
https://doi.org/10.1007/s10817-022-09631-5

A Formalization of the Smith Normal Form in Higher-Order
Logic

Jose Divasón1 · René Thiemann2

Received: 14 April 2021 / Accepted: 13 April 2022
© The Author(s) 2022, corrected publication 2022

Abstract
This work presents formal correctness proofs in Isabelle/HOL of algorithms to transform a
matrix into Smith normal form, a canonical matrix form, in a general setting: the algorithms
are written in an abstract form and parameterized by very few simple operations.We formally
show their soundness provided the operations exist and satisfy some conditions, which always
hold on Euclidean domains. We also provide a formal proof on some results about the
generality of such algorithms as well as the uniqueness of the Smith normal form. Since
Isabelle/HOL does not feature dependent types, the development is carried out by switching
conveniently between two different existing libraries by means of the lifting and transfer
package and the use of local type definitions, a sound extension to HOL.

Keywords Theorem proving · Isabelle/HOL · Local type definitions · Elementary divisor
rings

1 Introduction

The Smith normal form (SNF) is a well-known canonical form of matrices [51]. It is com-
monly defined for matrices whose coefficients belong to a principal ideal domain (from here
on, PID). A matrix is in SNF if its diagonal elements αi satisfy αi | αi+1 (note that every
number divides 0 and 0 only divides itself) and the rest of the elements of thematrix are zeros.
Over a PID, there exists an algorithm to transform a matrix A into its corresponding Smith
normal form S by means of invertible matrices, i.e., there exist invertible matrices P and Q
such that S = PAQ. The Smith normal form plays an important role in different fields, such
as control theory [42], combinatorics [50] and structure of lattice rules [41]. Another impor-
tant application arises in algebraic topology, since it can be used to compute the homology
of a chain complex. More generally, it is useful to compute persistent homology, which can
be applied to process big volume of data [48] and to the analysis of digital images [8].

B Jose Divasón
jose.divason@unirioja.es

1 University of La Rioja, Logroño, Spain

2 University of Innsbruck, Innsbruck, Austria

123

Journal of Automated Reasoning (2022) 66:1065–1095

/ Published online: 26 May 2022

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-022-09631-5&domain=pdf
http://orcid.org/0000-0002-5173-128X
http://orcid.org/0000-0002-0323-8829

J. Divasón, R. Thiemann

In this work, we present a formalization of several facts related to the SNF of a matrix in
Isabelle/HOL.We present two algorithms (one is specific to transform a diagonal matrix into
Smith normal form, the other one works for arbitrary matrices), together with some theorems
on the underlying structures and uniqueness of the transformation. A very important part of
this contribution is how it has been obtained in a context where submatrices play an important
role and the underlying logic (HOL) does not feature dependent types. Throughout the paper
we present the work that we have carried out involving two matrix representations, the one
presented in the HOL Analysis library (where matrices are encoded as functions over finite
types) and another one by Thiemann and Yamada [53], where a matrix is modeled by a
function that maps natural numbers (the indices) to elements, together with two natural
numbers that correspond to its dimensions. Depending on the algorithm that we want to
verify or the theorem that we wish to prove, we carry out the formal proof in one of the
representations (either because it is easier or simply impossible in the other representation),
and later we move the results (maybe including intermediate steps or sometimes just the final
result) to the other one. To this end, we crucially rely on the lifting and transfer package
[33] and above all on local type definitions, a sound extension of HOL [39]. Thus, our work
provides an interesting case study of how to use these novel Isabelle/HOL tools to overcome
the expressivity problem thatHOLhas no dependent types. This approachwas already carried
out in a similar context [22], but the new connection goes one step further and permits reusing
more results and combining algorithms of different libraries, which were not possible before.

The outline of the paper is as follows. In Sect. 2, we introduce the ring structures that we
formalized and also present a brief introduction to Isabelle. The Isabelle matrix libraries and
the required infrastructure are also explained there. In the following sections we show the
main contributions of this paper:

– In Sect. 3, we present the methodology and the enhanced connection between two matrix
representations and we also show a guided example on how to move theorems from one
library to the other one.

– In Sect. 4, we show a verified algorithm to compute a SNF of a diagonal matrix. The
algorithm is definedoverBézout rings (insteadover PIDs).Wealso show that anydiagonal
matrix can always be transformed into SNF if and only if its entries belong to a Bézout
ring.

– In Sect. 5, we present both a verified algorithm to transform arbitrary matrices into SNFs
and necessary and sufficient conditions, in terms of the underlying ring, for the existence
of SNFs for arbitrary matrices. Concretely, our algorithm works over elementary divisor
rings, and that is precisely the structure in which any matrix can be transformed into
a SNF. Some characterizations of elementary divisor rings and Hermite rings are also
formalized.

– The certification approach to compute a SNF, based on external oracles, is formalized in
Sect. 6.

– The SNF of a matrix over a GCD domain (a more general structure than PID) is unique
up to multiplication by units. We formalize this result in Sect. 7.

We then present an overview of related work in Sect. 8. Finally, Sect. 9 shows the con-
clusions. The formalization is publicly available in the Archive of Formal Proofs [17] and
comprises over 14,000 lines of code.

123

1066

Formalized Smith Normal Form in HOL

2 Preliminaries

2.1 Algebraic Structures and Definitions

We expect the reader to be familiar with ring theory and linear algebra, and we refer to
introductory books [12, 52] for their standard notions. We clarify that by ring we mean
commutative ring with unit. We also recall two important types of rings that are intensively
used throughout the paper:

Definition 1 (GCD ring) AGCD ringR is a ring where every pair of elements has a greatest
common divisor, i.e., there exists gcd(a, b) ∈ R such that:

– gcd(a, b) | a and gcd(a, b) | b
– For all g ∈ R such that g | a and g | b, then g | gcd(a, b)

The gcd operation could be neither unique nor computable. If the ring is an integral domain
(it has no zero divisors), the structure is called GCD domain.

Definition 2 (Bézout ring) A Bézout ring R is a ring where the Bézout identity holds, i.e.,
for a, b ∈ R there exist p, q, d ∈ R such that pa + qb = d and d is a greatest common
divisor of a and b. If the ring is an integral domain, the structure is called Bézout domain.

We recall the following chain of inclusions of rings (analogous for integral domains):

Field ⊂ Euclidean ring ⊂ PID ⊂ Bézout ring ⊂ GCD ring

The previous definitions were already part of the Isabelle/HOL library. During the formal-
ization process, we also need to introduce more algebraic structures. The following definition
is by Gillman and Henriksen [26].

Definition 3 (Admits triangular reduction) An arbitrary matrix A over a ringR admits trian-
gular reduction if there exists an invertible matrixU overR such that AU is lower triangular.

Let us remark that, by symmetry, we could have defined the same concept imposing the
matrixUA to be upper triangular. Now,we introduce the concept of anHermite ring following
the definition by Kaplansky [37].

Definition 4 (Hermite ring) A ring R is called an Hermite ring if every matrix A over R
admits triangular reduction.

For the sake of completeness, we show the definition of the Smith normal form.

Definition 5 (Smith normal form) An arbitrary matrix A over a ringR is said to be in Smith
normal form (abbreviated SNF), if it is a diagonal matrix and every diagonal element Ai,i

divides Ai+1,i+1.

Definition 6 (SNF of a matrix) A matrix S is said to be a SNF of an arbitrary matrix A over a
ringR, if S is in SNF and there exist invertible matrices (overR) P , Q such that PAQ = S.

It is worth noting that the SNF is sometimes defined over a PID or a Euclidean domain
in the literature, since it is possible to define an algorithm in such structures to compute the
SNF of a matrix. However, as presented above, the SNF can be defined for matrices over any
ring R. Let us also note that by Ai,i | Ai+1,i+1 we mean that there exists an element u ∈ R
such that Ai+1,i+1 = uAi,i , but neither a witness nor an executable division algorithm is
required. A closely related concept is the definition of admissibility of diagonal reduction
presented by Kaplansky [37]:

123

1067

J. Divasón, R. Thiemann

Definition 7 (Admits diagonal reduction)An arbitrarymatrix A over a ringR admits diagonal
reduction if there exist invertible matrices (over R) P , Q such that PAQ is in SNF.

Finally, we present the definition of elementary divisor rings, again following the one by
Kaplansky [37]:

Definition 8 (Elementary divisor ring) A ringR is called an elementary divisor ring if every
matrix A over R admits diagonal reduction.

2.2 A Brief Introduction to Isabelle

Isabelle is a generic theorem prover which supports different object logics [45]. This is
possible thanks to Isabelle’s logical framework Isabelle/Pure, a meta-logic that allows the
formalization of the syntax and inference rules of a broad range of object logics. The
most widespread object logic supported by Isabelle is higher-order logic (or briefly, HOL).
Isabelle’s version of HOL (usually called Isabelle/HOL) corresponds to Church’s simple type
theory [14] extended with polymorphism, Haskell-style type classes and type definitions. It
is the one where the greatest number of tools (code generation, automatic proof procedures)
and libraries are available. For instance, almost all the developments published in the Archive
of Formal Proofs [5] (more than 600 articles) use HOL as their object logic.

Our formalization is based on Isabelle/HOL andwe follow its syntax conventions through-
out the paper. For instance, f ::α ⇒ β indicates that f is a function that maps elements of
type α to elements of type β. Type classes [28] allow sharing operations and assumptions
among different types (also notation and names). One can build hierarchies of abstract struc-
tures with them, but they include a considerable restriction: type classes are restricted to one
type parameter. Despite this limitation, they have proved very useful in many developments
and there are more than 180 type classes in the Isabelle/HOL standard library. They can be
understood as amechanism to impose additional restrictions over type variables; for instance,
the expression x ::α :: field imposes the constraint that the type variable α possesses the struc-
ture and properties stated in the field type class, and can be later replaced exclusively by types
which are instances of that type class. A class that is very important for our development is
the finite class, which assumes the type to have finitely many elements.

class finite= assumes finite (UNIV :: α set)

We use OFCLASS(α, T) in some Isabelle statements. It is a proposition which guarantees that
the type α satisfies the required properties to be an instance of the type class T .

Locales [6] are a concept related to type classes. A locale fixes operations (or parameters)
and assumptions over them, and provides a context in which theorems (implied by the fixed
operations and their assumptions) can be proved. Locales are hierarchic and their theorems
can be inherited in other contexts by means of interpretations. They are especially useful
for abstract algebra developments [7], since they permit working explicitly with carrier sets,
describe homomorphisms between structures, and they have no limitation on type variables.

The lifting and transfer package [33] allows one to transport definitions and theorems from
one type to a related one. Since its introduction in 2013, this package has become a very useful
tool in numerous different developments. Local type definitions were introduced by Kunĉar
and Popescu as part of Isabelle/HOL in 2016. They provide a new rule for type definitions
that extends the HOL logic. This rule brings some of the dependent type expressiveness into
Isabelle/HOL, by emulating type definitions locally. Kunĉar and Popescu also proved the
consistency of this new rule with the logic of Isabelle/HOL. The rule is formally written as:

123

1068

Formalized Smith Normal Form in HOL

Γ � A �= ∅ Γ � (∃Abs Rep. σ (β ≈ A)AbsRep) → ϕ

Γ � ϕ
, (LT)

where Γ is a proof context, ϕ is a formula, A is a nonempty set (of type σ), and Rep and
Abs the functions which define an isomorphism between the set of all elements of a new type
β and A. Essentially, this rule allows assuming (locally) the existence of a type β (with no
type class restrictions) which is isomorphic to an arbitrary nonempty set A, where β must be
fresh. With some work, this permits going from types to sets (and to terms) in Isabelle/HOL.
There are more technical details about this approach such as class internalization and the
unoverloading rule. We refer to Kunĉar and Popescu’s article for further details [39].

Throughout the paper, Isabelle keywords are written in bold.

2.3 The HOL Analysis Library and Its Matrix Representation

The HOL Analysis (or HA for short) library [36] is a set of Isabelle/HOL theories based on
Harrison’s work in HOL Light [29] and contains theoretical results in mathematical fields
such as analysis, topology and linear algebra. It is a huge library with more than 9000 lemmas
and 400 definitions.

In the HA library, matrices are represented by means of Harrison’s trick: finite types
encode natural numbers by means of their cardinality. Then, matrices with elements of type
α are essentially represented as functions whose domain are elements over finite types, i.e.,
bymeans of a function of type ’n⇒ ’m⇒ α (or, in HA jargon, α ˆ ’m ˆ ’n) where ’n and ’m are type
variables which are restricted to belong to the class finite and represent the row and column
indices, respectively. This trick has many advantages from the formalization point of view:
the type system can enforce compatible dimensions, for example, for matrix multiplication.
This permits eliminating premises on the number of rows and columns: the type system will
infer the dimensions for free. Throughout the paper, we will use α to denote the type of the
elements of a matrix, whereas we will use the Latin script (’m, ’n) when referring to the finite
types of the indices of the matrices.

The HA matrix representation possesses a well-known drawback: it is cumbersome, if
possible at all, to change the dimension of the matrix, or to define submatrices. Also, it
seems hard to perform induction on these finite type variables. Normally some tricks are
used to overcome this limitation, such as completing the submatrices with zeros and ones
[1, 46], which is unsatisfactory in terms of performance and an obvious overhead during
the formalization process, since this introduces a gap between the formal and the paper
definitions. Despite this limitation, the HA library has been shown to be very useful for
formalizing linear algebra algorithms. Indeed, based on the HA library, we successfully
complete several linear algebra developments [2–4, 20].

2.4 Another Matrix Library with Explicit Dimensions

In order to overcome the common problems with matrix dimensions when working with the
HA matrix representation, Thiemann and Yamada developed a new library in a work about
Jordan normal forms [53]. Their new library, fromhere on the JNF library, provides a different
matrix representation, but flexible for dimensions.More concretely, a vector (v0, . . . , vn−1) is
represented by a pair (n, v), where n is the dimension and v the element function (fromnatural
numbers to the type of the elements of the vector), i.e., v i = vi . A similar representation
for matrices is provided, based on a triple (n,m, f) which corresponds to the number of

123

1069

J. Divasón, R. Thiemann

rows, number of columns and the element function for a matrix. The type of this triple is
modeled as α mat, where α is the type of the elements of the matrix. They prove again many
properties of linear algebra and matrices based on such a representation. Results in the JNF
library require explicit conditions on dimensions and, for the moment, it is far away from
having all the theorems that are formalized in the HA library, but it permits working with
blocks and submatrices.

2.5 Some Existing Classes and Types in Isabelle: mod_type, mod_ring and nontriv

In our previous works using the HA library [2–4, 20], we do not only impose finite types to
model the rows and columns of matrices, but we also require more conditions (an explicit
enumeration of its universe and some basic arithmetical properties) which were encoded by
means of a type class named mod_type.

classmod_type= times+wellorder+ neg_numeral+
fixes Rep :: ’a⇒ int and Abs :: int⇒ ’a

assumes type_definition Rep Abs {0..<CARD(’a)}

and 1< int CARD (′a) and 0= Abs 0 and 1= Abs 1

and x+ y= Abs ((Rep x+ Rep y)mod CARD(’a))

and x * y= Abs ((Rep x * Rep y)mod CARD(’a))

and x− y= Abs ((Rep x− Rep y)mod CARD(’a))

and− x= Abs ((− Rep x)mod CARD(′a))
and strict_mono Rep

Themod_type class is designed to facilitate the proofs and to be later instantiated by executable
types. It is necessary to define certain properties, such as imposing that every element in the
diagonal of a matrix divides the next element: the finite type is not enough to impose such a
condition, since there is no fixed order of its elements. In addition, the morphisms from_nat

and to_nat are also defined within the mod_type class: they permit the conversion between
naturals and elements in a mod_type and are accompanied by the expected simplification
rules. It is important to remark that from_nat and to_nat do not represent an arbitrary bijection
between {0, . . . , CARD(’n :: mod_type) − 1} and the set of all elements of type ’n, but mod_type

demands them to be strictly monotonic increasing functions.
Another existing concept that we will use in our work is the type ’a mod_ring, which

is developed in a work on factorization of integer polynomials [23, Sect. 3.1]. This type
represents finite rings of CARD(’a) elements.

typedef (’a :: finite)mod_ring= {0..<CARD(’a)}

In addition, we make use of the nontriv class, which essentially represents a finite type con-
taining more than one element:

class nontriv= assumes CARD(’a)>1

3 A Connection Between the JNF Library and the HA Library with the
mod_type Restriction

In a work on the Perron–Frobenius theorem [22], there has been a collaboration on the
connection between the basics of the HA and the JNF libraries by means of the lifting and
transfer package, whenever the indices in the HA library are modeled by finite types (class

123

1070

Formalized Smith Normal Form in HOL

finite). More concretely, that work defines functions to convert, among others, indices and
matrices between both representations. For instance, a function from_nat_f :: nat⇒ ’n is defined
for the indices, which is an arbitrary bijection between {0, . . . , CARD(′n) − 1} and the set
of all elements of the finite type ’n. Analogously, its inverse function is defined as to_nat_f

:: ’n ⇒ nat.1 Note that both functions have nothing to do with the morphisms from_nat and
to_nat presented previously: the latter ones belong to the mod_type class and they are strictly
monotonic functions. Then, indices in both representations are related as follows:

definition rel_I′ :: nat⇒ ’n⇒ bool where rel_I′ i j = (i = to_nat_f j)

In a similar way, matrices in the JNF and the HA libraries are related:

definition from_HA :: (α ˆ ’n ˆ ’m) ⇒ α mat

where from_HA A= (CARD(’m), CARD(’n), (λ i j . A $ (from_nat_f i) $ (from_nat_f j)))

definition rel_M′ :: α mat ⇒ (α ˆ ’n ˆ ’m) ⇒ boolwhere rel_M′ A B = (A= from_HA B)

In the definition, from_HA is the function that converts a matrix in HA to its corresponding
one in JNF, $ is the access operator for matrices and vectors in HA.

Then, transfer rules like the following one are proved:

lemma (rel_M′ ����⇒ rel_M′ ����⇒ rel_M′) +JNF +HA

This rule means that given two matrices A1 and A2 in the JNF library related to the HA
matrices B1 and B2, respectively (via rel_M’), then if matrix addition is invoked in JNF
(A1 +JNF A2) the result is related to the matrix addition in HA (B1 +HA B2). Transfer rules
permit one to partly automate the process of sharing statements between both libraries. Putting
that work together with the use of local type definitions, we canmove results from one library
to the other one (in a bidirectional way) if the matrix dimensions are of type finite [22, Sect.
4]. Local type definitions are the key, since they allow us to define types dynamically in proof
contexts, which are mainly necessary to convert the numerical matrix dimensions in JNF into
finite types in HA. More concretely, they permit one to get rid of some type class restrictions
and type variables in the theorems that appear while transferring results from HA to JNF.
For instance, they are used to transform statements with conditions about the finite type class
(such as i < CARD(’n :: finite)) to simply i < n where n is a free variable.

However, the mod_type class plays an important role in this work about the SNF when
working with the HA library, since, similarly as in our previous works, many times the
matrix dimensions cannot be modeled by (only) a finite type, but they also must satisfy
additional properties. For instance, in this work we need to introduce the definition of the
SNF in HA:

definition Smith_normal_form :: α :: comm_ring_1 ˆ ’n :: mod_type ˆ ’m :: mod_type⇒ bool

where Smith_normal_form A= ((∀ a b. to_nat a = to_nat b∧ to_nat a + 1 < nrows A

∧ to_nat b + 1 < ncols A −→ A $ a $ b dvd A $ (a + 1) $ (b + 1)) ∧ isDiagonal A k)

The predicate isDiagonal is used to impose the matrix A to be diagonal. The functions nrows

and ncols obtain the number of rows and columns of a matrix in HA. The input matrix A
has type α ˆ ’n :: mod_type ˆ ’m :: mod_type. In the definition, the quantified variables a and b
are used for referring to the indices of the rows (of type ’m with the mod_type restriction)
and columns (of type ’n and with the mod_type restriction too), respectively. Let us remark
that a and b do not have the same type. This means that we cannot write A $ a $ a when
referring to the diagonal elements. Neither we can assume a = b. On the contrary, we have

1 In Isabelle/HOL, these functions are named from_nat and to_nat, respectively.

123

1071

J. Divasón, R. Thiemann

to work with to_nat and thus, the restriction to_nat a = to_nat b is added as a premise in the
first condition. Let us also note that, given an index a, we refer to the next position as a + 1.
This is possible since the mod_type class assumes the existence of a sum operation (class
plus) and some basic arithmetical properties. In addition, mod_type demands the morphisms
to_nat and from_nat to be strictly monotonic increasing functions. This property does not
hold with to_nat_f , and in our case is very convenient since we can deduce useful properties,
such as to_nat a + 1< CARD(’n) �⇒ to_nat a+1 = to_nat (a+1). Thanks to properties like this one,
the mod_type class is very useful in our previous works and, as seen above, also required in
this particular development since it allows one to impose easily the divisibility condition of
diagonal elements when defining the Smith normal form predicate in HA.

Thus, it is desirable to be able tomove statements between both libraries, even if thematrix
dimensions require the mod_type restriction in HA. With the previously existing connection
[22], this is not possible (if one tries it, one would get proof obligations like to_nat = to_nat_f

when proving the required transfer rules for some definitions, which do not necessarily hold).
To circumvent this problem, we developed a new bridge which connects the HA library with
JNF, but using the morphisms to_nat and from_nat from the class mod_type, so that we can
relate theorems and algorithms that possess such a class restriction over the indices of the
matrices, and, concretely, we will be able to transfer our algorithms and results about the
SNF between both representations.

We define the new relations between indices, vectors and matrices (involving mod_type)
in HA and JNF (rel_I, rel_V , and rel_M, respectively) and prove new transfer rules for the basic
operations such as matrix addition, determinants and so on.

Let us show the process to transfer statements from HA to JNF by means of a guided
example. The following statement is proved in HA with the mod_type restriction. It simply
states that the first element of a squarematrix in SNF divides any other element of thematrix.2

lemmafixes A :: α :: comm_ring_1 ˆ ’n :: mod_type ˆ ’n

assumes Smith_normal_form A (�)

shows A $ 0 $ 0 dvd A $ i $ i

Note that we use 0 (which is of type ’n :: mod_type) to represent the first element of the type
’n and then, A $ 0 $ 0 is used to access to the first element of the matrix. However, if one only
requires finite instead of mod_type for the type ’n, we would not know if 0 is the first element
of the type ’n; indeed, we would not know if the type ’n has a 0 as one of its elements.

The first step is to define the notion of SNF in the JNF library:

definition Smith_normal_form_mat :: α :: comm_ring_1mat⇒ bool

where Smith_normal_form_mat A= ((∀a. a + 1 <min (dim_row A) (dim_col A)

−→ A $$ (a, a) dvd A $$ (a + 1, a + 1)) ∧ isDiagonal_mat A)

The definition is very similar to the one in HA. Here, the $$ symbol is used to represent the
access operator for matrices in JNF and isDiagonal_mat is the predicate in JNF that requires
the input matrix A to be a diagonal matrix.

Now, we prove transfer rules to relate the definitions involved in the statement, in this case
we relate the definitions Smith_normal_form and Smith_normal_form_mat.

lemma (rel_M����⇒ (=)) Smith_normal_form_mat Smith_normal_form

2 This theorem is rather simple and can be proved in JNF by induction in very few lines. In fact, both libraries
include the result (for arbitrary matrices, not necessarily square) without using the bridge. For the sake of
simplicity, we present it here proved using the bridge to show a guided example of its use.

123

1072

Formalized Smith Normal Form in HOL

Let us recall that this lemma states that whenever a matrix A in JNF and a matrix B in
HA are related (via rel_M), then Smith_normal_form_mat A and Smith_normal_form B are equal
(related by the equality relation). The difficulty of a transfer rule depends on the number of
definitions and operations that are involved as well as the similarity between the definitions
in HA and JNF. In this case, the SNF definition relies on several operations and facts that
also need to be related ($ with $$, isDiagonal with isDiagonal_mat, nrows with dim_row, etc.). It
is worth noting that isDiagonal and isDiagonal_mat can be defined and related without using the
mod_type restriction, but then the corresponding transfer rule can only be proved for square
matrices. Applying transfer rules to every constant presented in Lemma (�)we want to move
from HA, we get the following statement in JNF:

lemmafixes A :: α :: comm_ring_1mat

assumes A ∈ carrier_mat CARD(’n :: mod_type) CARD(’n) and i < CARD(’n)

and Smith_normal_form_mat A shows A $$ (0, 0) dvd A $$ (i, i)

The statement assumes two new premises, namely A ∈ carrier_mat CARD(’n :: mod_type)

CARD(’n) and i < CARD(’n) where A has type α mat. Here, carrier_mat is the set of all
CARD(’n)×CARD(’n)matrices (JNF requires explicit dimensions).Wewould like to transform the
new assumptions into A ∈ carrier_mat n n and i < n, respectively, where n is a free variable.
This can be done by means of local type definitions, since the local typedef rule [39] provides
exactly what is needed: types defined dynamically in local proof contexts. However, we still
would have to internalize the type class mod_type and then abstract over its operations via
dictionary construction [38]. This step is almost immediate when using the type class finite,
because there are no operations associated with it, just the assumption finite UNIV , and at the
end everything is reduced to assume that there exists a type ’b (with no type class restric-
tions) for which there exists an isomorphism between the set of all elements of the type and
{0, . . . , n − 1}, then proving that ’b fulfills the condition of the type class finite, which holds
trivially, and finally, ’b is instantiated by ’n.

However, as explainedbefore,mod_type introducesmore type classes (wellorder, neg_numeral,
etc.) as well as associated operations and constants (+, ∗, 1, etc.). Hence, the approach is
more arduous, since we would have to define a predicate mod_type_on_with S f ′ g′ …where
S is the carrier set and f ′, g′, etc. the abstraction of all the operations and constants. This is
the common approach and has been applied successfully, for instance, by Immler to connect
theorems and structures of linear algebra and rings involving different representations [34].
It is feasible, but laborious. This approach would require the use of another sound extension
of Isabelle’s logic by Kunĉar and Popescu: the unoverloading rule [39, Sect. 6.2].

In our case,we take a shortcut:we use the type ’amod_ring, whichwas presented in Sect. 2.5.
We prove that ’amod_ring is an instance of the type classmod_type, that is, it satisfies all the con-
ditions imposed by the type class: it defines a well ordering, there exists a strictly monotonic
increasing function from elements of the mod_ring to the naturals, etc. Once such an instance
is completed, any statement that involves a matrix of type α ˆ ’n :: mod_type ˆ ’m :: mod_type can
be rewritten as α ˆ ’n :: nontrivmod_ring ˆ ’m :: nontrivmod_ring, where nontriv just imposes the type
to have more than one element. Fortunately, it is easy to apply local type definitions to a
type ’n mod_ring, since we can rewrite CARD(’n :: nontriv mod_ring) to CARD(’n :: nontriv). Then, the
previous theorem can be easily transformed to:

lemmafixes A :: α :: comm_ring_1mat

assumes A ∈ carrier_mat CARD(’n :: nontriv) CARD(’n) and i < CARD(’n)

and Smith_normal_form_mat A

shows A $$ (0, 0) dvd A $$ (i, i)

123

1073

J. Divasón, R. Thiemann

Now it is almost straightforward to substitute CARD(’n :: nontriv) by a new variable n using
local type definitions, since it is very easy to internalize the type class nontriv and prove that
the new fresh type variable satisfies its properties (it has no associated operations or constants,
so is similar to the class finite). To do this, we apply the local type definition rule by creating
a local type ’b with n elements and then instantiate the previous statement where ’n will be ’b.
The only peculiarity which remains is that the resulting theorem restricts the new variable n
to be greater than 1, since nontriv demands the type ’n to have more than one element. This
imposes the local type definition rule to be appliedwithin a context that assumes n > 1. Cases
n = 0 and n = 1 have to be treated separately. They correspond to the case of matrices with
no elements and with one element, respectively. In both cases, the result is trivial. Finally,
we get the statement in JNF:

lemmafixes A :: α :: comm_ring_1mat

assumes A ∈ carrier_mat n n and i < n and Smith_normal_form_mat A

shows A $$ (0, 0) dvd A $$ (i, i)

Note that, once the transfer rules are proved the rest of the process is almost immediate. As
expected, the transfer rules are proved only once to relate concepts between HA and JNF, and
then they are reused when moving results. The fact of being able to transfer results between
both libraries by means of the connection bridges is essential and it saves much work in
our development. Throughout the paper, we use both bridges continuously, not only the new
connection. For instance, the following lemma was available in HA (for finite types), but not
in JNF.

lemmafixes A :: α :: comm_ring_1 ˆ ’n ˆ ’n

shows invertible A←→ det A dvd 1

This result is very important, since it permits us to characterize the invertible matrices
of any ring. We need it in the JNF library. Instead of replicating the proof, which would
demand some work since it is based on several previous lemmas that are not available in
JNF, we directly converted it using transfer rules and local type definitions. Once the lemma
is available in JNF, we use it throughout the whole development to make the proofs easier,
concretely more than 20 times. Let us remark that the connection is bidirectional and the way
back from JNF to HA is easier (no local type definitions are required) once the transfer rules
are provided.

As a summary of the methodology, we show here the necessary steps to move theorems
back and forth between HA and JNF:

– From HA to JNF:

1. define the corresponding notions in JNF in case they do not exist;
2. prove the required transfer rules;
3. apply the transfer rules to move the statement to JNF;
4. deduce the result with the type class nontriv (via the mod_ring type class) instead of

having mod_type in the statement;
5. use local type definitions to eliminate the type variables involvingmatrix dimensions;
6. for each new free variable n that models a matrix dimension, prove the result when

n = 0 or n = 1 (usually trivial).

– From JNF to HA:

1. define the corresponding notions in HA in case they do not exist;
2. prove the required transfer rules;
3. state the theorem in HA and move its assumptions to JNF by applying transfer rules;

123

1074

Formalized Smith Normal Form in HOL

4. use the assumptions and the theorem proved in JNF to get the conclusion in JNF;
5. move back the result to HA since the types of the matrix dimensions are known.

4 Smith Normal Form of Diagonal Matrices

4.1 Normal Form Computation

There are many variants of algorithms to compute a Smith normal form of a matrix, from
generic algorithms that work on matrices over a PID, to more specific (and more efficient)
ones in concrete structures such as the integers. Some of the generic algorithms that appear in
the literature consist of two steps3: first a diagonalmatrix is obtained and then it is transformed
into Smith normal form. In this section, we present a formalization of this second step in a
general setting. This step is itself interesting since there are computer programs that require it
for their computations. For instance, the Kenzo system [24] uses diagonalization to compute
homology, but it requires the SNF to compute homotopy (which, precisely, is computed from
a diagonal matrix).

Algorithm 1 shows a way to compute a SNF S from a diagonal matrix A. It is based
on the one presented by Bradley [11, Algorithm II], but we have incorporated some basic
modifications:

– The algorithm works for non-square matrices.
– The algorithm is tuned to permit singular matrices.
– The algorithm works for a matrix with coefficients in a Bézout ring, not necessarily a

Euclidean domain.
– Changes have been carried out to avoid unnecessary checks on divisibility.
– We introduce how the invertible matrices P and Q (satisfying S = PAQ) are computed.

Algorithm 1 Diagonal matrix to Smith normal form
Require: A is an n × m diagonal matrix with coefficients in a Bézout ring
Ensure: A has been transformed into Smith normal form by means of invertible matrices P and Q
1: begin
2: Initialize P and Q as identity matrices with dimensions n × n and m × m, respectively;
3: for i = 1 to (min n m) - 1 do
4: for j = i + 1 to min n m do
5: if Aii � A j j then
6: Compute (p, q, u, v, d) such that p · Aii + q · A j j = d, d is a greatest common

divisor of Aii and A j j , d · u = −A j j and d · v = Aii ;
7: Aii ← d;
8: A j j ← v · A j j ;
9: Initialize P ′ and Q′ as identity matrices with dimensions n × n and

m × m, respectively;
10: P ′

i j ← p, P ′
j i ← 1 − v · p, P ′

j j ← −v;

11: Q′
i j ← −u, Q′

j i ← q, Q′
j j ← −q · u − 1;

12: P ← P ′ · P , Q ← Q · Q′;
13: end if
14: end for
15: end for
16: end

3 Sometimes both steps are merged and the transformations are performed at the same time.

123

1075

J. Divasón, R. Thiemann

The purpose of lines 9–12 here is to compute the matrices P and Q. If these are not
required, the lines can simply be dropped as they are not used elsewhere in the algorithm.
Their explicit constructions are not necessary for the soundness proof of the algorithm, since
one is only required to show their existence. We implemented two variants of the algorithm,
one by means of a function named diagonal_to_Smith which does not compute the matrices P
and Q, and another slower version named diagonal_to_Smith_PQ that computes them.

Let us start by showing how we implemented the first of them. Algorithm 1 is imperative
pseudocode and there exist multiple ways to approach its implementation in a functional
setting. In our case, we simply opted to model each loop by tail recursive functions which
traverse the lists [0..<min (nrows A) (ncols A) - 1] (outer loop) and [i+1..<min (nrows A) (ncols A)] (inner
loop). The final function that transforms the diagonal matrix into Smith normal form, named
diagonal_to_Smith, has the type: α :: bezout_ring ˆ ’m :: mod_type ˆ ’n :: mod_type⇒ α bezout⇒ α ˆ ’mˆ

’n. That is, the function receives two parameters: the input matrix (with elements in a Bézout
ring) and the bezout operation. This bezout operation, whose type is α bezout (a type synonym
of α ⇒ α ⇒ (α × α × α × α × α)), is a function applied to two elements a and b which
returns five elements (p, q, u, v, d) such that pa+qb = d , d is a greatest common divisor of
a and b, du = −b and dv = a; i.e., it is precisely what is needed in line 6 of Algorithm 1. It
is important to note that u and v are not directly defined as u = −b/d and v = a/d because
in abstract structures, such as Bézout rings, we do not have an explicit division operation.
The bezout operation is a parameter of the algorithm and not a fixed operation of the type
class bezout_ring since this operation is not part of the structure of a Bézout ring: in general,
a Bézout ring will admit many different bezout operations. Note that we need to use the type
class mod_type to model the indices. It is true that the use of finite types (and mod_type) in the
HA library introduces sometimes an overhead in the proofs with respect to their equivalent
ones in JNF, where indices are just natural numbers, but it is, in this case, a feasible approach
since we do not need to change the types of the rows and columns in our algorithm. In
addition, we also provide useful results and simplification rules to minimize this overhead.

The idea of the algorithm is simple. Each step i consists of transforming the element Aii

and all the elements A j j where i < j such that A′
i i divides all the elements A′

j j via the inner
loop by means of elementary operations and preserving the rest of elements. Iterating this
procedure by all the elements in the diagonal via the outer loop, we obtain the algorithm to
transform a diagonal matrix into Smith normal form.

The implementation of the version that explicitly computes the transformation matrices is
rather similar: diagonal_to_Smith_PQ again receives two parameters (the input diagonal matrix
A and the bezout operation) and returns three matrices P , S and Q such that S = PAQ, S
is in Smith normal form and both P and Q are invertible. Lines 9–12 in Algorithm 1 show
how the invertible matrices are constructed, but one can also view them as a composition of
elementary operations applied to the identity matrix:

– P ′ is equal to add p · row i to row j , then interchange rows i and j and add −v · row i
to row j .

– Q′ is equal to add q · column j to column i , then add u · column i to column j and
finally multiply column j by −1.

Thus, the final matrices P and Q can be viewed as products of all P ′ and Q′, or as a
composition of the elementary operations presented above. Both ways to obtain them are
formalized in Isabelle/HOL, so we use the most convenient one in each case during the
formalization process. For example, the explicit matrices are used for efficiency to avoid
repetitive elementary matrix operations and multiplication of matrices, and the view as a
chain of elementary operations helps us to prove that they are indeed invertible matrices.

123

1076

Formalized Smith Normal Form in HOL

We sketch the soundness proof of diagonal_to_Smith_PQ. In each step, the invariant S′ =
P ′AQ′ is preserved, where P ′ and Q′ are invertible matrices and S′ is a matrix in SNF up
to the diagonal element S′

i i , i.e., S
′ is a diagonal matrix and each element of the diagonal

up to the i th one divides the following one. Then, the proof consists of showing that in step
i , the elements S′

i i and S′
j j where i < j are modified so that the new S′

i i divides all the
new elements S′

j j , the matrix remains diagonal, the previous elements of the diagonal are
not modified and they divide the new S′

i i ; the whole process being performed by means of
elementary operations. The proofs required a careful work due to the necessary conversions
betweenmod_type and natural numbers. The type of the columns can be distinct from the type
of the rows, thus it is essential to use from_nat when referring to the elements of the diagonal
of a non-square matrix in the HA world. Nevertheless, thanks to the basis provided by the
HA library and our previous works, we did not find hidden difficulties in the proofs during
the formalization process.

We make a remark. We hide the induction over the indices of finite types, but instead
it is carried out over the naturals and afterward the results are transformed back into their
finite type version by means of the functions to_nat and from_nat. This is possible because in
each moment the finite types that model the rows and columns of the matrix are known and
preserved during the whole algorithm (neither block matrices nor submatrices are required).
The final theorem follows. In the statement, ∗∗ is the notation that the HA library uses for
matrix multiplication.

theoremfixes A :: α :: bezout_ring ˆ ’cols :: mod_type ˆ ’rows :: mod_type

assumes is_diagonal A and is_bezout bezout and (P, S, Q) = diagonal_to_Smith_PQ A bezout

shows S = P ∗ ∗A ∗ ∗Q ∧ invertible P ∧ invertible Q ∧ Smith_normal_form S

As a summary, we note some facts about the generality of this algorithm: the input matrix
just requires elements in a Bézout ring (not necessarily a domain, not necessarily a PID as it
is commonly defined in the literature). Second, A has to be diagonal but neither necessarily
square nor non-singular. Third, the algorithm is parametrized by the bezout operation, whose
existence we formally prove in a Bézout ring (but could be neither unique nor algorithmically
computable). The predicate is_bezout just requires the parameter bezout to be indeed a bezout

operation. This way, we have formalized an algorithm to transform a diagonal matrix into
Smith normal form. This procedure will be executable as long as we provide a computable
bezout operation. This is always possible over Euclidean domains thanks to the Euclidean
division algorithm, but it is sometimes also possible in more general structures. For instance,

the ring Z[ξ], where ξ = 1+√−19
2 is not a Euclidean domain but a PID, and an alternative

method to compute the Bézout coefficients without using the Euclidean algorithm can be
provided, at least in some cases, and thus a SNF can be computed [49].

4.2 Existence criterion

Here, we show that a SNF may not exist for all diagonal matrices if one assumes a more
general underlying structure than Bézout rings. We first show an alternative definition for
Bézout rings which will be useful afterward.

Theorem 1 A ring R is a Bézout ring ⇐⇒ all finitely generated ideals of R are principal.

This is a well-known result and our proof in Isabelle/HOL essentially follows the one pre-
sented in [12, Theorem 6–3], with slight modifications to ease the formalization. It required
about 400 lines, due to a missing property: let R′ be a Bézout ring, then for any elements

123

1077

J. Divasón, R. Thiemann

x1, . . . , xn ∈ R′ there exist elements α1, . . . , αn ∈ R′ such that
∑n

i=1 αi xi = d , where d
is a greatest common divisor of x1, . . . , xn . That is, the Bézout coefficients can be obtained
for a set of n elements of the ring, not only for every pair. The statement in Isabelle/HOL of
Theorem 1 follows.

theorem (∀I :: α :: comm_ring_1 set. finitely_generated_ideal I −→ principal_ideal I) ←→
OFCLASS(α, bezout_ring_class)

Now we are ready to prove the following theorem.

Theorem 2 The following three statements are equivalent:

(A) R is a Bézout ring.
(B) All diagonal matrices with coefficients in a ring R admit a SNF.
(C) All 2 × 2 diagonal matrices with coefficients in a ring R admit a SNF.

Proof The (A) �⇒ (B) implication can be deduced by applying the soundness theorem of
Algorithm 1, which was defined over Bézout rings in Sect. 4.1. The implication (B) �⇒ (C)
is obvious. Now, letR be a ring. In order to prove (C) �⇒ (A), we must show that for all a,
b, there exists some d such that aR + bR = dR. Indeed, via (C) we may write

(
a 0
0 b

)

= P

(
d 0
0 d ′

)

Q

with d | d ′. Therefore, we find that a, b ∈ dR + d ′R = dR and thus, aR + bR ⊆ dR. For
the other direction, we write

(
d 0
0 d ′

)

= P−1
(
a 0
0 b

)

Q−1

to conclude d ∈ aR + bR and thus, aR + bR ⊇ dR. ��
To carry out the formal proof of Theorem 2 in Isabelle/HOL, it seems natural to tackle it

using theHA library, since the algorithm is indeed defined inHA.The (A)�⇒ (B) implication
is quite easy, since it just consists of using Algorithm 1 and its soundness theorem. The (B)
�⇒ (C) implication is more problematic. We try to state it in the HA library as follows:

lemma
assumes ∀A :: α :: comm_ring_1 ˆ ’n :: mod_type ˆ ’n. admits_SNF_HA A

shows ∀A :: α :: comm_ring_1 ˆ 2 ˆ 2. admits_SNF_HA A

In the lemma, admits_SNF_HA is the predicate that states that the diagonal matrix A can be
transformed by elementary operations into SNF. However, there is a problem: the type that
models the dimension of the matrix is fixed (the type ’n). Then, we are stating the theorem for
all square matrices of such a concrete dimension, and not for any square matrix. A statement
like ∀(’n :: mod_type).… is not valid in Isabelle/HOL, i.e., Isabelle/HOL cannot quantify over
types. Thus, the HA library is not expressive enough to state the (B) �⇒ (C) implication of
Theorem2. The only feasible solution is to prove (B)�⇒ (C) (and then the complete theorem)
in the JNF library, where the dimensions ofmatrices aremodeled by natural numbers. Indeed,
we can formalize it in the JNF library easily. The statement follows:

lemma
assumes ∀A :: α :: comm_ring_1mat. admits_SNF_JNF A

shows ∀(A :: α :: comm_ring_1mat) ∈ carrier_mat 2 2. admits_SNF_JNF A

123

1078

Formalized Smith Normal Form in HOL

Here, admits_SNF_JNF is the analogous predicate (in JNF) to admits_SNF_HA. The following
result is an important fact to prove the lemma. It is an alternative statement for the assumption.

lemma
(∀A :: α :: comm_ring_1mat. admits_SNF_JNF A) ←→
(∀A n. (A :: α mat) ∈ carrier_mat n n ∧ is_diagonal_mat A −→ (∃P Q. P ∈ carrier_mat n n ∧ Q ∈ carrier_
mat n n ∧ invertible_mat P ∧ invertible_mat Q ∧ Smith_normal_form_mat (P ∗ A ∗ Q)))

Recall that invertible_mat, is_diagonal_mat and Smith_normal_form_mat correspond to the pred-
icates in JNF of being invertible, diagonal and in SNF, respectively. Let us note that using
this fact we now do quantify over the variable n (the dimension of the matrices, that is, the
number of rows and columns).

The (C) �⇒ (A) implication is proved in JNF following the paper proof (note that this
proof can also be done in HA). Now we must prove the (A) �⇒ (B) in JNF to have the full
theorem available in the JNF library. To avoid redefining the algorithm and reproving the
soundness theorem in JNF, we use the new bridge to connect HA and JNF. Following the
methodology presented in Sect. 3, we get the (A) �⇒ (B) implication in JNF:

lemma
assumesOFCLASS (α :: comm_ring_1, bezout_ring_class)

shows ∀(A ::α mat) ∈ carrier_mat n n. admits_SNF_JNF A

The final statement of Theorem 2 in Isabelle/HOL follows.

theoremOFCLASS (α :: comm_ring_1, bezout_ring_class) ←→
(∀(A ::α mat). admits_SNF_JNF A)

andOFCLASS (α :: comm_ring_1, bezout_ring_class) ←→
(∀(A ::α mat) ∈ carrier_mat 2 2. admits_SNF_JNF A

For the sake of completeness, we also include in HA the equivalence between (A) and (C)
using the bridge. The sources also include a standalone (but longer) proof of (B) �⇒ (A) in
JNF based on Theorem 1.

5 Smith Normal Form of Arbitrary Matrices

5.1 Normal Form Computation: Generic Algorithm

In Sect. 4, we presented a formalization of an algorithm to transform a diagonal matrix into
Smith normal form. Here, we present a formalization of a complete algorithm to transform
any matrix into Smith normal form, in a general setting.

We again parametrize the algorithm by operations: an operation to transform any 1 × 2
matrix into Smith normal form, likewise an operation to transform any 2 × 2 matrix into
Smith normal form and an operation that, given an element b that divides another element
a, then it returns an element k such that kb = a. As we will see, the algorithm that we will
implement in Isabelle/HOL is strongly based on the use of submatrices. Thus, we make use
of the JNF library.

In order to carry out the formalization, we first define a locale where we fix the corre-
sponding three operations and their properties.

locale Smith_Impl=
fixes Smith_1x2 :: (α :: comm_ring_1)mat⇒ (α mat× α mat)

123

1079

J. Divasón, R. Thiemann

and Smith_2x2 :: α mat⇒ (α mat× α mat× α mat)

and div_op :: α ⇒ α ⇒ α

assumes ∀ (A ::α mat) ∈ carrier_mat 1 2. is_SNF A (1m 1, Smith_1x2 A)

and ∀(A ::α mat) ∈ carrier_mat 2 2. is_SNF A (Smith_2x2 A)

and is_div_op div_op

Since we are trying to work in a general setting, the type α represents the elements of a
commutative ring with unit.We are not demanding a domain. In the code, is_SNF is a predicate
that given a matrix A and a triple (P, S, Q), checks if S is a Smith normal form of A by
means of the invertible matrices P and Q.

definition is_SNF A (P, S, Q) =
(P ∈ carrier_mat (dim_row A) (dim_row A) ∧ Q ∈ carrier_mat (dim_col A) (dim_col A) ∧
invertible_mat P ∧ invertible_mat Q ∧ Smith_normal_form_mat S ∧ S = P * A * Q)

Smith_1x2, Smith_1x2 and div_op are the names of the corresponding fixed operations. is_div_op
is the predicate that checks if the provided division operation satisfies the required property:

definition is_div_op div_op= (∀ a b. b dvd a −→ div_op a b ∗ b= a)

It is worth noting that, in any ring, we can always get a (non-executable) division operation
using Hilbert’s choice operator.

lemma is_div_op (λ a b. (SOME k. k ∗ b = a))

Indeed, it is possible to omit this parameter andworkwithHilbert’s choice operator (SOME)
in the algorithm. This way, we would also be able to obtain an algorithm over generic rings.
However, if one wants to execute the algorithm, one would have to provide a new algorithm
in which such operation based on the SOME operator is substituted by an executable operation,
and then demonstrate code equations between the original algorithm and the new executable
one. Therefore, we considered that it was much simpler to work by means of parameters that
must satisfy the required properties. Then, one would only have to instantiate the parameter
and prove a single property about the operation, instead of working with code equations of
the whole algorithm.

It is worth noting two facts. First, if we work in a domain (instead of a general ring), then
the Smith_1x2 operation can be removed since it can be obtained from Smith_2x2, simply by
completing the second row with zeros. Second, it is possible to work over non-commutative
rings, but to do so we must fix another operation: Smith_2x1. As we have restricted to com-
mutative rings, this 2 × 1-operation can be obtained from Smith_1x2.

In short, the locale Smith_Impl fixes a context where we demand that all 1 × 2, all 2 × 1
and all 2 × 2 matrices over a commutative ring R can be transformed into SNFs. Then, by
means of an algorithm, we will prove within such a locale that all matrices overR admit the
SNF transformation.

Once we have defined the locale, we can work on a generic algorithm. To do so, we will
build upon a result by Kaplansky [37, Theorem 5.1], extracting an algorithm from its proof.
Based on the operations fixed by the locale, we first implement subalgorithms and prove
their soundness for transforming arbitrary 1× n, n × 1, 2× n and n × 2 matrices into Smith
normal form. Then, we start with the implementation for an arbitrary m × n matrix.

The underlying idea of the algorithm follows. Given anm × n matrix A (with coefficients
over R), we first write A1 for the first row and A2 for the remaining m − 1 rows.

A =
(
A1

A2

)

.

123

1080

Formalized Smith Normal Form in HOL

Then, we recurse to compute a Smith normal form of A2 to obtain three matrices P1, D1

and Q1 such that D1 = P1A2Q1, D1 is a Smith normal form of A2 with P1 and Q1 invertible
matrices. Then, we have:

C =
(
1 0
0 P1

) (
A1

A2

)

Q1 =
(
A1Q1

D1

)

.

Then, we define a submatrix D as the first two rows of C and define as E the submatrix
of the remaining elements of C . We compute a Smith normal form of D, which is a 2 × n
matrix, such that we can get another matrix H :

H =
(
P2 0
0 Idm−2

) (
D
E

)

Q2 =
(
P2DQ2

EQ2

)

=
(
F
G

)

,

where F is a Smith normal form of D by means of the invertible matrices P2 and Q2, and G
the remaining submatrix of H . At this point, we let d be the lower left entry of D and f be
the upper left entry of F , and prove that:

– d divides all elements of E .
– f divides all elements of D, in particular it divides d .
– Hence, f divides all elements of E .
– Hence, f divides all elements of EQ2.

Thus, we have that f divides all elements of H and then f is used as a pivot to eliminate
all the other elements in the first row and column of H similar to Gaussian elimination,
obtaining the following matrix:

(
x 0
0 K

)

.

Repeating recursively the procedure over them−1×n−1matrix K , we get the reduction.
Our implementation in Isabelle/HOL of the algorithm follows:

function (domintros) Smith_mxn :: α mat⇒ (α mat× α mat× α mat)

where
Smith_mxn A= (

letm = dim_row A; n = dim_col A in

if m= 0∨ n= 0 then (1m m,A,1m n)

else if m= 1 then (1m 1, Smith_1xn A)

else if m= 2 then Smith_2xn A

else if n= 1 then let (P ,S) = Smith_nx1 A in (P ,S,1m 1)

else if n= 2 then Smith_nx2 A

else

let A1=mat_of_row (row A 0);

A2=mat_of_rows n [row A i . i ← [1..<m]];

(P1,D1,Q1) = Smith_mxn A2;

C = (A1*Q1)@r (P1*A2*Q1);

D =mat_of_rows n [rowC 0, rowC1];

E =mat_of_rows n [rowC i . i ← [2..<m]];

(P2,F ,Q2) = Smith_2xn D;

H = (P2*D*Q2)@r (E*Q2);

(P_H2, H2) = reduce_column div_op H ;

(H2_UL , H2_UR, H2_DL , H2_DR) = split_block H2 1 1;

(P3,S′,Q3) = Smith_mxn H2_DR;

123

1081

J. Divasón, R. Thiemann

S = four_block_mat (mat 1 1 (λ(a, b). H $$ (0, 0))) (0m 1 (n− 1)) (0m (m− 1) 1) S′;
P1′ = four_block_mat (1m 1) (0m 1 (m− 1)) (0m (m− 1) 1) P1;

P2′ = four_block_mat P2 (0m 2 (m− 2)) (0m (m− 2) 2) (1m (m− 2));

P3′ = four_block_mat (1m 1) (0m 1 (m− 1)) (0m (m− 1) 1) P3;

Q3′ = four_block_mat (1m 1) (0m 1 (n− 1)) (0m (n− 1) 1) Q3

in (P3′ * P_H2 * P2′ * P1′,S, Q1 * Q2 * Q3′))

Here,@r and@c are operations to build amatrix appending rows and columns, respectively.
1m and 0m allow us to construct the identity matrix and the zero matrix of explicit dimensions
(the m stands for matrix, not for the dimension).

The paper proof of the termination of the algorithm is simple: the algorithm terminates
because it has two recursive calls which involve matrices with less columns. Although our
Smith_mxn is a total function (it is a function that works on any matrix, with no further
restrictions), in Isabelle/HOL the termination proof is not so straightforward and requires
some work. The reason is that the second recursive call to Smith_mxn, i.e., the line (P3,S’,Q3) =

Smith_mxn H2_DR, is carried out over a matrix that has been built involving matrices obtained
from the result of the first recursive call (the line (P1,D1,Q1) = Smith_mxn A2). The problem (in
other cases is an advantage) is that the JNF library requires explicit dimensions for matrices
by means of natural numbers, whereas in the HA library one has them for free thanks to
the type inference. That is, we have to guarantee that the dimensions of P1, D1 and Q1 are
the suitable ones in order for the remaining operations to make sense, and we cannot prove
it at that point directly. To tackle this proof, we perform partial induction to get a partial
correctness result about the dimensions:

lemma
assumes Smith_mxn_dom A and A ∈ carrier_matm n and (P ,S,Q) = Smith_mxn A

shows P ∈ carrier_matm m ∧ S ∈ carrier_matm n ∧ Q carrier_mat n n

proof (induct arbitrary:m n rule: Smith_mxn.pinduct)

This lemma states that, given a matrix which belongs to the domain of the function
Smith_mxn (by means of the predicate Smith_mxn_dom A), then the three output matrices sat-
isfy the expected properties about their dimensions, by means of the partial induction rule
Smith_mxn.pinduct. Thanks to this lemma, we prove the termination of the algorithm, since we
can prove that the matrices P1, D1 and Q1 (and the rest of matrices built from those ones)
have the correct dimensions.

Once the termination is proved, we can face the soundness proof of the algorithm. We
did not find hidden difficulties in the soundness proof (it can be explored in detail in the
sources), but the fact of working with submatrices within a context which lacks dependent
types forces us to be constantly manually proving properties about the dimensions of the
involved matrices.

It is worth noting that the JNF library was extremely useful in this case. Indeed, the proof
is not possible in the HA library. We have improved the JNF library with approximately 1000
lines of properties about submatrices, the operators @r and @c, determinants and invertibility
of block matrices. The final soundness theorem (within the locale Smith_Impl) is the following
one:

theoremassumes A ∈ carrier_matm n shows is_SNF A (Smith_mxn A)

Finally, we also define the algorithm in HA based on the one in JNF. We can do it since
the parameters possess fixed and known dimensions: they are operations applied to 1 × 2
and 2× 2 matrices. Thus, we define a function Smith_mxn_HA that, given a HA m × n matrix,
transforms it to JNF, applies in JNF the algorithm Smith_mxn and finally transforms again the

123

1082

Formalized Smith Normal Form in HOL

output to HA. Indeed, proving new transfer rules as explained in Sect. 3, we get the soundness
lemma in HA.

5.2 Normal Form Computation: Executable Algorithm

In the previous subsection we have defined a generic algorithm and proved its soundness,
in both HA and JNF libraries. Now, we have to work on how to execute it. To do so, we
have to provide executable parameters to the function Smith_mxn, i.e., we have to provide
executable implementations for the functions Smith_1x2, Smith_2x2 and div_op. In the case of
some computable Euclidean domains (such as the integers and the ring of polynomials over
a field), this is possible.

Again, we provide executable operations in both representations. Let us start with the case
of the 2 × 2 operation. There are several approaches, one is to first diagonalize the matrix
and then transform it from diagonal into SNF. To take advantage of the existing results in
HA, we proceed as follows:

1. We implement an algorithm to diagonalize a 2× 2 matrix in HA, taking advantage of the
existing Bézout matrix in the echelon form AFP entry [3].

2. Then, we transform the diagonal matrix to Smith normal form using the algorithm proved
in Sect. 4.1.

3. We define an algorithm in JNF based on the one in HA, which is possible since the types
are known (type 2). Then, we transfer the results to JNF.

This way, the algorithm is defined in HA to take advantage of existing subalgorithms. The
JNF version is simply a conversion to HA (which is possible since the type of the dimensions
is known, since it is a 2 × 2 matrix), execution in HA and the output is returned to JNF.

The idea to diagonalize a 2 × 2 matrix is the following one. As said, we make use of the
Bézout matrices defined in the echelon form development [3]. This kind of matrices allows
us to reduce the upper-right and down-left elements, until they become zero. For the 2 × 2
case, the Bézout matrix is simple:

B =
(
p q
u v

)

.

Where pA1,1 + q A2,1 = d , d is a gcd of A1,1 and A2,1, du = −A2,1, and dv = A1,1.
This matrix possesses good properties, such as being invertible and having determinant 1.
However, the most important property is the next one:

BA =
(
d ∗
0 ∗

)

.

This way, we reduce the element A2,1. Applying similar transformations by means of the
transpose of the Bézout matrix and multiplying on the right, we reduce the element A1,2.
Let us note that, when trying to get a zero in A1,2, we probably loose the zero in A2,1.
Nevertheless, placing (via an interchange of rows or columns) the nonzero entry in the first
position of the matrix, we have that the algorithm terminates, since in each step we will be
reducing the entry in the position A1,1 with respect to the Euclidean size (in the case of the
ring of integers, a smaller gcd). This way, we prove (in HA) the following theorem:

lemma
assumes (P ,D,Q) = diagonalize_2x2 A

shows D = P ** A ** Q ∧ invertible P ∧ invertible Q ∧ isDiagonal D

123

1083

J. Divasón, R. Thiemann

Then, we transform the algorithm from HA to JNF simply by means of the from_HA

and to_HA operations of our bridge, since each type involved is known, and we get the
corresponding lemma in JNF with the appropriate transfer rules.

Combining this algorithm to diagonalize with the one proved in Sect. 4.1 to transform a
diagonal matrix into , we get the executable operation to convert any 2× 2 matrix into SNF.
The algorithm is available in both HA and JNF, thanks to the connection bridge.

The 1 × 2 case is similar to the 2 × 2 one. The div_op operation corresponds to the
usual explicit division (div) that exists in Euclidean domains. The technical details of the
implementation can be explored in the file SNF_Algorithm_Euclidean_Domain, in
which is available the development required to get executable parameters for Smith_mxn over
Euclidean domains in both libraries.

Finally, we have to instantiate the algorithm with the corresponding executable operations
over Euclidean domains. Recall that the locale Smith_Impl fixes the three operations that are
required (together with their assumptions) in JNF, and the algorithm was defined inside that
locale. Locales with assumptions insert the assumptions to all facts, including the algorithms
defined, when they are seen from outside the locale. This means that we have to do some
work to get the code generator work on interpretations of locales. The canonical approach
is to interpret the locale Smith_Impl globally and add new constants for all the terms we want
to execute, that is, we must provide executable implementations for Smith_1x2, Smith_2x2 and
div_op over Euclidean domains at the time of interpretation. This can be done by means of
the global_interpretation command with dedicated rewrite definitions [27].

global_interpretation Smith_ED: Smith_Impl Smith_1x2_eucl_JNF Smith_2x2_JNF_eucl (div)

defines . . . (* Omitted to make the code more legible *)

proof
(* Proof of the required properties of the parameters *)

qed

This way, we get a definition of the algorithm over Euclidean domains outside the locale
Smith_Impl, with no assumptions and executable. In fact, once we finish the global interpreta-
tion, we already have our executable algorithm over Euclidean domains in both JNF and HA,
via the algorithms Smith_mxn and Smith_mxn_HA, respectively. Let us note that both libraries
are collaborating in the execution: the general structure of the algorithm will be always inter-
nally executed in JNF (for the case of HA, it is converted to JNF), because submatrices
are involved. However, the Smith_2x2 operation will always execute one of its subroutines
(the diagonalization step) in HA, since the Bézout matrices were implemented there. This
approach makes execution rather slow, since it requires many conversions between both
libraries, but it permits us to combine subalgorithms proved in different libraries. Indeed, the
algorithm itself is not focused on the efficiency, but on the generality. Of course, the whole
algorithm could have been implemented entirely in JNF with neither conversions to HA nor
reusing its results; then, a HA-version of the algorithm and its soundness proof could be
obtained again with transfer, where its execution would totally rely on the JNF library since
submatrices are required.

Since our algorithm is parametrized, the performance will strongly depend on the effi-
ciency of such parameters. For instance, in our implementation over Euclidean domains,
it will depend on the efficiency on computing gcds. In computer algebra systems, specific
algorithms are used for each ring to take advantage of their properties. For instance, for the
integers modular arithmetic is used [51]. This permits improving the performance, but the
algorithm will not be general but specific to a concrete executable ring. If we want to get

123

1084

Formalized Smith Normal Form in HOL

efficiently a Smith normal form of some matrix in Isabelle/HOL, we can use external oracles
and certify the result. This approach is explained in Sect. 6.

5.3 Alternative Characterization of Commutative Hermite Rings and Elementary
Divisor Rings

In the previous subsection we have formalized an algorithm to transform an arbitrary matrix
over a ring into Smith normal form, Here, we characterize the rings where it is possible
to apply a SNF algorithm for any matrix. We based our work on the well-known work by
Kaplansky [37] and in particular on the generalizations presented by Gillman and Henriksen
[26]. In this subsection, we intensively work with submatrices and especially we will build
matrices of specific dimensions, so we will work with the JNF library. Thanks to all the
work presented in the previous sections, here the formal proofs do not face major technical
difficulties, only the lack of some mathematical results.

Throughout this subsection, we will work over three structures: Bézout rings, Hermite
rings and elementary divisor rings. Bézout rings were already explained in Sect. 2: a Bézout
ring is a ring where the Bézout identity holds and it is implemented in Isabelle/HOL in the
echelon form development [3].

Hermite rings were also presented previously: they are rings where all matrices over such
ring admits triangular reduction, i.e., for each matrix A there exists an invertible matrix U
such that AU is lower triangular. The translation into Isabelle/HOL is straightforward and
we use a type class to model the structure:

definition admits_triangular_reduction A= (∃U ::α :: comm_ring_1mat.

U ∈ carrier_mat (dim_col A) (dim_col A) ∧ invertible_matU ∧ lower_triangular (A*U))

classHermite_ring=
assumes ∀(A ::α :: comm_ring_1mat). admits_triangular_reduction A

Similarly, an elementary divisor ring is a ring where all matrices can be transformed into
their SNF (i.e., all matrices admit diagonal reduction).

definition admits_diagonal_reduction A=
(∃ P Q. P ∈ carrier_mat (dim_row A) (dim_row A)∧ Q ∈ carrier_mat (dim_col A) (dim_col A)∧ invertible_
mat P ∧ invertible_mat Q ∧ Smith_normal_form_mat (P * A * Q))

class elementary_divisor_ring=
assumes ∀(A ::α :: comm_ring_1mat). admits_diagonal_reduction A

Now, the goal is to prove that all elementary divisor rings are Hermite rings, and all
Hermite rings are Bézout rings. Let us start to prove that Hermite ring implies Bézout ring.
To do it, we have used the alternative definition of Bézout ring: each finitely generated ideal
is a principal ideal (see Definition 1). The proof took us 200 lines and the underlying idea is
to fix a finitely generated ideal I of n elements, write down such n elements in a 1×n matrix
(note that here we must use the JNF library) and then multiply it by a suitable invertible
matrix Q to get a triangular matrix whose first element will generate the ideal I and thus I
is principal. The final statement follows:

lemma
assumesOFCLASS(α :: comm_ring_1, Hermite_ring_class)

showsOFCLASS(α :: comm_ring_1, bezout_ring_class)

123

1085

J. Divasón, R. Thiemann

To prove that any elementary divisor ring is a Hermite ring, we first show that the operation
Smith_1x2 (that is, that we can transform any 1×2matrix into Smith normal form) is equivalent
to state that we can triangularize any matrix. We follow a proof by Kaplansky [37, Theorem
3.5], who essentially provides an algorithm to triangularize any matrix, given an operation
to triangularize any 1 × 2 matrix. Again, it is a proof that requires the use of submatrices
and block matrices. It needed 400 lines, excluding the auxiliary lemmas about invertibility of
block matrices that we proved. As a corollary, we get the remaining implication: elementary
divisor ring implies Hermite ring.
corollary
assumesOFCLASS(α :: comm_ring_1, elementary_divisor_ring_class)

showsOFCLASS(α :: comm_ring_1, Hermite_ring_class)

Once we have proved the chain of inclusions among the three kinds of rings, we move
on to characterize Hermite rings and elementary divisor rings. We start with the following
result on Hermite rings, which corresponds to [26, Theorem 3].

Theorem 3 A commutative ring R with identity is an Hermite ring if and only if it satisfies
the condition
T: for all a, b ∈ R, there exist a1, b1, d ∈ R such that a = a1d, b = b1d and (a1, b1) = (1).

The notation (a1, b1) = (1) just means that the ideal generated by the elements a1 and b1
is equal to the ideal generated by the unit, i.e., the whole ring R. Its proof in Isabelle/HOL
only required 100 lines (excluding the proofs of the necessary previous results, such as
the theorem presented before that states that any matrix admits triangularization, given an
operation to triangularize any 1 × 2 matrix) and was performed with no major difficulties,
except for some missing properties about rings and ideals. Note that we can restrict ourselves
and prove Theorem 3 for 1× 2 matrices (which essentially follows the same proof, but with
no need to show that triangularization over 1× 2 matrices permits triangularization over any
matrix). This result is interesting, since the proof of Hermite ring �⇒ Bézout ring becomes
straightforward (with no use of Theorem 1). This alternative proof is also formalized in the
sources.

With respect to the characterization of elementary divisor rings, the final goal is to prove
the following theorem.

Theorem 4 A commutative ring R with identity is an elementary divisor ring if and only if
it is an Hermite ring that satisfies the condition
D: for all a, b, c ∈ Rwith (a, b, c) = (1), there exist p,q ∈ R such that (pa, pb+qc) = (1).
Thus, R is an elementary divisor ring if and only if it satisfies T and D.

Such a theorem is a generalization of the rather restrictive version presented by Kaplansky
[37, Theorem 5.2]. Also the proof of the theorem is based on several previous results [26],
apart from Kaplansky’s work.

This proof required 500 lines, excluding some missing auxiliary lemmas, whereas in the
original paper proof [26] it requires about 30, including the reference to previous results
[37]. The proof uses properties already explained, such as the characterization of Hermite
rings and that Hermite ring implies Bézout ring. It also uses the algorithm presented in the
previous subsection, since the proof defines functions to transform 1× 2 and 2× 2 matrices
into Smith from the operations T and D. Then, the parametrized algorithm presented in the
previous subsection is applied.
theorem (∀(A :: α mat). admits_diagonal_reduction A) ←→
((∀(A :: α mat). admits_triangular_reduction A) ∧ (∀ a b c :: α. ideal_generated {a,b,c} = ideal_generated
{1}−→ (∃ p q . ideal_generated {p*a,p*b+q*c}= ideal_generated {1})))

123

1086

Formalized Smith Normal Form in HOL

This way, it is always possible to obtain the functions to transform 1×2 and 2×2matrices
into SNF, which are necessary for the algorithm presented in the previous subsection to work,
from the operations T and D.

6 Result Certification Approach

In the previous section, we have presented a general verified algorithm to transform arbitrary
matrices into their SNFs. If one is simply interested in the result of computing a Smith normal
form over a concrete structure, such as integer matrices, a result certification approach is a
valid alternative. The approach is well known: compute externally and check the output in
a theorem prover. In our case, the external algorithm (efficient oracle) must provide five
matrices: P , S, Q and also the inverses P−1 and Q−1. We could really work with only the
matrices P , S and Q, but then we would have to check whether P and Q are indeed invertible
matrices within Isabelle/HOL, which would affect the performance. This way, given P−1

and Q−1, only a matrix multiplication is required to check each one. Since the main reason
to use the certified approach is the performance, the checker is implemented in JNF to make
use of the Strassenmatrix multiplication algorithm (which requires blockmatrices). The final
soundness statement follows:
theoremassumes A ∈ carrier_matm n and checker_SNF A= (P ,S,Q) shows is_SNF A (P ,S,Q)

This approach permits us to solve the problems with the performance of our verified
version. Moreover, both approaches are compatible: the verified approach provides a formal
proof of an algorithm over general structures, whereas the certified approach provides a
connection to external efficient algorithms,whose output is verifiedwithin Isabelle/HOL. The
performance of the certified approach strongly depends on the performance of the external
algorithm: since the properties validated by the checker are inexpensive, the checker does
not cause a huge overhead. However, the need of the P−1 and Q−1 matrices slows down the
external algorithm, but in any case it is faster than checking invertibility within Isabelle/HOL.

7 Uniqueness of the Smith Normal Form

The SNF is unique up to multiplication by units. This statement can be expressed in both the
HA and JNF libraries. However, the proof requires an intensive use of submatrices andminors
(determinants of submatrices). Since submatrices are a delicate issue in the HA library, the
appropriate approach is to state the theorem in HA, but prove it in the JNF library. Indeed,
a formal proof in the HA library is not directly possible, since induction on the dimension
of submatrices is required. We first show the definition of submatrix in JNF, which was
introduced by Bentkamp.
definition submatrix :: α mat ⇒ nat set⇒ nat set⇒ α mat

where submatrix A I J =mat (card{i . i<dim_row A ∧ i ∈ I }) (card{ j . j<dim_col A ∧ j ∈ J })

(λ(i, j). A$$(pick I i , pick J j))

Here, I and J are the subsets of N which restrict the indices of A that define the elements
of the submatrix. The function pick is used to relate the indices of the input matrix to the ones
of the submatrix, i.e., pick I i is the i th largest element of I . This way, the element (submatrix

A I J) $$ (i, j) is the one in the position (pick I i , pick J j) of the input matrix A. Note that
if I = UNIV (where UNIV represents the set of all elements of type nat), then pick I i = i ,
i.e., we choose all rows (analogous with respect to J and the columns).

123

1087

J. Divasón, R. Thiemann

Now, we sketch our proof of the uniqueness of the SNF of a matrix, which is an adaptation
of the one presented in [32, p. 76]. The first step consists in showing that any minor of order k
(the determinant of a submatrix with k rows and k columns) of a diagonal matrix is either 0 or
the product of k elements of the diagonal (up to sign). The proof is carried out by induction on
k. Although our proof in Isabelle/HOL required some work due to some missing properties
about submatrices, the JNF library and its submatrix representation were very useful and
allowed us to formalize the result.

Then, the following equivalences are the key to prove the uniqueness:

k∏

i=1

di
(1)≡ gcd(S̄k)

(2)≡ gcd(Āk).

In the formula, di is the i th element of the matrix S, which is a Smith normal form of a matrix
A. Āk represents the set of all minors of order k of A (analogous for S̄k). Thus, we are stating
that the product of the k first elements of S is associated, i.e., equal up to multiplication by
units, to the gcd of all minors of order k of S and also to the gcd of all minors of order k of
the original matrix A.

In order to prove (1), we proceed as follows. First, we show that the left-hand side divides
the right-hand side. Let b be a nonzero minor of order k of S (if the minor is 0, we are done).
Since S is in SNF, then it is diagonal and thus b can be written as the product of k elements
of the diagonal of S. Let J be the (ordered) list of those k elements, then each di divides the
i th element of J , and this implies the result. The other direction is actually quite easy, indeed∏k

i=1 di is a minor of order k of S and then the gcd of all minors must divide it.
Before proving (2), we need an essential result: the Cauchy–Binet formula. This formula

relates the determinant of the product of rectangular matrices to a summation of determinants
of submatrices.

Theorem 5 (Cauchy–Binet formula)Let A be an n×mmatrix and B anm×n matrix. Let C be
the set of n-combinations of {1, . . . ,m} (the set of the subsets of {1, . . . ,m} with cardinality
n). Then, the Cauchy–Binet formula states that det(AB) = ∑

I∈C det(AI) · det(BI), where
AI (resp. BI) is the submatrix of the n columns (resp. rows) with indices in I .

Our proof in Isabelle/HOL of this fact follows the argument presented in [54]. Neverthe-
less, we substantially modified some parts of it [concretely, while proving Eq. (11) of that
article] to base the reasoning on properties of determinants that were already proved in JNF.
The final statement in Isabelle/HOL follows:

theorem
assumes A ∈ carrier_mat n m and B ∈ carrier_matm n

shows det (A*B) = sum (λI . det (submatrix A UNIV I) * det (submatrix B I UNIV))

{I . I ⊆{0..<m}∧ card I = n}
Once the Cauchy–Binet formula is formalized, we can tackle the proof of (2). The key is

to prove the following rewrite rule for all matrices P , A and Q, sets of indices I and J of
cardinality k, and sets I = {I ′. I ′ ⊆ {0.. < n} ∧ card I ′ = k} and J = {J ′. J ′ ⊆ {0.. <

m} ∧ card J ′ = k}.
det(submatrix (PAQ) I J) =
∑

I ′∈I

∑

J ′∈J
det (submatrix P I J ′) · det (submatrix A J ′ I ′) · det (submatrix Q I ′ J).

123

1088

Formalized Smith Normal Form in HOL

The proof of this fact is performed using the Cauchy–Binet formula and properties of
multiplication and composition of submatrices. In (2), to prove that the right-hand side
divides the left-hand side, one just has to note that gcd(Āk) divides each element of such
a summation (concretely, each det(submatrix A J ′ I ′)), and then we get the result. The
reasoning for proving the other way consists of applying the same rewrite rule again, but
taking into account that P and Q are indeed invertible matrices.

Putting everything together, we get the statement for the uniqueness, since given two
matrices S and S′ which are Smith normal forms of amatrix A, then Sii and S′

i i are associated.
The final statement (in JNF) is as follows:
lemmafixes P A Q :: α :: Gcd_domainmat

assumes A ∈ carrier_matm n and P ∈ carrier_matm m and Q ∈ carrier_mat n n

and invertible_mat P and invertible_mat Q and P ∗ A ∗ Q = S

and Smith_normal_form_mat S and P ′ ∈ carrier_matm m and Q′ ∈ carrier_mat n n

and invertible_mat P ′ and invertible_mat Q′ and P ′ ∗ A ∗ Q′ = S′
and Smith_normal_form_mat S′ and i <minm n

shows ∃u.u dvd 1 ∧ S $$(i, i) = u ∗ S′ $$(i, i)
Nevertheless, our algorithm was defined in the HA library where also its soundness theo-

rem is proved, so we transfer the result from JNF to HA following the approach presented in
Sect. 3. Let us note that the uniqueness is proved on a GCD domain (a more general structure
than Bézout domain). We also get the equality of the matrices S and S′ (in both HA and JNF)
once the definition of the SNF is parametrized by a complete set of non-associates, i.e., a
set of elements ofR, one from each equivalence class defined by the equivalence relation of
being associate elements [51].

In this concrete case we can also transfer an intermediate result to HA: the Cauchy–Binet
formula. Although this formula involves submatrices, in this concrete case something special
happens: we do know the type of each submatrix involved in the formula in the corresponding
HA statement. If the original matrices are of type α ˆ ’m ˆ ’n and α ˆ ’n ˆ ’m, respectively, then
the submatrices will have type α ˆ ’n ˆ ’n. Thus, in this case we can define submatrices in HA.
definition submatrix_HA :: α ˆ ’nc ˆ ’nr⇒ nat set⇒ nat set⇒ α ˆ ’nc2 ˆ ’nr2

where submatrix_HA A I J = (χ a b. A $ (from_nat (pick I (to_nat a)))

$ (from_nat (pick J (to_nat b))))

Here, χ defines a lambda-expression when working with the vector and matrix represen-
tation presented in HA.

By means of transfer rules we can relate submatrices in HA to submatrices in JNF, but
in a context assuming that the cardinality of the sets I and J that define the submatrices are
equal to the cardinality of the new types of the submatrices.
context fixes I :: nat set and J :: nat set

assumes card {i . i < CARD(’nr) ∧ i ∈ I } = CARD(’nr2)

assumes card {i . i < CARD(’nc) ∧ i ∈ J } = CARD(’nc2)

begin

lemma (rel_M����⇒ rel_M) (λA. submatrix A I J)

((λA. submatrix_HA A I J) :: α ˆ ’nc ˆ ’nr⇒ α ˆ ’nc2 ˆ ’nr2)

Now, using this new transfer rule outside the context properly, we can move the result
from JNF to HA. Then, we obtain the following statement:
lemmafixes A :: α :: comm_ring_1 ˆ ’m ˆ ’n and B :: α ˆ ’n ˆ ’m

shows det (A ∗ ∗B) = ∑
I ∈ {I .I ⊆ {0..<ncols A}∧ card I=nrows A}.

det ((submatrix_HA A UNIV I) :: α ˆ ’n ˆ ’n) ∗ det ((submatrix_HA B I UNIV) :: α ˆ ’n ˆ ’n)

123

1089

J. Divasón, R. Thiemann

Note that the type of the submatrices must be explicitly provided, and this is possible
thanks to the fact that the type variable ’n is already fixed.

8 RelatedWork

There are linear algebra developments in most theorem provers [15, 16, 25, 44, 47], above all
focused on vector spaces properties. However, only Coq provides a formal correctness proof
of the SNF thanks to a development by Cano et al. [13], which is the closest work to ours.
Such a development consists of approximately 9000 lines of code4 and uses the SSReflect
proof language. This work differs in the sense that the authors provide formal proofs of
facts that are not covered in our work, for instance, the classification theorem for finitely
presented modules. They provide three formalizations of the Smith normal form algorithm:
over a Euclidean domain, over a structure that they call constructive principal ideal domain
(a Bézout domain with a well-founded divisibility relation) and over an integral domain with
a division operator and a 2 × 2 Smith operation, which is actually the closest to what is
presented in this paper.

The Coq development makes strong use of dependent types; indeed, matrices are imple-
mented as finite functions over finite sets of indices where dependent types are used to ensure
well formedness. This makes it easier to work with submatrices and permits induction over
the dimension, which are problematic issues in the HA library. Since Isabelle/HOL lacks
dependent types, we had to switch conveniently between two representations (the HA and
JNF libraries) using the lifting and transfer package and local types definitions to get the
results. Dependent types also facilitate some definitions and proofs, for example, the authors
of [13] also use dependent types for defining the set Znm of functions from {0, . . . , n − 1}
to {0, . . . ,m − 1} where n and m are parameters. This set is necessary at some point for
proving the Cauchy–Binet formula. As a definition like that one cannot be precisely cast in
the HOL type system and in fact functions in HOL are total, we usually have to somehow
complete the functions of such a set for values outside the domain. Such functions must have
type nat ⇒ nat in Isabelle/HOL; whereas in Coq they can write {ffun’I_n → ’I_m} in
order to implement the type of functions with a finite domain (’I_n and ’I_m represent
the types with n and m elements, respectively). In this concrete example, we model the set
Znm as a function in Isabelle/HOL that receives two parameters (n andm) and returns the set
of functions which map values in {0, . . . , n − 1} to {0, . . . ,m − 1}, with the extra condition
that each f ∈ Znm satisfies ∀i . i /∈ {0, . . . , n − 1} −→ f i = i . With this trick, we can
ensure the injectivity of each f ∈ Znm provided that f is injective over the set {0, . . . , n−1},
i.e., we usually have to complete the functions outside the desired domain to preserve useful
properties in each case. Otherwise, too many cases would arise in the proofs and this could
even break them, for example, when two functions ofZnm must be composed. This approach
clearly introduces an overhead in the formalization process in Isabelle/HOL, where functions
must be total, compared to the same proofs with dependent types; but it is a workable solution
(and it seems there is no better alternative). Another example where the use of dependent
types makes this kind of formalization easier is in the termination proof of the algorithm
presented in Sect. 5.1. As explained there, since our matrices must be accompanied with
their explicit dimensions (modeled with natural numbers), we have to prove that the involved

4 According to the companion material of the paper [13] presented in https://perso.crans.org/cohen/work/
edr/.

123

1090

https://perso.crans.org/cohen/work/edr/
https://perso.crans.org/cohen/work/edr/

Formalized Smith Normal Form in HOL

matrices possess the correct dimensions, which required a partial induction. However, in a
setting with dependent types, one would have this almost for free.

One difference with respect to the development in Coq is that we allow zero divisors (we
do not assume that the ring is a domain). The correctness proofs of the algorithms essentially
follow the same reasoning as in a domain and indeed the difficulty is similar, but the proofs
become longer (we estimate a 10%) since we need to treat more cases. The Coq development
includes a characterization of elementary divisor domains5 based on the Kaplansky condition
presented in [37, Theorem 5.2]. In our case, we provided a characterization of elementary
divisor rings (not restricted to domains) in Theorem 4. To this end, we had to formalize
most of the results presented in an article by Gillman and Henriksen [26], which requires
more effort but generalizes the statement of the Coq development. The main contribution
compared to the Coq development is that ours has been carried out in HOL, a context without
dependent types, making use of local type definitions and a new bridge to switch between
two representations. We sketched this idea at a workshop [21].

Local type definitions are still considered as an experimental extension of higher-order
logic and there are very few developments that have used it. As far as we know, apart from
the basic examples provided by the implementation of the rule and the work presented in this
paper, there only exist four developments that have used local type definitions. The first one
is the library about the Perron–Frobenius theorem [22], which has already been mentioned
in Sect. 3. The second one presents a formal correctness proof of the Berlekamp–Zassenhaus
algorithm [23], an algorithm to factor polynomials. There, local type definitions are used to
connect three different representations of finite rings. This library has also been mentioned in
Sect. 3 since we make use of the type ’amod_ring implemented in it. The authors of this paper
collaborated in both the Perron–Frobenius and the Berlekamp–Zassenhaus development. The
last development is a work that defines and proves basic properties of smooth manifolds [35],
where the authors transform an existing (type based) library of linear algebra (which includes
definitions and results on groups, rings, vector spaces…) into one with explicit carrier sets.
There also exists an interesting example on how to use local type definitions tomoveCramer’s
lemma to the JNF library [10, Sect. 6].

Theorem 2 relates the existence of a Smith normal form to the properties of the underlying
structure. It is also known that, if all matrices over a commutative ring with unit R have a
SNF, then it does not follow that R is a principal ideal domain [40]. Moreover, there are
examples of Bézout rings that are not Hermite rings and also examples of Hermite rings that
are not elementary divisor rings [31]. However, it is a well-known open problem to decide
whether a Bézout domain is always an elementary divisor domain [30].

9 Conclusions and FutureWork

In this work, we have formalized several facts related to the Smith normal form of a matrix.
An important contribution of this work is its methodology of formalization: since many
results and algorithms about the SNF require the manipulation of submatrices, we had to
switch between two existing libraries (HA and JNF). Indeed, there are proofs that cannot be
performed in theHA library and even theorems that cannot be stated there, since quantification
over type variables is not possible in Isabelle/HOL. Sometimes one prefers proving a theorem
in one of the libraries because its proof is easier. It also happens that some of the required

5 In their paper [13], they call them elementary divisor rings, but they assume that the ring is an integral
domain.

123

1091

J. Divasón, R. Thiemann

results exist in the HA library but not in the JNF one. To easily switch between both libraries,
we use bridges to connect them and move results bidirectionally using the lifting and transfer
package and local type definitions. This way, both libraries are combined to provide the
advantages of a type based formalization (in which sometimes proofs are more concise
and direct since the dimensions are ensured via type checking) with the flexibility of explicit
dimensions as natural numbers, all of this in Isabelle/HOLwith its powerful proof automation
tools. This permits working with simple type theory in a context (matrices, submatrices,
blocks, etc.) that is usually considered more adequate for dependent type theory. Following
this methodology, we have formalized an algorithm that transforms a diagonal matrix into
Smith normal form, which is sometimes the second step to obtain a general algorithm that
works for any matrix. This verified algorithm accomplishes the task in a general setting: it
works for any matrix, including non-square and singular ones, and it is defined for matrices
with coefficients in Bézout rings. Indeed, we have presented a proof of Theorem 2, which
shows that there is no more abstract structure where the desired transformation can be carried
out for all matrices. A complete Smith normal form algorithm which works for any matrix
over elementary divisor rings is also provided, also in a general setting via parametrization
by functions. To provide an efficient alternative to the verified algorithm, we also formalized
a result certification approach. In addition, we have formalized characterizations of Hermite
rings and elementary divisor rings, following the generalizations presented in [26] and a
formal proof on the uniqueness of the SNF.

Some parts of the development were quick to develop and are very readable, since the code
includes comments and examples. On the other hand, the development of the infrastructure
to connect both libraries (HA and JNF) and sometimes the use of it together with local type
definitions are more technical. But once the basics of the bridge are developed, one just has
to connect the definitions of the different representations, which is usually an easy transfer
lemma. The proof engineering methodology presented in this paper is scalable and replicable
in other developments. It extends the previous connection by allowing statements with the
mod_type restriction, i.e., it permits easily transferring a lemma that requires HA andmod_type

to JNF and vice versa, and one can also combine algorithms in different representations. This
shows that the combination of the lifting and transfer package with local type definitions is a
workable strategy to share theorems between different representations, and it even makes it
easier to work in a setting with no dependent types. In fact, the new bridge has already been
successfully used in a development about modular algorithms for computing reduced lattice
bases and Hermite normal forms [9]. Such a development required to move almost all final
theorems of the echelon form and Hermite normal formAFP entries [18, 19] (which are large
developments; around 8000 and 2300 lines of code, respectively), from HA to JNF. The JNF
library is growing and is a nice candidate to substitute the HA representation in the long term
due to the troubles when reasoning with matrix dimensions. Indeed, according to the AFP
statistics, it is one of the most used entries. However, it is usual that some entries that use
the JNF library again prove theorems that are already part of HA. For instance, the Gröbner
basis entry [43] proves from scratch theorems about row spaces (such as the row space of
P · A is equal to the row space of A if P is an invertible matrix) that were already proved
in HA with the mod_type restriction. The use of the new bridge would benefit the works that
rely on JNF.

Acknowledgements We thank Akihisa Yamada for his collaboration on the previous version of the connec-
tion bridge. We also thank the anonymous reviewers for their helpful feedback. This work is supported by
the Ministerio de Ciencia e Innovación (Spanish Government), Project PID2020-116641GB-I00 and by the
Austrian Science Fund (FWF) Project Y757.

123

1092

Formalized Smith Normal Form in HOL

Funding Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Adelsberger, S., Hetzl, S., Pollak, F.: The Cayley–Hamilton Theorem. Archive of Formal Proofs (2014)
(formal proof development). http://afp.sf.net/entries/Cayley_Hamilton.shtml

2. Aransay, J., Divasón, J.: Formalisation in higher-order logic and code generation to functional languages
of the Gauss–Jordan algorithm. J. Funct. Program. (2015). https://doi.org/10.1017/S0956796815000155

3. Aransay, J., Divasón, J.: Formalisation of the computation of the echelon form of amatrix in Isabelle/HOL.
Form. Asp. Comput. 28(6), 1005–1026 (2016)

4. Aransay, J., Divasón, J.: A formalisation in HOL of the fundamental theorem of linear algebra and its
application to the solution of the least squares problem. J. Autom. Reason. 58(4), 509–535 (2017)

5. Archive of Formal Proofs. http://isa-afp.org/
6. Ballarin, C.: Locales: a module system for mathematical theories. J. Autom. Reason. 52(2), 123–153

(2014)
7. Ballarin, C.: Exploring the structure of an algebra text with locales. J. Autom. Reason. 64(6), 1093–1121

(2020)
8. Bendich, P., Edelsbrunner, H., Kerber, M.: Computing robustness and persistence for images. IEEE Trans.

Vis. Comput. Graph. 16(6), 1251–1260 (2010)
9. Bottesch, R., Divasón, J., Thiemann, R.: Two algorithms based on modular arithmetic: lattice basis

reduction and Hermite normal form computation. Archive of Formal Proofs, March (2021) (formal proof
development). https://isa-afp.org/entries/Modular_arithmetic_LLL_and_HNF_algorithms.html

10. Bottesch, R., Haslbeck, M.W., Thiemann, R.: A verified efficient implementation of the LLL basis
reduction algorithm. In: Barthe, G., Sutcliffe, G., Veanes, M. (eds.) Proceedings of 22nd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning, EPiC Series in Computing,
vol. 57, pp. 164–180. EasyChair (2018)

11. Bradley, G.H.: Algorithms for Hermite and Smith normal matrices and linear Diophantine equations.
Math. Comput. 25(116), 897–907 (1971)

12. Burton, D.: A First Course in Rings and Ideals. Addison-Wesley Series in Mathematics, AddisonWesley,
Boston (1970)

13. Cano, G., Cohen, C., Dénès, M., Mörtberg, A., Siles, V.: Formalized linear algebra over elementary
divisor rings in Coq. Logical Methods in Computer Science (2016). https://doi.org/10.2168/LMCS-10.
2168/LMCS-12(2:7)2016

14. Church, A.: A formulation of the simple theory of types. J. Symb. Log. 5(2), 56–68 (1940)
15. da Silva, A.B.A., de Lima, T.A., Galdino, A.L.: Formalizing ring theory in PVS. In: Avigad, J., Mahboubi,

A. (eds.) Proceedings of the 9th International Conference on Interactive Theorem Proving, LNCS, vol.
10895, pp. 40–47. Springer (2018)

16. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computational algebra in Coq. In:
Beringer, L., Felty, A.P. (eds.) Proceedings of the 3rd International Conference on Interactive Theorem
Proving, LNCS, vol. 7406, pp. 83–98. Springer (2012)

17. Divasón, J.: A verified algorithm for computing the Smith normal form of a matrix. Archive of Formal
Proofs (May 2020) (formal proof development). http://isa-afp.org/entries/Smith_Normal_Form.html

18. Divasón, J., Aransay, J.: Echelon form. Archive of Formal Proofs (2015) (formal proof development).
http://afp.sf.net/entries/Echelon_Form.shtml

19. Divasón, J., Aransay, J.: Hermite normal form. Archive of Formal Proofs, July (2015)
20. Divasón, J., Aransay, J.: A formal proof of the computation ofHermite normal form in a general setting. In:

Fleuriot, J.D., Wang, D., Calmet, J. (eds.) Proceedings of the 13th International Conference on Artificial
Intelligence and Symbolic Computation, LNCS, vol. 11110, pp. 37–53. Springer (2018)

123

1093

http://creativecommons.org/licenses/by/4.0/
http://afp.sf.net/entries/Cayley_Hamilton.shtml
https://doi.org/10.1017/S0956796815000155
http://isa-afp.org/
https://isa-afp.org/entries/Modular_arithmetic_LLL_and_HNF_algorithms.html
https://doi.org/10.2168/LMCS-10.2168/LMCS-12(2:7)2016
https://doi.org/10.2168/LMCS-10.2168/LMCS-12(2:7)2016
http://isa-afp.org/entries/Smith_Normal_Form.html
http://afp.sf.net/entries/Echelon_Form.shtml

J. Divasón, R. Thiemann

21. Divasón, J., Aransay, J.: Towards a verified Smith normal form algorithm in Isabelle/HOL. In: Artal, E.,
Cogolludo, J. (eds.) Proceedings of the 16th EACA Zaragoza (Encuentros de Algebra Computacional y
Aplicaciones), Monografías de la Real Academia de Ciencias, pp. 43–46 (2018)

22. Divasón, J., Joosten, S., Kunčar, O., Thiemann, R., Yamada, A.: Efficient certification of complexity
proofs: Formalizing the Perron–Frobenius theorem (invited talk paper). In: Andronick, J., Felty, A.P. (eds.)
Proceedings of the 7th ACM SIGPLAN International Conference on Certified Programs and Proofs, pp.
2–13. ACM (2018)

23. Divasón, J., Joosten, S.J.C., Thiemann, R., Yamada, A.: A verified implementation of the Berlekamp–
Zassenhaus factorization algorithm. J. Autom. Reason. 64(4), 699–735 (2020)

24. Dousson, X., Rubio, J., Sergeraert, F., Siret, Y.: The Kenzo Program. Institut Fourier, Grenoble (1999)
25. Gamboa, R., Cowles, J., Baalen, J.V.: Using ACL2 arrays to formalise matrix algebra. In: 4th International

Workshop on the ACL2 Theorem Prover and Its Applications (2003)
26. Gillman, L., Henriksen, M.: Some remarks about elementary divisor rings. Trans. Am. Math. Soc. 82(2),

362–365 (1956)
27. Haftmann, F.: Code generation from Isabelle/HOL theories (2021). https://isabelle.in.tum.de/doc/

codegen.pdf
28. Haftmann, F.: Haskell-style type classes with Isabelle/Isar (2021). https://isabelle.in.tum.de/doc/classes.

pdf
29. Harrison, J.: The HOL Light theory of Euclidean space. J. Autom. Reason. 50(2), 173–190 (2013)
30. Helmer, O.: The elementary divisor theorem for certain rings without chain condition. Bull. Am. Math.

Soc. 49(4), 225–236 (1943)
31. Henriksen, M.: Some remarks on elementary divisor rings. II. Mich. Math. J. 3(2), 159–163 (1955)
32. Howard, R.: Rings, Determinants, the Smith Normal Form, and Canonical Forms for Similarity of Matri-

ces. Ralph Howard Department of Mathematics University of South Carolina, Columbia (2002)
33. Huffman, B., Kuncar, O.: Lifting and transfer: a modular design for quotients in Isabelle/HOL. In:

Gonthier, G., Norrish, M. (eds.) Proceedings of the 3rd ACM SIGPLAN International Conference on
Certified Programs and Proofs, LNCS, vol. 8307, pp. 131–146. Springer (2013)

34. Immler, F.: Example of use of local type definitions with linear algebra (2021). https://isabelle.in.tum.de/
dist/library/HOL/HOL-Types_To_Sets/Linear_Algebra_On_With.html

35. Immler, F., Zhan, B.: Smooth manifolds. Archive of Formal Proofs (October 2018) (formal proof devel-
opment). http://isa-afp.org/entries/Smooth_Manifolds.html

36. Isabelle Developers: HOL Analysis Library. Isabelle Developers (2021). https://isabelle.in.tum.de/dist/
library/HOL/HOL-Analysis/document.pdf

37. Kaplansky, I.: Elementary divisors and modules. Trans. Am. Math. Soc. 66(2), 464–491 (1949)
38. Krauss, A., Schropp, A.: A mechanized translation from higher-order logic to set theory. In: Kaufmann,

M., Paulson, L.C. (eds.) Proceedings of the 1st International Conference on Interactive Theorem Proving,
LNCS, vol. 6172, pp. 323–338. Springer (2010)

39. Kunčar, O., Popescu, A.: From types to sets by local type definition in higher-order logic. J. Autom.
Reason. 62(2), 237–260 (2019)

40. Lawson, T.:Does Smith normal form implyPID? (2010). https://mathoverflow.net/questions/31275/does-
smith-normal-form-imply-pid

41. Lyness, J., Keast, P.: Application of the Smith normal form to the structure of lattice rules. SIAM J.Matrix
Anal. Appl. 16(1), 218–231 (1995)

42. Maciejowski, J.: Multivariable Feedback Design. Electronic Systems Engineering Series, Addison-
Wesley, Boston (1989)

43. Maletzky, A.: A generic and executable formalization of signature-based Gröbner basis algorithms. J.
Symb. Comput. 106, 23–47 (2021)

44. Narkawicz, A., Muñoz, C., Dutle, A.: Formally-verified decision procedures for univariate polynomial
computation based on Sturm’s and Tarski’s theorems. J. Autom. Reason. 54(4), 285–326 (2015)

45. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL—AProof Assistant for Higher-Order Logic, LNCS
vol. 2283. Springer (2002)

46. Obua, S.: Proving bounds for real linear programs in Isabelle/HOL. In: Hurd, J., Melham, T.F. (eds.)
Proceedings of the 18th International Conference on Theorem Proving in Higher Order Logics, LNCS,
vol. 3603, pp. 227–244. Springer (2005)

47. Rudnicki, P., Schwarzweller, C., Trybulec, A.: Commutative algebra in the Mizar system. J. Symb. Com-
put. 32(1/2), 143–169 (2001)

48. Snášel, V., Nowaková, J., Xhafa, F., Barolli, L.: Geometrical and topological approaches to big data.
Future Gener. Comput. Syst. 67, 286–296 (2017)

49. StackExchangeMathematics. Problemwith Smith normal form over a PID that is not a Euclidean domain
(2014). https://bit.ly/2rWLqxG

123

1094

https://isabelle.in.tum.de/doc/codegen.pdf
https://isabelle.in.tum.de/doc/codegen.pdf
https://isabelle.in.tum.de/doc/classes.pdf
https://isabelle.in.tum.de/doc/classes.pdf
https://isabelle.in.tum.de/dist/library/HOL/HOL-Types_To_Sets/Linear_Algebra_On_With.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Types_To_Sets/Linear_Algebra_On_With.html
http://isa-afp.org/entries/Smooth_Manifolds.html
https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/document.pdf
https://isabelle.in.tum.de/dist/library/HOL/HOL-Analysis/document.pdf
https://mathoverflow.net/questions/31275/does-smith-normal-form-imply-pid
https://mathoverflow.net/questions/31275/does-smith-normal-form-imply-pid
https://bit.ly/2rWLqxG

Formalized Smith Normal Form in HOL

50. Stanley, R.P.: Smith normal form in combinatorics. J. Comb. Theory A 144, 476–495 (2016)
51. Storjohann,A.: Algorithms formatrix canonical forms. PhDThesis, Swiss Federal Institute of Technology

Zurich (2000)
52. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press, Wellesley (2009)
53. Thiemann, R., Yamada, A.: Formalizing Jordan normal forms in Isabelle/HOL. In: Proceedings of the 5th

ACM SIGPLAN International Conference on Certified Programs and Proofs, pp. 88–99. ACM (2016)
54. Zeng, J.: A bijective proof of Muir’s identity and the Cauchy–Binet formula. Linear Algebra Appl. 184,

79–82 (1993)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

1095

	A Formalization of the Smith Normal Form in Higher-Order Logic
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Algebraic Structures and Definitions
	2.2 A Brief Introduction to Isabelle
	2.3 The HOL Analysis Library and Its Matrix Representation
	2.4 Another Matrix Library with Explicit Dimensions
	2.5 Some Existing Classes and Types in Isabelle: mod_type, mod_ring and nontriv

	3 A Connection Between the JNF Library and the HA Library with the mod_type Restriction
	4 Smith Normal Form of Diagonal Matrices
	4.1 Normal Form Computation
	4.2 Existence criterion

	5 Smith Normal Form of Arbitrary Matrices
	5.1 Normal Form Computation: Generic Algorithm
	5.2 Normal Form Computation: Executable Algorithm
	5.3 Alternative Characterization of Commutative Hermite Rings and Elementary Divisor Rings

	6 Result Certification Approach
	7 Uniqueness of the Smith Normal Form
	8 Related Work
	9 Conclusions and Future Work
	Acknowledgements
	References

