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Abstract
We present novel reductions of extensions of the basic modal logic K with axioms B, D, T, 4
and 5 to Separated Normal Form with Sets of Modal Levels SNFsml . The reductions typically
result in smaller formulae than the reductions by Kracht. The reductions to SNFsml combined
with a reduction to SNFml allow us to use the local reasoning of the prover KSP to determine
the satisfiability of modal formulae in the considered logics. We show experimentally that
the combination of our reductions with the prover KSP performs well when compared with
a specialised resolution calculus for these logics, the built-in reductions of the first-order
prover SPASS, and the higher-order logic prover LEO-III.

Keywords Modal logics · Theorem proving · Resolution method

1 Introduction

The main motivation for reducing problems in one logic (the source logic) to ‘equivalent’
problems in another formalism is to exploit results and tools for that formalism to solve
theoretical or practical problems in the source logic. For propositional modal logics, this
approach has been researched extensively for reductions of the satisfiability problem in
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these logics to the satisfiability problem in ‘stronger’ logics such as first-order logic [14,
26], second-order theory of n successors [7], simple type theory [4], and regular grammar
logics [25].

An alternative approach is to reduce propositional modal logics to a ‘weaker’ logic, in
particular, the basic modal logic K. For extensions of K with one of the axioms B, D, alt1, T,
and 4, Kracht [17] defines reduction functions of their global and local satisfiability problem
to the corresponding problem in K and proves their correctness. He also defines a reduction
function for K5, the extension of K with 5, to K4, but this reduction is incorrect as not all
theorems of K4 are theorems of K5. Several features of Kracht’s approach are relevant to
our work. First, as is not uncommon in modal logic, he uses ◻ as the only modal operator
occurring in modal formulae and the modal operator◇ is expressed as¬◻¬. This negatively
impacts the size of the resulting formulae as the reduction functions cannot treat the modal
operators◻ and◇ differently (as we do here). Second, the basic idea underlying his reduction
functions is the following: given a modal formula ϕ, generate sufficiently many instances �

of a modal axiom � so that ϕ is K�-satisfiable iff ϕ ∧ � is K-satisfiable. Third, Kracht is
concerned with preservation of the computational complexity of the satisfiability problem
under consideration, as well as the preservation of other theoretical properties. For instance,
the local satisfiability problem in the modal logics covered by Kracht is PSPACE-complete.
So, it is sufficient to ensure that � is polynomial in size with respect to ϕ. As Kracht himself
concludes, his method offers a uniform way of transferring results about one modal logic to
another, but may not be as useful for practical applications.

In [21, 23], we have introduced a new normal form for basic multi-modal logic, called
Separated Normal FormwithModal Levels, SNFml , which uses labeled modal clauses. These
labels refer to the level within a tree Kripke structure at which a modal clause holds. This
can be seen as a compromise between approaches that label formulae with worlds at unspec-
ified level [1, 3] and approaches that label formulae with paths [6, 30]. A combination of a
normal form transformation for modal formulae and a resolution-based calculus for labeled
modal clauses can then be used to decide local and global satisfiability in basic modal logic.
In [22, 24], we have presented KSP, an implementation of that calculus, together with an
experimental evaluation that indicates that KSP performs well if propositional variables are
evenly spread across a wide range of modal levels within the formulae one wants to decide.

A feature of SNFml is its use of additional propositional symbols as ‘surrogates’ for
subformulae of a modal formula ϕ. In the following, we take advantage of the availability
of those surrogates to provide a novel transformation from extensions of K with a single one
of the axioms B, D, T, 4 and 5 to SNFml . Another novel aspect is that we modify the normal
form so that it uses sets of modal levels as labels instead of a single modal level. In K, we only
need a definition of a surrogate at the modal level at which the corresponding subformula
occurs in ϕ. But in KB, KT, K4 and K5, we need a definition at every reachable modal level, of
which there can be many. We call the resulting normal form, Separated Normal Form with
Sets of Modal Levels, SNFsml .

The structure of the paper is as follows. In Sect. 2, we recap common concepts of propo-
sitional modal logic including its syntax and semantics. Section 3 defines SNFsml . Section 4
defines the reductions of K, KB, KD, KT, K4 and K5 to SNFsml ; correctness results are given
in Sect. 5. Sect. 6 shows a reduction from SNFsml to SNFml and its correctness; the reduction
is needed to evaluate our result via KSP. Related work is discussed in Sect. 7. In Sect. 8, we
compare the performance of a combination of our reductions and the modal-layered resolu-
tion calculus implemented in KSP with resolution calculi specifically designed for the logics
under consideration and with translation-based approaches built into the first-order theorem
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prover SPASS and the higher-order logic prover LEO-III. Section 9 provides concluding
remarks and future work.

This paper is an extended and revised version of [29]. We provide correctness proofs for
our reductions for K4 and K5 that were not included in [29]. Section 6 is new and not only
defines a satisfiability preserving transformation from SNFsml (with infinite sets of labels) to
SNFml , but also proves its correctness via a simulation of Massacci’s Single Step Tableaux
(SST) calculus [18] for K4 and K5 using the modal-layered resolution calculus for SNFml

clauses [21]. For K5, we also establish a bound on the length of prefixes in the SST calculus
that preserves refutation completeness of the calculus without need for a loop check.

2 Preliminaries

The language of modal logic is an extension of the language of propositional logic with
unary modal operators ◻ and ◇. More precisely, given a denumerable set of propositional
symbols, P = {p, p0, q, q0, t, t0, . . .} as well as propositional constants true and false,
modal formulae are inductively defined as follows: constants and propositional symbols
are modal formulae. If ϕ and ψ are modal formulae, then so are ¬ϕ, (ϕ ∧ ψ), (ϕ ∨ ψ),
(ϕ → ψ), ◻ϕ, and ◇ϕ. We also assume that ∧ and ∨ are associative and commutative
operators and consider, e.g., (p ∨ (q ∨ r)) and (r ∨ (q ∨ p)) to be identical formulae. We
often omit parentheses if this does not cause confusion. By var(ϕ), we denote the set of all
propositional symbols occurring in ϕ. This function straightforwardly extends to finite sets
of modal formulae. A modal axiom (schema) is a modal formula ψ representing the set of
all instances of ψ .

A literal is either a propositional symbol or its negation; the set of literals is denoted
by LP . We denote by ¬l the complement of the literal l ∈ LP , that is, ¬l denotes ¬p if l
is p ∈ P , and ¬l denotes p if l is the literal ¬p. A modal literal is either ◻l or ◇l, where
l ∈ LP .

A (normal) modal logic is a set of modal formulae which includes all propositional tau-
tologies, the axiom schema ◻(ϕ → ψ) → (◻ϕ → ◻ψ), called the axiom K, is closed under
modus ponens (if � ϕ and � ϕ → ψ then � ψ) and the rule of necessitation (if � ϕ

then � ◻ϕ). K is the weakest modal logic, that is, the logic given by the smallest set of modal
formulae constituting a normal modal logic. By KΣ , we denote an extensions of K by a set
Σ of axioms.

The standard semantics of modal logics is the Kripke semantics or possible world seman-
tics. A Kripke frame F is an ordered pair 〈W , R〉 where W is a non-empty set of worlds and
R is a binary (accessibility) relation overW . A Kripke structure M over P is an ordered pair
〈F, V 〉 where F is a Kripke frame and the valuation V is a function mapping each proposi-
tional symbol in P to a subset V (p) of W . We say M = 〈F, V 〉 is based on the frame F . A
rooted Kripke structure is an ordered pair 〈M, w0〉 with w0 ∈ W . In the following, we write
〈W , R, V 〉 and 〈W , R, V , w0〉 instead of 〈〈W , R〉, V 〉 and 〈〈〈W , R〉, V 〉, w0〉, respectively.

Satisfaction (or truth) of a formula at a world w of a Kripke structure M = 〈W , R, V 〉 is
inductively defined by:
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Table 1 Modal axioms and relational frame properties

Name Axiom Frame property

D ◻ϕ → ◇ϕ Serial ∀v∃w.vRw

T ◻ϕ → ϕ Reflexive ∀w.wRw

B ϕ → ◻◇ϕ Symmetric ∀vw.vRw → wRv

4 ◻ϕ → ◻◻ϕ Transitive ∀uvw.(u Rv ∧ vRw) → uRw

5 ◇ϕ → ◻◇ϕ Euclidean ∀uvw.(u Rv ∧ uRw)→ vRw

〈M, w〉 |� true; 〈M, w〉 �|� false;
〈M, w〉 |� p iff w ∈ V (p),where p ∈ P;
〈M, w〉 |� ¬ϕ iff 〈M, w〉 �|� ϕ;
〈M, w〉 |� (ϕ ∧ ψ) iff 〈M, w〉 |� ϕ and 〈M, w〉 |� ψ;
〈M, w〉 |� (ϕ ∨ ψ) iff 〈M, w〉 |� ϕ or 〈M, w〉 |� ψ;
〈M, w〉 |� (ϕ → ψ) iff 〈M, w〉 |� ¬ϕ or 〈M, w〉 |� ψ;
〈M, w〉 |� ◻ϕ iff for every v,wRv implies 〈M, v〉 |� ϕ;
〈M, w〉 |� ◇ϕ iff there is v,wRv and 〈M, v〉 |� ϕ.

If 〈M, w〉 |� ϕ holds then M is amodel of ϕ, ϕ is true at w in M and M satisfies ϕ. A modal
formula ϕ is satisfiable iff there exists a Kripke structure M and a world w in M such that
〈M, w〉 |� ϕ.

In the following, we are interested in extensions of K with one of the axiom schemata
shown in Table 1. Each of these axiom schemata defines a class of Kripke frames where the
accessibility relation R satisfies the first-order property stated in the table.

Given a normal modal logic L with corresponding class of frames F, we say a modal
formula ϕ is L-satisfiable iff there exists a frame F ∈ F, a valuation V and a world w0 ∈ F
such that 〈F, V , w0〉 |� ϕ.

A path rooted at w of length k, k ≥ 0, in a frame F = 〈W , R〉 is a sequence
�w = (w0, w1, . . . , wk) where for every i , 1 ≤ i ≤ k, wi−1 Rwi . We say that the path
(w0, w1, . . . , wk) connects w0 and wk . For a path �w = (w0, . . . , wk) and world wk+1 with
wk Rwk+1, �w◦wk+1 denotes the path (w0, . . . , wk, wk+1). A path (w0) of length 0 is identi-
fied with its rootw0.We denote the set of all paths rooted at a worldw0 in F by �F[w0] and the
set of all paths by �F . The function trm : �F → W maps every path �w = (w0, . . . , wk) to its
terminal world wk while the function len : �F → N maps every path �w = (w0, w1, . . . , wk)

to its length k.
A rooted Kripke structure M = 〈W , R, V , w0〉 is a rooted tree Kripke structure iff R is a

tree, that is, a directed acyclic connected graph where each node has at most one predecessor,
with root w0. It is a rooted tree Kripke model of a modal formula ϕ iff 〈W , R, V , w0〉 |� ϕ.
In a rooted tree Kripke structure with root w0 for every world wk ∈ W there is exactly one
path �w connecting w0 and wk ; the modal level of wk (in M), denoted bymlM (wk), is given
by len( �w).

Let F = 〈W , R〉 be a Kripke frame with w ∈ W . The unraveling Fu[w] of F at w is the
frame 〈 �W , �R〉 where:
– �W = �F[w] is the set of all paths rooted at w in F ;
– for all �v, �w ∈ �W , if �w = �v ◦ w for some w ∈ W , then �v �R �w.

Let F = 〈W , R〉 and F ′ = 〈W ′, R′〉 be two Kripke frames. A function f : W �→ W ′ is a
p-morphism (or a bounded morphism) from F to F ′ if the following holds:
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Table 2 Rewriting rules for simplification

– if vRw, then f (v)R′ f (w).
– if f (u)R′w, then there exists v ∈ W such that f (v) = w and u Rv.

Analogously forKripkemodels. For F = 〈W , R〉,M = 〈F, V , w0〉, andM ′ = 〈Fu[w0], V ′,
(w0)〉 the function trm is a p-morphism from M ′ to M .

When considering satisfiability, the following holds (see, [12]):

Theorem 1 Let ϕ be a modal formula. Then ϕ is K-satisfiable iff there is a finite rooted tree
Kripke structure M = 〈F, V , w0〉 such that 〈M, w0〉 |� ϕ.

For the normal form transformation presented in the next section we assume that any
modal formula ϕ has been simplified by exhaustively applying the rewrite rules in Table 2
and is in Negation Normal Form (NNF), that is, a formula where only propositional symbols
are allowed in the scope of negations. We say that such a formula is in simplified NNF.

3 Layered Normal Formwith Sets of Levels SNFsml

In [21], we have introduced a novel clausal normal form, called Separated Normal Form with
Modal Levels, SNFml , whose language extends that of the basic modal logic K with labels for
modal levels. Clauses in SNFml have one of the following forms:

ml : ∨r
b=1 lb ml : l ′ → ◻l ml : l ′ → ◇l

where ml ∈ N ∪ {�} and l, l ′, lb are propositional literals with 1 ≤ b ≤ r , r ∈ N. Clauses
� : ψ are global clauses.

Given a rooted tree Kripke structure M , the satisfiability of an SNFml clause is defined as
follows:

– M |� � : ϕ

iff 〈M, w〉 |� ϕ for every w ∈ M ;
– M |� ml : ϕ iff 〈M, w〉 |� ϕ for every world w with mlM (w) = ml.

The label � only occurs in the clausal normal form of a modal formula ϕ if we consider the
problem whether there exists a Kripke structure M such that ϕ is true at all worlds of M . For
satisfiability of ϕ all labels will be from a finite subset of N. In this case the labels can be
seen as a compromise between a normal form where even for local satisfiability all clauses
are global and a normal form that uses paths to constrain a clause to just a subset of all worlds
at a particular modal level.

A feature of our reductions is that the same formula
∨r

b=1 lb, l
′ → ◻l, or l ′ → ◇l may

have to hold at several levels, possibly even an infinite number of levels. It therefore makes
sense to label such formulae not with just a single level but a set of levels. We call this normal
form Separated Normal Form with Sets of Modal Levels, SNFsml . Informally, the labels in
SNFsml state that a formula is satisfied at all worlds in a given set of modal levels, instead
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of a single modal level as in SNFml . We write S : ϕ, where S is a set of natural numbers, to
denote that a formula ϕ is true at all modal levels ml ∈ S. We write � : ϕ instead of N : ϕ.

Formally, given a rooted tree Kripke structures M = 〈W , R, V , w0〉 and a set of modal
levels S, by M[S], we denote the set of worlds that are at a modal level in S, that is, M[S] =
{w ∈ W | mlM (w) ∈ S}. The satisfaction of labeled formulae in M is then defined as
follows:

M |� S : ϕ iff for every world w ∈ M[S],we have 〈M, w〉 |� ϕ.

If M |� S : ϕ, then we say that S : ϕ holds in M or is true in M . For a set Φ of labeled
formulae, M |� Φ iff M |� S : ϕ for every S : ϕ in Φ, and we say Φ is K-satisfiable.

Note that if S = ∅, then M |� S : ϕ trivially holds. Also, S : false with 0 /∈ S, is not
in itself unsatisfiable, a Kripke structure M can satisfy S : false if it has no worlds w with
mlM (w) ∈ S. On the other hand, S : false with 0 ∈ S is unsatisfiable as a rooted tree Kripke
structure always has a world with modal level 0.

A labeled modal formula is then an SNFsml clause iff it is of one of the following forms:

– Literal clause S : ∨r
b=1 lb

– Positive modal clause S : l ′ → ◻l
– Negative modal clause S : l ′ → ◇l

where S ⊆ N and l, l ′, lb are propositional literals with 1 ≤ b ≤ r , r ∈ N. Positive and
negative modal clauses are together known as modal clauses. We regard a literal clause as a
set of literals, that is, two clauses are the same if they contain the same set of literals.

4 Reductions of Extensions of K with a Single Axiom to SNFsml

In the following, we assume that the set P of propositional symbols is partitioned into two
infinite sets Q and T such that Q contains the original propositional symbols and T surrogate
symbols tψ and supplementary propositional symbols. In particular, for every modal formula
ψ , we have var(ψ) ⊂ Q and there exists a propositional symbol tψ ∈ T uniquely associated
with ψ .

We introduce some notation that will be used in the following. Let S+ = {l + 1 ∈ N |
l ∈ S}, S− = {l − 1 ∈ N | l ∈ S}, and S≥ = {n | n ≥ min(S)}, where min(S) is the least
element in S. Note that the restriction of the elements being in N implies that S− cannot
contain negative numbers.

Given a modal formula ϕ in simplified NNF and L ∈ {K, KB, KD, KT, K4, K5}, then we
can obtain a set ΦL of clauses in SNFsml such that ϕ is L-satisfiable iff ΦL is K-satisfiable as
ΦL = {{0} : tϕ} ∪ ρL({0} : tϕ → ϕ), where ρL is defined as follows:

ρL(S : t → true) = ∅
ρL(S : t → false) = {S : ¬t}

ρL(S : t → (ψ1 ∧ ψ2)) = {S : ¬t ∨ η(ψ1), S : ¬t ∨ η(ψ2)} ∪ δL(S, ψ1)∪ δL(S, ψ2)

ρL(S : t → ψ) = {S : ¬t ∨ ψ}
if ψ is a disjunction of literals

ρL(S : t → (ψ1 ∨ ψ2)) = {S : ¬t ∨ η(ψ1) ∨ η(ψ2)} ∪ δL(S, ψ1) ∪ δL(S, ψ2)

if (ψ1 ∨ ψ2) is not a disjunction of literals

ρL(S : t → ◇ψ) = {S : t → ◇η(ψ)} ∪ δL(S+, ψ)

ρL(S : t → ◻ψ) = PL(S : t → ◻ψ) ∪ �L (S : t → ◻ψ)
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Table 3 Transformation of ◻-formulae in modal logic L ∈ {K, KT, KD, KB, K4, K5}
L Axiom PL (S : t◻ψ → ◻ψ) �L (S : t◻ψ → ◻ψ)

K S : t◻ψ → ◻η(ψ) δL (S+, ψ)

KT ◻ψ → ψ S : t◻ψ → ◻η(ψ), S : ¬t◻ψ ∨ η(ψ) δL (S ∪ S+, ψ)

KD ◻ψ → ◇ψ S : t◻ψ → ◻η(ψ), S : t◻ψ → ◇η(ψ) δL (S+, ψ)

KB ψ →◻◇ψ S : t◻ψ → ◻η(ψ), S− : η(ψ) ∨ t◻¬t◻ψ
,

S− : t◻¬t◻ψ
→ ◻¬t◻ψ

δL (S− ∪ S+, ψ)

K4 ◻ψ →◻◻ψ S≥ : t◻ψ → ◻η(ψ), S≥ : t◻ψ → ◻t◻ψ δL ((S+)≥, ψ)

K5 ◇ϕ →◻◇ϕ � : t◻ψ → ◻η(ψ),

� : ¬t◇t◻ψ
∨ t◻ψ, � : t◇t◻ψ

→ ◇t◻ψ ,

� : ¬t◇t◻ψ
→ ◻¬t◻ψ , � : t◇t◻ψ

→ ◻t◇t◻ψ

δL (�, ψ)

where η and δL are defined as follows:

η(ψ) =
{

ψ, if ψ is a literal
tψ, otherwise

δL(S, ψ) =
{

∅, if ψ is a literal
ρL(S : tψ → ψ), otherwise

and functions PL , �L are defined as shown in Table 3.
The function η maps a propositional literal ψ to itself while it maps every other modal

formula ψ to a new propositional symbol tψ ∈ T uniquely associated with ψ . We call tψ
the surrogate of ψ or simply a surrogate. The functions PKB and PK5 introduce additional
propositional symbols, called supplementary propositional symbols, t◻¬t◻ψ ∈ T and t◇t◻ψ ∈
T , respectively, that do not correspond to subformulae of the formula we are transforming.

For PKT, PKD and PK4 the additional clauses S : ¬t◻ψ ∨ η(ψ), S : t◻ψ → ◇η(ψ) and
S : t◻ψ → ◻t◻ψ , respectively, are directly based on the axiom schemata. Intuitively, PKB is
based on the following consideration: take aworldw in aKripke structureM with a symmetric
accessibility relation R. If there exists a world v with w Rv such that 〈M, v〉 |� ◻ψ , then
〈M, w〉 |� ψ . Now, take the contrapositive of that statement: If 〈M, w〉 �|� ψ , then for every
world v with wRv, 〈M, v〉 �|� ◻ψ . Equivalently, 〈M, w〉 |� ψ or 〈M, w〉 |� ◻¬◻ψ . This is
expressed by the formula η(ψ) ∨ t◻¬t◻ψ . For PK5, the formula t◇t◻ψ → ◻t◇t◻ψ expresses
an instance of axiom schema 5, ◇ϕ → ◻◇ϕ, with ϕ = ◻ψ , i.e., ◇◻ψ → ◻◇◻ψ . The
contrapositive of axiom schema 5 is◇◻ϕ → ◻ϕ, equivalent to¬◇◻ϕ∨◻ϕ. For ϕ = ψ this
is expressed by the formula ¬t◇t◻ψ ∨ t◻ψ . For the formula ¬t◇t◻ψ → ◻¬t◻ψ , consider
¬◇◻ψ . By duality of ◻ and◇, this is equivalent to ¬¬◻¬◻ψ and ◻¬◻ψ . So, ¬◇◻ψ →
◻¬◻ψ in every normal modal logic, not only K5. The remaining labeled formulae introduced
by PKB and PK5 ensure that supplementary propositional symbols are defined.

To simplify presentation in the following, we define a function η f as follows:

η f (ϕ1 ∧ ϕ2) = η(ϕ1) ∧ η(ϕ2) η f (ϕ1 ∨ ϕ2) = η(ϕ1) ∨ η(ϕ2)

η f (◻ϕ) = ◻η(ϕ) η f (◇ϕ) = ◇η(ϕ)

and we treat the two clauses S : ¬tψ1∧ψ2 ∨ η(ψ1) and S : ¬tψ1∧ψ2 ∨ η(ψ2) resulting from
the normal form transformation of ψ1 ∧ ψ2 as a single ‘clause’ S : ¬tψ1∧ψ2 ∨ η f (ψ1 ∧ ψ2).
We also interchangeably write S : ¬t◻ψ ∨η f (◻ψ) for S : t◻ψ → η f (◻ψ) and, analogously,
S : ¬t◇ψ ∨ η f (◇ψ) for S : t◇ψ → η f (◇ψ). We then call any clause of the form S :
¬tψ ∨ η f (ψ) a definitional clause.

Definition 1 Let Φ be a set of SNFsml clauses. We say tψ ∈ T occurs at level ml in Φ iff
either
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(a) there exists a clause S : ϑ in Φ with ml ∈ S such that ϑ is a propositional formula and
tψ occurs positively in ϑ , or

(b) there exists a clause S : t◻ψ → ◻tψ in Φ with ml − 1 ∈ S, or
(c) there exists a clause S : t◇ψ → ◇tψ in Φ with ml − 1 ∈ S.

Definition 2 Let Φ be a set of SNFsml clauses. Then Φ is definition-complete iff for every
tψ ∈ T and every levelml, if tψ occurs at levelml in Φ then either (i) tψ = ttrue, or (ii) there
exists a clause S : ¬tψ ∨ η f (ψ) in Φ with ml ∈ S.

Example 1 Consider the formula ϕ = ◇q ∧◇◇(◻(p ∧◇◇¬p) ∧◇q) in the modal logic
K4. Then {{0} : tϕ} ∪ ρK4({0} : tϕ → ϕ) consists of the following clauses.

where ψ4 = p ∧◇◇¬p, ψ3 = ◻ψ4 ∧◇q , ψ2 = ◇ψ3, and ψ1 = ◇ψ2. All propositional
symbols of the form tψ are surrogate symbols for the respective ψ formulae, which are
subformulae of ϕ. All clauses except for Clause (10) would also be present in {{0} : tϕ} ∪
ρK({0} : tϕ → ϕ) but Clauses (9), (11) to (14)would be labeledwith singleton sets {n} instead
of infinite sets {n}≥. Clauses (2) to (9) and (11) to (14) are definitional clauses. Clause (8) is
an example of how sets of levels allow for a single definition of a clause appearing at different
modal levels. Clause (10) is specific to K4, and all clauses from (9) onwards have a set of
levels of the form {n}≥, which means that they hold at all levels greater than or equal to n.

Theorem 2 Let L ∈ {K, KB, KD, KT, K4, K5}. Then ΦL = {{0} : tϕ} ∪ ρL({0} : tϕ → ϕ) is
definition-complete.

Proof By induction over the computation of ΦL . It is straightforward to see that the trans-
formation of labeled formulae S : t → (ψ1 ∧ ψ2) and S : t → (ψ1 ∨ ψ2) only introduces
surrogates at levels in S and �L then adds definitional clauses for those surrogates. The
transformation of a labeled formula S : t◇ψ → ◇ψ may introduce a surrogate at levels in
S+ and δL(S+, ψ) then adds definitional clauses for those surrogates. The transformation
of a labeled formula S : t◻ψ → ◻ψ depends on the logic L . We can see that for every
level at which a new surrogate occurs in PL(S : t◻ψ → ◻ψ), then �L(S : t◻ψ → ◻ψ)

contains a definitional clause for it at that level. Where a definitional clause introduced in the
transformation has the form S : ttrue → true it will at some point be eliminated, but this is
compatible with our notion of definition-completeness. ��

5 Correctness

5.1 Common Properties

Lemma 1 Let ϕ be modal formula. Let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ) and ΦL = {{0} :
tϕ} ∪ ρL({0} : tϕ → ϕ), for L ∈ {KB, KD, KT, K4, K5}. Then Φ ⊆ ΦL .
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Proof By definition of ρK and ρL , anything obtained via ρK is also obtained via ρL . Therefore,
Φ ⊆ ΦL . ��
Lemma 2 Let M = 〈W , R, V , w0〉bea rootedKripke structure. Let 〈 �W , �R〉be the unraveling
of 〈W , R〉 at w0. Let �M = 〈 �W , �R, �VΣ, (w0)〉 where �VΣ(p) = { �w ∈ �W | trm( �w) ∈ V (p)}
for every propositional symbol p ∈ Q.

Then for every modal formula ψ over Q and for every world �w ∈ �W, 〈 �M, �w〉 |� ψ iff
〈M, trm( �w)〉 |� ψ .

In contrast to similar results in the literature, see, e.g., [5, Propositions 2.14 and 2.15], we
allow �VΣ(p) to differ from V (p) for propositional symbols not in Q. This then allows us to
freely define �VΣ(tψ) for tψ ∈ T .

Lemma 3 Let M = 〈W , R, V , w0〉bea rootedKripke structure. Let 〈 �W , �R〉be the unraveling
of 〈W , R〉 at w0. Let �M = 〈 �W , �R, �VΣ, (w0)〉 be a Kripke structure such that

– �VΣ(p) = { �w ∈ �W | trm( �w) ∈ V (p)} for every propositional symbol p ∈ Q, and
– �VΣ(tψ) = { �w ∈ �W | 〈 �M, �w〉 |� ψ} for every tψ ∈ T .

Then for every tψ ∈ T and every world �w ∈ �W, 〈 �M, �w〉 |� tψ iff 〈 �M, �w〉 |� ψ iff
〈M, trm( �w)〉 |� ψ .

Proof Let �w be a world in �W . By Lemma 2 for every formula ψ over Q, 〈 �M, �w〉 |� ψ iff
〈M, trm( �w)〉 |� ψ . By definition of �VΣ , for every tψ ∈ T , 〈 �M, �w〉 |� tψ iff 〈 �M, �w〉 |� ψ .
So, 〈 �M, �w〉 |� tψ iff 〈 �M, �w〉 |� ψ iff 〈M, trm( �w)〉 |� ψ . ��
Lemma 4 Let Φ be a set of definitional clauses such that every tψ occurring Φ is an element
of T and all other propositional symbols occurring in Φ are in Q. Let M = 〈W , R, V , w0〉
be a rooted Kripke structure. Let 〈 �W , �R〉 be the unraveling of 〈W , R〉 at w0. Let �M =
〈 �W , �R, �VΣ, (w0)〉 be a Kripke structure such that

– �VΣ(p) = { �w ∈ �W | trm( �w) ∈ V (p)} for every propositional symbol p ∈ Q, and
– �VΣ(tψ) = { �w ∈ �W | 〈 �M, �w〉 |� ψ} for every surrogate tψ ∈ T ∩ var(Φ).

Then �M |� Φ.

Proof Let T (Q, Φ) be the set of all modal formulae over Q such that η(ψ) ∈ var(Φ).
Let ψ ∈ T (Q, Φ). If ψ is not literal, then η(ψ) = tψ for some propositional symbol
tψ ∈ var(Φ) \ Q. By Lemma 3, for every world �w ∈ �W , 〈 �M, �w〉 |� ψ iff 〈 �M, �w〉 |� tψ
iff 〈 �M, �w〉 |� η(ψ). If ψ is propositional symbol p ∈ Q, then η(ψ) = ψ and, trivially, for
every world �w ∈ �W , 〈 �M, �w〉 |� ψ iff 〈 �M, �w〉 |� η(ψ). Overall, (15) if ψ ∈ T (Q, Φ) and
�w ∈ �W , then 〈 �M, �w〉 |� ψ iff 〈 �M, �w〉 |� η(ψ).

Let S : ψ ′ be a clause in Φ. We show that �M |� S : ψ ′. Depending on the form of S : ψ ′
as stated in the lemma, we can distinguish the following cases:
Case (a): Let �w ∈ �M[S] with 〈 �M, �w〉 |� tψ1∧ψ2 . By Lemma 3, this implies 〈 �M, �w〉 |�
ψ1 ∧ ψ2. Since ψ1, ψ2 ∈ T (Q, Φ), by Property (15), 〈 �M, �w〉 |� η(ψ1) ∧ η(ψ2). This
implies 〈 �M, �w〉 |� ¬tψ1∧ψ2 ∨ η(ψi ). Thus, �M |� S : ¬tψ1∧ψ2 ∨ η(ψi ).
Case (b): Let �w ∈ �M[S] with 〈 �M, �w〉 |� tψ1∨ψ2 . By Lemma 3, this implies 〈 �M, �w〉 |�
ψ1 ∨ ψ2. Since ψ1, ψ2 ∈ T (Q, Φ), by Property (15), 〈 �M, �w〉 |� η(ψ1) ∨ η(ψ2). This
implies 〈 �M, �w〉 |� ¬tψ1∨ψ2 ∨ η(ψ1) ∨ η(ψ2). Thus, �M |� S : ¬tψ1∨ψ2 ∨ η(ψ1) ∨ η(ψ2).
Case (c): disjunction of literals all of which are in var(ϕ). This case can be proven in analogy
to Case (b).
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Case (d): Let �w ∈ �M[S] with 〈 �M, �w〉 |� t◻ψ . By Lemma 3, this implies 〈 �M, �w〉 |� ◻ψ .
That means for every �v ∈ �W , if �wR �v then 〈 �M, �v〉 |� ψ . Since ψ ∈ T (Q, Φ), by Property
(15), this implies for every �v ∈ �W , if �wR�v then 〈 �M, �v〉 |� η(ψ). By the semantics of ◻, then
〈 �M, �w〉 |� ◻η(ψ). Thus, �M |� S : t◻ψ → ◻η(ψ).
Case (e): Let �w ∈ �M[S] with 〈 �M, �w〉 |� t◇ψ . By Lemma 3, this implies 〈 �M, �w〉 |� ◇ψ .
That means there exists �v ∈ �W such that �w R �v and 〈 �M, �v〉 |� ψ . Since ψ ∈ T (Q, Φ), by
Property (15), this implies 〈 �M, �v〉 |� η(ψ). By the semantics of◇, then 〈 �M, �w〉 |� ◇η(ψ).
Thus, �M |� S : t◇ψ → ◇η(ψ).
This covers all possible forms that clauses in Φ can take and we conclude that �M |� Φ. ��
Lemma 5 Let ϕ be a L-satisfiable modal formula in simplified NNF where L is a normal
modal logic and let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ). Let M = 〈W , R, V , w0〉 be a rooted
K model of ϕ. Let 〈 �W , �R〉 be the unraveling of 〈W , R〉 at w0. Let �M = 〈 �W , �R, �V , (w0)〉 be
a Kripke structure such that

– �V (p) = { �w ∈ �W | trm( �w) ∈ V (p)} for every propositional symbol p ∈ var(ϕ), and
– �V (tψ) = { �w ∈ �W | 〈 �M, �w〉 |� ψ} for every surrogate tψ ∈ T ∩ var(Φ).

Then �M |� Φ.

Proof Each clause S : ψ ′ in Φ except for {0} : tϕ is a definitional clause S : ¬tψ ∨ η f (ψ)

with tψ ∈ T . By Lemma 4, �M |� S : ψ ′.
Now consider {0} : tϕ . As 〈M, w0〉 |� ϕ and (w0) ∈ �M[0], by Lemma 2, we obtain

〈 �M, (w0)〉 |� ϕ. By Lemma 3, 〈 �M, (w0)〉 |� ϕ implies 〈 �M, (w0)〉 |� tϕ . Thus, �M |� {0} : tϕ .
This covers all possible forms that clauses in Φ can take and we can conclude that �M |�

Φ. ��
Lemma 6 Letϕ beamodal formula in simplifiedNNF.LetΦK = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ).
Let Φ with ΦK ⊆ Φ be a definition-complete set of SNFsml clauses, let M = 〈W , R, V , w0〉
be a tree K model of Φ and let M ′ = 〈W , R′, V , w0〉 be such that

(6a) R ⊆ R′;
(6b) for every modal clause S : t◻ψ → ◻η(ψ) inΦ and every worldw ∈ M[S], 〈M ′, w〉 |�

t◻ψ → ◻η(ψ);
(6c) for every modal clause S : t◻ψ → ◻tψ in Φ and all worlds v,w ∈ W, if (i) w ∈ M[S]

and (ii) w R′ v then (iii) there exists a clause S′ : ¬tψ ∨ η f (ψ) in Φ with v ∈ M[S′].
Then 〈M ′, w0〉 |� ϕ.

Proof As M is a model of Φ, (16) for every clause S : ψ in Φ and every world w ∈ M[S],
〈M, w〉 |� ψ . Also, as both M and M ′ use the same valuation V and the same set of worlds
W , (17) for every propositional literal l and everyworldw ∈ W , 〈M, w〉 |� l iff 〈M ′, w〉 |� l.

Weprove by structural induction on subformulaeϑ ofϕ that (18) ifη(ϑ) = tϑ for surrogate
tϑ , S : ¬tϑ ∨ η f (ϑ) ∈ Φ, and w ∈ M[S] with 〈M ′, w〉 |� tϑ then 〈M ′, w〉 |� ϑ .

In the base cases, we have to consider subformulae ϑ that are conjunctions or disjunctions
of literals over propositional symbols in var(ϕ).

Case (1): Let ϑ be of the form ψ1 ∧ ψ2, where ψ1 and ψ2 are literals over var(ϕ), with
η(ψ1 ∧ ψ2) = tψ1∧ψ2 . As Φ is definition-complete, there exist literal clauses S : ¬tψ1∧ψ2 ∨
η(ψ1) and S : ¬tψ1∧ψ2 ∨ η(ψ2) in ΦK such that η(ψ1) = ψ2 and η(ψ2) = ψ2 are literals
over var(ϕ). Assume w ∈ M[S] with 〈M ′, w〉 |� tψ1∧ψ2 .
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By Property (17), 〈M, w〉 |� tψ1∧ψ2 . By Property (16), 〈M, w〉 |� ¬tψ1∧ψ2 ∨ ψi for 1 ≤
i ≤ 2. We therefore have 〈M, w〉 |� ψi for 1 ≤ i ≤ 2. By Property (17), this implies
〈M ′, w〉 |� ψi for 1 ≤ i ≤ 2. Thus, 〈M ′, w〉 |� ψ1 ∧ ψ2 by the semantics of conjunction.
Case (2): Let ϑ be a disjunction of literals over var(ϕ) with η(ϑ) = tϑ . As Φ is definition-
complete, there exists a clause S : ¬tϑ ∨ ϑ in ΦK. Assume w ∈ M[S] with 〈M ′, w〉 |� tϑ .
By Property (17), 〈M, w〉 |� tϑ . By Property (16), 〈M, w〉 |� ¬tϑ ∨ ϑ . By the semantics of
disjunction, there is a propositional literal l in ϑ such that 〈M, w〉 |� l. By Property (17),
〈M ′, w〉 |� l. Thus, 〈M ′, w〉 |� ϑ by the semantics of disjunction.
In the induction step, we consider subformulae ϑ of ϕ under the induction hypothesis that
Property (18) holds for all proper subformulae of ϑ .
Case (3): Let ϑ be of the form ψ1 ∧ ψ2 with η(ψ1 ∧ ψ2) = tψ1∧ψ2 . As Φ is definition-
complete, there exist clauses S : ¬tψ1∧ψ2 ∨ η(ψ1) and S : ¬tψ1∧ψ2 ∨ η(ψ2) in Φ. Assume
w ∈ M[S] with 〈M ′, w〉 |� tψ1∧ψ2 . By Property (17), 〈M, w〉 |� tψ1∧ψ2 . By Property
(16), 〈M, w〉 |� ¬tψ1∧ψ2 ∨ η(ψi ) for 1 ≤ i ≤ 2. We therefore have 〈M, w〉 |� η(ψi ), for
1 ≤ i ≤ 2.Asη(ψ1) andη(ψ2) are literals, by Property (17) and the semantics of conjunction,
〈M ′, w〉 |� η(ψ1) ∧ η(ψ2). Case (3-a): If ψi , 1 ≤ i ≤ 2, is a literal, then η(ψi ) = ψi and
we immediately have 〈M ′, w〉 |� ψi . Case (3-b): If ψi , 1 ≤ i ≤ 2, is not a literal, then
η(ψi ) = tψi . Since Φ is definition-complete, there must be a clause S′ : ¬tψi ∨ η f (ψi ) in
ΦK with w ∈ M[S′]. Then, by induction hypothesis, 〈M ′, w〉 |� tψi implies 〈M ′, w〉 |� ψi .
Taking both cases together 〈M ′, w〉 |� ψ1 ∧ ψ2.
Case(4): Let ϑ be of the form ψ1 ∨ ψ2 where ϑ is not a disjunction of literals and η(ϑ) =
tψ1∨ψ2 . As Φ is definition-complete, there exists a clause S : ¬tψ1∨ψ2 ∨ η(ψ1) ∨ η(ψ2)

in Φ. Assume w ∈ M[S] with 〈M ′, w〉 |� tψ1∨ψ2 . By Property (17), 〈M, w〉 |� tψ1∨ψ2 .
By Property (16), 〈M, w〉 |� ¬tψ1∨ψ2 ∨ η(ψ1) ∨ η(ψ2). By the semantics of disjunction,
〈M, w〉 |� η(ψ1) or 〈M, w〉 |� η(ψ2).
As η(ψ1) and η(ψ2) are literals, by Property (17), 〈M ′, w〉 |� η(ψ1) or 〈M ′, w〉 |� η(ψ2).
In analogy to Case (3-a): and Case (3-b): above we can show that 〈M ′, w〉 |� ψi for i = 1
or i = 2. This implies 〈M ′, w〉 |� ψ1 ∨ ψ2.
Case (5): Let ϑ be of the form ◻ψ with η(◻ψ) = t◻ψ . As Φ is definition-complete,
there exists a clause S : t◻ψ → ◻η(ψ) in Φ. Assume w ∈ M[S] (Condition (6c)-i) with
〈M ′, w〉 |� t◻ψ . By Assumption (6b), 〈M ′, w〉 |� t◻ψ → ◻η(ψ). By semantics of impli-
cation, 〈M ′, w〉 |� ◻η(ψ). Also, 〈M ′, w〉 |� t◻ψ implies 〈M, w〉 |� t◻ψ . As w ∈ M[S]
and M is a model of Φ, 〈M, w〉 |� t◻ψ → ◻η(ψ) and by the semantics of implication,
〈M, w〉 |� ◻η(ψ). Let v ∈ W with w R′ v (Condition (6c)-ii). As 〈M ′, w〉 |� ◻η(ψ),
〈M ′, v〉 |� η(ψ). Case (5-a): If ψ is a literal, then η(ψ) = ψ and we immediately have
〈M ′, v〉 |� ψ and as v was an arbitrary R′-successor of w, 〈M ′, w〉 |� ◻ψ . Case (5-b): If ψ

is not a literal, then η(ψ) = tψ . As Conditions (6c)-i and (6c)-ii hold, by Assumption (6c)-iii
there exists a clause S′ : ¬tψ ∨ η f (ψ) in Φ with v ∈ M[S′]. Then, by induction hypothesis,
〈M ′, v〉 |� tψ implies 〈M ′, v〉 |� ψ . By semantics of ◻ we again obtain 〈M ′, w〉 |� ◻ψ .
Case (6): Let ϑ be of the form ◇ψ with η(◇ψ) = t◇ψ . As Φ is definition-complete,
there exists a clause S : t◇ψ → ◇η(ψ) in Φ. Assume w ∈ M[S] with 〈M ′, w〉 |� t◇ψ .
By Property (17), 〈M, w〉 |� t◇ψ . By Assumption (16), 〈M, w〉 |� t◻ψ → ◇η(ψ). By
semantics of implication 〈M, w〉 |� ◇η(ψ). That means there exists v ∈ W with w R v

and 〈M, v〉 |� η(ψ). As η(ψ) is a literal, by Property (17), 〈M ′, v〉 |� η(ψ). As R ⊆ R′,
w R v implies w R′ v. So there exists v ∈ W with w R′ v and 〈M ′, v〉 |� η(ψ) which
means 〈M ′, w〉 |� ◇η(ψ). Case (6-a): If ψ is a literal, then η(ψ) = ψ and we immedi-
ately have 〈M ′, w〉 |� ◇ψ . Case (5-b): If ψ is not a literal, then η(ψ) = tψ . Since Φ is
definition-complete, there must be a clause S′ : ¬tψ ∨ η f (ψ) in Φ with v ∈ M[S′]. Then,
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by induction hypothesis, 〈M ′, v〉 |� tψ implies 〈M ′, v〉 |� ψ . By semantics of ◇, we then
obtain 〈M ′, w〉 |� ◇ψ . ��
Lemma 7 Letϕ beamodal formula in simplifiedNNF.LetΦK = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ).
Let Φ with ΦK ⊆ Φ be a definition-complete set of SNFsml clauses, let M = 〈W , R, V , w0〉
be a rooted tree K model of Φ. Then 〈M, w0〉 |� ϕ.

Proof It is sufficient to show that if we take M ′ = M , then the Kripke structures M and M ′
satisfy the three preconditions of Lemma 6:

– Condition (6a) trivially holds as both models have the same accessibility relation.
– For Condition (6b) let S : t◻ψ → ◻η(ψ) be a modal clause in Φ and w ∈ M[S]. Then

(i) as M is a model of Φ, M |� S : t◻ψ → ◻η(ψ); (ii) as w ∈ M[S], by definition
of |�, 〈M, w〉 |� t◻ψ → ◻η(ψ); (iii) as M ′ = M , 〈M, w〉 |� t◻ψ → ◻η(ψ) implies
〈M ′, w〉 |� t◻ψ → ◻η(ψ).

– For Condition (6c) let S : t◻ψ → ◻tψ in Φ, w, v ∈ W , mlM (w) = ml ∈ S (i.e.,
w ∈ M[S]), andw R v. As M is a tree model,mlM (v) = ml+1. The surrogate tψ occurs
at level ml + 1 in Φ. As Φ is definition-complete by assumption, there exists a clause
S′ : ¬tψ ∨ η f (ψ) in Φ with ml + 1 ∈ S′. Thus, Condition (6c) holds.

By Lemma 6, 〈M ′, w0〉 |� ϕ. ��

5.2 Basic Modal Logic K

Corollary 1 Let ϕ be a modal formula in simplified NNF. Let ΦK = {{0} : tϕ} ∪ ρK({0} :
tϕ → ϕ). Let M = 〈W , R, V , w〉 be a rooted Kripke model such that 〈M, w〉 |� ϕ. Let
〈 �W , �R〉 be the unraveling of 〈W , R〉 at w0. Let �M = 〈 �W , �R, �V , w0〉 be a Kripke structure
such that

– �V (p) = { �w ∈ �W | trm( �w) ∈ V (p)} for every propositional symbol p ∈ var(ϕ), and
– �V (tψ) = { �w ∈ W | 〈 �M, �w〉 |� ψ} for every surrogate tψ ∈ var(ΦK) \ var(ϕ).

Then �M |� ΦK.

Proof Follows from Lemma 5 for logic L = K. ��
Theorem 3 Let ϕ be a modal formula in simplified NNF. Let ΦK = {{0} : tϕ} ∪ ρK({0} :
tϕ → ϕ). If ΦK is K-satisfiable, then ϕ is K-satisfiable.

Proof Let M = 〈W , R, V , w0〉 be a tree K model of ΦK. ΦK is definition-complete by
Theorem 2, and, by Lemma 7, it follows that 〈M, w0〉 |� ϕ.

Correctness proofs for the reductions for KD and KT are straightforward. In the remainder
of the section, we consider the reductions for KB, K4 and K5.

5.3 Modal Logic KB

See [29] for the proofs of the following theorems.

Theorem 4 Let ϕ be a modal formula in simplified NNF. Let ΦB = {{0} : tϕ} ∪ ρKB({0} :
tϕ → ϕ). If ϕ is KB-satisfiable, then ΦB is K-satisfiable.

Theorem 5 Let ϕ be a modal formula in simplified NNF. Let ΦB = {{0} : tϕ} ∪ ρKB({0} :
tϕ → ϕ). If ΦB is K-satisfiable, then ϕ is KB-satisfiable.
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5.4 Modal Logic K4

Theorem 6 Let ϕ be a modal formula in simplified NNF. Let Φ4 = {{0} : tϕ} ∪ ρK4({0} :
tϕ → ϕ). If ϕ is K4-satisfiable, then Φ4 is K-satisfiable.

Proof Let M = 〈W , R, V , w0〉 be a rooted model of ϕ with 〈M, w0〉 |� ϕ and transitive
relationship R.

Let 〈 �W , �R〉 be the unraveling of 〈W , R〉 at w0. The function trm is a p-morphism from
〈 �W , �R〉 to 〈W , R〉. Let �M4 = 〈 �W , �R, �V4, (w0)〉 where
– �V4(p) = �V (p) for every propositional symbol p ∈ var(ϕ),
– �V4(tψ) = { �w ∈ �W | 〈 �M4, �w〉 |� ψ} for every surrogate tψ ∈ var(Φ4) \ var(ϕ) intro-

duced by ρK4.

We show that all clauses in Φ4 hold in �M4.
Let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ). By Lemma 1, Φ ⊆ Φ4, and by Lemma 5,

�M4 |� Φ.
All definitional clauses inΦ4 \ Φ are true in �M4 byLemma4. It remains to consider clauses

of the form (19) S′ : t◻ψ → ◻t◻ψ . Let �w ∈ �W [S′] with 〈 �M4, �w〉 |� t◻ψ . Then �w ∈ �V4(t◻ψ)

and by definition of �V4, 〈 �M4, �w〉 |� ◻ψ . Let �u ∈ �W such that �w �R�u. By Lemma 2,
〈M, trm( �w)〉 |� ◻ψ . Since trm is a p-morphism trm( �w)R trm(�u). As ◻ is a K4 modality,
〈M, trm(�u)〉 |� ◻ψ and by Lemma 2, 〈 �M4, �u〉 |� ◻ψ . By definition of �V4, �u ∈ �V4(t◻ψ) and
〈 �M4, �u〉 |� t◻ψ . As �u ∈ �W was an arbitrary world with �w �R�u, we have 〈 �M4, �w〉 |� ◻t◻ψ .
Thus, Clause (19) holds in �M4. ��
Theorem 7 Let ϕ be a modal formula. Let Φ4 = {{0} : tϕ} ∪ ρK4({0} : tϕ → ϕ). If Φ4 is
K-satisfiable, then ϕ is K4-satisfiable.

Proof Let M = 〈W , R, V , w0〉 be a rooted tree K model of Φ4. Let M4 = 〈W , R4, V 4, w0〉
be a Kripke structure such that

(a) R4 is the transitive closure of R, that is, R4 is the smallest relation onW such that R ⊆ R4

and for every u, v, w, u R4 v and vR4w implies u R4w;
(b) V 4(p) = V (p) for every propositional symbol.

Let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ). We show that M4 satisfies the three preconditions of
Lemma 6. By Lemma 6 this in turn implies that M4 |� ϕ.

– Condition (6a) holds as R ⊆ R4.
– For Condition (6b) let (20) S′ : t◻ψ → ◻η(ψ) be a modal clause in Φ4. Φ4 also contains

the clause (21) S′ : t◻ψ → ◻t◻ψ . By definition of ρK4, for all n ≥ min(S′), n ∈ S′. Let
w ∈ M[S′] such that 〈M4, w〉 |� t◻ψ . By Clause (20), 〈M4, w〉 |� ◻η(ψ) should hold.
Assume 〈M4, w〉 �|� ◻η(ψ), that is, there exists v ∈ W withwR4v and 〈M4, v〉 �|� η(ψ).
As V = V 4, 〈M, w〉 |� t◻ψ and by Clause (20) which is true in M , 〈M, w〉 |� ◻η(ψ).
Thus, for every world u ∈ W , ifwRu then 〈M, u〉 |� η(ψ). η(ψ) is either a propositional
symbol or its negation. As V = V 4, 〈M, u〉 |� η(ψ) iff 〈M4, u〉 |� η(ψ). That means
wRv cannot hold. Consequently, wR4v was introduced by the closure operation on R.
This in turn implies that there existv0, . . . , vm ,m > 1, such thatv0 = u,vm = v, for every
i , 1 ≤ i ≤ m, vi−1 Rvi holds, 〈M4, v0〉 |� t◻ψ , and 〈M4, vm〉 �|� η(ψ). Note that (22) for
every i , 0 ≤ i ≤ m, vi ∈ M[S′]. Since 〈M, v0〉 |� t◻ψ , using Clause (21) and Property
(22), by induction, we can show that for every i , 0 ≤ i ≤ m, 〈M, vi 〉 |� t◻ψ . From
〈M, vm−1〉 |� t◻ψ , vm−1 ∈ M[S′] and Clause (20), we then obtain 〈M, vm〉 |� η(ψ). As
V = V 4, 〈M, vm〉 |� η(ψ) iff 〈M4, vm〉 |� η(ψ). This contradicts 〈M4, vm〉 �|� η(ψ).
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– For Condition (6c) let (23) S : t◻ψ → ◻tψ be in Φ4, v,w ∈ W ,mlM (w) = ml ∈ S (i.e.,
w ∈ M[S]) and wR4v. We need to show that there exists a clause S′ : ¬tψ ∨ η f (ψ) in
Φ4 with v ∈ M[S′].
As in the previous case, wR4 v means that there exist v0, . . . , vm , m > 1, such that
v0 = w, vm = v, and for every i , 1 ≤ i ≤ m, vi−1 R vi holds. Then mlM (v) =
mlM (vm) = mlM (v0) + m = mlM (w) + m.
By definition of ρK4, for all n ≥ min(S), n ∈ S. That means Φ4 contains tψ at every
level ml ′ ≥ min(S) ≥ ml. This includes ml ′=mlM (w) + m=mlM (v). By Theorem 2,
Φ4 is definition-complete and therefore there exists a clause S′ : ¬tψ ∨ η f (ψ) in Φ4
with ml ′ ∈ S′ and v ∈ M[S′]. ��

5.5 Modal Logic K5

Theorem 8 Let ϕ be a modal formula. Let Φ5 = {{0} : tϕ} ∪ ρK5({0} : tϕ → ϕ). If ϕ is K5-
satisfiable, then Φ5 is K-satisfiable.

Proof Let M = 〈W , R, V , w0〉 be a model of ϕ with 〈M, w0〉 |� ϕ and Euclidean relation
R.

Let 〈 �W , �R〉 be the unraveling of 〈W , R〉 at w0. The function trm is a p-morphism from
〈 �W , �R〉 to 〈W , R〉. Let �M5 = 〈 �W , �R, �V5, (w0)〉 where
– �V5(p) = �V (p) for every propositional symbol p ∈ var(ϕ),
– �V5(tψ) = { �w ∈ �W | 〈 �M5, �w〉 |� ψ} for every surrogate tψ ∈ var(Φ5) \ var(ϕ) intro-

duced by rewriting, and
– �V5(t◇t◻ψ ) = { �w ∈ �W | 〈 �M5, �w〉 |� ◇◻ψ} for every supplementary propositional sym-

bol t◇t◻ψ ∈ var(Φ5) \ var(ϕ) introduced by rewriting.

We show that all clauses in Φ5 hold in �M5.
Let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ). By Lemma 1, Φ ⊆ Φ5, and by Lemma 5,

�M5 |� Φ. All definitional clauses in Φ5 \ Φ are true in �M5 by Lemma 4.
Next consider clauses of the form

involving supplementary propositional symbols. These are not in Φ. Let �w ∈ �W such
that 〈 �M5, �w〉 |� t◇t◻ψ . Then �w ∈ �V5(t◇t◻ψ ) and by definition of �V5, 〈 �M5, �w〉 |� ◇◻ψ . By

semantics of◇, there exists �u ∈ W such that 〈 �M5, �u〉 |� ◻ψ . By definition of �V5, �u ∈ �V5(t◻ψ)

and so 〈 �M5, �u〉 |� t◻ψ . By semantics of ◇, 〈 �M5, �w〉 |� ◇t◻ψ . Thus, Clause (24) holds in
�M5.
By Lemma 2, 〈 �M5, �w〉 |� ◇◻ψ iff 〈M, trm( �w)〉 |� ◇◻ψ . As ◇ and ◻ are K5 modal

operators, 〈M, trm( �w)〉 |� ◇◻ψ implies 〈M, trm( �w)〉 |� ◻ψ . By Lemma 2, 〈 �M5, �w〉 |�
◻ψ . By definition of �V5, �w ∈ �V5(t◻ψ) and 〈 �M5, �w〉 |� t◻ψ . So, Clause (26) holds in �M5.

As we have seen, if 〈 �M5, �w〉 |� t◇t◻ψ then 〈M, trm( �w)〉 |� ◇◻ψ As ◇ and ◻ are K5
modal operators, this implies 〈M, trm( �w)〉 |� ◻◇◻ψ . By Lemma 2, 〈M, trm( �w)〉 |�
◻◇◻ψ iff 〈 �M5, �w〉 |� ◻◇◻ψ . By the semantics of ◻, for every �u ∈ �V5, if �w �R�u
then 〈 �M5, �u〉 |� ◇◻ψ . By definition of �V5, �u ∈ �V5(t◇t◻ψ ). Again, by semantics of ◻,

〈 �M5, �w〉 |� ◻t◇t◻ψ . Thus, Clause (27) holds in �M5.

For Clause (25), we have to consider a world �w ∈ �W such that 〈 �M5, �w〉 |� ¬t◇t◻ψ .

Then �w /∈ �V5(t◇t◻ψ ) and by definition of �V5, 〈 �M5, �w〉 �|� ◇◻ψ . By the semantics of ◇,
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〈 �M5, �w〉 |� ◻¬◻ψ . By the semantics of ◻, for every �u ∈ �W , 〈 �M5, �u〉 |� ¬◻ψ , that is,
〈 �M5, �u〉 �|� ◻ψ . By the definition of �V5, �u /∈ �V5(t◻ψ) and therefore 〈 �M5, �u〉 �|� t◻ψ and
〈 �M5, �u〉 |� ¬t◻ψ . By the semantics of ◻, 〈 �M5, �w〉 |� ◻¬t◻ψ . So, we have 〈 �M5, �w〉 |�
¬t◇t◻ψ → ◻¬t◻ψ . Thus, Clause (25) holds in �M5. ��

Theorem 9 Let ϕ be a modal formula. Let Φ5 = {{0} : tϕ} ∪ ρK5({0} : tϕ → ϕ). If Φ5 is
K-satisfiable, then ϕ is K5-satisfiable.

Proof Let M = 〈W , R, V , w0〉 be a rooted tree K model of Φ5. Let M5 = 〈W , R5, V 5, w0〉
be a Kripke structure such that

(a) R5 is the Euclidean closure of R, that is, R5 is the smallest relation on W such that
R ⊆ R5 and for every u, v, w, u R5v and u R5w implies vR5w;

(b) V 5(p) = V (p) for every propositional symbol.

Let Φ = {{0} : tϕ} ∪ ρK({0} : tϕ → ϕ). We show that M5 satisfies the three preconditions of
Lemma 6. By Lemma 6 this in turn implies that M5 |� ϕ.

– Condition (6a) holds as R ⊆ R5.
– For Condition (6b) let (28) � : t◻ψ → ◻η(ψ) be a modal clause in Φ5.

Then Φ5 also contains the clauses

Let w ∈ W such that 〈M5, w〉 |� t◻ψ . By Clause (28), 〈M5, w〉 |� ◻η(ψ) should hold.
Assume 〈M5, w〉 �|� ◻η(ψ), that is, there exists v ∈ W withwR5v and 〈M5, v〉 �|� η(ψ).
As V 5 = V , 〈M5, w〉 |� t◻ψ implies 〈M, w〉 |� t◻ψ and since Clause (28) is true
in M , 〈M, w〉 |� ◻η(ψ). By semantics of ◻, for every world u ∈ W if wRu then
〈M, u〉 |� η(ψ). As η(ψ) is a propositional literal and V 5 = V 〈M, u〉 |� η(ψ) implies
〈M5, u〉 |� η(ψ). Thus, v must be a world such that w R v does not hold. So, wR5v

was introduced by the closure operation on R. This in turn means that there exist
u, v0, . . . , vm, w′

0, . . . , w
′
n,∈ W ,

m, n ≥ 1, such that v0 = u, vm = v, w′
0 = u, w′

n = w, for every i , 1 ≤ i ≤ m, vi−1 R vi
holds, for every j , 1 ≤ j ≤ n, w′

j−1 Rw′
j holds, 〈M, wn〉 |� t◻ψ , 〈M, vm〉 �|� η(ψ), and

wn Rvm does not hold. W.l.o.g. let the sequences be such that m + n is minimal among
all the sequences we could choose.
Because vm−1 R vm and 〈M, vm〉 �|� η(ψ), we have (33) 〈M, vm−1〉 �|� ◻η(ψ). By
Clause (28), 〈M, vm−1〉 |� t◻ψ → ◻η(ψ) and with Property (33) we then obtain
(34) 〈M, vm−1〉 |� ¬t◻ψ . Clause (29) � : t◇t◻ψ → t◻ψ implies that 〈M, vm−1〉 |�
¬t◇t◻ψ ∨ t◻ψ and with Property (34), we have 〈M, vm−1〉 |� ¬t◇t◻ψ . By Clause (32),
for every i , 0 ≤ i ≤ m, 〈M, vi 〉 |� ¬t◇t◻ψ ∨ ◻t◇t◻ψ , which allows us, by induction,
to establish that for every i , 0 ≤ i ≤ m − 1, 〈M, vi 〉 |� ¬t◇t◻ψ . Since v0 = u = w′

0,〈M, w′
0〉 |� ¬t◇t◻ψ .

Because w′
n−1Rw

′
n and 〈M, wn〉 |� t◻ψ , we have 〈M, w′

n−1〉 |� ◇t◻ψ . Clause (30) � :
¬t◇t◻ψ → ◻¬t◻ψ implies 〈M, w′

n−1〉 |� t◇t◻ψ ∨ ◻¬t◻ψ and with 〈M, w′
n−1〉 |�

¬◻¬t◻ψ we obtain 〈M, w′
n−1〉 |� t◇t◻ψ . Clause (29) � : t◇t◻ψ → t◻ψ then gives us

〈M, w′
n−1〉 |� t◻ψ . Using Clauses (29) and (30), we can then inductively show that for

every j , 0 ≤ j ≤ n − 1, 〈M, w′
j 〉 |� t◇t◻ψ . Consequently, 〈M, w′

0〉 |� t◇t◻ψ holds,
contradicting 〈M, w′

0〉 |� ¬t◇t◻ψ .
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– For Condition (6c) let (35) � : t◻ψ → ◻tψ be in Φ5, v,w ∈ W ,mlM (w) = ml ∈ S (i.e.,
w ∈ M[S]) and wR5v. We need to show that there exists a clause S′ : ¬tψ ∨ η f (ψ) in
Φ5 with v ∈ M[S′]. This is straightforward here as by definition of ρK5 the definitional
clause for tψ in Φ5 has the form � : ¬tψ ∨ η f (ψ) and v ∈ M[�] trivially holds. ��

5.6 Summary

Theorem 10 Let ϕ be a modal formula in simplified NNF, L ∈ {K, KB, KD, KT, K4, K5}, and
ΦL = {{0} : tϕ} ∪ ρL({0} : tϕ → ϕ). Then ϕ is L-satisfiable iff ΦL is K-satisfiable.

Proof Follows from Corollary 1, [21, Theorem 5.2], Theorems 4, 5, 6, 7, 8, 9 for the logics
KB, K4, K5, and corresponding results for the logics KD and KT.

6 From SNFsml to SNFml Using Bounds

As KSP does not support SNFsml , in our evaluation of the effectiveness of the reductions
defined in Sect. 4, we have used a transformation from SNFsml to SNFml . For KD, KT, KB such
a transformation is straightforward as the sets of modal levels occurring in the normal form
of modal formulae are all finite. Thus, instead of a single SNFsml clause S : ¬tψ ∨ η f (ψ),
we can use the finite set of SNFml clauses {ml : ¬tψ ∨ η f (ψ) | ml ∈ S}.

However, for K4 and K5 the sets of modal levels labeling clauses are in general not finite.
But just as in first-order clausal logic where for every unsatisfiable clause set, there exists
a finite subset of its Herbrand expansion that is unsatisfiable, for every unsatisfiable set of
SNFsml clauses Φ, there exists an unsatisfiable set of SNFsml clauses Φ ′ = {S′ : C | S :
C ∈ Φ} such that all sets of modal levels S′ are finite. The question is whether there is a
computable function that can generate Φ ′ from Φ.

This is indeed the case. For K4, we can take advantage of a bound established by Mas-
sacci [18] on the length of prefixes in SST depending on the modal formula ϕ under
consideration. We can use that bound to limit the maximal modal level occurring in a set of
modal levels S labeling SNFsml clauses. As all such sets are finite we can straightforwardly
use a finite set of SNFml clauses instead. In order to establish that this approach preserves
completeness, we show that for every closed tableaux for a modal formula ϕ in simplified
NNF in the SST (SST) calculus with prefixes limited by Massacci’s bound, we can construct
a resolution refutation from a set of SNFml clauses for ϕ where modal levels are subject
to a corresponding bound. Completeness then follows from Massacci’s result that the SST
calculus with that bound is still refutationally complete.

Formally, the SST calculus uses prefixed formulae, that is, pairs σ : ϕ, where the prefix σ

is a non-empty sequence of natural numbers and ϕ is a modal formula. Intuitively, σ “names”
a world that satisfies ϕ. In the following, σ is a prefix, σ0.σ1 the concatenation of the sequence
σ0 with the sequence σ1 and σ.n the concatenation of σ with n. If σ = n1.n2. . . . .nk−1.nk
is a prefix, the length of the prefix σ is k and is denoted by |σ |. For a logic L , an L-tableau
T in the SST calculus is a (binary) tree where each node is labeled with a prefixed formula.
Nodes other than the root node are labeled with a second prefixed formula, its premise, and
with the name of the SST rule that was applied to the premise to obtain the formula labeling
the node. An L-tableauT is an L-tableau for the modal formula ϕ if the root ofT is labeled
with 1 : ϕ. An L-branch B is a path from the root to a leaf while a partial L-branch B is
path from the root to some node in the tree. Given a partial L-branchB = (m0, . . . ,mk) and
a path P = (n1, . . . , nl) in T such that n1 is a child of mk , then B ◦ P denotes the partial
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Table 4 Single Step Tableaux rules for K4 and K5

L-branchB′ = (m0, . . . ,mk, n1, . . . , nl). The SST rules for K4 consist of (α), (β), (π), (K )
and (4) in Table 4 while the SST rules for K5 consist of (α), (β), (π), (K ), (4R), (4D) and
(Cxt1). Nodes are added to a tableau T and labeled as follows: if the antecedent σ : ψ of
a SST rule (r) labels a node on a branch B, then we extend the branch with nodes labeled
with the consequents of the rule and each of those nodes is labeled with σ : ψ as premise
and (r) as the rule that was applied to create the nodes. Note that rules (K ) and (4) can only
be applied to a formula σ : ◻ϕ if a prefix σ.n, introduced by an application of rule (π), is
already present in a branch. Analogously, for rule 4D . By a systematic tableau construction,
we mean an application of the procedure in [11, p. 374] adapted to SST rules.

A prefixed formula σ : ϕ is in a branch B, denoted by σ : ϕ ∈ B, if there is a node in
B labeled with σ : ϕ. A prefix is present in a branch B if there is a prefixed formula in B
with that prefix, and it is new if it is not present. A branch B is closed if there is a prefix σ

such that either (i) σ : false is present in B or (ii) for some propositional symbol p, both
σ : p and σ : ¬p are present in B. A tableau is closed if every branch is closed. A prefixed
formula σ : ϕ is reduced for rule (r) in B, if (r) has the form σ : ϕ/σ ′ : ϕ′ and σ ′ : ϕ′ is in
B; if (r) has the form σ : ϕ/σ1 : ϕ1|σ2 : ϕ2 and at least one of σ1 : ϕ1 and σ2 : ϕ2 is in B.

By B|pσ , B|mσ , and B|aσ , we denote the sets {l|l ∈ LP , σ : l ∈ B}, {◇l|l ∈ LP , σ : ◇l ∈
B} ∪ {◻l|l ∈ LP , σ : ◻l ∈ B}, and B|pσ ∪ B|mσ , respectively.

For a modal formula ϕ in simplified NNF let dϕ
◇

be the maximal nesting of ◇-operators
not under the scope of any ◻ operators in ϕ, nϕ

◻
be the number of ◻-subformulae in ϕ, and

nϕ
◇

be the number of◇-subformulae below ◻-operators in ϕ.

Theorem 11 A systematic tableau construction of a K4-tableau for a modal formula ϕ in
simplified NNF under the following Constraints (TC1) and (TC2)

(TC1) a rule (r) is only applicable to a prefixed formula σ : ψ in a branchB if the formula
is not already reduced for (r) in B;

(TC2) rule (π) is only applicable to prefixed formulae σ : ◇ψ with |σ | < 2+dϕ
◇

+nϕ
◇

×nϕ
◻

terminates in one of following states:

(1) all branches of the constructed tableau are closed and ϕ is K4-unsatisfiable or
(2) at least one branchB is not closed, no rule is still applicable to a labeled formula inB,

and ϕ is K4-satisfiable.

Proof Follows from Theorems 8.1 and 8.4 in [18]. Theorem 8.4 does not require that the
tableau construction is systematic, but then allows for a third possible termination state,
namely, that in every branch some rule is still applicable. The proof states explicitly that the
construction only terminates in this state if it was not systematic. We assume a systematic
construction and thereby exclude that third possibility. ��
Theorem 11 allows rule (π ) to be applied to a prefix σ of length 1+ dϕ

◇
+ nϕ
◇

× nϕ
◻
, creating

a prefix of length 2 + dϕ
◇

+ nϕ
◇

× nϕ
◻
. No prefix of greater length can occur in a tableau.
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Table 5 Inference rules of the Modal-Layered Resolution calculus

For K5, Massacci did not provide a bound on the length of prefixes in his SST calculus
that preserves refutational completeness. However, using the techniques that he applied to
prove such a bound for K4, Theorem 12 establishes a bound for K5.

Theorem 12 A systematic tableau construction of a K5-tableau for a modal formula ϕ in
simplified NNF under the following Constraints (TC1) and (TC2)

(TC1) a rule (r) is only applicable to a prefixed formula σ : ψ in a branchB if the formula
is not already reduced for (r) in B;

(TC2) rule (π) is only applicable to prefixed formulae σ : ◇ψ with |σ | < 2 + dϕ
◇

+ nϕ
◇

terminates in one of following conditions:

(1) all branches of the constructed tableau are closed and ϕ is K5-unsatisfiable or
(2) at least one branch B is not closed, no rule is still applicable to a labeled formula in

B, and ϕ is K5-satisfiable.

In order to establish a relationship between closed tableaux and resolution refutations of
a set of SNFml clauses, we formally define the modal-layered resolution calculus. Table 5
shows the inference rules of the calculus restricted to labels occurring in the clauses produced
by our reductions. For GEN1 and GEN3, if the modal clauses in the premises occur at the
modal level ml, then the literal clause in the premises occurs at the modal level, ml + 1.

Let Φ be a set of SNFml clauses. A (resolution) derivation from Φ is a sequence of sets
Φ0, Φ1, . . . where Φ0 = Φ and, for each i > 0, Φi+1 = Φi ∪ {D}, where D /∈ Φi is the
resolvent obtained from Φi by an application of one the inference rules to premises in Φi . A
(resolution) refutation of Φ is a derivation Φ0, . . . , Φk , k ∈ N, where 0 : false ∈ Φk .

To map a set of SNFsml clauses to a set of SNFml clauses, using a bound n ∈ N on the
modal levels, we define a function dbn on clauses and sets of clauses in SNFsml as follows:

dbn(S : ϕ) = {ml : ϕ | ml ∈ S and ml ≤ n}
dbn(Φ) = ⋃

S:ϕ∈Φ dbn(S : ϕ)

Note that prefixes in SST-tableaux have a minimal length of 1 while the minimal modal level
in SNFml clauses is 0. So, a prefix of length n in a prefixed formula corresponds to a modal
level n − 1 in an SNFml clause.
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Theorem 13 Let ϕ be a K4-unsatisfiable formula in simplified NNF. Let hbϕ
K4 = 2 + dϕ

◇
+

nϕ
◇

× nϕ
◻
. Let Φ4 = dbhbϕ

K4−1({{0} : tϕ} ∪ ρK4({0} : tϕ → ϕ)). Then there is a resolution
refutation of Φ4.

Proof (Sketch) We inductively construct a closed K4-tableau T for ϕ as follows:

1. The root node of T is labeled with the prefixed formulae 1 : ϕ.
2. While the tableau is not closed do:

LetB be the left-most branch of T that is not closed yet, and let σ be the longest prefix
of any prefixed formula in B.

(a) If rule (r), r ∈ {α, β}, can be applied to a formula σ : ψ in B such that σ : ψ is not
already reduced in B, then extend B by applying (r) to σ : ψ ;

(b) If every formula σ : ψ to which a rule (r), r ∈ {α, β}, could be applied is already
reduced in B, then B|pσ must be a consistent set of propositional literals (otherwise
Bwould be closed),B|mσ has the form {◇ϕ1, . . . ,◇ϕm,◻ψ1, . . . ,◻ψn}withm > 0
andn ≥ 0, and there exists at least one j , 1 ≤ j ≤ m, such that {◇ϕ j ,◻ψ1, . . . ,◻ψn}
is K4-unsatisfiable. We pick exactly one such j . First, extendB by applying rule (π)
to σ : ◇ϕ j , adding a node labeled with σ ′ : ϕ j , where σ ′ = σ.n j for some σ.n j

that is new in B. Second, extend B by applying rule (K ) to σ : ◻ψ1, …, σ : ◻ψn ,
respectively, adding nodes labeled with σ ′ : ψl , 1 ≤ l ≤ n. Third, extend B by
applying rule (4) to σ : ◻ψ1, …, σ : ◻ψn , respectively, adding nodes labeled with
σ ′ : ◻ψl , 1 ≤ l ≤ n.

We can prove that it is indeed possible to construct a closedK4-tableau in themanner described
above. Then, according to Theorem 11, the construction will terminate with a closed tableau
that only contains prefixes σ with |σ | ≤ hbϕ

K4.

Case (a): Assume there are no applications of rule (π ) in the construction of T . As only an
application of rule (π) would introduce a new prefix in a tableau derivation, the only prefix
occurring in the tableaux is 1 with |1| = 1 ≤ 2 ≤ hbϕ

K4.
As rule (π) was not used, only rules (α) and (β) have been used. We can prove that the
propositional formula ϕ̄ obtained from ϕ by replacing all subformulae of ϕ of the form◻ψ by
t◻ψ and all subformulae of the form◇ψ by t◇ψ is unsatisfiable. Then Φ̄4 = db

hbϕ̄
K4−1

({{0} :
tϕ̄}∪ρK4({0} : tϕ̄ → ϕ̄)) ⊆ Φ4 and Φ̄4 only contains literal clauses with label 0 independent

of the bound hbϕ̄
K4. As ϕ̄ is unsatisfiable somust be Φ̄4 and theremust be a resolution refutation

of Φ̄4 using only the inference rule LRES due to the refutational completeness of LRES, for
sets of literal clauses.
Case (b): Let N be the set of all nodes on T labeled with rule (π), i.e., each of those nodes
was added by an application of rule (π ).
LetB be the set of all partial branches such that for every node n in N ,B contains a partial
branch (n0, . . . , nk), 0 ≤ k, where n0 is the root node of T and n is the successor node of
nk in B. Each partial branch in B represents a ‘state’ that a branch of T was in just before
rule (π) was applied in our construction. We define a well-founded partial order ≺ on B as
B ≺ B′ iff B is an extension of B′.
We first show that for every B ∈ B, we can derive a literal clause ml : CB from Φ4 that
subsumes ml : ¬t◇ϕB ∨ ∨

({¬t◻ψ | ◻ψ ∈ B|mσB }) where ml = |σB | − 1. The proof
proceeds by induction on 〈B,≺〉 and the derivation of the literal clause ml : CB involves
the rules GEN1, GEN2 and GEN3.
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Then consider the closed tableau T with root node nϕ . Let T ′ be the subtree of T with root
node nϕ and containing only those nodes and branches formed by applications of rules (α)
and (β) to nϕ and its descendants.
Each branch B of T ′ such that the propositional formula

∧
B|p1 is satisfiable must be an

element ofB with associated literal clause 0 : CB . Let C be the set of all those clauses.
With ϕ̄ and Φ̄4 defined as in Case (a), we can then show that Φ̄4 ∪ C is unsatisfiable. As
Φ̄4 ⊆ Φ4 and all clauses in C are derivable from Φ4, Φ4 is unsatisfiable and there must exist
a resolution refutation of it. ��
In analogy, we can also prove a corresponding result for K5 with the bound established in
Theorem 12.

Theorem 14 Let ϕ be a K5 unsatisfiable formula in simplified NNF. Let hbϕ
K5 = 2+dϕ

◇
+nϕ
◇
.

Let Φ5 = dbhbϕ
K5−1({{0} : tϕ} ∪ ρK5({0} : tϕ → ϕ)). Then there is a resolution refutation

of Φ5.

Example 2 Reconsider the K4-unsatisfiable formula ϕ = ◇q ∧◇◇(◻(p ∧◇◇¬p) ∧◇q)

from Example 1. We have dϕ
◇

= 3, nϕ
◇

= 2, and nϕ
◻

= 1. So, hbϕ
K4 = 2+ dϕ

◇
+ nϕ

◇
× nϕ

◻
=

2 + 3 + 2 × 1 = 7. By Theorem 11 a systematic tableau construction of a K4-tableau for
ϕ where rule (π) is only applicable to prefixed formulae σ : ◇ψ with |σ | < hbϕ

K4 should
terminate with a closed tableau. Below is such a tableau.

Note that the bound is not reached in this particular tableau. The bound is a worst case,
and tableaux requiring such a bound exist for the input formula ϕ.

From the resulting clauses of Φϕ = {{0} : tϕ} ∪ ρK4({0} : tϕ → ϕ) in Example 1 and
dbhbϕ

K4−1 = db6(Φϕ), the set of clauses in SNFml of ϕ is as follows, where ψ subformulae
are defined as in Example 1.
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A refutation for this set of clauses is the following.

Note that the refutation uses t◻ψ4 → ◻tψ4 twice, in the form of clauses (61) and (63),
corresponding to the two applications of (4) in the tableau. Note also that the maximal level
of a clause involved in the refutation is 5 (Clause (76)) and therefore equal to the length of
the longest prefix occurring in the tableau, 1.2.1.1.1.1, minus one.

7 ComparisonWith RelatedWork

The approaches most closely related to ours are Kracht’s reductions of normal modal logics
to basic modal logic [16, 17], the global modal resolution calculus [20], and Schmidt and
Hustadt’s axiomatic translation principle for translations of normalmodal logics to first-order
logic [31].

Thefirst significant difference to our approach is thatKracht’s reductions and the axiomatic
translation exclude the modal operator ◇ from the language and only consider the modal
operator ◻. In order to present Kracht’s approach, we need some additional notions. Let
sf(ϕ),dg(ϕ), and |S| denote the set of all subformulae of ϕ, the maximum nesting of modal
operators in ϕ, and the cardinality of the set S, respectively. Let◇0ψ = ◻0ψ = ◻<1ψ = ψ ,
◻

<n+1ψ = (ψ ∧ ◻◻<nψ), ◻n+1ψ = ◻◻nψ , and◇n+1ψ = ◇◇nψ . We can then define a
reduction function ρK

L for a normal modal logic L in {KB, KD, KT, K4} as follows:

ρK
L(ϕ) =

{
ϕ ∧ ◻<|sf(ϕ)|+1PK

K4(ϕ), for L = K4

ϕ ∧ ◻<dg(ϕ)+1PK
L (ϕ) otherwise

where PK
KB(ϕ) = {¬ψ → ◻¬◻ψ | ◻ψ ∈ sf(ϕ)} PK

KD(ϕ) = {¬ ◻ false}
PK
K4(ϕ) = {◻ψ → ◻◻ψ | ◻ψ ∈ sf(ϕ)} PK

KT(ϕ) = {◻ψ → ψ | ◻ψ ∈ sf(ϕ)}
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Table 6 Inference rules in [20] for K5 (EUC1 and EUC2)

Kracht shows thatϕ is L-satisfiable iffρK
L (ϕ) isK-satisfiable. There are three differences to our

approach. First, PK
L (ϕ) will include an axiom instance for every occurrence of a subformula

¬◻ψ , equivalent to◇¬ψ , in ϕ. In contrast, our approach requires no logic specific treatment
of such subformulae. Second, the use of ◻<n PK

L (ϕ) in ρK
L means that the axiom instance is

available at every modal level. This means, for example, that for ϑ1 = ◇100(¬p ∧ ◻p), the
formula ρK

KT(ϑ1) contains the axiom instance ◻p → p over 100 times, although it is only
required at the level at which ◻p occurs. Third, this is further compounded if the formula ψ

in ◻ψ is itself a complex formula. We try to avoid that by using a surrogate propositional
symbol tψ instead, but this will only have a positive effect if the definitional clauses for tψ
do not have to be repeated.

The global modal resolution (GMR) calculus operates on SNFK clauses, that is, clauses
of the form

◻
∗(start → ∨r

b=1 lb) ◻
∗(true → ∨r

b=1 lb) ◻
∗(l ′ → ◻l) ◻

∗(l ′ → ¬◻l)
where l, l ′, lb are propositional literals with 1 ≤ b ≤ r , r ∈ N, and ◻∗ is the universal
operator. The calculus has specific inference rules for normal modal logics such as KB, KD,
KT, K4, K5. Table 6 shows the two additional rules for K5, the only logic for which there are
rules for both◻ and¬◻¬, i.e.,◇. These inference rules can be seen to perform an ‘on-the-fly’
computation of a reduction. Note that the clauses produced by PK5 differ from those produced
by GMR for K5. Implicitly, our results here also show that it should be possible to eliminate
EUC1 from the GMR calculus.

For the axiomatic translation, we only present the function PRS
L that computes the logic

dependent first-order clausal formulae that are part of the overall translation.

PRS
KB(◻ψ) = {∀x(¬Q◻ψ(y) ∨ ¬R(x, y) ∨ Qψ(x)) | ◻ψ ∈ sf(ϕ)}

PRS
KD(◻ψ) = {∀x(¬Q◻ψ(x) ∨ Q¬◻¬ψ(x)) | ◻ψ ∈ sf(ϕ)}

PRS
KT (◻ψ) = {∀x(¬Q◻ψ(x) ∨ Qψ(x)) | ◻ψ ∈ sf(ϕ)}

PRS
K4 (◻ψ) = {∀xy(¬Q◻ψ(x) ∨ ¬R(x, y) ∨ Q◻ψ(y)) | ◻ψ ∈ sf(ϕ)}

PRS
K5 (◻ψ) = {∀xy(¬Q◻ψ(y) ∨ ¬R(x, y) ∨ Q◻ψ(x)),

∀xy(¬Q◻¬◻ψ(y) ∨ ¬R(x, y) ∨ Q◻¬◻ψ(x)) | ◻ψ ∈ sf(ϕ)}
Here the variables x and y range over worlds. The predicate symbols Qψ correspond to our
surrogate symbols tψ . The clausal formulae used in the treatment of KT and K4 are translations
of the SNFml clauses we use (or vice versa). KB and K5 are handled in a different way as the
first-order clausal formulae refer directly the accessibility relation and can therefore more
easily express the transfer of information to a predecessor world. The universal quantification
over worlds also means that the constraints expressed by the formulae hold at all modal levels
without the need of any repetition.

In Sect. 8, we will also use the relational and semi-functional translation of modal logics
to first-order logic combined with structural transformation to clause normal form. In both
approaches ◻ψ is translated as ∀xy(¬Q◻ψ(x) ∨ ¬R(x, y) ∨ Qψ(y)), while ◇ψ becomes
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∀x∃y(¬Q◇ψ(x) ∨ (R(x, y) ∧ Qψ(y))) and ∀x∃α(¬Q◇ψ(x) ∨ (def(x) ∧ Qψ([xα]))) in
the relational and semi-functional translation, respectively. Here, the variables x and y also
range over worlds while α and β range over partial accessibility functions.

Then, depending on the modal logics, further formulae representing the semantic prop-
erties of the accessibility R are added. For the relational translation these will simply be the
formulae in the fourth column of Table 1. The semi-functional translation uses collections of
partial accessibility function in addition to the accessibility relation. A predicate def is used
to represent on which worlds a partial accessibility function is defined. For each modal logic
there is then again a background theory consisting of formulae over def and R that represents
the properties of the underlying accessibility relation which is added to the translation of
a formula. For example, for K5 the background theory is: ∀xy∀αβ((¬def(x) ∨ def(y)) ∧
(¬def(w0)∨R(w0, [w0α]))∧(¬def(x)∨¬def(y)∨R([xα], [yβ]))),where w0 is a constant
representing the root world in a rooted Kripke structure.

In [35], Sebastiani and Venscovi present an encoding of K into propositional logic. In
this encoding, each propositional symbol produced by their reduction corresponds to labeled
formulae in each possible world following closely the application of the tableau rules for K
given in [18]. As noted by the authors, such encoding leads to an exponential blow-up in the
size of a formula in the worst case (if P �= NP). In practice, however, their implemented tool
Km2SAT , combined with state of the art SAT solvers, performed well in most of the usual
benchmarks. The InkreSATprover [15] provides decision procedures forK,KT,K4 andS4, that
is, a subset of the logics consideredhere. Their approach also reduces the satisfiability problem
for a particular logic into the satisfiability problem for propositional logic. Differently from
[35], the translation is interleaved with calls to the underlying SAT prover; the result from
the SAT prover is then incrementally used to guide the translation. This helps with earlier
simplification and better performance when compared with Km2SAT . In the worst case,
however, as with [35], the translation is exponential in the size of the input formula. In [24],
we have compared InKreSAT and KSP, Km2SAT does not appear to be publicly available
anymore. The evaluation indicates InKreSAT has the second best performance when all the
benchmarks were considered, but less impressive results on the LWB benchmark with the
fifth best performance among the six competing tools.

8 Evaluation

For our evaluation, we have restricted ourselves to fully automatic provers with built-in
support for all the six logicswe have considered. By ‘built-in support,’ wemean the possibility
to specify the logic either via command-line option or via a configuration option within an
input file together with modal formula.

We have compared the performance of the following approaches: (i) the combination of
our reductions with the modal-layered resolution (MLR) calculus for SNFml clauses [21],
R+MLR calculus for short, implemented in the modal theorem prover KSP, with three dif-
ferent refinements for resolution inferences on labeled propositional clauses; (ii) the global
modal resolution (GMR) calculus, also implemented in KSP, with three different refinements
for resolution inferences on propositional clauses; (iii) the combinations of the relational and
semi-functional translation of modal logics to first-order logic with ordered first-order res-
olution implemented in the first-order theorem prover SPASS; (iv) the higher-order logic
prover LEO-III with E 2.6 as external reasoner.

In total this gives us nine different approaches to compare. The axiomatic translation is
currently not implemented in SPASS. Other provers, such as LWB [13] and MleanCoP [27],
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do not have built-in support for the full range of logics considered here. LoTREC 2.0 [8]
supports all the logics, but is not intended as automatic theorem prover.

KSP [19] implements the reductions presented in Sect. 3, the transformation from SNFsml

to SNFml presented in Sect. 6, as well as a normal form transformation of modal formulae
to sets of SNFK clauses, required for the GMR calculus. It implements both the R+MLR
and the GMR calculus. Resolution inferences between (labeled) propositional clauses can
either be unrestricted (cplain option), restricted by an ordering (cord option), that is,
clauses can only be resolved on their maximal literals with respect to an ordering chosen by
the prover in such a way to preserve completeness, restricted to negative resolution (cneg
option), that is, one of the premises in an inference has to be a negative clause, or restricted to
positive resolution.We do not include the last option in our evaluation as it typically performs
worse. KSP also implements a range of simplification rules that are applied tomodal formulae
before their transformation to normal form. Of those, we have enabled pure literal elimination
(early_ple option), simplification using the Box Normal Form [28] and Prenex Normal
Form (bnfsimp and prenex options) [22]. For clause processing, unit resolution and pure
elimination are enabled (unit, lhs_unit, and ple options).

SPASS 3.9 [38, 39] supports automated reasoning in extended modal logics, including all
logics considered here, PDL-like modal logics as well as description logics. It includes eight
different translations of modal logics to first-order logic. In our evaluation, we have used the
relational translation and the semi-functional translation. For the local satisfiability problem
in KB to K5, for the relational translation, SPASS adds the first-order frame properties given
in Table 1 while for the semi-functional translation, it adds the background theories devised
by Nonnengart [26]. For the transformation to first-order clausal form, we have enabled
renaming of quantified subformulae. The only inference rules used are ordered resolution
and ordered factoring, the reduction rules used are condensing, backward subsumption, and
forward subsumption. For the relational and semi-functional translation for K, KB, KD, and KT
we thereby obtain a decision procedure, while for the other logics we do not. For K4 and K5,
the fragment of first-order clausal logic corresponding to the semi-functional translation of
modal formula and their background theories is decidable by ordered resolution with selec-
tion [32]. However, the non-trivial ordering and selection function required is not currently
implemented in SPASS.

LEO-III [9, 36] makes use of a semantic embedding approach [10] to automatically trans-
form modal formulae into corresponding HOL formulae. This embedding is most closely
related to the relational translation in that it employs a representation of the worlds and
accessibility relationship in Kripke frames and deals with modal logics other than the basic
modal logicK by adding the corresponding frame properties. LEO-III implements extensional
paramodulation for higher-order logic [37] but can also collaborate with external reasoners
during proof search. In our evaluation, we have exclusively used E 2.6 [33, 34] as external
reasoner.

For our evaluation, we have chosen the LWB basic modal logic benchmark collection [2],
with 20 formulae in each of 18 parameterized classes. For K, all formulae in 9 classes are
satisfiable while all formulae in the other 9 classes are unsatisfiable. In simplified NNF, 63%
of modal operators are ◻ and 37% are◇ operators. We have used the collection for each of
the six logics. If a formula is unsatisfiable in K then it remains unsatisfiable in the other five
logics, while the opposite is not true. As we move to logics other than K, it is also no longer
the case that all formulae in a class have the same satisfiability status.

Table 7 shows the results of our evaluation. The first column lists the six logics. We then
separate the 360 LWBbenchmark formulae into satisfiable (S) and unsatisfiable (U) formulae
with respect to each logic. This gives us 12 categories. The third column then indicates the
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Table 7 Experimental results on LWB benchmark collection

L S Total KSP
(GMR,
cneg)

KSP
(GMR,
cord)

KSP
(GMR,
cplain)

LEO-
III

K S 180 112 139 93 0
K U 180 154 156 152 58
KD S 180 125 145 119 0
KD U 180 154 156 152 54
KT S 100 53 69 38 0
KT U 260 234 238 225 166
KB S 122 53 81 42 0
KB U 238 197 208 198 121
K4 S 161 40 60 38 0
K4 U 199 146 144 148 75
K5 S 60 17 15 10 0
K5 U 300 256 256 261 243

All S 803 400 509 340 0
All U 1357 1141 1158 1136 717

L S Total KSP
(R+MLR,
cneg)

KSP
(R+MLR,
cord)

KSP
(R+MLR,
cplain)

SPASS
(semi-
functional)

SPASS
(relational)

K S 180 142 158 138 92 97
K U 180 159 158 156 134 122
KD S 180 141 156 133 107 103
KD U 180 155 156 155 136 130
KT S 100 47 56 27 47 39
KT U 260 231 238 222 222 199
KB S 122 26 75 16 31 23
KB U 238 207 214 201 159 169
K4 S 161 39 53 17 0 0
K4 U 199 155 132 153 109 35
K5 S 60 8 10 4 7 0
K5 U 300 255 247 247 255 124

All S 803 403 508 335 284 262
All U 1357 1162 1145 1134 1015 779

number of formulae in each. The last nine columns in the table show how many formulae
within a category each of the approaches was able to solve with a time limit of 100 CPU
seconds for each formula. In the last two lines of the table, we sum up the results for all logics.
Benchmarking was performed on a PC with an AMD Ryzen 5 5600X CPU@ 4.60GHz max
and 32GBmain memory using Fedora release 34 as operating system. As we can see, the two
best performing approaches are the GMR calculus with the ordered resolution refinement
(cord) and the R+MLR calculus with the ordered resolution refinement, with the former
performing slightly better. Each approach achieves the highest number of solved formulae in
3 categories and they are joint best on a further two categories. The GMR calculus is better
on satisfiable formulae in almost all logics as it avoids the duplication of clauses introduced
by the transformation from SNFsml to SNFml required for the R+MLR calculus. On the other
hand, the R+MLR calculus is better onmost categories of unsatisfiable formulae. For SPASS,
overall, we see a clear advantage of the semi-functional translation over the relational one, on
both satisfiable and unsatisfiable formulae. LEO-III performs reasonablywell on unsatisfiable
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formulae but cannot solve anyof the satisfiable formulae. It is interesting to see that it performs
better than SPASS with the relational translation on unsatisfiable K4 and K5 formulae. We
put this down to the use of E as external prover. Out of 717 formulae solved by LEO-III, E
provides the proof for 573 of those, including 267 out of 318 unsatisfiable K4 and K5 formulae
solved. This shows that E solves considerably more of those formulae than SPASS with 159
formulae.

It is worth pointing out that the results for KSP in Table 7 differ from those in [29]. First,
improvements have been made to the implementation of the GMR calculus meaning it solves
more formulae now. Second, in [29], we have used bounds for the reduction from SNFsml to
SNFml for K4 and K5 that were sufficient for the LWB benchmark formulae, but lower than
the worst case bounds we established in Sect. 6. Here, we use the latter which results in fewer
formulae being solved by the R+MLR calculus.

9 Conclusion and FutureWork

We have presented new reductions of propositional modal logics KB, KD, KT, K4, K5 to
Separated Normal Form with Sets of Modal Levels. We have shown experimentally that
these reductions allow us to reason effectively in these logics.

The obvious next step is to consider extensions of the basic modal logic K with combina-
tions of the axioms B,D, T, 4, and 5. Unfortunately, a simple combination of the reductions for
each of the axioms is not sufficient to obtain a satisfiability-preserving reduction for the such
modal logics. An example is the simple formula ¬p∧◇◇◻p which is KB4-unsatisfiable. If
we define

PKB4(S : t◻ψ → ◻ψ) = PKB(S : t◻ψ → ◻ψ) ∪ PK4(S : t◻ψ → ◻ψ)

�KB4(S : t◻ψ → ◻ψ) = δKB4(�, ψ),

that is, PKB4 is the union of PKB and PK4, then the clause set obtained from {{0} : t0}∪ρKB4({0} :
t0 → ¬p∧◇◇◻p) is K-satisfiable. The same issue also occurs in the axiomatic translation of
modal logics to first-order logic where the translation for KB4 is not simply the combination
of the translations for KB and K4 [31, Theorem 5.6]. We are currently exploring solutions to
this problem.

Regarding practical applications, it would be advantageous to have an implementation
of a calculus that operates directly SNFsml clauses. This would greatly reduce the number
of inference steps performed on satisfiable formulae and simplify proof search in general.
Again, such an implementation is future work.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
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