Funct. Program. 5(2), 201–224 (1995).
https://doi.org/10.1017/S0956796800001325

35. Paulson, L.C.: Isabelle: A Generic Theorem Prover. Lect. Notes in Comp. Sci., vol. 828. Springer, Berlin
(1994). https://doi.org/10.1007/bfb0030541

123

https://doi.org/10.1007/978-3-642-12251-4_9
https://doi.org/10.1007/978-3-540-74464-1_11
https://doi.org/10.1007/11814771_17
https://doi.org/10.1007/978-3-319-03545-1_9
https://link.springer.com/journal/10817/volumes-and-issues/49-2
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1145/2535838.2535841
https://doi.org/10.1007/s10817-015-9357-x
https://doi.org/10.1007/s10817-015-9357-x
https://doi.org/10.1007/978-3-319-22102-1_16
https://doi.org/10.1007/978-3-662-54434-1_27
https://doi.org/10.1145/3158112
https://doi.org/10.1007/s10817-018-9454-8
https://doi.org/10.1007/978-3-642-14052-5_24
https://doi.org/10.1007/978-3-642-39634-2_11
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/978-3-319-10542-0
https://doi.org/10.1007/3-540-45949-9
https://doi.org/10.1007/3-540-55602-8_201
https://doi.org/10.1007/3-540-55602-8_201
https://doi.org/10.1007/978-3-030-79876-5_6
https://doi.org/10.1007/978-3-030-79876-5_6
https://doi.org/10.1007/3540543961_1
https://doi.org/10.1007/3-540-61511-3_125
https://doi.org/10.1017/S0956796800001325
https://doi.org/10.1007/bfb0030541

A Formalization and Proof... Page 21 of 21 1

36. Paulson, L.C.: The foundation of a generic theorem prover. J. Automated Reason. 5, 363–397 (1989).
https://doi.org/10.1007/BF00248324

37. Pelletier, F.: Seventy-five problems for testing automatic theorem provers. J. Automated Reason. 2, 191–
216 (1986). https://doi.org/10.1007/BF02432151

38. Pfenning, F., Schürmann, C.: System description: Twelf—a meta-logical framework for deductive sys-
tems. In: Ganzinger, H. (ed.) Automated Deduction, CADE-16. Lect. Notes in Comp. Sci., vol. 1632, pp.
202–206. Springer, Berlin (1999). https://doi.org/10.1007/3-540-48660-7_14

39. Pfenning, F.: Elf: a language for logic definition and verified metaprogramming. In: Logic in Computer
Science (LICS 1989), pp. 313–322. IEEE Computer Society Press, Pacific Grove (1989)

40. Pientka, B.: Beluga: Programming with dependent types, contextual data, and contexts. In: Blume, M.,
Kobayashi, N., Vidal, G. (eds.) Functional and Logic Programming, FLOPS 2010. Lect. Notes in Comp.
Sci., vol. 6009, pp. 1–12. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-12251-4_1

41. Sozeau, M., Boulier, S., Forster, Y., Tabareau, N., Winterhalter, T.: Coq Coq correct! Verification of type
checking and erasure for Coq. In: Coq. Proc. ACM Program. Lang. 4(POPL), 8-1828 (2020). https://doi.
org/10.1145/3371076

42. Urban, C.: Nominal techniques in Isabelle/HOL. J. Automated Reason. 40, 327–356 (2008). https://doi.
org/10.1007/s10817-008-9097-2

43. Wenzel,M.:Type classes andoverloading inhigher-order logic. In:Gunter, E.L., Felty,A.P. (eds.)Theorem
Proving inHigherOrder Logics, TPHOLs’97. Lect.Notes inComp. Sci., vol. 1275, pp. 307–322. Springer,
Berlin (1997). https://doi.org/10.1007/BFb0028402

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1007/BF00248324
https://doi.org/10.1007/BF02432151
https://doi.org/10.1007/3-540-48660-7_14
https://doi.org/10.1007/978-3-642-12251-4_1
https://doi.org/10.1145/3371076
https://doi.org/10.1145/3371076
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/s10817-008-9097-2
https://doi.org/10.1007/BFb0028402

	A Formalization and Proof Checker for Isabelle's Metalogic
	Abstract
	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Types and Terms
	4 Classes and Sorts
	5 Signatures
	6 Logic
	6.1 Basic Inference Rules
	6.2 Equality
	6.3 Type Class Reasoning

	7 Admissible Rules
	8 Proof Terms and Checker
	9 Size and Structure of the Formalization
	10 Integration with Isabelle
	11 Running the Proof Checker
	12 Trust Assumptions
	13 Future Work
	Acknowledgements
	A Appendix
	References

