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Abstract
We investigate the proof complexity of modal resolution systems developed by Nalon and
Dixon (J Algorithms 62(3–4):117–134, 2007) andNalon et al. (in: Automated reasoning with
analytic Tableaux and relatedmethods—24th international conference, (TABLEAUX’15), pp
185–200, 2015), which form the basis ofmodal theoremproving (Nalon et al., in: Proceedings
of the twenty-sixth international joint conference on artificial intelligence (IJCAI’17), pp
4919–4923, 2017).We complement these calculi by a new tighter variant and show that proofs
can be efficiently translated between all these variants, meaning that the calculi are equivalent
from a proof complexity perspective. We then develop the first lower bound technique for
modal resolution using Prover–Delayer games, which can be used to establish “genuine”
modal lower bounds for size of dag-like modal resolution proofs. We illustrate the technique
by devising a newmodal pigeonhole principle, which we demonstrate to require exponential-
size proofs in modal resolution. Finally, we compare modal resolution to the modal Frege
systems of Hrubeš (Ann Pure Appl Log 157(2–3):194–205, 2009) and obtain a “genuinely”
modal separation.

Keywords Modal logic · Resolution · Proof complexity · Lower bounds · Prover–Delayer
games · Pigeonhole principle

1 Introduction

The central problem in proof complexity is to determine the size of the smallest proof for
a given formula in a specified proof system, typically defined through a set of axioms and
inference rules. Since its inception, proof complexity has enjoyed close links to computational
complexity [31] through the aim of separating complexity classes (sometimes referred to as
Cook’s programme [29]) and to first-order logic through the tight correspondence between
proof systems and theories of bounded-arithmetic (cf. [8,30,44]).
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2 S. Sigley, O. Beyersdorff

Recently, one of the major motivations in proof complexity has been its close connection
to SAT solving [29,54]. SAT solvers have turned into ubiquitous tools for the solution of
hard computational problems from almost all application domains [46], yet a theoretical
understanding of their effectiveness is only initially developed. The main approach comes
through proof complexity. The trace of the run of a SAT solver on an unsatisfiable formula
can be interpreted as a proof of unsatisfiability, whereby each solver implicitly defines a proof
system for unsatisfiable formulas. Modern SAT solvers using conflict-driven clause learning
(CDCL) correspond to propositional resolution in this sense [5,55]. Thus, understanding the
complexity of resolution refutations directly relates to the performance of SAT solvers. In
particular, lower bounds on the size of resolution proofs correspond to lower bounds on the
running time of SAT solvers.

In the last decade, the success of SAT solving has been transferred tomore powerful logics.
In particular, there has been a surge of research on quantified Boolean formulas (QBF), both
in terms of solving [22,41,45] and in a proof complexity analysis of their associated proof
systems [10,12,14].

This paper focuses on modal logic and their resolution calculi. Modal logics play a key
role in computer science as they provide increased expressive flexibility for many application
scenarios. This has led to a wealth of modal logics, including, e.g. the important temporal
and description logics. Consequently, a vast number of logical calculi exist for different
modal logics [36], in terms of resolution calculi [1,35,48–50], Frege systems [40,42], sequent
systems [62] or tableaux calculi [37]. Many of these—and in particular the modal resolution
system [50]—have also been used as the underlying principle for implementations, giving
rise to efficient algorithms for automated theorem proving for these logics [47,49,51,59].

It is therefore rather surprising that there is only comparatively little work on the proof
complexity of these systems. Probably the most important proof complexity results on modal
logics concern exponential lower bounds for modal Frege systems [40,42]. From a proof
complexity perspective, Frege systems are quite strong calculi comprised of logical axioms
and rules [31]. To show lower bounds for propositional Frege constitutes a major open
problem [6]. At first sight, it might therefore seem rather surprising that [40,42] obtain
unconditional and exponential lower bounds for modal Frege, which augment propositional
Frege with extra rules. However, the lower bounds in [40,42] are obtained for modal formulas
and actually give a lower bound purely on the number of modal steps. This already shows
that proof complexity of modal logics can present a rather different picture in comparison to
propositional proof complexity (cf. also [23] for a discussion).

In contrast to these exciting results on modal Frege systems, to the best of our knowledge,
there has been no research whatsoever on the proof complexity of modal resolution systems.
This is in stark contrast to the propositional setting where the main bulk of research has been
devoted to propositional resolution and its variants [60]. As mentioned above, understanding
proof size in resolution is the main avenue towards a complexity analysis of solvers, both for
SAT [54] as well as for resolution-based modal provers [51].

In this work, we aim to initiate a proof complexity analysis of modal resolution systems.
Our main contributions can be summarised as follows:

1. Comparing modal resolution systems We start with reviewing the modal resolution
systems of Nalon and Dixon [48] and Nalon et al. [50]. These systems build on propositional
resolution and augment it by several rules allowing to perform resolution on modal pivots.
The calculi work on suitable normal forms (called separated normal forms) and come in
two variants: the basic calculus Kn-Res of [48] and the “layered” modal resolution system
Kml -Res of [50]. The latter is a restricted version of the former. In Kml -Res, each clause is
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Proof Complexity of Modal Resolution 3

equipped with a label, indicating the modal level of a clause, i.e. the number of modalities
in which scope the clause is. Resolution steps are only allowed in Kml -Res between clauses
of matching modal levels. This calculus was introduced in [50] to streamline derivations and
result in better modal provers [51].

Here we introduce one further restriction ofKml -Res, where we not only record the modal
level of clauses, but the actual modal context, i.e. the precise sequence of modalities �ai and
♦a j (as we work in a multimodal setting). In our new calculusKmc-Res, resolution can only
be performed between clauses with “unifiable” modal contexts (Definition 13). We show that
Kmc-Res is sound and complete (Theorem 3).

We then use the standard proof complexity concept of simulations [31] to show that proof
size in all three calculiKn-Res,Kml -Res, andKmc-Res is polynomially related andmoreover,
proofs can be efficiently translated between the three systems (Theorem 4). This mainly boils
down to showing thatKmc-Res p-simulatesKn-Res, i.e. we show that sub-derivations allowed
in Kn-Res but forbidden in Kmc-Res are not useful and can be pruned from the proofs. The
other simulations ofKmc-Res byKml -Res andKml -Res byKn-Res follow by definition as the
systems extend each other. Thus, from a proof complexity standpoint, all the three systems
are equivalent. This has the advantage that when aiming at lower bounds we can concentrate
on the streamlined system Kmc-Res.

2.Agame-based lower bound technique formodal resolutionMost research effort in proof
complexity is directed towards showing lower bounds for the proof size of specific families
of formulas. Arguably, what is even more important than the actual lower bounds is to obtain
generally applicable lower bound techniques. While a host of techniques is available for
propositional resolution [6,60], we here devise the first such technique for modal resolution.

Our technique uses the idea of a game between a Prover, who wants to establish the
unsatisfiability of the formula, and a Delayer who claims to know a model and aims to play
consistently as long as possible. In the course of the game, the Prover poses questions on the
structure of the purported model. The Delayer does not answer this question himself, instead
deferring the choice to the Prover and earning some points proportional to the progress that
Prover makes towards a contradiction.

We can then show that if Delayer has a strategy to earn at least n points (where n is
an integer) on a modal formula φ (in any game against every possible Prover), then each
refutation of φ in Kmc-Res has size at least 2n (Theorem 5). For this, we devise modal
decision trees (Definition 25), which represent partial Kripke models. These modal decision
trees correspond to the partial models constructed during a game, and the size of modal
decision trees is proportional to the number of modal resolution steps inKmc-Res refutations
(Proposition 4). The lower bound then follows as the Delayer’s score provides a lower bound
for the logarithm of the size of the modal decision trees.

Our game is inspired by similar Prover–Delayer games for propositional resolution
[18,19,57] and QBF [17]. However, there are crucial differences: in the propositional and
QBF settings, Prover asks for values of propositional variables, whereas here we do not ask
for variable assignments, but for branchings in Kripke frames. This implies (via the corre-
sponding notions of decision trees) that the propositional and QBF games measure the size
of tree-like resolution proofs, where derived clauses may not be reused in proofs. Thus, the
propositional games only provide lower bounds for the weaker tree-like model. In contrast,
our game here yields lower bounds for the unrestricted dag-like model of proofs, which in
the propositional case is known to admit exponentially shorter proofs [27].

3. An exponential lower bound formodal resolutionWe illustrate the lower boundmethod
on a new family of formulas, which we call the modal pigeonhole principle (MPHP, Defi-
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4 S. Sigley, O. Beyersdorff

nition 26). These formulas express the classical pigeonhole principle (PHP). However, in
contrast to the well-known propositional encoding, our formulas only encode the holes
through propositional variables, while the pigeons are encoded through the accessibility
relation in the Kripke frames.

Devising a suitable Delayer strategy that scores log n! points, we show that proofs of
MPHP in modal resolution require not just exponential size, but indeed proofs of size n! in
the dag-like model. This is in contrast to the propositional proof complexity of PHP, which
is known to be 2�(n log n) in tree-like [32], but only 2�(n) in dag-like propositional resolution
[38].

We also highlight that our game only counts the number of modal resolution steps, but
ignores propositional resolution steps. Thus, the lower bound shown here is a “genuine”
modal lower bound and not just a lifted propositional hardness result.1

4. Comparing modal resolution to modal Frege Finally, we compare the modal resolution
systems considered here to the modal Frege system of [40]. As is to be expected, we con-
firm that modal Frege p-simulates modal resolution. Using an argument similar to [28], we
show that the modal pigeonhole principle becomes easy in modal Frege, thus providing an
exponential separation. Of course, such a separation already follows from the separation of
the propositional fragments (resolution vs Frege [28,38]). However, we are interested here
in a genuinely modal separation that only counts modal inferences, and MPHP are the first
formulas to provide this.

In this connection, it is interesting to mention the modal clique-colour formulas investi-
gated by Hrubeš and shown to be hard in modal Frege [40]. While these formulas are still
hard for modal resolution—and hence do not separate modal resolution and modal Frege—
we note that their hardness for modal resolution cannot be shown via our game technique.
Thus, in contrast to the case of propositional and QBF resolution, where the asymmetric
Prover–Delayer game is known to precisely characterise tree-like resolution size [17,18], our
game here does not provide a similar characterisation in the modal setting.

Organisation The paper is organised as follows. In Sect. 2, we give a brief overview ofmodal
logic (for a full introduction, see [25]) and proof complexity. In Sect. 3, we review the two
clausal modal resolution systems Kn-Res [48] and Kml -Res [50], which we complement in
Sect. 4 by a new proof systems Kmc-Res. In Sect. 5, we show that Kn-Res, Kml -Res, and
Kmc-Res are all equivalent in terms of proof complexity. In Sect. 6, we develop our lower
bound technique through games, which we apply in Sect. 7 to show the hardness of the new
modal pigeonhole formulas for modal resolution. Finally, we compare modal resolution and
modal Frege in Sect. 8 and conclude with a discussion in Sect. 9.

2 Preliminaries

2.1 Modal Logics

A multimodal logic over some finite set of agents A = {a1, . . . , an} is an extension of
propositional logic (PL) constructed from a set of propositional variables,P = {p1, p2, . . . },
a complete set of propositional connectives {¬,∧,∨}, the constants 0 and 1, and a set of
unary modal operators {�ai | ai ∈ A }. Further, we define → so that φ → ψ ≡ ¬φ ∨ ψ

1 Cf. also [21] for a similar discussion of genuine vs lifted bounds in QBF and on how to formalise the notion
of “genuine” bounds
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Proof Complexity of Modal Resolution 5

and for each i ∈ [n] (where [n] denotes the set {1, . . . , n}) and we define the modal operator
♦ai ≡ ¬�ai ¬. Throughout the paperwewill take ◦a ∈ {�a,♦a}. The formulas�aφ and♦aφ

are read as “agent a considers φ to be necessary” and “agent a considers φ to be possible”,
respectively. A full introduction to modal logics is given in [25].

A literal is either a propositional variable, p ∈ P , or its negation, ¬p. We let L denote
the set of all literals. A positive modal literal (resp. negative modal literal) is a formula of
the form �al (resp. ♦al), where a ∈ A and l ∈ L . A modal literal is a positive or negative
modal literal. A clause is a disjunction of literals. The empty disjunction is referred to as the
empty clause. We let CL denote the set of all clauses. We say a formula is in conjunctive
normal form (CNF) if it is a conjunction of clauses.

Let P be a set of propositional variables and A be a finite set of agents. We define the
set of well-formed multimodal formulas, denoted wfmf, to be the smallest possible set s.t.
1 ∈ wfmf,0 ∈ wfmf, p ∈ wfmf for all p ∈ P and φ ∈ wfmf if either φ = ¬ψ , φ = (ψ ∧θ),
φ = (ψ ∨ θ) or φ = �aψ where ψ, θ ∈ wfmf and a ∈ A .

The multimodal logicKn is the smallest set that contains all propositional tautologies, all
formulas of the form Ka : �a(φ → ψ) → (�aφ → �aψ) and is closed under the inference

rules modus ponens φ φ→ψ
ψ

and a-necessitation φ

�aφ
for every a ∈ A .

The semantics of multimodal logics are given using Kripke models. A Kripke model
(henceforth a model) over a set of propositional variables P and a set of agents A =
{a1, . . . , an} is a tuple M = (W , Ra1 , . . . , Ran , V ), whereW is a non-empty set of “worlds”,
each Rai is a binary relation over W , which we call the ai -accessibility relation, and V is a
set of valuation functions {V (w) | w ∈ W } s.t. V (w) : P �→ {0, 1}.

Apointedmodel is a pair 〈M, w〉 consisting of aKripkemodelM = (W , Ra1 , . . . , Ran , V )

together with some distinguished world w ∈ W .
We say that a model M ′ = (W ′, R′

a1 , . . . , R
′
an , V

′) extends a model M =
(W , Ra1 , . . . , Ran , V ) if and only if X ⊆ X ′ for all X ∈ {W } ∪ {Rai | i ∈ [n]} ∪ {V }.
Further, V ′(w)(x) = V (w)(x) for every w ∈ W ∩ W ′ and every x in the domain of V (w).

Let φ,ψ be formulas and p ∈ P . Given a model M = (W , R1, . . . Rn, V ) and a world
w ∈ W the satisfiability of a formula at w in M is defined inductively as follows:

– (M, w) |� p ⇐⇒ w ∈ V (p),
– (M, w) |� ¬φ ⇐⇒ (M, w) |� φ does not hold (written as (M, w) �|� φ)
– (M, w) |� φ ∧ ψ ⇐⇒ (M, w) |� φ and (M, w) |� ψ ,
– (M, w) |� φ ∨ ψ ⇐⇒ (M, w) |� φ or (M, w) |� ψ ,
– (M, w) |� �aφ ⇐⇒ (M, w′) |� φ for all w′ s.t. (w,w′) ∈ Ra .

We say φ is satisfiable if there exists some w0 ∈ W s.t. (M, w0) |� φ. We say that a pointed
model 〈M, w〉 satisfies φ iff (M, w) |� φ.

For twomodal formulasφ andψ , wewriteφ |� ψ if for every (M, w) as above, (M, w) |�
φ implies (M, w) |� ψ .

2.2 Proof Complexity

Definition 1 [31] A proof system for some language L ⊆ �∗ is a polynomial-time com-
putable partial function P : �∗ → L where �∗ denotes the set of all finite words over �. A
P proof of some τ ∈ L is a word π ∈ �∗ s.t. P(π) = τ .

The above definition of a proof system is rather general. In this paper wewill only consider
line-based proof systems. A line-based proof system is a proof system defined by some finite
set of inference rules and axioms. A proof in a line-based proof system is a sequence of proof

123



6 S. Sigley, O. Beyersdorff

lines, say λ1, . . . , λn s.t. each λi is either an axiom of P or can be inferred by applying some
rule of P to some subset of {λ1, . . . , λi−1}.
Definition 2 Let P be a line-based proof system and let π be a P proof. Further, let R be
some inference rule of P and let λ1 and λ2 be lines of π . Then, λ2 is a child (an R child) of
λ1 if it is inferred by applying an inference rule (R) to a set of lines containing λ1.
We say that λ2 is a descendant (an R descendant) of λ1 if it is either:

(i) a child (an R child) of λ1 or,
(ii) a child (an R child) of a descendant (an R descendant) of λ1.

If λ2 is a descendant (an R descendant) of λ1 then λ1 is an ancestor (an R ancestor) of λ2.

Let P be a proof system. We say that ψ is P provable from φ if there exists a P proof
of ψ from φ. We denote this by φ �P ψ . We say P is strongly complete if for all formulas
φ,ψ s.t. φ |� ψ we have φ �P ψ . Further, we say a proof system is complete if for every φ

s.t. φ |� 0 we have φ �P 0. We say P is sound if for every formula φ s.t. � φ we have |� φ.
The size of a proof π is the number of symbols it contains, denoted |π |.

We can compare the strength of twoproof systems for a given language L using polynomial
simulations.

Definition 3 [31] Let P and Q be L-proof systems. We say that P polynomially simulates
(p-simulates) Q, denoted Q ≤p P , if there exists a polynomial time computable function f
s.t. for any Q proof π we have P( f (π)) = Q(π).

We say that P and Q are polynomially equivalent (p-equivalent) if P ≤p Q and Q ≤p P ,
denoted P ≡p Q.

2.3 Propositional Resolution

Resolution is a simple proof system for propositional logic [26,33,58]. It acts on formulas in
CNF (defined in Sect. 2.1) and consists of the single rule:

RES:
C1 ∨ l C2 ∨ ¬l

C1 ∨ C2

where C1,C2 are clauses and l is a literal. The intuition behind this rule is straightforward.
No propositional model can simultaneously satisfy a literal and its negation, hence if we
take the disjunct of any two clauses containing complementary literals we may “cut away”
(resolve on) said complementary literals. Throughout we will refer to the variable resolved
on as a pivot variable.

Resolution is a refutational proof system. This means that to prove that a formula is valid2

using resolution we prove that its negation is unsatisfiable. So to prove that some formula φ

is valid we would first convert its negation into CNF and then repeatedly apply the resolution
rule until we derive the empty clause which is logically equivalent to 0.

3 Modal Resolution Systems

Constructing a resolution-based proof system for even the basic multimodal logic Kn is not
straightforward. This is because whether or not we can only resolve complementary literals

2 We say a propositional formula is valid (satisfiable) iff it evaluates to true under every (some) assignment
to its variables.
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Proof Complexity of Modal Resolution 7

with one another now depends on the “modal context” in which they occur. To see this,
consider the formulas φ = �a1(l1 ∨ l2 ∨ l3), ψ = ¬l1 ∨ l2, θ = �a1¬l2 and ζ = ♦a1¬l3. In
any sound and completeKn resolution system the following three statements should be true:

1. The instance of l1 in φ cannot be resolved with the instance of ¬l1 in ψ .
2. The instance of l2 in φ can be resolved with the instance of ¬l2 in θ to obtain a resolvent

of the form �a1(l1 ∨ l3).
3. The instance of l3 in φ can be resolved with the instance of ¬l3 in ζ to obtain a resolvent

of the form ♦a1(¬l3 ∧ (l1 ∨ l2)).

Statement 1 is true as the instance of l1 in φ is nested within the scope of a �a1 operator
whereas the instance of ¬l1 in ψ is not within the scope of any modal operator.

Statement 2 holds as the instance of ¬l2 in φ and the instance of ¬l2 in θ are both nested
within a single �a1 . Hence, it follows that if φ and θ are both satisfied at some world w in
some model M = (W , R1, . . . , Rn, V ) then l1 ∨ l2 ∨ l3 and ¬l2 must both be satisfied at
every world w1 s.t. (w,w1) ∈ R1 and so l1 ∨ l3 must also be satisfied at every w1.

Finally, the instance of l3 in φ appears within the scope of a �a1 operator and the instance
of ¬l3 in ζ appears within the scope of a ♦a1 operator. Hence, if φ and ζ are both satisfied at
some world w in some model M = (W , R1, . . . , Rn, V ) then l1 ∨ l2 ∨ l3 must be satisfied
at every world w1 ∈ W s.t. (w,w1) ∈ R1 and ¬l3 must be satisfied at some world w2 ∈ W
s.t. (w,w2) ∈ R1. And so it follows by classical resolution that l1 ∨ l2 must also be satisfied
at w2, hence statement 3 holds.

As a result of this added complexity, several different Kn resolution systems have been
proposed. In this section, we shall review two such clausal resolution systems. These systems,
which we shall refer to as Kn-Res and Kml -Res, are closely related to each other and were
proposed by Nalon and Dixon [48], and Nalon et al. [50], respectively.

3.1 The Proof System Kn-Res

Nalon and Dixon [48] proposed a clausal resolution system for Kn , which we shall call Kn-
Res. This proof system determines whether a formula φ is satisfiable at some distinguished
“start” world, s0 ∈ W . However, as the choice of s0 is arbitrary, determining the satisfiability
of φ at s0 is essentially equivalent to determining the satisfiability of φ.

Let M = (W , R1, . . . , Rn, V ) be a model and w1, w2 ∈ W . We say w2 is reachable from
w1 if (w1, w2) is in the reflexive and transitive closure of

⋃n
i=1 Ri . Note that every world

is reachable from itself. We define the master modality, denoted �∗, s.t. (M, w) |� �∗φ iff
(M, w′) |� φ for all w′ reachable from w.

The proof systemKn-Res operates on formulas that have been translated into the following
normal form.

Definition 4 [48] Let l, l ′, l j ∈ L and let S be a nullary connective defined s.t. (M, w) |� S
iff w = s0. A formula φ is in separated normal form (SNF) if φ = ∧r

i=1 �∗Ci where each
Ci is of one of the following types:

– Start clause: S → ∨t
j=1 l j ,

– Positive modal clause: l ′ → �al,
– Literal clause:

∨t
j=1 l j ,

– Negative modal clause: l ′ → ♦al.
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8 S. Sigley, O. Beyersdorff

Definition 5 [48] Any φ ∈ wfmf in negation normal form (NNF)3 can be translated into a
set of SNF clauses by applying the function:

τ0(φ) = �∗(S → xε) ∧ τ1(�∗(xε → φ)),

where xε is a new variable and the function τ1 is defined as follows:

τ1(�∗(x → φ ∧ ψ)) = τ1(�∗(x → φ)) ∧ τ1(�∗(x → ψ)).

τ1(�∗(x → ◦aφ)) =
{

�∗(x → ◦aφ), if φ ∈ L ,

�∗(x → ◦ax1) ∧ τ1(�∗(x1 → φ)), otherwise.

τ1(�∗(x → φ ∨ ψ)) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�∗(¬x ∨ φ ∨ ψ), if φ,ψ ∈ CL ,

�∗(¬x ∨ x1 ∨ x2) ∧ τ1(�∗(x1 → φ))

∧τ1(�∗(x2 → ψ)),
if φ,ψ /∈ CL ,

�∗(¬x ∨ φ ∨ x1) ∧ τ1(�∗(x1 → ψ)), if φ ∈ CL , ψ /∈ CL .

where x1 and x2 are new variables. Note that in the disjunctive transformation ψ may be
the empty clause, in which case the usual simplification rules are applied at the end of the
transformation.

We refer to the variables introducedwhen translating a formulaφ ∈ wfmf into a set of SNF
clausesC as extension variables and defineXC to be the set of all such variables. Further, we
define XC + = {x ′ ∈ X | �∗(x → �ax ′) ∈ C }, XC − = {x ′ ∈ X | �∗(x → ♦ax ′) ∈ C }
and XC ± = XC + ∪ XC −. Note that XC ⊆ L .

Let C be a set of SNF clauses and let C ∈ C . We say x ∈ XC appears positively in C if
either C is a literal clause of the form �∗(x ∨ D) where D ∈ CL or C is a modal clause
of the form (x ′ → ◦ax) where x ′ ∈ XC . We say x appears negatively in C if either C is a
literal clause of the form �∗(¬x ∨ D) or C is a modal clause of the form (x → ◦a y).
Example 1 Consider the modal formula φ = (x ∨ ♦a¬y) ∧ �a y ∧ ¬x . Then,

τ0(φ) = �∗(S → x0) ∧ τ1(x0 → φ)

= �∗(S → x0) ∧ τ1(�∗(x0 → (x ∨ ♦a¬y))) ∧ τ1(�∗(x0 → �a y)) ∧ τ1(�∗(x0 → ¬x))

= �∗(S → x0) ∧ τ1(�∗(x0 → x1 ∨ x2)) ∧ τ1(�∗(x1 → x)) ∧
τ1(�∗(x2 → ♦a¬y)) ∧ �∗(x0 → �a y) ∧ �∗(¬x0 ∨ ¬x)

= �∗(S → x0) ∧ �∗(¬x0 ∨ x1 ∨ x2) ∧
�∗(¬x1 ∨ x) ∧ �∗(x2 → ♦a¬y) ∧ �∗(x0 → �a y) ∧ �∗(¬x0 ∨ ¬x).

Further, Xτ0(φ) = {x0, x1, x2} and Xτ0(φ)+ = Xτ0(φ)− = ∅.
A proof that τ0 preserves satisfiability is given in [48].
As every SNF clause is prefixed by �∗ it follows that every SNF clause occurs within the

same modal context. Hence, the inference rules of Kn-Res are relatively straightforward.

Definition 6 [48] The inference rules of Kn-Res are given in Fig. 1.

3 A formula over the set of operators {�a ,♦a , ¬, ∧, ∨} is in NFF if only propositional variables are allowed
to be within the scope of ¬.
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Proof Complexity of Modal Resolution 9

Fig. 1 Rules for Kn -Res

The rules ofKn-Res can be split into two categories, modal rules (GEN1, GEN2, and GEN3)
and propositional rules (MRES, LRES, IRES1, and IRES2). Each of the modal rules is used
to resolve on literals inside some modal operator.

The rules IRES1, IRES2, LRES and MRES are essentially propositional resolution and
are each used to resolve a formula with its negation. The rule GEN2 says that if we have
some negative modal clause, say �∗(l ′3 → ♦al2), then we can resolve two positive modal
literals of the form �al1 and �a¬l1 with one another. The negative modal clause is required
for soundness as �∗(l ′1 → �al1) and �∗(l ′2 → �a¬l1) can both be satisfied by a model M
at a world w ∈ W s.t. (w,w′) /∈ Ra for all w′ ∈ W .

The rules GEN1 and GEN3 resolve literals with modal literals. More specifically, GEN1
says that given some clause �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) we can simultaneously resolve the
z + 1 literals ¬l1, . . . ,¬lz and ¬l with the modal literals �al1, . . . ,�alz and ♦al. When
resolving literals with modal literals in this way we are taking advantage of the fact that,
by the definition of �∗, any world in any model which satisfies �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l)
must also satisfy �a(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l). Every literal in �∗(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) must
be resolved on simultaneously as otherwise the resolvent obtained may not be in SNF. For
example the resolvent obtained by resolving ¬l1 in �a(¬l1 ∨ · · · ∨ ¬lz ∨ ¬l) with �al1 in
�∗(l ′1 → �al1) would be �∗(¬l ′1 ∨ �a(l2 ∨ · · · ∨ ¬lz ∨ ¬l)). The rule GEN3 is similar to
GEN1, however the negative modal literal, ♦a¬l, is not resolved on. Instead, as in the case
for GEN2, it is necessary only for soundness.

Like propositional resolution, the proof systemKn-Res is a refutational system. Let π be
a Kn-Res refutation of some set of clauses C and let C be some clause in C . If C ∈ C then
we say that C is an initial clause (also sometimes called input clause). If C /∈ C then we say
C is a non-initial clause.

Example 2 Let φ be defined as in Example 1. Further, letC be the set of SNF clauses obtained
by applying T to φ. We can refute C using Kn-Res as follows:
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10 S. Sigley, O. Beyersdorff

.

�∗(x0 → �a y)
MRES �∗(x2 → ♦a¬y)

�∗(¬x0 ∨ ¬x2)
LRES �∗(¬x0 ∨ x1 ∨ x2)

�∗(¬x0 ∨ x1)
LRES �∗(¬x1 ∨ x)

�∗(¬x0 ∨ x)
LRES �∗(¬x0 ∨ ¬x)

�∗(¬x0)
IRES1 �∗(S → x0)

�∗(S → 0)

3.2 The Proof System Kml-Res

In [50] Nalon, Hustadt and Dixon introduced a layered resolution system for Kn which we
shall call Kml -Res. This resolution system is similar to Kn-Res, however it operates on a
normal form where each clause is labelled by its modal level. The modal level of a clause is
the number of modal operators it was nested within in the original formula. I note that the full
Kml -Res calculus presented in [50] can be used for both local and global reasoning, however
here are concerned with, and hence present, only the local resolution part of the system.

Definition 7 [50] A formula φ is in separated normal form with modal levels (SNFml ) if
φ = ∧r

i=1 Ci where each clause Ci is either a:

– Positive modal clause: (m : l ′ → �al),
– Negativemodal clause: (m : l ′ → ♦al),

– Literal clause: (m : ∨s
j=1 l j ),

where l, l ′, l j ∈ L and m ∈ N representing the modal level of the clause.

LetM = (W , R1, . . . , Rn, V ) be aKripkemodel andw,w′ ∈ W .We sayw′ is of distance
m fromw if there exists a path of lengthm fromw tow′ through the union of all accessibility
relations in M .

The satisfiability of some φ ∈ wfmf labelled by its modal level, m ∈ N, at root world w0

is given as follows:

(M, w0) |� (m : φ) ⇐⇒ (M, w) |� φ for all w ∈ W s.t. w is of distance m from w0 ∈ W .

The following procedure for efficiently translating any NNF formula into SNFml φ, while
preserving satisfiability, is given in [50]. To convert an NNF formula φ into SNFml we apply
the translation Tml(φ) = (0 : x) ∧ ρml(0 : x → φ), where x is a new propositional variable
and ρml is defined as follows:

ρml(m : x → θ ∧ ψ) = ρml(m : x → θ) ∧ ρml(m : x → ψ),

ρml(m : x → �aθ) =
{

(m : x → ◦aθ), if θ ∈ L ,

(m : x → ◦ax1) ∧ ρml(m + 1 : x1 → θ), otherwise.

ρml(m : x → θ ∨ ψ)) =
{

(m : ¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL ,

ρml(m : x → θ ∨ x1) ∧ ρml(m : x1 → ψ), otherwise,
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Fig. 2 Rules for Kml -Res

where θ, ψ are formulas, x1 is a new propositional symbol and m ∈ N. Note that ρml(m :
x → θ ∨ x1) = ρml(m : x → (x1 ∨ x2)) ∧ ρml(m : x2 → θ). Note also that θ or ψ could
be empty in which case simplification of the formulas applies.

Example 3 Let φ = (x ∨ ♦a(¬y ∧ x)) ∧ �a y ∧ ¬x . Then,

Tml(φ) = (0 : x0) ∧ (0 : ¬x0 ∨ x1 ∨ x2) ∧ (0 : ¬x1 ∨ x) ∧ (0 : x2 → ♦ax3)∧
(1 : ¬x3 ∨ ¬y) ∧ (1 : ¬x3 ∨ x) ∧ (0 : x0 → �a y) ∧ (0 : ¬x0 ∨ ¬x).

Theorem 1 [50] An NNF formula φ is satisfiable iff Tml(φ) is satisfiable.

Definition 8 [50] The inference rules of Kml -Res are given in Fig. 2.

The rules of Kml -Res are almost identical to those of Kn-Res, however now LRES, MRES,
and GEN2 may only be applied to clauses that are at the same modal level. Further, GEN1
and GEN3may only be applied to sets of clauses where each modal clause is the same modal
level and the literal clause is at the modal level above. The rules IRES1 and IRES2 are no
longer necessary as we are no longer determining satisfiability at a fixed start world.

We shall see in Sect. 5 that the proof systemsKml -Res andKn-Res are equivalent in terms
of proof complexity.

4 Resolution withModal Contexts

In this section we will define a new modal resolution system called Kmc-Res. The rules of
this proof system are essentially identical to those of Kml -Res, however it acts on a normal
form where each clause is labelled by its modal context as opposed to its modal level.

Informally, if we give each ♦ operator in some modal formula φ a unique label then the
modal context of a subformula ψ of φ is the sequence of modal operators that it is nested
within in φ. So for example if φ1 = �a♦1

a′x∧�a♦2
a′ y then x has modal context�a♦1

a′ and y
has modal context �a♦2

a′ . Whereas if φ2 = ♦1
a(x ∧ y) then both x and y have modal context

♦1
a . Intuitively two subformulas of φ have the same modal context iff in any model of φ these

subformulasmust be evaluated at exactly the sameworld orworlds. Clearly there existmodels
that satisfy φ1 but do not contain any world w s.t. V (w)(x) = 1 and V (w)(y) = 1, however
every model that satisfies φ2 contains a world where V (w)(x) = V (w)(y) = 1. Hence, in
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12 S. Sigley, O. Beyersdorff

our new calculusKmc-Res we label each clause by its modal context to help determine which
clauses can be resolved together.

To refute a formula using Kmc-Res we must first translate it into a clausal form, where
each clauses modal context w.r.t. the original formula is explicitly given. As the translation
used introduces a new unique extension variable for every complex subformula of the form
♦aφ where φ /∈ L we do not need to label the ♦a operators. The modal context of a clause
can be specified by a finite word over the set of agents and the set of pairs of the form (a, x)
where a is an agent and x is an extension variable.

Definition 9 Let l, l ′, l j ∈ L . A formula φ is in separated normal form with modal contexts
(SNFmc) if φ = ∧r

i=1 Ci where each Ci is either a:

– Positive modal clause: (e : l ′ → �al),
– Negative modal clause: (e : l ′ → ♦al),

– Literal clause: (e : ∨t
j=1 l j ).

Here, e is a finite word over EC (Definition 10) denoting the modal context of the clause.

To convert an NNF formula φ into SNFmc we apply the translation Tmc(φ) = xε ∧ρmc(ε :
xε → φ), where x is a new propositional variable and ρmc is defined as follows:

ρmc(e : x → θ ∧ ψ) = ρmc(e : x → θ) ∧ ρmc(e : x → ψ),

ρmc(e : x → �aθ) =
{

(e : x → �aθ), if θ ∈ L ,

(e : x → �ax1) ∧ ρmc(ea : x1 → θ), otherwise.

ρmc(e : x → ♦aθ) =
{

(e : x → ♦aθ), if θ ∈ L ,

(e : x → ♦ax1) ∧ ρmc(e(a, x1) : x1 → θ), otherwise.

ρmc(e : x → θ ∨ ψ)) =
{

(e : ¬x ∨ θ ∨ ψ), if θ, ψ ∈ CL ,

ρmc(e : x → θ ∨ x1) ∧ ρmc(e : x1 → ψ), otherwise,

where θ, ψ are formulas, x1 is a new propositional symbol and e ∈ ({xε}∪A ∪(A ×XC −))∗.
Note that ρmc(e : x → θ ∨ x1) = ρmc(e : x → (x1 ∨ x2)) ∧ ρmc(e : x2 → θ). Also, θ or ψ

could be empty in which case simplification of the formulas applies.

Example 4 Let φ = (x ∨ ♦a(¬y ∧ x)) ∧ �a y ∧ ¬x . Then,

Tmc(φ) =(ε : x0) ∧ (ε : ¬x0 ∨ x1 ∨ x2) ∧ (ε : ¬x1 ∨ x) ∧ (ε : x2 → ♦ax3)∧
((a, x3) : ¬x3 ∨ ¬y) ∧ ((a, x3) : ¬x3 ∨ x) ∧ (ε : x0 → �a y) ∧ (ε : ¬x0 ∨ ¬x).

Let C be a set of SNFmc clauses inferred by applying ρmc to some formula φ ∈ wfmf.
As in Sects. 3.1 and 3.2 we refer to the variables added during the translation as extension
variables and define the sets XC , XC −, XC + and XC ± in the obvious way.

Definition 10 For any set of SNFmc clauses C , we define the set of clausal modal context
markers to be:

EC = A ∪ (A × XC −).

The set of all finite words over EC (denoted E ∗
C ) then consists of all modal contexts for

C .
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Proof Complexity of Modal Resolution 13

The length of a modal context e ∈ E ∗
C is denoted |e| and is defined as follows:

|e| =
{
0, if e = ε,

|e′| + 1, if e = e′c for some e′ ∈ E ∗
C , c ∈ A ∪ (A × XC −).

Intuitively, each label (a, x) ∈ A × XC − refers to the unique ♦a operator s.t. (e : x ′ →
♦ax) ∈ C . That this ♦a is unique follows from the definition of the translation Tmc as each
extension variable in XC − appears exactly once as a modal literal. Each label a ∈ A refers
to a �a operator.

Remark 1 As the set of modal context markers for a set of SNFmc clauses is defined in terms
of the extension variables introduced by the translation function (as well as the agents),
throughout this paper we consider only sets of SNFmc clauses that have been generated using
this function, and our results are restricted to such sets of SNFmc. Indeed, the resolution
system does not make much sense when applied to sets of SNFmc clauses that have not been
generated in such a manner.

Definition 11 Let M = (W , Ra1 , . . . , Ran , V ) be a Kripke model, let φ ∈ wfmf and let
C = Tmc(φ). We say w ∈ W is ε reachable from wε ∈ W if w = wε . We say w is ea-
reachable fromwε if (w′, w) ∈ Ra for somew′ ∈ W s.t.w′ is e-reachable fromw. We sayw

is e(a, x)-reachable from wε where x ∈ XC − and a ∈ A if (w′, w) ∈ Ra for some w′ ∈ W
s.t. w′ is e-reachable from w and V (w)(x) = 1.

We define the satisfiability of a clause with modal context e ∈ E ∗
C at root world wε as

follows:

(M, wε) |� (e : C) ⇐⇒ (M, w) |� C for all w ∈ W s.t. w is e-reachable from wε ∈ W .

Definition 12 LetC be a set of SNFmc clauses and x ′ ∈ XC .We say that x ′ is propositionally
reachable from x ∈ XC ± if either x = x ′ or there exists some subset of C :

C(x,x ′) = {(e : D1 ∨ ¬x1 ∨ x2), . . . , (e : Dn ∨ ¬xn−1 ∨ xn)}
where x1 = x , xn = x ′, xi ∈ XC for each i ∈ [n] and each Di ∈ CL . We say that such a
set C(x,x ′) witnesses that x ′ is propositionally reachable from x .

It follows immediately from the above definition and the definition of Tmc that every
variable x ′ ∈ XC is propositionally reachable from some unique x ∈ XC ±. Further, the set
C(x,x ′) witnessing this is unique.

Theorem 2 An NNF formula φ is satisfiable if and only if Tmc(φ) is satisfiable.

Proof By Theorem 1, an NNF formula φ is satisfiable iff the set of SNFml clauses Tml(φ) is
satisfiable. Hence, we prove the theorem by showing that Tml(φ) is satisfiable iff Tmc(φ) is.

It follows immediately from the definitions of Tml and Tmc that there is a one-to-one
correspondence between the set of SNFml clauses Tml(φ) and the set of SNFmc clauses
Tmc(φ). That is, (m : C) ∈ Cml iff (e : C) ∈ Cmc for some e ∈ E ∗

C s.t. |e| = m.
(⇒:) SupposeCml is satisfiable. Then, there exists somemodel M = (W , R1, . . . , Rn, V )

and some wε ∈ W s.t. (M, wε) |� (m : C) for every (m : C) ∈ Cml . It follows by definition
that (M, w) |� C for all w ∈ W s.t. w is of distance m from wε. Every world that is e-
reachable from wε , where |e| = m must also be of distance m from wε hence (M, we) |� C
for all we ∈ W s.t. we is e-reachable from wε and so (M, wε) |� (e : C) for all e ∈ E ∗

C s.t.
|e| = m. Hence, (M, wε) |� Cmc.
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14 S. Sigley, O. Beyersdorff

(⇐:) Now suppose the set Cmc is satisfiable. Let M = (W , R1, . . . , Rn, V ) be a model
that satisfies Cmc at wε ∈ W . Suppose (e : C) ∈ Cmc where e ∈ E ∗

C and let |e| = m. We will
show that (M, wε) |� (m : C) via induction on |e|.

Suppose |e| = 0, then e = ε. Clearly wε is the only world in W that is distance 0 from
itself. Further, wε is the only world in W that is ε-reachable from itself. By assumption
(M, wε) |� (ε : C), hence it follows that (M, wε) |� C and so (M, wε) |� (0 : C).

Suppose |e| > 0. By the definition of Tmc, the clause C must contain exactly one negative
extension literal x . Further, x must be propositionally reachable from someunique x ′ ∈ XC ±.
We prove by induction on the size of the set witnessing this that we can assume w.l.o.g. that
V (w)(x) = 0 for all w ∈ W s.t. w is not e-reachable from wε .

If |C(x ′,x)| = 1, then x ∈ XC ±. Suppose x ∈ XC − (x ∈ XC +). It follows from the
definition of Tmc that e = e′(a, x) (e = e′a) and (e′ : x ′ → ♦ax) ∈ Cmc ((e′ : x ′ → �ax) ∈
Cmc). Further, by the definition of Tmc this is the only clause containing x positively and
every clause containing x negatively has modal context e. Hence, we can assume w.l.o.g.
that V (w)(x) = 0 for all w ∈ W s.t. w is not e-reachable from wε . As C contains ¬x it is
satisfied at every such w. Hence, (M, wε) |� (m : C).

Finally suppose |C(x ′,x)| = k. Then, by definition C(x ′,x) must contain some clause C ′
of the form (¬x1 ∨ D ∨ x) where x1 ∈ XC . Further, C(x ′,x)\{C ′} witnesses that x1 is
propositionally reachable from x ′. Hence, by induction V (w)(x1) = 0 at all worlds w that
are not e-reachable from xε. It follows that we can assume w.l.o.g. that x = 0 at every such
world as doing so will not effect the truth valuation C ′ which is the only clause containing
the positive literal x . Hence, C is satisfied at every world that is not e-reachable from wε.
Further, by assumption C is satisfied at every world that is e-reachable from wε and so
(M, wε) |� (m : C). ��

In our new calculus, we allow inferences to be made from sets of clauses with different
modal contexts under certain conditions. To see why this is necessary, consider the formula
φ = �a(x ∧ y) ∧ ♦a(¬x ∧ z) and the corresponding set of SNFmc clauses C = {(ε :
xε), (ε : xε → �ax1), (a : ¬x1 ∨ x), (a : ¬x1 ∨ y), (ε : xε → ♦ax2), ((a, x2) :
¬x2 ∨ ¬x), ((a, x2) : ¬x2 ∨ z)}. Clearly φ is unsatisfiable, however we cannot refute C
using similar rules to those ofKn-Res andKml -Res if we do not allow inferences on clauses
with different modal contexts. Hence, we have the following definition.

Definition 13 Let C be a set of SNFmc clauses. We define the function σ : E ∗
C ×· · ·×E ∗

C �→
E ∗
C so that σ(ε, . . . , ε) = ε, for c1, . . . , cn ∈ EC :

σ(c1, . . . , cn) =

⎧
⎪⎨

⎪⎩

c j if c j = (a, x) ∈ A × XC and ck ∈ {a, c j } for all k �= j,

a if c1 = · · · = cn = a ∈ A ,

undefined otherwise,

and for e1, . . . en ∈ E ∗
C :

σ(e1, . . . , en) =
{

σ(c1,1, . . . , c1,n) . . . σ (cm,1, . . . , cm,n) if |e1| = · · · = |en | = m > 0,

undefined otherwise,

where ci, j denotes the i th letter in the word e j .
We say that the modal contexts e1, . . . , en ∈ E ∗

C are unifiable if σ(e1, . . . , en) is defined.
Otherwise we say that e1, . . . , en are non-unifiable.

Intuitively allowing resolution on sets of clauses with unifiable modal contexts can be
thought of as allowing �a to be resolved with ♦a to infer ♦a , which is of course sound.
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Fig. 3 Rules for Kmc-Res

Definition 14 The inference rules of Kmc-Res are given in Fig. 3.

Remark 2 Let C be a set of SNFmc clauses and let C be some clause which is Kmc-Res
derivable from C . If C has modal context e ∈ E ∗

C then it must be inferred by applying some
rule of Kmc-Res to a set of clauses, whose modal contexts are either unifiable with e or
unifiable with ec for some c ∈ E ∗

C . It follows by induction that C isKmc-Res derivable from
the subset of C consisting of every clause whose modal context is a suffix of some e′ ∈ E ∗

C
which is unifiable with e.

Theorem 3 Kmc-Res is sound and is complete.

Proof Clearly, any proof system that simulates a complete proof system is complete and any
proof system that is simulated by a sound proof system is sound. We will show simulations
between all the modal resolution systemsKn-Res,Kml -Res andKmc-Res in the next section,
leading to Theorem 4. AsKn-Res is sound and complete [48], the theorem then immediately
follows from Theorem 4. ��

Note that we could prove this theorem directly by following a very similar method to the
one used in [50] to show that Kml -Res is complete.

5 Comparing Kn-Res, Kml-Res, and Kmc-Res

In this section, we prove that themodal resolution systemsKn-Res,Kml -Res andKmc-Res are
polynomially equivalent. That Kmc-Res ≤p Kml -Res ≤p Kn-Res follows straightforwardly
from the respective definitions of the proof systems. To prove that Kn-Res ≤p Kml -Res ≤p

Kmc-Res, we show that given an unsatisfiable set of SNF clauses, C and aKn-Res refutation
of C , π the following statement is true. The sequence of clauses obtained from π by deleting
every clause inferred from a set of clauseswhosemodal contexts would prevent the analogous
rule of Kmc-Res from being applied to C ′, along with every descendant of such a clause, is
also a Kn-Res refutation of C . So for example if π contains a clause C that was inferred
by applying LRES to two literal clauses with modal contexts e1 and e2, respectively, and
σ(e1, e2) is undefined then π ′ would not contain C or any descendant of C .
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5.1 Modal Contexts for Clauses in SNF

To prove that Kmc-Res ≤p Kml -Res ≤p Kn-Res we must be able to “read off” the modal
context of a given clause in SNF. In Sect. 4, we saw that the extension variables introduced
when translating a modal formula into SNFmc encode the modal context of each clause. This
is also true of the extension variables introduced when translating a modal formula into SNF.
Hence, in this subsection we give a series of definitions that enable us determine the modal
context of a clause simply by looking at the extension variables it contains.

In Sect. 4,wedefinedwhat itmeant for an extension variable x ′ ∈ XC to be propositionally
reachable from some x ∈ XC ± for a given set of SNFmc clauses C . Similarly, for any set of
SNF clauses C we say that x ′ ∈ XC is propositionally reachable from some x ∈ XC ± if
there exists some subset of C of the form:

C(x,x ′) = {�∗(x0 → ◦ax1),�∗(D1 ∨ ¬x1 ∨ x2), . . . ,�∗(Dn ∨ ¬xn−1 ∨ xn)},
where x1 = x and xn = x ′. We further define the set EC so that for every x1, x2 ∈ X we
have (x1, x2) ∈ EC iff x2 is propositionally reachable from x1.

Definition 15 Let y ∈ XC . We say that y is a-positively modally reachable (resp. a-
negatively modally reachable) from x if C contains a clause of the form �∗(x ′ → �a y′)
(resp. �∗(x ′ → ♦a y′)) where x ′, y′ ∈ XC , (x, x ′) ∈ EC and (y′, y) ∈ EC .

We define Ea+
C (resp. Ea−

C ) so that (x, y) ∈ Ea+
C (resp. (x, y) ∈ Ea−

C ) iff y is a-positively
modally reachable (resp. a-negatively modally reachable) from x .

Let C be a set of SNF clauses. We can specify the modal context of a given extension
variable in XC or clause in C using finite words over the set EC (Definition 10).

Definition 16 Let C be a set of SNF clauses. We define:

Xxε = {x ∈ XC : (xε, x) ∈ EC }.
For every e ∈ E ∗

C and every c ∈ EC we define:

Xec =

⎧
⎪⎨

⎪⎩

{x ∈ XC : (z, x) ∈ Ea+
C , z ∈ Xe} if c ∈ A ,

{x ∈ XC : (x, z) ∈ EC } if c = (a, z) for some z ∈ XC − and a ∈ A ,

∅ otherwise.

We say x has modal context e if x ∈ Xe.

Definition 17 Let φ be a well-formed modal formula in NNF and let C = τ0(φ) be the set
of SNF clauses generated by applying the translation function τ0 to φ. Further, let π be a
Kn-Res refutation of C and let C be some clause in π . If C contains S then we say that C
has modal context xε . Further, if some x ∈ Xe appears as a negative literal (not a negative
modal literal) in C the we say that C has modal context e.

Let C be a set of SNF clauses generated by applying the translation function τ0 to some
well-formed modal formula φ in NNF. It follows from the definition of τ0 that each initial
clause C ∈ C contains only one negative extension literal, and so each such C has only one
modal context. However, using the rules of Kn-Res it is possible to derive non-initial SNF
clauses that contain two or more negative extension literals with distinct modal contexts and
so have multiple modal contexts. We will make use of the modal contexts of SNF clauses in
our proof that Kn-Res is polynomially simulated by Kmc-Res in the next section.
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5.2 The Polynomial Simulations

In this subsection we give a proof that Kn-Res, Kml -Res and Kmc-Res are all p-equivalent.
Proving thatKmc-Res ≤p Kml -Res ≤p Kn-Res is trivial. Hence, the majority of the subsec-
tion is made up of a series of lemmas that are used to prove that Kn-Res ≤p Kml -Res ≤p

Kmc-Res.We begin by giving some definitions and results concerning the structure ofKn-Res
proofs.

Definition 18 Let π be aKn-Res refutation of some set of SNF clauses C , let Cπ denote the
set of all clauses in π and let C1,Cn ∈ Cπ . We say that there is a path from C1 to Cn if there
exists a word C1 . . .Cn ∈ C∗ s.t. for each i ∈ [n − 1] the clause Ci+1 is a child of Ci .

Lemma 1 Let C be a set of clauses in SNF and π be a Kn-Res refutation of C . If C2 =
�∗(x ∨ D2) is a descendant of C1 = �∗(x ∨ D1) ∈ C , where x ∈ XC then π contains a
path P from C1 to C2 s.t. every clause in P contains x.

Proof As C2 is a descendant of C1 the refutation π contains a path P1 = A1 . . . An where
C1 = A1, C2 = An . Let S be the longest suffix of P1 s.t. every A j ∈ S contains x . We
proceed by induction on the size of S. If |S| = |π | then as |S| ≤ |P1| ≤ |π | it follows that
S = P1.

Suppose |S| < |π | then either S = P1 or S = A j , . . . , An where j > 1. In the latter case
x /∈ A j−1 and so A j must be also a child of some C ′ �= A j where either C ′ = C1 or C ′ is a
descendant of C1 containing x . Hence, there exists a path P2 from C1 to A j . Concatenating
P2 with A j+1, . . . , An gives a path from C1 to C2 with a suffix of length ≥ |S| + 1. Hence,
by the inductive hypothesis there exists a path P fromC1 toC2 s.t. every clause in P contains
x . ��
Definition 19 We say a Kn-Res refutation:

π = C1, . . . ,Cn−1,Cn = �∗(S → 0),

is in 1-start form if it contains precisely two start clauses, namelyCn and someC j = �∗(S →
x0) where j ∈ [n − 1]. Equivalently, we say π is in 1-start form if it does not contain any
clauses inferred using IRES2 and Cn is the only clause in π inferred using IRES1.

Proposition 1 Let C be an unsatisfiable set of SNF clauses and π = C1, . . . ,Cn be aKn-Res
refutation of C . From π we can efficiently construct a 1-start refutation of C with size ≤ |π |.
Proof If π is in 1-start form then the proposition holds trivially. Hence, we suppose π is not
is 1-start form and proceed to construct a new refutation as follows. First we delete from
π every clause that is inferred by applying IRES1 to �∗(S → xε) and some literal clause
�= �∗(¬xε). Let S = {S1, . . . , Sm}, where each Si is of the form �∗(S → Di ), be the set
of all remaining non-initial start clauses in π . Replacing each Si in π with �∗(¬xε ∨ Di )

yields a derivation of �∗(¬xε), hence by adding the clauses �∗(S → xε) and �∗(S → 0)
to the end of π we obtain a valid refutation of C in 1-start form. ��

Hence, from this point onwards we will consider onlyKn-Res refutations in 1-start form.
We will now prove three technical lemmas. Let π be a Kn-Res refutation of some unsat-

isfiable set of SNF clauses C . The first of the lemmas simply states that every literal clause
in π contains at least one extension variable. The second lemma says that if a clause in π

contains some negative extension literal with modal context e then any clause inferred from
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18 S. Sigley, O. Beyersdorff

C using LRES must also contain some negative extension literal with modal context e. The
third lemma says that if a clause C in π contains a negative extension literal with modal
context e and is propositionally reachable from some x ∈ XC ±, then π must also contain
some clause that is an LRES descendant of C and contains the literal ¬x .

Lemma 2 Let φ ∈ wfmf, let C = τ0(φ) and let π be a Kn-Res refutation of C . Every literal
clause in π contains at least one negative extension literal.

Proof Weprove the lemma by induction. IfC ∈ C then the lemma follows from the definition
of τ0. Suppose C is inferred using some modal inference rule. By the definition of τ0 each
modal clause used to infer C contains a negative extension literal. That C contains each of
these literals follows by the definition of the modal rules of Kn-Res. Suppose C is inferred
using LRES. Let C1 and C2 be the clauses use to infer C . By the inductive hypothesis C1

contains some negative extension literal¬x1 and C2 contains some negative extension literal
¬x2. Clearly ¬x1 and ¬x2 cannot be resolved with each other and so C must contain at least
one of ¬x1 and ¬x2. ��
Lemma 3 Let φ ∈ wfmf, let C = τ0(φ) and let π be a Kn-Res refutation of C in 1-start form.
Let C be some literal clause in π that is inferred by applying LRES to two literal clauses
C1 = �∗(¬y1 ∨ D1) and C2, where y1 ∈ XC . Let x ∈ XC ± s.t. (x, y1) ∈ EC . Then,
C = �∗(¬y2 ∨ D2), where y2 ∈ XC s.t. (x, y2) ∈ EC and |C(x,y2)| ≤ |C(x,y1)|.
Proof If y1 is not the pivot variable thenC = �∗(¬y1∨D2) and so the lemma holds trivially.
Hence, we suppose y1 is the pivot variable (and hence that C2 contains the literal y1) and
proceed by induction on |C(x,y1)|.

Suppose |C(x,y1)| = 1. Then, C(x,y1) = {C ′ = �∗(x0 → ◦ax1)}, where x1 = y1 = x .
Recall that every variable in XC appears positively in exactly one clause of C . Further, no
clause containing the literal y1 can be inferred from C ′ using the rules of Kn-Res.

Hence, π cannot contain a literal clause containing y1, contradicting our assumption that
C2 is such a clause.

Suppose |C(x,y1)| ≥ 2. The setC contains exactly one clause, sayC ′ = �∗(¬y2∨D∨ y1)
in which y1 appears positively. Hence, there exists a set:

C(x,y1) = {�∗(x0 → ◦ax1),�∗(¬x1 ∨ D′
1 ∨ x2), . . . ,�∗(¬xn−1 ∨ D′

n−1 ∨ xn)},
where x1 = x , xn−1 = y2, xn = y1 and D′

n−1 = D. As C2 contains y1 and C ′ is the only
clause in C containing y1 it follows that C2 is a descendant of C ′. Hence, by Lemma 1 the
refutation π must contain some path P from C ′ to C2 s.t. every clause in P contains y1.
Thus, no clause in P is inferred by resolving on y1. As P contains no start clauses and no
clauses inferred by resolving on y1 each A j ∈ P must be inferred using LRES 4. Clearly the
set of clauses C(x,y2) = C(x,y1)\{C ′} witnesses that y2 is propositionally reachable from x .

We proceed to showby induction on (i) |P| and (ii) |C(x,y2)| thatC2 contains some negative
extension literal ¬y s.t. (x, y) ∈ EC and |C(x,y)| ≤ |C(x,y2)|. If |C(x,y2)| = 1 then y2 = x =
x1. As in the case when x1 = y1 it follows that every LRES descendant of C ′ contains ¬y2.
Suppose |C(x,y2)| > 1. If |P| = 0 then C2 = C ′ and so ¬y2 ∈ C2. Suppose |P| > 1 and let
P1 be the path from C ′ to C3 s.t. C2 is a child of C3. By inductive hypothesis (i) C3 contains
some negative extension literal ¬y3 s.t. (x, y3) ∈ EC and |C(x,y3)| ≤ |C(x,y2)|. Thus, by

4 If IRES1 or IRES2 was used to infer some A j ∈ P then A j would be a start clause. MRES and GEN2
can only be applied to modal clauses. GEN1 and GEN3 both require every variable in a literal clause to be
resolved on simultaneously and so if either was used to infer some A j then y1 /∈ A j .
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Proof Complexity of Modal Resolution 19

inductive hypothesis (ii) every descendant of C3 must contain some y4 s.t. (x, y4) ∈ EC and
|C(x,y4)| ≤ |C(x,y3)|. In particular C2 must contain some such literal.

As |C(x,y2)| < |C(x,y1)| it follows that y �= y1 and so C must contain ¬y. ��
Lemma 4 LetC be a set of SNF clauses and let π be aKn-Res refutation ofC in 1-start form.
Suppose π contains a literal clause C = �∗(¬x ∨ D1), where x ∈ XC and let x1 ∈ XC ±
s.t. (x1, x) ∈ EC . If �∗(S → 0) is a descendant of C then π contains a literal clause
C ′ = �∗(¬x1 ∨ E) s.t. C ′ is an LRES descendant of C and �∗(S → 0) is a descendant of
C ′.

Proof We will prove the lemma by induction on |C(x1,x)|. If |C(x1,x)| = 1 then x1 = x and
so the lemma holds trivially.

Suppose |C(x1,x)| > 1. As �∗(S → 0) is a descendant of C there exists some descendant
of C that is inferred by resolving on x (and possibly some other variables). Let C ′ be the
first such descendant. One of the clauses that C ′ is inferred from must be a descendant of C
containing ¬x . Let C1 denote this clause. Note that every descendant of C is non-initial and
so C1 is a literal clause. As C ′ is inferred by resolving on x it must also be inferred from
some clauseC2 �= C1 containing the literal x . As |C(x1,x)| > 1 nomodal clause inC contains
the literal x and so C2 is a literal clause. Hence, C ′ is inferred by applying LRES to C1 and
C2. Furthermore, as C1 contains ¬x and C ′ is the first descendant of C inferred by resolving
on x it follows that C1 is an LRES descendant of C . Hence, by Lemma 3, C ′ is of the form
�∗(¬x2 ∨ D) where x2 ∈ XC s.t. (x1, x2) ∈ EC and |C(x1,x2)| < |C(x1,x)|. By the inductive
hypothesis there exists an LRES descendant of C ′, and so C , of the form �∗(¬x1 ∨ E) that
is also an ancestor of �∗(S → 0). ��

The following lemma is the main result of this subsection. The lemma essentially states
that if a 1-start refutation of a set of SNF clauses C contains clauses having non-unifiable
modal contexts, then said clauses and their descendants may be deleted from the refutation
and that the resulting sequence of clauses will still be a valid refutation of C . The proof
of this consists of showing that any clause with non-unifiable modal contexts cannot be an
ancestor of �∗(S → 0) and hence can be deleted from the refutation as they are essentially
“dead ends”.

Lemma 5 Let φ ∈ wfmf, C = τ0(φ) and π be a Kn-Res refutation of C in 1-start form. Let
π ′ be the sequence of clauses obtained by deleting some clauses C1, . . . ,Cm, along with
every descendant of each Ci from π . If each Ci has non-unifiable modal contexts then π ′ is
a Kn-Res refutation of C .

Proof Clearly any sequence π ′ that is obtained from π by removing clauses that are not
ancestors of �∗(S → 0), as well as all of their descendants, is a refutation of C . So to prove
the lemma we show that �∗(S → 0) cannot be a descendant of any clause C in π that has
non-unifiable modal contexts. As all initial clauses have unifiable modal contexts any such
C is a literal clause of the form �∗(¬x1 ∨ ¬x2 ∨ D) where D ∈ CL and x1, x2 ∈ XC with
non-unifiable modal contexts. Let e1 and e2 be the modal contexts of x1 and x2, respectively.
We assume w.l.o.g. that |e1| ≤ |e2| .

Suppose C is an ancestor of �∗(S → 0). By Lemma 4 the refutation π contains some
clause C ′ = �∗(¬y1 ∨ D1) where y1 ∈ Xe1 ∩ ({xε} ∪ XC±) and D1 ∈ CL . Further,
C ′ is both an ancestor of �∗(S → 0) and an LRES descendant of C . As C ′ is an LRES
descendant of C , by Lemma 3 the disjunction D1 contains some negative extension literal
¬x ′

2 s.t. x
′
2 ∈ Xe2 . Thus, by Lemma 4 π also contains a clause C ′′ = �∗(¬y2 ∨ D2) where
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20 S. Sigley, O. Beyersdorff

y2 ∈ Xe2 ∩ ({xε} ∪ XC±) and D2 ∈ CL , further C ′′ is both an ancestor of �∗(S → 0) and
an LRES descendant of C ′. As y1 ∈ XC ± ∪ {xε} it cannot appear positively in any literal
clause. Hence, as C ′′ is an LRES descendant of C ′ the disjunction D2 must contain ¬y1. As
�∗(S → 0) is a descendant of C ′′ both ¬y1 and ¬y2 must be resolved on at some stage in
π . We proceed to show by induction on |e1| that this leads to a contradiction.

Suppose |e1| = 1, then e1 = xε and |e2| > 1. The only initial clause containing a positive
instance of y1 = xε (resp. y2) is C ′

1 = �∗(S → xε) (resp. C ′
2 = �∗(y′

2 → ◦a y2)). Further,
no descendant of C ′

1 (resp. C
′
2) contains the positive literal xε (resp. y2). Hence, ¬xε must be

resolved on using IRES1 and ¬y2 must be resolved on using either GEN1 or GEN3. As π is
in 1-start form ¬y2 must be resolved on first. Thus, either GEN1 or GEN3 must be applied
to some set of clauses C ′ ⊇ {C ′

2,C
′′′} where C ′′′ is either C ′′ or some descendant of C ′′

containing ¬xε and ¬y2. However, the inference rules GEN1 and GEN3 both require every
literal in C ′′′ to be resolved on simultaneously and so ¬xε must also be resolved on at this
step in the refutation which is clearly impossible.

Now suppose |e1| > 1. For each i ∈ [2], the only clause in C in which ¬yi appears
positively is C ′

i = �∗(y′
i → ◦ai yi ). Further, no descendant of C ′

i may contain a positive
instance of yi . As both y1 and y2 only appear positively inmodal clauses theymust be resolved
on simultaneously by applying either GEN1 or GEN3 to some setC ′ ⊇ {C ′

1,C
′
2,C

′′′}, where
C ′′′ is either C ′′ or some descendant of C ′′ containing both ¬y1 and ¬y2. It follows that
a1 = a2 and at most one C ′

1 and C ′
2 is a negative modal clause as otherwise neither GEN1

norGEN3 can be applied toC ′. In particular, we assumew.l.o.g. thatC ′
1 = �∗(y′

1 → �a1 y1).
Let e′

1 and e
′
2 be the modal contexts of y′

1 and y′
2, respectively. As C

′
1 and C

′
2 are both initial

clauses it follows from the definition of τ0 that e1 = e′
1a and e2 is either equal to e′

2a or
e′
1(a2, y2). Hence, as a1 = a2 we have σ(a1, a2) = σ(a1, (y2, a2)) = a1 and so as σ(e1, e2)
is undefined e′

1 and e′
2 must be non-unifiable. Any clause inferred by applying either GEN1

or GEN3 to C ′ is a literal clause of the form �∗(¬y′
1 ∨ ¬y′

2 ∨ D′), where D′ ∈ CL . As
|e′
1| < |e1| and σ(e′

1, e
′
2) is undefined it follows by induction that �∗(S → 0) is not a

descendant of C ′′ and therefore cannot be a descendant of C . ��
Theorem 4 Kn-Res ≡p Kml -Res ≡p Kmc-Res.

Proof Let φ be a Kn formula in NNF. Translating φ into SNF, SNFml and SNFmc we obtain
three sets of clauses, denoted by C , Cml and Cmc, respectively. There is a one to one corre-
spondence between the clauses in each set. That is, for any e ∈ E ∗

C s.t. |e| = m:

(e : D) ∈ Cmc ⇐⇒ (m : D) ∈ Cml ⇐⇒ �∗(D) ∈ C ,

(e : x → ◦al) ∈ Cmc ⇐⇒ (m : x → ◦al) ∈ Cml ⇐⇒ �∗(x → ◦al) ∈ C ,

(xε : xε) ∈ Cmc ⇐⇒ (0 : xε) ∈ Cml ⇐⇒ �∗(S → xε) ∈ C ,

where xε, x ∈ XC , D ∈ CL and l ∈ L .
(≥p): Letπmc be aKmc-Res refutation ofCmc. Ifwe takeπml andπ to be the corresponding

sequences of SNFml and SNF clauses, respectively, then we obtain a Kml -Res refutation of
Cml and a Kn-Res refutation of C , respectively.

(≤p): Now supposeπ is aKn-Res refutation ofC in 1-start form. Letπ ′ = C1, . . . ,Cm be
the sequence of clauses obtained by deleting every clause with non-unifiable modal contexts
from π . By Lemma 5 π ′ is a Kn-Res refutation of C . To prove that the analogous sequence
of SNFmc clauses5 is a Kmc-Res refutation of Cmc we must verify that each clause in π ′ is

5 That is, the sequence of clauses where each clause is labelled by the unified modal context of the corre-
sponding SNF clause.
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Proof Complexity of Modal Resolution 21

inferred from a set of clauses whose modal contexts agree with those required to apply the
corresponding inference rule of Kmc-Res.

Note that as π ′ is in 1-start form it cannot contain any clauses inferred using IRES2.
Suppose some C in π ′ is inferred from two clauses C1 and C2 using IRES1. Then, as π ′ is
in 1-start form we can assume w.l.o.g. that C1 = �∗(¬xε) and C2 = �∗(S → xε). Clearly
C1 and C2 both have modal context xε and so LRES can be applied to the analogous SNFmc

clauses to infer (xε : 0).
Suppose C = �∗C ′ is inferred by applying LRES to some C1 and C2 in π ′. Let

{e1, . . . , en1} and {e′
1, . . . , e

′
n2} be the sets of all modal contexts of C1 and all modal con-

texts of C2, respectively. Then, by Lemma 3 the clause C must contain negative extension
variables with modal contexts e1, . . . , en1 , e

′
1, . . . , e

′
n2 . As C is unifiable there exists some

e ∈ E ∗
C s.t. e = σ(e1, . . . , en1 , e

′
1, . . . , e

′
n2). Hence, we can apply LRES to the analogous

SNFmc clauses to infer (e : C).
SupposeC = �∗C ′ is inferred by applyingMRES (resp. GEN2) to someC1 andC2 (resp.

C1, C2 and C3). As C1 and C2 (resp. C1, C2 and C3) are modal clauses they must each have
a single modal context. Let e1 and e2 (resp. e1, e2 and e3) be the modal contexts of C1 and
C2 (resp. C1, C2 and C3), respectively. It follows from the definition of MRES (resp. GEN2)
that C has modal contexts e1 and e2 (resp. e1, e2 and e3). Further, as C has unifiable contexts
σ(e1, e2) (resp. σ(e1, e2, e3)) is defined. Hence, we can apply MRES (resp. GEN2) to C1

and C2 (resp. C1, C2 and C3) to infer (σ (e1, e2) : C) (resp. (σ (e1, e2, e3) : C)).
Finally supposeC = �∗(¬l ′1∨· · ·∨¬l ′z+1) is inferred usingGEN1 (resp. GEN3). Then,C

is inferred from z positive modal clauses C1 = �∗(l ′1 → �al1), . . . ,Cz = �∗(l ′z → �alz),
one negative modal clause Cz+1 = �∗(l ′z+1 → ♦alz+1) and one literal clause Cz+2 =
�∗(¬l1 ∨ · · · ∨ ¬lz+1) (resp. Cz+2 = �∗(¬l1 ∨ · · · ∨ ¬lz)). Each of the modal clauses must
have a singlemodal context, hencewe let e1, . . . , ez+1 be themodal contexts ofC1, . . . ,Cz+1,
respectively. By the definition of GEN1 (resp. GEN3) C has modal contexts e1, . . . , ez+1

and so as C has unifiable modal contexts there exists some e ∈ E ∗
C s.t. σ(e1, . . . , ez+1) = e.

Further, it follows from the definition of τ0 that the set of modal contexts of Cz+2 is a subset
of {e1a, . . . , eza, ez+1(lz+1, a)} (resp. {e1a, . . . , eza}). Hence, we can apply GEN1 (resp.
GEN3) to the set of SNFmc clauses corresponding to {C1, . . . ,Cz+2} to infer (e : C).

��

6 Game Theoretic Lower Bound Technique

In this sectionwe introduce an asymmetric two-player gamebasedon those of [18,19,57]. This
game is played by a Prover and aDelayer, on an unsatisfiable set of SNFmc clausesC . Prover’s
goal is to construct a countermodel for a certain set of clausesD ⊆ {C | C �Kmc-Res C}. The
setD is defined in such a way as to ensure that it is unsatisfiable iff C is, and so it will always
be possible for Prover to construct such a model. Hence, Delayer’s goal is not to prevent
Prover from doing so, but to score as many points as possible before the game ends. We
further show that lower bounds on the proof size required to refute some unsatisfiable set of
SNFmc clauses can be obtained indirectly by showing a lower bound on Delayer’s score. In
particular, such lower bounds are lower bounds on the number of modal proof steps required
to refute C .

Before formally defining our two-player game we must extend the set of words we use
to specify the modal contexts of a given set of SNFmc clauses C . This is because we need
to be able to specify the modal context of every literal l that appears in a clause of the form
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(e : x → ♦al). Clearly if l ∈ XC then we can do this using the set of words E ∗
C (l has modal

context e(a, l)), however if l /∈ XC then its modal context cannot be described by any word
in E ∗

C . Hence, we have the following definition.

Definition 20 Let C be a set of SNFmc clauses. We define:

LC − = {(x ′, x) ∈ L × L | (e : x ′ → ♦ax) ∈ C },
ĒC = EC ∪ (A × LC −).

We say each element of ĒC is a context marker for C .

Now if (e : x → ♦al) ∈ C then clearly (x, l) ∈ LC − and so the modal context of l is given
by the word e(a, (x, l)). Therefore in this section we use the set of finite words over ĒC to
specify the modal contexts of clauses and variables.

We further extend the definition of σ so that σ : Ē ∗
C ×· · ·×Ē ∗

C �→ Ē ∗
C and for c1, . . . , cn ∈

ĒC we have σ(c1, . . . , cn) = (a, (x ′, x)) if for some j ∈ [n] we have y j = (a, (x ′, x)) and
for all k �= j we have ck = a or ck = (a, (x ′, x))}. We also extend the definition of the
reachability of a world (Definition 11) to Ē ∗

C in the obvious way6.
The following four definitions give us some convenient notation.

Definition 21 Let � be a set and let w ∈ �∗. We say w is a prefix of some word u ∈ �∗
(denoted w � u) if and only if u = wv where v ∈ �∗. We say w is a proper prefix of some
word u ∈ �∗ (denoted w � u) if and only if w is a prefix of u and w �= u.
We say w is a suffix of some word u ∈ �∗ (denoted w � u) if w = uv where v ∈ �∗. We
say w is a proper suffix of some word u ∈ �∗ (denoted w � u) if w is a suffix of u and
w �= u.

We say u is a subword of w if w = w1uw2 for some w1, w2 ∈ �∗, denoted u � w.

Definition 22 Let C be a set of SNFmc clauses and let e ∈ Ē ∗
C . We define:

Ēe� = {e′ ∈ E ∗
C | σ(e, e′′) ∈ Ē ∗

C and e′′ � e′}.
The sets Ēe�, Ēe�, Ēe�, Ēe ��, Ēe �� and Ēe= are defined similarly.

Definition 23 Let C be a set of SNFmc clauses. For each e ∈ Ē ∗
C we define:

Le = {(e′ : C) ∈ C | C ∈ CL and σ(e, e′) ∈ Ē ∗
C },

Ce = Le ∪ {(e′ : x ′ → ◦ax) ∈ C | σ(e, e′′) ∈ Ē ∗
C where e′′ is the modal context of x},

Ne = {(e′ : x ′ → ♦ax) ∈ C | σ(e, e′) ∈ Ē ∗
C }.

Then, the set Le consists of all literal clauses whose modal context is unifiable with e and the
set Ne is the set of all negative modal clauses whose modal context is unifiable with e. The
set Ce is the set of all clauses to which a rule of Kmc-Res can be applied to resolve on some
variable with modal context e (not to be confused with the set of all clauses whose modal
context is unifiable with e).

6.1 Query Sets

Several different Prover–Delayer games have been used to prove lower bounds for tree-
like propositional resolution (cf. [18,19,57]). Such games are played over an unsatisfiable

6 So for example given a model M we say a world w is (a, (x ′, x)) ∈ A × LC −-reachable from a world u
if (x ′ → ♦a x) ∈ C , the valuation V (u)(x ′) = V (w)(x) = 1 and (u, w) ∈ Ra .
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propositional formula φ in CNF. Over the course of a game on φ Prover and Delayer build a
propositional countermodel for φ (that is, a partial assignment α to the variables in φ s.t. for
some propositional clause C ∈ φ we have α(C) = 0). At each round Prover queries some
as yet unassigned variable in φ and α is extended to include an assignment for this variable.
The game ends when α(C) = 0 for some propositional clause C in φ.

Similarly over the course of a modal game (as defined in Sect. 6.2) played on an unsat-
isfiable set of SNFmc clauses C Prover and Delayer build a pointed countermodel 〈M, wε〉
for some set of clauses D ⊆ C ∪ {C | C �Kmc-Res C}. The exact definition of D is given in
Sect. 6.2, however for now it suffices to note that D is unsatisfiable iff C is unsatisfiable. At
the start of any such game Prover and Delayer have a model consisting of a single world wε.
New worlds are added to this model at each round of the game. Hence, the key difference
between the previously proposed propositional games and our modal game is that at each
round Prover queries a world in the current model, instead of a variable in C . Querying a
world w essentially means asking whether or not to add a new world w′ which is accessible
from w to the model and if so for which context marker b ∈ ĒC is w′ b-accessible from w.
If at a given round no world is added to the model then the game ends.

Now, suppose some pointed model 〈M, wε〉 is a countermodel for a set of SNFmc clauses
C . Then, clearly there must exists some C ∈ C for which (M, wε) �|� C . If C is a negative
modal clause then C = (e : l → ♦al ′) for some e ∈ Ē ∗

C , l, l ′ ∈ L (resp. l ∈ L , l ′ ∈ XC )
and a ∈ A . Hence, as (M, wε) �|� C , the model M must contain a world w which is e-
accessible from wε and for which V (w)(l) = 1, but no world w′ that is (a, (l, l ′))-accessible
(resp. (a, l ′)-accessible) from w and so we say that 〈M, wε〉 modally falsifies C . Otherwise
C is either a positive modal clause or a literal clause. In either case M must fail to satisfy C
because of its valuation functions7 and so we say that 〈M, wε〉 propositionally falsifies C .

Obviously, if a model 〈M, wε〉 modally falsifies some clause C = (e : l → ♦al ′),
where e ∈ Ē ∗

C , l ∈ XC and l ′ ∈ L \XC (resp. l ′ ∈ XC ) then we can obtain a new
model which satisfies C by adding a new world w′ which is e(a, (l, l ′))-accessible (resp.
e(a, l ′)-accessible) from wε. Whereas if 〈M, wε〉 propositionally falsifies some clause C
then no extension of M can possibly satisfy C . Given this it is natural to require that the
countermodel for D ⊆ C ∪ {C | C �Kmc-Res C} built over the course of a modal game on C
propositionally falsifies some clause C ∈ D .

Recall that our modal game ends at a round where some world w is queried only if Prover
chooses not to add a newworld to themodel. Hence, we add the condition that after querying a
worldw Provermay only choose not to add aworld to themodel 〈M, wε〉 if thismodel already
propositionally falsifies some C ∈ D . We shall see in Sect. 6.2 that the exact definition of D
depends on the worlds queried in the previous rounds of the game. Furthermore,D is defined
so that every negative modal clause in D is satisfied by 〈M, wε〉 and so D is propositionally
falsified by 〈M, wε〉 whenever (M, wε) �|� D .

Finally, to ensure that the game always terminates we require that every new world added
to the model is b-accessible, for some b ∈ ĒC \A . Note that this ensures that each new world
corresponds to some negative modal clause in C , preventing Prover and Delayer from adding
new worlds to the model which tell us nothing about the satisfiability of C .

We formalise these restrictions by requiring that whenever Prover queries a world w that
is e-accessible from the root world wε , she must also query some query set for e w.r.t. D
(Definition 24). A query set is a set of context markers. We allow Prover to choose not to add

7 If C is a positive modal clause then C = (e : l → �al ′) and so M must contain some world w which is
e-accessible from wε and for which V (w)(l) = 1, and some world w′ that is a-accessible from w and for
which V (w′)(l ′) = 0. Similarly if C is a literal clause then C = (e : l1 ∨ · · · ∨ lz) and so M must contain a
world w which is e-accessible from wε and for which V (w)(l1) = · · · = V (w)(lz) = 0.
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24 S. Sigley, O. Beyersdorff

any world to the model at a given round only if she has queried the set Qe = ∅. Otherwise,
Prover must add a world w′ that is b-accessible from w for some b ∈ Qe to the model.

Definition 24 Let C be an unsatisfiable set of SNFmc clauses and let e ∈ (ĒC \A )∗. We say
that a set Qe is a query set for e w.r.t. C if and only if it satisfies the following constraints:

(a) Qe ⊆ {(a, (x ′, x)) ∈ A × LC − | (e′ : x ′ → ♦ax) ∈ Ne} ∪ {(a, x) ∈ A × XC − | (e′ :
x ′′ → ♦ax) ∈ Ne}.

(b) For every model M = (W , Ra1 , . . . , Ran , V ) and every world w ∈ W either M contains
no world that is e-accessible from w or:

(M, w) �|�
⋃

e1∈Ēe�

Ce1 ∪
⋃

b∈Qe

Meb,

where for each b ∈ Qe we defineMeb to be the set of all clauses that can be inferred by
applying some modal rule to some set of clauses C ′ s.t. for every C ∈ C ′ either C ∈ Ceb

or
⋃

e1∈Ēeb� Ce1 �Kmc-Res C .

Consider the unsatisfiable formula ♦a(x ∧ ¬x) ∧ (♦a y ∨ ♦az). The corresponding set of
SNFmc clauses is:

C = {(ε : xε), (ε : xε → ♦ax1), ((a, x1) : ¬x1 ∨ x), ((a, x1) : ¬x1 ∨ ¬x),

(ε : ¬xε ∨ x2 ∨ x3), (ε : x2 → ♦a y), (ε : x3 → ♦az)}.
It is not hard to see that every unsatisfiable subset of C must be a superset of C(a,x1). Hence,
{(a, x1)}, {(a, x1), (a, (x2, y))}, {(a, x1), (a, (x2, y)), (a, (x3, z))}, and {(a, x1), (a, (x3, z))}
are all query sets for ε w.r.t. C .

Further, any model that satisfies Cε ∪ Nε = {(ε : xε), (ε : xε → ♦ax1), (ε : ¬xε ∨
x2 ∨ x3), (ε : x2 → ♦a y), (ε : x3 → ♦az)} at some world wε must also contain a world
w which is (a, x1)-accessible from wε. Hence, as every query set, Qε for ε w.r.t. C contains
(a, x1) the following statement holds: “every model that satisfies Cε ∪ Nε must contain a
world that is b-accessible from for some b ∈ Qε”. We will see in the following proposition
that an analogous statement holds for any modal context e and any set of clauses C . Hence,
we can think of a query set for e w.r.t. C as representing a set of worlds W ′ such that any
model M that could possibly satisfy C contains some w ∈ W ′.

Proposition 2 Let C be an unsatisfiable set of SNFmc clauses and let Qe be a query set for
some modal context e ∈ (

ĒC \A )∗
w.r.t. C . Further, let M = (W , Ra1 , . . . , Ran , V ) and

wε ∈ W. If W contains some world w1 that is e-accessible from wε and:

(M, wε) |� Ne ∪
⋃

e1∈Ēe ��

Ce1 ,

then there exists some w2 ∈ W that is eb-accessible from wε , for some b ∈ Qe.

Proof As Qe is a query set for e and w1 ∈ W is e-accessible from wε by part (b) of
Definition 24 we have (M, wε) �|� ⋃

e1∈Ēe� Ce1 ∪ ⋃
b∈Qe

Meb. Hence, as by assumption
(M, wε) |� ⋃

e1∈Ēe �� Ce1 and
⋃

e1∈Ēe� Ce1 ⊆ ⋃
e1∈Ēe �� Ce1 there must exist some C ∈ Meb

s.t. (M, wε) �|� C , where b ∈ Qe. As any such clause is inferred by applying some modal
rule of Kmc-Res to some set of clauses whose modal contexts are unifiable with eb, C must
be of the form (e′ : x1 ∨ · · · ∨ ¬xz ∨ ¬y′) where e′ ∈ Ēe= and y′ ∈ XC s.t. (e′′ : y′ →
♦a y′′) ∈ Ne and either b = (a, (y′, y′′)) or b = (a, y′′). And so there must exist some
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w ∈ W s.t. V (w)(y′) = 1 and w is e′-accessible from wε . Further, as (M, w) |� Ne we have
(M, wε) |� (e′′ : y′ → ♦a y′′) and so V (w)(♦a y′′) = 1. That is, there exists some w2 ∈ W
s.t. V (w2)(y′′) = 1 and (w,w′) ∈ Ra and so w2 is b-accessible from w.

To prove thatw2 is eb-accessible fromwε we show by contradiction thatw is e-accessible
from wε . Suppose that w is not e-accessible from wε , then clearly e′ �= e. By Remark 2
we have

⋃
e1∈Ēe′ y� Ce1 �Kmc-Res C and so by the soundness of Kmc-Res (M, wε) �|�

⋃
e1∈Ēe′b� Ce1 . Clearly

⋃
e1∈Ēe′b� Ce1 ⊆ ⋃

e1∈Ēe �� Ce1 and so (M, wε) �|� ⋃
e1∈Ēe �� Ce1 , con-

tradicting our original assumption. ��

6.2 Prover–Delayer Game

In this section, we define our two-player game which is played by a Prover (who, for clarity
is female) and a Delayer (male) on some unsatisfiable set of SNFmc clauses C . Recall that
Prover’s goal is to construct a countermodel for a given set of clauses D ⊆ {C | C �Kmc-Res

C}. Further, this model must propositionally falsify some C ∈ D . The set of clauses D that
Prover is trying to build a countermodel for depends on the modal context of the game and
so changes throughout the game.

At the beginning of the game, we have a pointed model consisting of a single world with
modal context ε and the set of clauses C . Further, Delayer’s score is 0 and the modal context
of the game is ε. At each round, if the game has modal context e and we have the set of
clauses D then Prover chooses some query set Qe for e w.r.t. D . If Qe = ∅ then the game
ends and Prover wins. Otherwise the round continues with Prover adding a new world with
modal context ec to the model, where c ∈ Qe. Before Prover adds a new world to the model
Delayer gives a weight to each c ∈ Qe. The lower the weight Delayer gives to a particular
c ∈ Qe the more points he will score if Prover chooses to add a world with modal context
ec. At the end of the round, Delayer’s score and the set of clauses are updated, and the modal
context of the game is changed to ec.

Formally, a game on some unsatisfiable set of SNFmc clauses C is played as fol-
lows. At the start of the game there exists a pointed model, 〈M1, wε〉 where M1 =
(W 1, R1

a1 , . . . , R
1
an , V

1), W 1 = {wε}, R1
ai = ∅ for all i ∈ [n] and V 1(wε)(xε) = 1. Further,

we have modal context e1 = ε, the set D1 = C and Delayers score is s1 = 0. The i th round
of the game is played as follows:

– Prover fixes some query set Qei for e
i w.r.t. D i .

– If Qei = ∅ then the game ends.
– Otherwise Delayer assigns a weight pc to each c ∈ Qei so that

∑
c∈Qei

pc = 1.

– Prover picks some c = (a′, z) ∈ Qei and the status of the game is updated as follows:

ei+1 = ei c, si+1 = si + log

(
1

pc

)

, D i+1 =
⋃

e∈Ēei�

D i
e ∪

⋃

e∈Ēei+1�

Ce ∪
⋃

b∈Qei \{c}
Mei b,

Wi+1 = Wi ∪ {wei c}, Ri+1
a =

{
Ri
a ∪ {(wei , wei c)} if a = ac,

Ri
a otherwise,

V i+1(wei c)(x) = 1 if either z = x or z = (x ′, x).

Where for each b ∈ Qei the set Mei b is defined as in part (b) Definition 24.
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26 S. Sigley, O. Beyersdorff

Note that our game can only be played if at each round the modal context ei and the set of
clauses D i are s.t. there exists a query set for ei w.r.t. D i . We will see in Proposition 3 that
this is always the case.

At each round of the game Delayer claims that the subset ofD i consisting of every clause
whose modal context is a prefix of ei is satisfied by 〈Mi , wε〉, and that some extension of Mi

satisfiesD i . Prover then picks some query set Qei for e
i w.r.t.D i and proceeds in one of two

ways. If Qei = ∅ then by definition no model containing a world w which is ei -accessible
from wε satisfies

⋃
e∈Ēei ��

D i
e = ⋃

e∈Ēei�
Ce. As Mi contains such a world no extension of

Mi can possibly satisfyD i and so Prover sees that Delayer must be lying and ends the game.
Note that every negative modal clause in

⋃
e∈Ēei�

Ce is satisfied by 〈Mi , wε〉 so Mi must

propositionally falsify
⋃

e∈Ēei ��
D i
e ⊆ D i .

If Qei �= ∅ then Prover first notes that Mi contains a world wei which is ei -accessible
from wε . Hence, by Proposition 2 any extension of Mi can only satisfy the set of negative
clauses with modal context ei , i.e. Nei ⊆ D i atwε if it contains a world that is ei b-accessible
from wε for some b ∈ Qei . Hence, 〈Mi , wε〉 is not a model for D i and so Prover adds some
such world to Mi to create a new model Mi+1, which could potentially satisfy Nei , and so
D i .

In Proposition 3, we prove that any countermodel for a set D i is also a countermodel for
C . Hence, the model Mk built over the course of some game with exactly k rounds, and every
model that extends Mk are countermodels for C . Note that it is not necessarily the case that
no previously considered model Mi where i ∈ [k − 1] was a countermodel for C , as the
rules of the game do not force Prover to set Qei = ∅ whenever it is a valid query set for
ei . However, if Prover wishes to minimise Delayers score she would always choose to set
Qei = ∅ at the first opportunity as this ends the game without allowing Delayer to score any
more points.

The following proposition ensures that the game can actually always be played.

Proposition 3 Let C be a set of unsatisfiable clauses. If a game is played on C then:

(a) For each i , if (M, w) �|� D i then (M, w) �|� C .
(b) For each i , the set D i is satisfiable iff C is satisfiable.
(c) There exists a query set for each C i ∪ ⋃

e∈Ēei�
Ce.

Proof (a) As D1 = C it follows by definition that for each i every clause in D i is either in
C or isKmc-Res provable from C . It is not hard to see that each of the rules ofKmc-Res
preserve satisfiability8 . Hence, for each i , if (M, w) �|� D i then (M, w) �|� C .

(b) This follows from parts (a) and (c).
(c) This can be seen by induction on i . If i = 1 then D i = C . As C is unsatisfiable and

Kmc-Res is complete it follow that if we let:

Qε = {(a, (x ′, x)) ∈ A × LC − | (ε : x ′ → ♦ax) ∈ Nε}∪
{(a, x) ∈ A × XC − | (ε : x ′′ → ♦ax) ∈ Nε}.

then Cε ∪ ⋃
b∈Qε

Mb is unsatisfiable. Hence, Qε is a query set for ε w.r.t. D1.

If i > 1 then D i = ⋃
e∈Ēei−1�

D i−1
e ∪ ⋃

e∈Ēei�
Ce ∪ ⋃

b∈Qei−1\{c} Mei−1b, where Qei

is a query set for ei−1 w.r.t. D i−1 and c ∈ Qei−1 s.t. ei = ei−1c. That D i is well

8 That is, if we have a set of clauses C ′ to which we apply some rule of Kmc-Res to obtain a clause C , then
(M, w) |� C iff (M, w) |� C ′.
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defined follows from the inductive hypothesis. As Qei−1 is a query set for ei−1 the
set

⋃
e∈Ēei−1�

D i−1
e ∪ ⋃

b∈Qei−1
Mei−1b must be unsatisfiable. Note that every clause in

Mei−1c must be inferred from some set C ′ ⊆ Cei ∪ ⋃
b∈Qei

Mei b, where:

Qei = {(a, (x ′, x)) ∈ A × LC − | (e′ : x ′ → ♦ax) ∈ Nei }∪
{(a, x) ∈ A × XC − | (e′ : x ′′ → ♦ax) ∈ Nei }.

It follows by the completeness ofKmc-Res that
⋃

e∈Ēei−1�
D i−1
e ∪⋃

b∈Qei−1\{c}
Mei−1b ∪

Cei ∪ ⋃
b∈Qei

Mei b is unsatisfiable. Hence, Qei is a query set for e
i w.r.t. D i .

��

6.3 Modal Decision Trees

To use our two-player game to obtain modal proof size lower bounds we need to establish a
connection between it and the number of modal resolution steps required to refute a formula
using Kmc-Res. Hence, in this section we introduce modal decision trees. The number of
vertices in a modal decision for some unsatisfiable set of SNFmc clauses C is connected
to both the number of modal resolution steps required to refute C (Proposition 4) and the
Delayer’s score in any game over C (Theorem 5).

A modal decision tree T for an unsatisfiable set of SNFmc clauses C is a tree where each
vertex is labelled by some modal context e ∈ Ē ∗

C and some set of clauses D , and each edge
is labelled by some agent a ∈ A . Intuitively, we can think of T as a partial Kripke model
(W , Ra1 , . . . , Ran , V ) where the set W is the set of vertices of T , the relation Rai is the set
of ai -edges of T for each ai ∈ A , and the partial valuation function V is s.t. if some vertex
in T is labelled by modal context e then that world is e-accessible from the root of T 9. If a
vertex η of some modal decision tree T is labelled by some modal context e then the children
of η must correspond to some query set for e w.r.t. D .

Definition 25 A modal decision tree for some unsatisfiable set of SNFmc clauses, C is a tree
T where:

1. Each vertex of T is labelled by some unique modal context e ∈ Ē ∗
C and some unsatisfiable

set of SNFmc clauses D . In particular, the root is labelled by the modal context ε and the
set of clauses C .

2. If two vertices in T are labelled by the modal contexts e1 and e2, respectively, then there
is an a-edge from η1 to η2 iff e2 = e1(a, z) for some z ∈ XC − ∪ LC −.

3. The modal context e and the set of clauses D labelling each vertex η must be s.t. the set
Qe = {c ∈ ĒC | ec labels some child of η} is a query set for e w.r.t. D .
Further, for each c ∈ Qe, the set of clauses labelling the corresponding child of η is
D1 = ⋃

e1∈Ēe� De1 ∪ ⋃
e1∈Ēec� Ce1 ∪ ⋃

b∈Qe\{c} Meb.

Each path P from the root of the tree to a given vertex specifies a partial Kripke model MP =
(WP , RP

a1 , . . . , R
P
an , V

P ), where WP = {we | e ∈ Ē ∗
C labels some η ∈ P}, for each i ∈ [n]

Rai = {(ηe1 , ηe2) ∈ P | (ηe1 , ηe2) is an a-edge of T }, and V P = {V P (wec) | wec ∈ WP }
where:

V P (wec)(x) = 1 if c = (a, x) or c = (a, (x ′, x)).

9 That, is if w ∈ W is labelled by some e ∈ Ē ∗
C s.t. |e| > 1 and the last symbol in e is of the form

(a, x) ∈ A × XC − or (a, (x ′, x)) ∈ A × LC − then V (w)(x) = 1.
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It is not hard to see that for each root to leaf path P through T , the partial model MP

corresponds to the model constructed over the course of some two-player game over C . We
will further see in Proposition 4 that every Kmc-Res refutation of some unsatisfiable set of
SNFmc clauses C corresponds to some unique modal decision tree for C . It is not the case
however that every modal decision tree for C corresponds to a Kmc-Res refutation of C .

Let C be an unsatisfiable set of SNFmc clauses and π be a Kmc-Res refutation of C . For
every e ∈ ĒC let πe denote the set of all clauses in π with modal context e′ ∈ Ēe= that are
inferred using some modal rule ofKmc-Res (that is, either MRES, GEN1, GEN2 or GEN3).

Remark 3 Throughout this section we shall assume w.l.o.g. that every clause in a Kmc-Res
refutation is an ancestor of (ε : 0). Consequently, given any unsatisfiable set of SNFmc

clauses C , any Kmc-Res refutation π of C for any e ∈ Ē ∗
C s.t. πe �= ∅ the refutation π must

contain a refutation of πe ∪ Ce ∪ ⋃
e1∈Ēe �� Ce. To see this note that any SNFmc clause in π

with modal context e must be inferred from a set of clauses whose modal contexts are either
unifiable with e or of the form e′c, where c ∈ ĒC and e′ ∈ Ēe=.

Proposition 4 Let π be a Kmc-Res refutation of some unsatisfiable set of SNFmc clauses C .
Then, we can construct a unique modal decision tree T that corresponds to π . Further, if N is
the number of modal resolution steps in π and n is the number of vertices T then N ≥ n−1.

Proof For every e ∈ (ĒC \A )∗ s.t. πe is non-empty let:

Qe = {(a, x) ∈ A × XC − | (e′ : x ′ → ♦ax) is used to infer some C ∈ πe} ∪
{(a, (x ′, x)) ∈ A × LC − | (e′ : x ′ → ♦ax) is used to infer some C ∈ πe}.

Let the vertex set for T be:

V (T ) = {ηε} ∪ {ηec | c ∈ Qe for some e ∈ (ĒC \A )∗}.
Further, let each ηe ∈ V (T ) be labelled by the modal context e and the set of SNFmc clauses
Dηe , where:

Dηe =
{
C if e = ε,
⋃

e′∈Ēe1� D
ηe1
e′ ∪ ⋃

e′∈Ēe� Ce′ ∪ ⋃
c∈Qe\{b} Mec if e = e1b for some b ∈ ĒC .

Finally for each a ∈ A let:

Ea(T ) = {(ηe1 , ηe1(a,z)) | (a, z) ∈ Qe1},
be the set of a-edges in T .

Clearly T is a tree and |V (T )| − 1 = n − 1 ≤ N . To prove that T is a modal decision tree
for C it remains to show that each Qe is a valid query set for e w.r.t. Dηe . That is, we must
show that each Qe satisfies conditions (a) and (b) of Definition 24.

Every negative modal clause in C with modal context e′ ∈ Ēe= is in Dηe . Hence, that (a)
is satisfied follows immediately from the definition of Qe.

To prove that each Qe also satisfies condition (b) of the definition of a query set we
will first prove that for each e s.t. Qe �= ∅, there exists some subsequence of π which is a
refutation of

⋃
e1∈Ēe� D

ηe
e1 ∪ πe. This is done by induction on |e|. If |e| = 0 then e = ε and

⋃
e1∈Ēε� D

ηε
e1 = Cε. If we further note that

⋃
e1∈Ēε �� Ce1 = ∅ it follows by Remark 3 that π

contains some refutation of πε ∪ Cε = πε ∪ ⋃
e1∈Ēε� D

ηε
e1 .

Suppose |e| > 0. Then, there exists some e1 ∈ Ē ∗
C and some b ∈ ĒC s.t. e = e1b. Further,

Dηe = ⋃
e′∈Ēe1� D

ηe1
e′ ∪ ⋃

e′∈Ēe� Ce′ ∪ ⋃
c∈Qe1\{b} Me1c, where for each c ∈ Qe1 the set
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Me1c is as defined in Definition 24. By the inductive hypothesis π contains a refutation of
⋃

e′∈Ēe1� D
ηe1
e′ ∪ e1 . Let π

b
e1 denote the subset of πe consisting of every clause inferred from

a negative modal clause C ∈ Ce1b = Ce. It follows from the definition of Qe1 and Remark 3
that π must contain a derivation of each C ∈ πb

e1 from Ce ∪ πe. Hence, π must contain a
refutation of:

⋃

e′∈Ēe1�

D
ηe1
e′ ∪ (πe1\πb

e1) ∪ Ce ∪ πe.

By definition (πe1\πb
e1) ⊆ ⋃

c∈Qe1\{b} Me1c and so this refutation is also a refutation of
⋃

e′∈Ēe� D
ηe
e′ ∪ πe. Hence, we have completed our induction.

Finally to see that condition (b) is satisfied for each Qe note that as Kmc-Res is sound
and there exists a Kmc-Res refutation of

⋃
e′∈Ēe� D

ηe
e′ ∪ πe, this set must be unsatisfiable. It

follows from the definition of Qe that πe ⊆ ⋃
c∈Qe

Mec, and so
⋃

e′∈Ēe� D
ηe
e′ ∪ ⋃

c∈Qe
Mec

must be unsatisfiable. ��
In the next theoremwe state the connection between the number of modal resolution steps

required to refute a formula using Kmc-Res and our two-player game. This connection will
allow us to prove modal proof size lower bounds for Kmc-Res indirectly.

Theorem 5 LetC beanunsatisfiable set of clauses in SNFmc and letπ beaKmc-Res refutation
of C with N modal resolution steps. Then, there is a Prover strategy s.t. Delayer scores at
most log(N + 1) modal points.

Proof Let π be a Kmc-Res refutation and let T be the associated modal decision tree. By
Proposition 4 we have n − 1 ≤ N , where n is the number of vertices in T and N is the
number of modal resolution steps in π . Hence, if we let L(T ) be the set of all leaf vertices
of T then |L(T )| ≤ N + 1.

The decision tree T completely specifies Prover’s strategy. Recall that each vertex in T
is labelled by some modal context and that if a vertex η is labelled by e ∈ Ē ∗

C and the set
D then the set Qe = {c ∈ ĒC | ec labels some child of η} is a query for e w.r.t. D . In
particular the root vertex η0 is labelled by the modal context ε and the set C , and its children
correspond to some query set Qε for ε w.r.t. C . Prover queries the set Qε. If Qε = ∅ then
the game ends. Otherwise, Delayer gives each c ∈ Qε a weight pc and Prover chooses some
c = (ac, z) ∈ Qε with probability pc, sets:

e2 = c, s2 = log
1

pc
, R2

a =
{
R1
a ∪ {(wε,wc)} if a = ac,

R1
a otherwise,

W 2 = W 1 ∪ {wc} and V 2(wc)(x) = 1 if x = z or (x ′, x) = z for some x ′ ∈ XC .

and moves along the corresponding edge of T to the vertex labelled by c.
At the next round Prover queries the set Qc corresponding to the children of this new

vertex and proceeds as above. Continuing in this manner will result in a root to leaf walk on
T . Note that the set of all possible such walks is in bijection with the set of leaves of T .

Let qD,λ denote the probability of the game ending at leaf λ ∈ L(T ) when played with
a fixed Delayer D. Let πD be the probability distribution over the leaves of T . If the game
ends at leaf λ then D scores exactly log 1

qD,λ
points.

To see this consider a fixed leaf λ and the unique path P from the root of T to λ. The
modal context of the i th vertex in P is ei . Hence, the probability of reaching λ is:

qD,λ = q1q2 . . . qm,
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where q j is the probability of choosing c j from Qei . The score at the end of the game is:

m∑

j=1

log
1

q j
= log

1
∏m

i= j q j
= log

1

qD,λ

,

and the expected score of the Delayer is:

∑

λ∈L(T )

qD,λ log
1

qD,λ

= H(πD),

which is exactly the Shannon entropy of πD . The entropy is maximal when the probability
distribution considered is the uniform distribution, hence as the support of πD has size at
most |L(T )| it follows that H(πD) ≤ log |L(T )| ≤ log(N + 1). ��

The above theorem allows us to prove lower bounds on the number of modal resolution
steps needed to refute some unsatisfiable set of SNFmc clauses C usingKmc-Res. Such lower
bounds are proved indirectly by first proving a lower bound f (n), where n is the size of C ,
on the Delayers score for any game played on a given unsatisfiable set of SNFmc clauses
C . It follows from the above theorem that 2 f (n) is a lower bound for the number of modal
resolution steps, N required to refute C , hence if 2 f (n) is superpolynomial then we have
proved a superpolynomial lower bound for N .

7 An Exponential Lower Bound for theModal Pigeonhole Principle

The pigeonhole principle with m pigeons and n pigeonholes states that whenever m > n
there is no 1 − 1 map from the pigeons to the pigeonholes. This can be formulated as a
propositional formula as follows:

PH Pm
n =

∧

i∈[n]

∨

j∈[m]
pi, j ∧

∧

1≤i<i ′≤n

∧

j∈[m]
(¬pi, j ∨ ¬pi ′, j ).

Intuitively, the propositional variable pi, j denotes that the i th pigeon is in the j th pigeonhole,
hence the above formula says that each pigeon is in a pigeonhole and that no pigeonhole
contains more than one pigeon. Clearly whenever m > n the formula PH Pm

n must be
unsatisfiable. The propositional pigeonhole principle is known to be hard for propositional
resolution [38].

We can formulate the pigeonhole principle as a modal formula with modal depth m over
the set of agents A = {a} and the set of variables {l1, . . . , ln}.
Definition 26 (MPHPm

n ) Let Pi = �i−1(
∨n

j=1 ♦l j ) for every 1 ≤ i ≤ m and H j
i,i ′ =

�i¬l j ∨ �i ′¬l j for every 1 ≤ j ≤ n and 1 ≤ i < i ′ ≤ m. We define:

MPHPm
n =

∧

i

Pi ∧
∧

j

∧

i ′ �=i

∧

i

H j
i,i ′ .

Note that as MPHPm
n is a modal formula over just a single agent we have omitted the

subscripts from our modal operators. Further, �i denotes i successive �a operators.

Intuitively pigeon i is in pigeonhole j only if ♦i l j = 1, where ♦i denotes i successive

♦a operators. Hence, Pi says that pigeon i occupies at least one pigeonhole and H j
i,i ′ says
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that no two pigeons occupy the same hole. Clearly whenever m > n (that is, there are more
pigeons than pigeonholes)MPHPm

n is unsatisfiable.
We can easily convertMPHPm

n into the following set of SNFmc formulas:

MPH Pm
n = xε ∧

∧

i

P̂i ∧
∧

j

∧

i ′ �=i

∧

i

Ĥ j
i,i ′

where i, i ′ ∈ [m], j ∈ [n] and for all i1 ∈ {2, . . . ,m}, i, i ′ and j :

P̂1 = (ε : ¬xε ∨ x11 ∨ y11 ) ∧
n−2∧

k1=2

(ε : ¬x1k1−1 ∨ x1k1 ∨ y1k1) ∧ (ε : ¬x1n−2 ∨ y1n−1 ∨ y1n ) ∧
n∧

k2=1

(ε : y1k2 → ♦lk2),

P̂i1 = (ε : xε → �zi11 ) ∧
i1−2∧

k1=1

(
ak1 : zi1k1 → �zi1k1+1

)
∧

(ai1−1 : ¬zi1i1 ∨ xi11 ∨ yi11 ) ∧
n−2∧

k2=2

(
ai1−1 : ¬xi1k2−1 ∨ xi1k2 ∨ yi1k2

)
∧

(ai1−1 : ¬xi1n−2 ∨ yi1n−1 ∨ yi1n ) ∧
n∧

k3=1

(ai1−1 : yi1k3 → ♦lk3),

Ĥ j
i,i ′ = (ε : ¬xε ∨ x j

i,i ′,1 ∨ y j
i,i ′,1) ∧

i−1∧

k1=1

(
ak1−1 : x j

i,i ′,k1 → �x j
i,i ′,k1+1

)
∧

(ai−1 : x j
i,i ′,i → �¬l j ) ∧

i ′−1∧

k2=1

(
ak2−1 : y j

i,i ′,k2 → �y j
i,i ′,k2+1

)
∧ (ai

′−1 : y j
i,i ′,i ′ → �¬l j ).

Note that we have written our formula as a conjunction of clauses, however we can equiva-
lently think of it as a set of clauses. Hence, in the remainder of this section we will use set
notation.

In the following theorem we prove that the number of modal resolution steps used in any
Kmc-Res refutation ofMPH Pm

n is superpolynomial with respect to n. To obtain this lower
bound we show that if the two-player game defined in Sect. 6.2 is played on MPH Pm

n
then Delayer can play according to a certain strategy which ensures that he always scores
at least log(n!) points, no matter what strategy Prover adopts. Recall Theorem 5 states that,
if there exists a refutation of MPH Pm

n with N modal resolution steps then Prover can
ensure Delayer score never exceeds log(N + 1) points. Hence, our lower bound follows.

Theorem 6 Any Kmc-Res refutation of MPH Pm
n has at least n! − 1 modal steps.

Proof Let C = MPH Pm
n . Suppose a Prover and a Delayer play the game defined in

Sect. 6.2 on C . By definition, at the beginning of the game we have the modal context e1 = ε,
the set of clauses D1 = C and the pointed model 〈M1, wε where M1 = (W 1, R1, V 1),
W 1 = {wε}, R1 = ∅ and V 1(wε)(xε) = 1. At the kth round of the game Prover fixes some
query set Qek for ek w.r.t. Dk and then adds a world that is ekb-accessible from wε to the
model, where b ∈ Qek .

Let Qmax
ek

= {(a, (ykj , l j )) | j ∈ [n]}. As Nek = {(ak−1 : ykj → ♦l j ) | j ∈ [n]} it

follows by condition (a) of Definition 24 that every query set for ek is a subset of Qmax
ek

.
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32 S. Sigley, O. Beyersdorff

If Prover chooses to add a world that is ek(a, (ykj , l j ))-accessible from wε to the model

then (M, wε) |� ♦kl j . Hence, intuitively at the kth round of the game Prover chooses some

pigeonhole for the kth pigeon to occupy. If we let Ak = {(a, (ykj , l j ) | (a, (yk1j , l j )) �
ek, k1 ∈ [k − 1], j ∈ [n]} then Ak is the set of pigeonholes occupied by the first k − 1
pigeons.

We will now give Delayer’s strategy for the first n rounds of the game. If Prover queries
some set Qek at the kth round of the game then for each b = (a, (ykj , l j )) ∈ Qek Delayer
sets the weights as follows:

pb = 1

|Qek | − |Ak | , if b /∈ Ak,

pb = 0, otherwise.

At each round Delayer forces Prover to put the kth pigeon into some unoccupied pigeonhole.
Obviously this strategy can only be followed if |Qek | − |Ak | > 0. Hence, in order to prove
our lower bound we need the following claim.

Claim For every k ∈ [n] the set Qek = Qmax
ek

.

We have already seen that Qek ⊆ Qmax
ek

. To see why Qek ⊇ Qmax
ek

we can think of each query
set Qek as a set of candidate pigeonholes for the kth pigeon. By Proposition 2 the set Qek

must contain every pigeonhole that can possibly be occupied by pigeon k, while satisfying⋃
e∈Ēek�

Dk
e . This set is satisfied by any model corresponding to an assignment of pigeons

to pigeonholes where for each i ∈ [k − 1] the i th pigeon is put into the pigeonhole specified
to by the i th symbol of ek , and the kth pigeon is just in some pigeonhole. Hence, as there is
no restriction on which pigeonhole is occupied by pigeon k we have Qek ⊇ Qmax

ek
.

Before giving a formal proof of our claim we will explain how it allows us to prove our
lower bound. By the above claim |Qek | = n and so for each k we have |Qek | − |Ak | =
n − (k − 1). Hence, Delayer can follow the above strategy for the first n rounds. It follows
that Delayers score at the end of the nth round will be:

sn =
n∑

k=1

(log(n + 1 − k)) = log

(
n∏

k=1

(n + 1 − k)

)

= log(n!).

As Delayer scores at least 0 at each round his final score must be ≥ sn and so by Theorem 5
any Kmc-Res refutation of MPH Pm

n contains at least 2s
n − 1 = n! − 1 modal steps.

Proof of claim We will now give a formal proof of our claim. To prove that Qek ⊇ Qmax
ek

it suffices to show that for every b ∈ Qmax
ek

there exists some model M = (W , R, V ) and

some world wε ∈ W s.t. (M, wε) |� ⋃
e1∈Ēek�

Dk
e1 ∪ ⋃

c∈Qmax
ek

\{b} Mec, where each Mec is

as defined in part (b) of Definition 24.
In factweprovewill a slightly stronger result.Namely that for every ek and everyb ∈ Qmax

ek
there exists a model M = (W , R, V ) where:

W = {we | e � ek}, R = {(we, wec) | we, wec ∈ W and c ∈ ĒC }, (1)

V (we)(l j ) =
{
1 if j = k2 and e = e′(a, (yk1k2 , lk2)) for some e′ ∈ Ē ∗

C ,

0 if j �= k2 and e = e′(a, (yk1k2 , lk2)) for some e′ ∈ Ē ∗
C ,

(2)

for allwe ∈ W and all j, k1, k2 ∈ [n]. Further, (M, wε) |� ⋃
e1∈Ēek�

Dk
e1 ∪

⋃
c∈Qmax

ek
\{b} Mec.

To prove this we use induction on k.
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If k = 1 then e1 = ε. Let b = (a, (y1p, l p)) ∈ Qmax
ε and let M = (W , Ra, V ) where:

W = {wε}, Ra = ∅, V (wε)(xε) = 1,

V (wε)(y
1
j ) =

{
1 if j = p,

0 if j �= p,
and V (wε)(x

1
j ) =

{
1 if j < p,

0 if j ≥ p,

for all j ∈ [n]. Clearly (M, wε) |� ⋃
e∈Ēε� D1

e = Cε. Further, for each c = (a, (y1j , l j )) ∈
Qmax

e1
the set Mc contains only clauses that can be inferred by applying some modal rule of

Kmc-Res to some set of clauses containing (ε : y1j → ♦l j ). Hence, every clause in Mc is of
the form (ε : A∨¬y j ), where A is a propositional clause and so (M, wε) |� ⋃

c∈Qmax
ε \{b} Mc.

Suppose k > 1. Delayer’s strategy ensures that ek = ek−1b1 for some b1 ∈ Qmax
ek−1\Ak−1.

Hence, by the inductive hypothesis there exists a partial model M ′ = (W ′, R′, V ′) where:

W ′ = {we | e � ek−1}, R′ = {(we, wey) | we, wec ∈ W and c ∈ ĒC }

V ′(we)(l j ) =
{
1 if j = j1 and e = e′(a, (yk1j1 , l j1)) for some e′ ∈ Ē ∗

C ,

0 if j �= j1 and e = e′(a, (yk1j1 , l j1)) for some e′ ∈ Ē ∗
C ,

for all we ∈ W and all j ∈ [n], and (M ′, wε) |� ⋃
e1∈Ēek−1�

Dk−1
e1

⋃
c∈Qmax

ek−1\{b1} Mek−1c.

For each b2 = (a, (ykp, l p)) ∈ Qmax
ek

we can construct a model M , whose worlds, rela-

tions and valuations are as in Equations (1) and (2), and which satisfies
⋃

e1∈Ēek�
Dk
e1 ∪

⋃
c∈Qmax

ek
\{b2} Mek−1c at wε as follows. Let M = (W , R, V ) where:

W = W ′ ∪ {wek }, R = R′ ∪ {(wek−1 , wek )},

V (w)(x) = V ′(w)(x) for every w ∈ W ′ and V (wek )(l j ) =
{
1 if b2 = (a, (ykj , l j )),

0 otherwise.

Clearly M is a model of the required form. Further, as M is an extension of M ′ we have
(M, wε) |� ⋃

e1∈Ēek−1�
Dk−1
e1

⋃
c∈Qmax

ek−1\{b1} Mek−1c. Hence, to show that Qmax
ek

\{b2} is not a
query set for ek w.r.t.Dk all we have to do is show that (M, wε) |� Cek ∪⋃

c∈Qmax
ek

\{b2} Mekc.

Recall that for each c = (a, (ykj , l j )) ∈ Qmax
ek

the set Mec contains only clauses of the

form (A ∨ ¬ykj ), where A ∈ CL . Hence, to ensure that (M, wε) |� ⋃
c∈Qmax

ek
\{b2} Mekc we

let:

V (wek )(y
k
j ) =

{
1 if j = p,

0 if j �= p.

Note that the set Cek consists of every literal clause in C with modal context ak−1, every
positive modal clauses in C with modal context ak−2 and the negative modal clause (ak−2 :
yk−1
q → ♦lq), where q s.t. b1 = (a, (yk−1

q , lq)). As V (wek )(l j ) = 1 iff j = q clearly

(M, wε) |� (ak−2 : yk−1
q → ♦lq). If we further let:

V (wek )(z
i1
k−1) = 1 and V (wek )(x

k
j ) =

{
1 if j < p,

0 if j ≥ p,

for all k < i1 ≤ n and all j then it is not hard to see that every positive modal clause of the
form (ak−2 : zi ′k−2 → �zi

′
k−1) and every literal clause in P̂k−1 is satisfied at wε in M .
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34 S. Sigley, O. Beyersdorff

We have now shown that (M, wε) |� Cek ∩ ⋃
i P̂i . It remains is to show that (M, wε) |�

Cek ∩⋃
i �=i ′, j Ĥ

j
i,i ′ . The set Cek ∩⋃

i �=i, j Ĥ
j
i,i ′ consists of all clauses of the following forms:

1. (ak−2 : x j
i,i ′,k−1 → �x j

i,i ′,k),

2. (ak−2 : y j
i,i ′,k−1 → �y j

i,i ′,k),

3. (ak−2 : x j
k−1,i ′,k−1 → �¬l j ),

4. (ak−2 : y j
i,k−1,k−1 → �¬l j ),

where i < i ′ ∈ [m] and j ∈ [n]. Every clause of the form 1 and 2 can be satisfied at wε in
M by letting:

V (wek )(x
j
i,i ′,k) = 1 and V (wek )(y

j
i,i ′,k) = 1.

However, clauses of the form 3 and 4 do not contain any unassigned variables, so we cannot
simply extend V to ensure that they are satisfied at wε in M . A clause (ak−2 : x j

k−1,i ′,k−1 →
�¬l j ) is not satisfied at wε in M iff V (wek−1)(x

j
k−1,i ′,k−1) = 0 and V (wek )(l j ) = 1. As

V (wek )(l j ) = 0 for all j �= q this can only be the case if j = q . Hence, to ensure that every
such clause is satisfied we set:

V (wei1 )(x
j
k−1,i ′,i1) = 0 and V (wei1 )(y

j
k−1,i ′,i1) = 1 for all i1 < k,

Note that every clause containing these variables is in H j
i,i ′ . By inspection, we can easily

see that changing the assignments of these variables as above does not change the truth
valuation of any clause in Cek ∩ H j

i,i ′ . Similarly to ensure that every clause of the form

(ak−2 : y j
i,k−1,k−1 → �¬l j ) is satisfied at wε in M we set:

V (wei1 )(x
j
i,k−1,i1

) = 1 and V (wei1 )(y
j
i,k−1,i1

) = 0 for all i1 < k

Note that this will not cause the clause (ai−2 : x j
i,k−1,i → �¬l j ) to be falsified as Delayer’s

strategy ensures that ek contains no repeated pigeonholes and so V (wei )(l j ) = 0. Hence, as
above changing the assignments of these variables will not change the truth valuation of any
clause in Cek ∩ H j

i,i ′ .
This concludes the proof of our claim, and so the proof of the theorem. ��

8 ComparingModal Frege Systems withModal Resolution Systems

In proof complexity, Frege systems are among the most studied proof systems for proposi-
tional logic.

Definition 27 AFrege system for propositional logic is a line-basedproof system P consisting
of a finite set of inference rules and axioms of the form φ1, . . . , φk �P φ and �P φ,
respectively, where φ1, . . . , φk, φ are propositional formulas. Further, P must be sound and
strongly complete.

One way to prove that a propositional formula φ is a tautology using a Frege system is to
refute its negation. That is, to derive a formula of the form ¬φ → 0.

An example of a propositional Frege system is given in Fig. 4. It was shown in [31] that
every Frege system is p-equivalent hence we can take this system (or any other) to be the
canonical Frege system.

Definition 28 Let P be a Frege system. We say that a rule φ1, . . . , φz � φ of P is sound if
every model which satisfies φ1, . . . , φz also satisfies φ.
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Fig. 4 A propositional Frege system

The resolution rule is sound and so can be taken as a rule of any Frege system and so
clearly Frege p-simulates propositional resolution. Furthermore, there exists an exponential
separation between Frege and propositional resolution [28]. That is, there exist propositional
formulas that are known to require exponential-sized proofs for propositional resolution and
polynomial-sized proofs for Frege.

Definition 29 An extended Frege system is a Frege system with the additional axiom:

p ↔ φ,

where p is a new propositional variable (called an extension variable), that does not appear
in φ, any previously derived formulas or the final formula of the proof. We call this axiom
the extension axiom.

While extended Frege obviously p-simulates Frege, there is as of yet no known separation
between these systems. In fact there are currently no propositional formulas that have been
shown to require super-polynomial size proofs in Frege.

Given any propositional Frege system we can obtain a Frege system for the modal logic
Kn by adding the following rules, for every a ∈ A :

Ka : �a(A → B) → (�a A → �a B) and ANECa : �a A
.

Further, an extended Frege system for Kn can be obtained by adding the extension axiom
to any Kn-Frege system.

Definition 30 [42]We say that aKn-Frege system P is standard if every formula φ for which
φ1, . . . , φk �P φ is in the closure ofKn∪{φ1, . . . , φk} underMP andNECa for every a ∈ A .

We can extend Definition 28 to Kn-Frege systems by saying that a rule, φ1, . . . , φz is
sound iff whenever φ1, . . . , φz are satisfied at some world w in some Kripke model M , so is
φ. Clearly a Kn-Frege system can be non-standard only if it contains some rule, other than
NECa , which is not sound. Every standardKn-Frege system p-simulates every other standard
Kn-Frege system [42]. The analogous statement is not known to hold for non-standard Kn-
Frege systems, hence in this paper we only consider standard Kn-Frege systems.

Lemma 6 Kn-Frege p-simulates Kmc-Res.

Proof Each of the rules of Kmc-Res is sound. Hence, the lemma follows immediately. ��
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8.1 Separation of Kn-Frege and Kmc-Res

It was proved by Buss in [28] that there exist polynomial-sized Frege refutations of the
propositional pigeonhole principle with m > n pigeons. Buss’ proof relies on the fact that
Frege systems can count efficiently. The idea behind the proof is as follows. If we assume
that the pigeonhole principle holds for some m > n and count the number of holes that are
occupied by the first n+1 pigeons then we can construct a polynomial-sized Frege derivation
of some formula encoding that this number is greater than n. However, as there are only n
pigeonholes, we can also construct polynomial-sized Frege derivation of a formula encoding
that the number of occupied holes is less than or equal to n, leading to a contradiction. A
very similar proof can be used to show that there exists a polynomial-sized Kn-Frege proof
of the modal pigeonhole principle. We will give a sketch of Buss’ proof of the pigeonhole
principle, highlighting the steps that make explicit use of PH Pm

n .

Theorem 7 [28] There exist polynomial-sized Frege refutations of PH Pm
n , where m > n.

Proof (Sketch) The proof has two parts. First we show that there exists a polynomial-sized
extended Frege derivation of 0 from PH Pm

n . We will then show that this extended Frege
derivation can be used to obtain a polynomial-sized Frege derivation of 0 from PH Pm

n .
The extended Frege refutation of PH Pm

n is obtained as follows. First, for each i ∈ [m]
and j ∈ [n]we introduce an extension variable r ij which abbreviates the formula

∨
k∈[i] pk, j .

Clearly r ij is true iff one of the first i pigeons occupies pigeonhole j . Hence, the number of

r ij ’s that are true in a given assignment is equal to the number of pigeonholes occupied by the
first i pigeons. If we assume w.l.o.g. that n is a power of 2 then for each i we can define log n
formula’s ai,1, . . . , ai,log n (henceforth denoted by the vector �ai ) which encode the number
of r ij ’s which are true in a given model. We denote the number encoded by �ai as Ai .

Let φi = (
∧

j∈[n](r ij → r i+1
j ) ∧ ∨

j∈[n](r
i+1
j ∧ ¬r ij )). It is not hard to see from the

definition of r1j that there exists a polynomial-sized Frege proof of PH Pm
n → ∨

j∈[n] r1j .
Further, given

∨
j∈[n] r1j there exists a polynomial-sized Frege derivation of a formula encod-

ing that 0 < A1. Similarly, for each i ∈ [m] there exists a straightforward polynomial-sized
Frege proof of PH Pm

n → φi and, for each i given φi there exists a polynomial-sized Frege
derivation of a propositional formula encoding that Ai < Ai+1. Finally these proofs can
be combined to obtain polynomial-sized proofs of a formula encoding that n < An+1 from∧

i∈[m] φi ∧ ∨
j∈[n] r1j (and so from PH Pm

n ).
There further exists a polynomial-sized Frege proof of a formula which encodes that

n ≤ An . Hence, there exists a polynomial-sized Frege derivation of a formula encoding that
n < n from PH Pm

n . As n = n this formula must be false and so we have a polynomial-sized
Frege refutation of PH Pm

n .
For every i , each formula in �ai can be defined so that it has size polynomial in that of

the largest propositional formula abbreviated by any r ij . Hence, replacing all the extension
variables in the extended Frege proof of PH Pn

m → 0 with the formulas they abbreviate
yields a polynomial-sized Frege refutation of PH Pm

n . ��
Theorem 8 There exists a polynomial-sized Kn-Frege refutation of MPH Pm

n , where m > n.

Proof (Sketch)Note that the only parts of the extendedFrege refutation of PH Pm
n that depend

on the formula itself are the proofs of PH Pm
n → ∨

j∈[n] r1j and PH Pm
n → ∧

i∈[m] φi .
Hence, to show that there exists a polynomial-sized extended Kn-Frege refutation of
MPHPm

n it suffices to show that we there exist polynomial-sized Kn-Frege proofs of
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MPHPm
n → ∨

j∈[n] r1j andMPHPm
n → ∧

i∈[n−1] φi for some suitable choice of extension

variables r ij .

Let r ij ↔ ∨
k∈[i] ♦kl j . Clearly we can derive MPHPm

n → ∨
j∈[n] r1j . Further, for each

j ∈ [n] and i ∈ [m − 1] there exists a simple Frege proof of r ij → r i+1
j . It remains to show

that for each i ∈ [m − 1] there exists a polynomial-sized Frege proof of ¬MPHPm
n →

∨
j∈[n](r

i+1
j ∧ ¬r ij )). To see this first note that there exists a polynomial-sized Frege proof

of (♦i+1l j ∧ ∧
k∈[i] ¬♦kl j ) → r i+1

j ∧ ¬r ij . As the formulas ♦ψ1 ∧ �ψ2 → ♦ψ2 and
♦ψ1 ∨ ♦ψ2 → ♦(ψ1 ∨ ψ2) are theorems of Kn we can assume w.l.o.g. that they are
axioms of our Kn-Frege system. Hence, we can easily obtain a polynomial-sized Kn-Frege
proof of Pi+1 → ∨

j∈[n] ♦i+1l j . Given this it is not hard to see that Pi+1 ∧∧
j∈[n] H

j
i,i+1 →

(♦i+1l j∧∧
k∈[i] ¬♦kl j ). Putting these proofs together, we obtain a polynomial-sized proof of

MPHPm
n → ∨

j∈[n](r
m+1
j ∧¬rmj )). Hence, we have shown that MPHPm

n → ∧
i∈[n−1] φi

and so by the reasoning in the proof of Theorem 7 there exists a polynomial-sized extended
Kn-Frege refutation of MPHPm

n .
That the refutation size remains polynomial when replacing these extension variables with

the corresponding modal formulas again follows as in the propositional case. Hence, we have
a polynomial-sized Kn-Frege proof of MPHPm

n . ��
Corollary 1 There exists an exponential separation between the proof size required to refute
MPH Pm

n in Kn-Frege and Kmc-Res.

Proof This follows immediately from Theorems 6 and 8. ��
Propositional separations between Kn-Frege and Kmc-Res follow trivially from the fact

that a number of propositional formulas (including the propositional pigeonhole principle)
have previously been shown to be hard for propositional resolution but easy for propositional
Frege. Hence, the significance of the above result is that Kmc-Res requires an exponential
number of modal resolution steps to refute MPHPm

n , whereas there exists a polynomially
sized Kn-Frege refutation of MPHPm

n . Clearly, any polynomial-sized Kn-Frege refutation
may contain at most a polynomial number of modal proof steps (i.e. applications of Ka or
NECa) and so the separation in Corollary 1 is a truly modal one.

8.2 GameTheoretic Lower Bound Technique vs Existing Lower Bound Techniques

In [40], Hrubeš adapted a propositional lower bound proving technique to obtain lower
bounds for Kn-Frege. This lower bound proving technique works by allowing hardness
results from circuit complexity to be applied to proof complexity and is similar to well-
known propositional lower bound proving technique called feasible interpolation [56].

The statement “if a graph of size n has a clique of size k + 1 then it is not k-colourable”
can be formulated as a propositional formula:

Cliquekn( p̄, r̄) → (¬Colourkn ( p̄, s̄)),

where:

Cliquekn( p̄, r̄) =
∧

j

∨

i

ri, j ∧
∧

i

∧

j1 �= j2

(¬ri j1 ∨ ¬ri j2)
∧

i1 �=i2, j1 j2

(ri1 j1 ∧ ri2 j2 → pi1i2),

and Colourkn ( p̄, s̄) =
∧

i

∨

j

si j ∧
∧

i1 �=i2,i2, j

(pi1i2 → (¬si1 j ∨ ¬si2 j )).
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In [39,40], a lower bound is obtained for a modal version of this formula:

Cliquekn(� p̄, r̄) → �(¬Colourkn ( p̄, s̄)),

whereCliquekn(� p̄, r̄)denotes the formula obtainedby replacing each pi1i2 inClique
k
n( p̄, r̄)

with �pi . Notably, the exponential lower bound obtained is on the number of K axioms
needed to prove Cliquekn(� p̄, r̄). Hence, it is a modal lower bound.

As Kn-Frege p-simulates Kmc-Res, this modal clique-colour formula must also give an
exponential lower bound for Kmc-Res. However, as the negation of the modal clique-colour
formula is of the form:

Cliquekn(� p̄, r̄) ∧ ♦Colourkn ( p̄, s̄),

it is not hard to see that the corresponding set of SNFmc clauses must contain only one
negative modal clause. As our game theoretic lower bound technique counts the number of
distinct negative modal clauses needed to refute a formula, it clearly cannot be used to show
that the modal clique-colour formula gives a lower bound for Kmc-Res.

In [18], it was shown that a propositional Prover–Delayer game characterises the proof
size of tree-like propositional resolution. That our game cannot be used to prove the hardness
of the modal clique-colour formula illustrates that it is not a characterisation of the modal
proof size ofKmc-Res. It is unsurprising as our game fails to provide such a characterisation
as it counts only the number of distinct negative modal clauses needed to refute a formula,
not the total number of modal resolution steps required.

9 Conclusion and FutureWork

In this paper, we have initiated the proof complexity of modal resolution systems by (i) show-
ing the robustness of existing [48,50] and newmodal resolution systems by establishing their
equivalence through simulations; (ii) devising the first lower bound technique for these sys-
tems; (iii) illustrating the technique by a new class of formulas; and (iv) comparing resolution
to the stronger modal Frege systems of [40].

We believe that these findings are just the beginning of a more comprehensive understand-
ing of proof complexity of modal resolution. Our new Prover–Delayer game presents the first
lower bound technique formodal resolution. This prompts the questionwhether propositional
lower bound techniques such as the size-width technique [7] or feasible interpolation [43]
can be lifted to modal resolution. Initial research into this direction is reported in [61].

Further, it would be interesting to obtain more modal formulas with a combinatorial
structure that lends itself to a proof complexity analysis. Here we believe that our modal
adaptation of the pigeonhole formulas can be used for further principles such as the clique
formulas from [3,19,20]. Most of the benchmark formulas from [4], however, do not appear
to be suited for a proof complexity analysis.

On the practical side, we hope that the research line initiated here will also contribute
towards better modal theorem provers, through tight calculi (such as Kmc-Res), new bench-
mark formulas, and their proof complexity analysis.

Wemention that besides themodal resolution systems studied here, there are furthermodal
resolution systems. In particular, the first such systems have been developed by Enjalbert and
del Cerro [35].We have concentrated here on themodal resolution systems of [48,50] because
they are technically simpler (though still quite complex), more recent, and form the basis
for modal solving [51]. A partial proof complexity comparison of the system of [35] to the
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modal systems studied here is performed in [61], where it is shown that the system of [35]
simulates the systems studied here. The reverse simulation is open, but conjectured to hold
[61]. If true, this would give additional justification to focus on the modal systems studied
in this paper. We also mention that there are further modal resolution systems, introduced in
[1,2]. To compare these two systems of [48,50] is left for future work.

A further direction for future research is to explore whether our lower bound method via
Prover–Delayer games is applicable to further non-classical logics. At this point, it is known
to work for propositional resolution [18,19,57], QBF [17], and resolution for the modal
logic Kn (shown here). There are further logics, e.g. coalition logic [53] and preferential
logic [52], for which resolution systems exist and it would be interesting to explore whether
similar techniques work there. In general, it appears that proof complexity of non-classical
logics is at a quite early stage (cf. [23] for a survey), and a number of the existing proof-size
lower bounds for some logics, such as for default logic [24,34], autoepistemic logic [9], and
circumscription [13], are somewhat ad hoc without using general techniques. It would be
interesting to explore existing propositional proof complexity techniques [44] more widely
in the context of non-classical logics. One such technique is feasible interpolation [43], which
also (in a restricted version) applies to modal Frege [40] and modal resolution [61]. From
QBF proof complexity, we know that attempting to lift propositional techniques to different
logics can be challenging.10 We hope that our work here will trigger more research in this
direction.
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