
Journal of Automated Reasoning (2022) 66:43–91
https://doi.org/10.1007/s10817-021-09606-y

Conflict-Driven Satisfiability for Theory Combination:
Lemmas, Modules, and Proofs

Maria Paola Bonacina1 · Stéphane Graham-Lengrand2 · Natarajan Shankar2

Received: 18 February 2020 / Accepted: 13 August 2021 / Published online: 12 September 2021
© The Author(s) 2021

Abstract
Search-based satisfiability procedures try to build a model of the input formula by simul-
taneously proposing candidate models and deriving new formulae implied by the input.
Conflict-driven procedures perform non-trivial inferences only when resolving conflicts
between formulæ and assignments representing the candidate model. CDSAT (Conflict-
Driven SATisfiability) is a method for conflict-driven reasoning in unions of theories. It
combines inference systems for individual theories as theory modules within a solver for the
union of the theories. This article augments CDSAT with a more general lemma learning
capability and with proof generation. Furthermore, theory modules for several theories of
practical interest are shown to fulfill the requirements for completeness and termination of
CDSAT. Proof generation is accomplished by a proof-carrying version of the CDSAT transi-
tion system that produces proof objects in memory accommodating multiple proof formats.
Alternatively, one can apply to CDSAT the LCF approach to proofs from interactive theo-
rem proving, by defining a kernel of reasoning primitives that guarantees the correctness by
construction of CDSAT proofs.

Keywords Lemma learning · Proof generation · Satisfiability modulo theories ·
Satisfiability modulo assignment

This research was funded in part by NSF Grants 1528153 and CNS-0917375, by DARPA under Agreement
Number FA8750-16-C-0043, and by grant “Ricerca di base 2017” of the Università degli Studi di Verona.

B Maria Paola Bonacina
mariapaola.bonacina@univr.it

Stéphane Graham-Lengrand
stephane.graham-lengrand@csl.sri.com

Natarajan Shankar
shankar@csl.sri.com

1 Università degli Studi di Verona, Strada Le Grazie 15, 37134 Verona, EU, Italy

2 SRI International, 333 Ravenswood Avenue, Menlo Park, CA 94025, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10817-021-09606-y&domain=pdf
http://orcid.org/0000-0001-9104-2692

44 M. P. Bonacina et al.

1 Introduction

The satisfiability problem is one of checking if a given formula has a model. In the proposi-
tional case (SAT) the input is usually a formula in conjunctive normal form (a set of clauses),
and a model is an assignment of truth values to propositional variables that satisfies all the
clauses. Many SAT solvers employ a conflict-driven search strategy, known as Conflict-
Driven Clause Learning (CDCL), in which the solver extends a partial assignment until it
satisfies all clauses, or a conflict arises as the assignment falsifies a clause. Non-trivial infer-
ence steps are performed in response to a conflict to roll back the partial assignment and
direct the search elsewhere [44,45]. This conflict-driven style inspired the design of several
solvers for quantifier-free fragments of arithmetic (e.g., [8,16,17,21,36,37,40,46] for more
references). These conflict-driven theory solvers decide the satisfiability of sets of literals in
the theory.

The problem of deciding the satisfiability of a quantifier-free formula in a theory is known
as Satisfiability Modulo a Theory (SMT). MCSAT, for Model Constructing SATisfiabil-
ity, integrates a CDCL-based SAT solver and a conflict-driven model-constructing theory
solver [6,24,31,34,35,56]. CDSAT, for Conflict-Driven SATisfiability, generalizes MCSAT
to a generic union of disjoint theories whose solvers may or may not be model-constructing
[11].

In CDSAT, both Boolean and first-order terms are given assignments in a trail representing
the candidate model as a partial assignment. First-order terms are assigned constant symbols
representing individuals of the corresponding sort in amodel’s domain (e.g., integer terms are
assigned integer constants). Since CDSAT accepts such first-order assignments also as part
of the input, CDSAT is an engine to determine the satisfiability of a quantifier-free formula
modulo a union of theories (SMT) and possibly modulo an initial assignment of values to
terms appearing in the input formula.We call this generalization of SMT satisfiability modulo
assignment (SMA).

CDSAT is presented as a transition system that combines multiple theory solvers, all or
some of which are conflict-driven, into a conflict-driven solver for the union of the theories.
More precisely, CDSAT combines theory inference systems, called theory modules, and
performs the conflict-driven search for all theories. A theory module is an abstraction of a
theory solver. Propositional logic is regarded as one of the theories. Every theory module
can expand the trail in two ways: either by deciding the value of a term or by performing
an inference. Theory inferences are applied to propagate consequences of the assignments
on the trail, to detect conflicts, and to explain such conflicts, all in the respective theory. A
conflict in CDSAT is a set of assignments from the trail that is unsatisfiable. The inferences
can be used to transform the conflict into a Boolean one, susceptible of conflict analysis. The
analysis solves the conflict, producing a lemma and undoing some assignments on the trail.

In conflict-driven reasoning, it is essential that the system learns a lemma from a solved
conflict, because the lemma immediately thwarts any attempt to repeat a failed search path.
In CDSAT [11], lemma learning is limited to the case of backjumping that simply flips the
truth assignment of a Boolean term that was involved in the conflict. The first contribution
of the present article is a CDSAT transition system with a more general and more flexible
lemma learning capability. The new lemma learning mechanism subsumes the old one,
allows both learn-and-backjump and learn-and-restart, and it enables CDSAT to form and
learn new clauses. With this addition, CDSAT reduces to CDCL, if propositional logic is the
only theory, and to MCSAT, if propositional logic and another theory with a conflict-driven
solver are the only theories.

123

CDSAT: Lemmas, Modules, and Proofs 45

The theory modules need to satisfy a completeness property that is strong enough to
ensure that CDSAT determines whether the input problem has a model in the union of the
theories. For such a model to exist, the theories need to agree on what they have in common.
As disjoint theories only share equality and sorts, the theories need to agree on which shared
terms are equal and on the cardinalities of shared sorts. The standard approach to this problem
in the literature is the equality-sharing (Nelson-Oppen) scheme (e.g., [9,23,42,48,49] for a
survey covering also several extensions). In order to reach an agreement on which shared
terms are equal, each theory solver propagates the (disjunctions of) equalities between shared
variables that are entailed by its part of the problem. For cardinalities, the equality-sharing
method requires the theories to be stably infinite (every satisfiable formula has a model with
countably infinite domain), so that the shared sorts can be interpreted as countably infinite
domains.

For model-constructing theory solvers the equality-sharing scheme can be implemented
by model-based theory combination (MBTC) [23]. In MBTC a theory solver may decide an
equality, between terms occurring in the problem, that is true in its candidate model, even
if it is not entailed by its part of the problem. If it turns out later that such an equality is
not entailed, it will cause a conflict, so that the responsible solver will retract it and amend
its model. MBTC was born out of the observation that, especially when the input is found
satisfiable, it is generally less expensive for a theory solver to enumerate the equalities satisfied
in a candidate theory model than those entailed.

In the equality-sharing method, including MBTC, solvers are combined as black-boxes.
If a conflict-driven model-constructing theory solver is included, as in MBTC, its model-
constructing and conflict-driven operations remain hidden inside the black-box. When
combination of theories by equality sharing or MBTC is integrated with the CDCL pro-
cedure in the DPLL(T) or CDCL(T) paradigm (e.g., [13,23,42,50]), the candidate model on
the trail and the public conflict-driven reasoning is propositional. The CDCL procedure plays
a central role, while the theory solvers are satellites that signal theory conflicts or submits
theory lemmas to CDCL.

In CDSAT all theory modules, including a CDCL module for propositional logic, coop-
erate as peers to build a model for the union of the theories on the shared trail, and the
conflict-driven reasoning happens in the union of the theories. Each theory module has a
view of the shared trail, comprising its theory assignments as well as equalities or disequal-
ities implied by assignments of other theories. The idea of MBTC is subsumed, since in
CDSAT any theory module can decide an equality that is true in its view of the shared trail.
Furthermore, CDSAT does not require stable infiniteness, provided there is a leading the-
ory, its module is complete, and the other modules are leading-theory-complete. The leading
theory knows all the sorts in the union of theories, and it aggregates any constraints that
the theories may impose on the cardinality of shared sorts. The aggregated constraints are
enforced as axioms or theorems of the leading theory and as inference rules of its module. A
theory module is complete if it can expand any assignment that is not satisfied by a model of
its theory. Leading-theory-completeness also requires that the module can expand an assign-
ment, if its theory model does not agree on cardinalities of shared sorts and equality of shared
terms with a model of the leading theory.

In previous work [11] we showed that if the theory modules are sound and leading-
theory-complete, CDSAT is sound and complete. Furthermore, we exemplified the notion of
theory module by listing theory modules for propositional logic, also known as the Boolean
theory (Bool), the theory of equality with uninterpreted function symbols (EUF), the theory
of arrays (Arr), and linear rational arithmetic (LRA). A non-conflict-driven solver can be
abstracted into a black-box theory module, whose only inference rule invokes the solver

123

46 M. P. Bonacina et al.

to detect a theory conflict on the trail. However, it was not shown that these modules are
leading-theory-complete. The second contribution of the present article is a collection of
completeness theorems showing that the above theory modules are leading-theory-complete
for all suitable leading theories. Moreover, we prove that if all modules are black-boxes,
CDSAT emulates the equality-sharing method (covering also MBTC), and we demonstrate
the role of the leading theory by considering the case where at-most cardinality constraints
need to be enforced.

A key difference between conflict-driven theory reasoning and conflict-driven proposi-
tional reasoning is that theory inference rulesmay explain conflicts by inferences that generate
new (i.e., non-input) terms. If the transition system allows this kind of expansion, termination
requires that all new terms come from a finite basis (e.g., [24]). For conflict-driven reasoning
in a union of theories, this issue must be approached locally, because no inference system
should be authorized to generate infinitely many terms, and globally, because the interaction
of multiple inference systems should preserve finiteness. In previous work [11] we showed
that if every theory module is equipped with a finite local basis for its theory, and a finite
global basis for the union of the theories does exist, CDSAT is guaranteed to halt. However,
finite local bases for the above modules were not exhibited. The third contribution of the
present article is a collection of finite local bases for those modules, with a technique for the
generic construction of a finite global basis from given finite local bases.

Proofs are important in SMT/SMA, because many applications require the solver to gen-
erate either a satisfying assignment or a proof of unsatisfiability. CDCL-based SAT solvers
generate proofs by resolution [57]. Since such proofs are huge, more sophisticated and com-
pact proof formats have been investigated (e.g., [22,29,32,33]). The DPLL(T) or CDCL(T)
paradigm naturally supports the generation of proofs by resolution, where the theory lem-
mas are plugged in as leaves with black-box subproofs [3,12,27,38]. This style has been
implemented in solvers such as Z3 [3], veriT [2,27], and CVC4 [38] and extended in several
ways (e.g., [2,38]). In CDSAT, the CDCL-based SAT solver loses its centrality as the only
conflict-driven component, and all theory modules contribute directly to the proof, includ-
ing new terms. Even if propositional resolution with theory subproofs is chosen as the final
proof format, CDSAT proofs cannot be reconstructed in the same way as CDCL(T) proofs,
because the structure and the operations of CDSAT differ from those of CDCL(T). The fourth
contribution of the present article comprises two approaches to generate CDSAT proofs.

The first approach is a proof-carrying CDSAT transition system, where proof terms record
the information needed to generate proofs. We describe different ways to turn proof terms
into proofs, including producing resolution proofs with theory lemmas. These proof objects
can then be checked directly by a verified checker [53] or exported to a proof format verifiable
by proof checkers. Thus, proof-carrying CDSAT can slot into pipelines from proof-search to
proof-checking [1,5,7], where a minimal amount of proof information (e.g., an unsatisfiable
core) may be sufficient for a theorem prover to regenerate a proof in its own format. The
second approach works by specifying a small kernel of primitives in LCF style [30,47], so
that building proof objects in memory can be avoided. If CDSAT is implemented on top of
this kernel, the LCF-type abstraction ensures that an unsat answer is correct by construction,
and CDSAT can be used as a trusted external oracle for interactive proof tools.

In summary, the original contributions of the present article include:

1. An extension of the CDSAT transition system with a more general and more flexible
lemma learning capability;

123

CDSAT: Lemmas, Modules, and Proofs 47

2. Definitions of finite local bases and proofs of leading-theory-completeness of themodules
for Bool, EUF, Arr, and LRA, as well as for a generic black-box module, and a generic
module for at-most cardinality constraints;

3. A general technique to construct a finite global basis for a union of theories from finite
local bases of the theories; and

4. Approaches to endow CDSAT with proof generation either by producing proof objects in
memory or in LCF style.

This article is organized as follows. Section 2 contains basic definitions for CDSAT.
Section 3 is subdivided in three parts: Sect. 3.1 describes the CDSAT transition sys-
tem with enhanced lemma learning; Sect. 3.2 illustrates via examples the novel lemma
learning capabilities; and Sect. 3.3 presents other definitions, including that of leading-
theory-completeness, discussing how the soundness, completeness, and termination results
for CDSAT [11] extend to the transition system in Sect. 3.1. Section 4 presents theory mod-
ules, local finite bases, and leading-theory-completeness theorems for Bool, LRA, EUF, Arr,
a generic stably infinite theory, and a generic theory with at-most cardinality constraints.
Section 5 portrays the technique to get a global basis from local ones. Sections 6 and 7 cover
the two approaches to proof generation in CDSAT.

Lemma learning and proof generation for CDSAT appeared in a conference version [10]
of the present article.

2 Basic Definitions

Let T1, . . . , Tn be disjoint theories, each defined by its signature Σk=(Sk, Fk) and axiom-
atization Ak , where Sk is the set of sorts and Fk is the set of symbols, for all k, 1≤ k ≤ n.
Every theory has the sort prop of the Boolean values and sorted equality symbols: �S =
{�s : s×s→prop | s ∈ Sk} ⊆ Fk . The sorts of equalities may be omitted. Disjointness
means that the theories do not share symbols except equality on shared sorts. Often one of
the theories is the Boolean theory Bool, with the logical connectives¬, ∧, and∨ as symbols.
Formulæ are terms of sort prop. The union of T1, . . . , Tn is denoted T∞, with signature
Σ∞=(S∞, F∞), where S∞=⋃n

k=1 Sk and F∞=⋃n
k=1 Fk , and axiomatization

⋃n
k=1 Ak .

Let T,Σ, and S stand for Tk ,Σk , and Sk (1≤ k ≤ n), or for T∞,Σ∞, and S∞. We assume a
collection V = (Vs)s∈S of disjoint sets of variables, where Vs is the set of variables of sort s.
We use x , y, and z for variables, t and u for terms of any sort, l and p for formulæ, and � for
the subterm ordering. If Σ = (S, F) is a signature with F ⊆ F∞, the Σ-foreign subterms of
a term t are those subterms whose root symbol is not in F , including variables. Non-variable
Σ-foreign subterms can be regarded as variables, without replacing them explicitly with
new variables. This is accomplished by defining the free Σ-variables of t as its Σ-foreign
subterms with a�-maximal occurrence. For a term t , the set of its freeΣ-variables is denoted
fvΣ(t), and the set of its free Σ-variables of sort s is denoted fvsΣ(t). For a set X of terms,
fvΣ(X) = {u | u ∈ fvΣ(t), t ∈ X} and fvsΣ(X) = {u | u ∈ fvsΣ(t), t ∈ X}.

A T [V]-model M interprets each s ∈ S as a non-empty domain sM with propM =
{true, false}, each v∈Vs as an element vM in sM, each f ∈F with f : (s1× · · ·×sm)→s as
a function fM from sM1 × · · ·×sMm to sM, and each�s as the function�M

s from sM×sM
to {true, false} that returns true if and only if its arguments are the same element. The
interpretation of terms and formulæ is defined as usual, with the interpretation of term t
denoted M(t). We write T -model when the variables do not matter.

123

48 M. P. Bonacina et al.

CDSAT works with assignments that assign to terms values of the appropriate
sort. For example, assuming theories Bool, Arr, and a fragment of arithmetic, ((x >

1) ∨ (y < 0))←true, y←−1, z←√
2, (store(a, i, v)� b)←true, select(a, j)←3, and

(select(a, j)� v)←true are assignments. The standard approach to define what the values
are is to extend the signature with sorted constant symbols to name all individuals in the
domains used to interpret the sorts (e.g., the appropriate set of numerals for a fragment of
arithmetic).

For each Tk , 1≤ k ≤ n, a conservative theory extension T +k is a theory with signature
Σ+

k = (Sk, F
+
k), where F+k adds to Fk a possibly empty set of new constant symbols,

called Tk-values, accompanied by new axioms as needed (e.g.,
√
2 with

√
2 · √2� 2). For

numerals, as for true and false, a Tk-value is both the domain element and the constant
symbol that names it. F+k may be infinite, but it is countable (e.g., using the algebraic reals
as real numbers). The trivial extension only adds {true, false} as Tk-values. We assume that
the extended theories are still disjoint except for true and false.

The union of T +1 , . . . , T +n is a conservative extension T +∞ of T∞, with signature Σ+∞ =
(S∞, F+∞) for F+∞ = ⋃n

k=1 F
+
k . Conservativity means that T +-unsatisfiability implies T-

unsatisfiability forΣ-formulæ: if CDSAT detects T +∞ -unsatisfiability, the problem is T∞-un-
satisfiable; if the problem is T∞-satisfiable, there is a T +∞ -model that CDSAT can discover.
The symbols c and q, possibly with subscripts, are used for values, reserving b for true or
false.

Recalling that T stands for either a Tk (1≤ k ≤ n) or T∞, a T -assignment is an assignment
of T -values to T∞-terms. Formally, a T -assignment is a set J = {u1←c1, . . . , um←cm},
where, for all i , 1≤ i≤ m, ui is a T∞-term and ci a T -value of the same sort. The set of terms
that occur in J is G(J) = {t | t � ui , 1≤ i ≤ m}, and Gs(J) is the subset of the terms of
sort s in G(J). The set of free variables of J is fvΣ(J) = {u | u ∈ fvΣ(t), (t←c) ∈ J }. We
use J for generic T -assignments, A for generic singleton assignments, L or K for Boolean
singleton assignments, H and E for T∞-assignments.

The flip L of L assigns to the same formula the opposite Boolean value. Since ¬ is a
function symbol in the signature of Bool, one can write l←true and l←false, that are one
the flip of the other, and also ¬l←true and ¬l←false, that are also one the flip of the
other. Clearly, l←true and ¬l←false are equivalent and so are l←false and ¬l←true. The
simplest form is preferred when writing assignments: for example, if l is ¬a, where a is a
propositional variable, it is preferable to use a←true and a←false. Furthermore, l←true is
abbreviated as l, l←false as l, and (t � u)←false as t �� u.

An assignment is plausible if for no L it contains both L and L . A Boolean assignment
only assigns Boolean values, while a first-order assignment only assigns non-Boolean values.
An SMT problem is presented as a plausible Boolean assignment {l1←true, . . . , lm←true},
abbreviated {l1, . . . , lm}, while an SMA problem also includes first-order assignments.

The theory view, or T-view, HT of a T∞-assignment H comprises the T-assignments in H
and all equalities or disequalities between terms of a sort in S that are entailed by first-order
assignments in H . If {x←3, y←3, z←4} ⊆ H , the T-view HT also includes x � y, x �� z,
and y �� z, for every T having the sort of x , y, and z. If H is Boolean, HT = H . As a Ti -
assignment (1 ≤ i ≤ n) is a special case of T∞-assignment, the T-view of a Ti -assignment
is also defined.

A T +-model M endorses a T-assignment J , written M | J , if M satisfies u� c for
all pairs (u←c) ∈ J . It follows that if {u←c, t←c} ⊆ J , then M also satisfies u� t . If
M | JT , that is, M endorses the T-view of J , then M also satisfies u �� t , for all pairs
u←c1 and t←c2 in J with c1 �= c2. Thus, M | JT is generally stronger than M | J .

123

CDSAT: Lemmas, Modules, and Proofs 49

A T-assignment J is satisfiable, if there is a T +-model M such that M | JT , and it is
unsatisfiable otherwise, written J | ⊥. We write J | L if M | L for all T +-models M
such thatM | JT . All this applies to a T∞-assignment H , for which we say thatM globally
endorses H if M | HT∞ , also written M |G H to emphasize “globally.”

A theory module Ik for theory Tk (1≤ k ≤ n) is an inference system with inferences of
the form J �Ik L , or J �k L for short, where J is a Tk-assignment and L is a Boolean
assignment. Theory modules are required to be sound: if J �k L then J | L . In the sequel,
assignment stands for T∞-assignment.

3 CDSATwith Lemma Learning

In this section we present the CDSAT transition system with lemma learning. Section 3.1
presents the CDSAT transition system as in [11], except that the Backjump rule of [11] is
replaced by a new LearnBackjump rule that introduces a more general and more flexible
lemma learning mechanism. Section 3.2 analyzes in detail the working of LearnBackjump:
it is more general because it enables CDSAT to learn new clauses, whereas Backjump only
flips a Boolean term; it is more flexible because it enables a CDSAT search plan to choose
the destination level upon backjumping; and it can simulate the Backjump rule. Section 3.3
includes the definitions of basis and leading-theory-completeness (from [11]), and discusses
how the arguments of the proofs of soundness, termination, and completeness of CDSAT in
[11] are modified to have LearnBackjump in place of Backjump.

3.1 The CDSAT Transition Systemwith Lemma Learning

CDSAT works with a trail Γ , defined as a sequence of distinct singleton assignments that
are either decisions or justified assignments. A decision is written ?A to convey guessing,
and it can be either a Boolean or a first-order assignment. A justified assignment is written

H �A, where H , the justification of A, is a set of singleton assignments that appear before
A in Γ . The elements of the input assignment H0 are listed in Γ as justified assignments
with empty justification. The only justified assignments that are first-order assignments are
the input first-order assignments of an SMA problem; all non-input justified assignments are
Boolean. A non-input justified assignment J �L is due to either an inference J �k L for some
theory Tk , 1≤ k ≤ n, or a conflict-solving transition. A justified assignment H �A is sound if
for all T +∞ -modelsM, ifM |G H0∪H thenM | A. A trail can be seen as an assignment
by ignoring order and justifications.

Given a trail Γ with assignments A0, . . . , Am , the level of a singleton assignment Ai ,
0 ≤ i ≤ m, is given by levelΓ (Ai) = 1 + max{levelΓ (A j) | j < i}, if Ai is a decision,
and levelΓ (Ai) = levelΓ (H), if Ai is a justified assignment H �Ai . The level of a set of
singleton assignments H ⊆ Γ is given by levelΓ (H) = 0, if H = ∅, and levelΓ (H) =
max{levelΓ (A) | A ∈ H}, otherwise. As the level of H �A depends on its justification, not
on its position on the trail, the trail is not organized as a stack, and H �A can be added to
the trail after assignments of greater level. This behavior and assignment A are called late
propagation. Γ ≤m denotes the restriction of Γ to its elements of level at most m.

The state of a CDSAT-derivation is either a trail Γ or a conflict state 〈Γ ; E〉, where Γ is
a trail, and E is a conflict, that is, an assignment such that E ⊆ Γ and H0 ∪ E | ⊥. The
CDSAT transition system features trail rules, denoted−→, and conflict-state rules, denoted
⇒, with transitive closure⇒∗ and � for disjoint union (see Fig. 1). As CDSATmay place

123

50 M. P. Bonacina et al.

Fig. 1 The CDSAT transition system with lemma learning

on the trail assignments for new (i.e., non-input) terms, for termination all terms must come
from a finite set B, called global basis, which is determined based on the input and does
not change during the derivation. While terms come from B, values come from F+∞, which
may be infinite: a derivation will use a finite subset of F+∞ that is not fixed beforehand. An
assignment H is in B if t ∈ B for all (t←c) ∈ H .

Rule Decide adds a decision u←c if it is acceptable for a theory module Ik in its view
ΓTk of trail Γ . Acceptability comprises three requirements: (1) Γ does not assign a Tk-value
to u; (2) if u←c is first-order, there is no inference J ∪ {u←c} �Ik L such that L ∈ ΓTk for
J ⊆ ΓTk ; and (3) u is relevant to Tk in ΓTk . The latter means that either (i) u ∈ G(ΓTk), Tk
has its sort and values for it, so that Ik can decide an assignment to u; or (ii) u is an equality
u1� u2 such that u1, u2 ∈ G(ΓTk), Tk has their sort, but does not have values for their sort,
so that Ik can decide the truth value of u1� u2.

By Condition (1), if L ∈ Γ , both L and L are unacceptable for all theories.
By Condition (2), if {x←1, x < y} ⊆ Γ , then y←2 is unacceptable for LRA, as
{x←1, y←2} �ILRA x < y by an LRA-evaluation inference (cf. Sect. 4.4). By Condi-
tion (3), if { f (u1)←red, u2←yellow} ⊆ Γ , where f is a function from colors to colors,
u1←yellow is relevant to a theory of colors by (i), while u1� u2 is relevant to EUF by (ii),
provided EUF has the sort of colors. A decision u←c is forced when c is the only acceptable
value for u, such as if {u� t, t←c} ⊆ Γ for EUF, or {u ≤ t, t ≤ u, t←c} ⊆ Γ for LRA.

Rule Deduce expands Γ with a Boolean singleton assignment justified by a theory
inference J �k L from assignments J already in Γ . Sound theory inferences yield
sound justified assignments. The system proceeds with decisions and deductions until a
conflict arises: if J �k L and L ∈ Γ , the assignment J ∪ {L} is a conflict. Deduce
encompasses propagation, by deducing an assignment entailed in the theory by assign-
ments in Γ , and conflict explanation, by performing theory inferences that allow a theory
conflict to surface in Γ as a Boolean conflict. For example, given a series of decisions
u2←yellow, f (u1)←red, u1←yellow, f (u2)←blue, amodule for the theory of colors can

123

CDSAT: Lemmas, Modules, and Proofs 51

deduce (propagate) f (u1) �� f (u2) and u1� u2 by equality inferences (cf. Fig. 3 in Sect. 3.3),
and a module for EUF can detect the conflict by deducing {u1� u2, f (u1) �� f (u2)} �EUF ⊥
(cf. Sect. 4.2). If the conflict is at level 0, rule Fail returns unsat. Otherwise, ruleConflictSolve
returns the trail Γ ′ produced by the conflict-state rules, so that the search can resume.

The conflict-state rules handle bothfirst-order andBoolean assignments and their interplay.
Conflict-solving as in CDCL involves flipping a Boolean assignment L into L , recording that
L was tried and failed. A first-order assignment u←c cannot be flipped: its complement
would be the set of all other values for u, which is not a singleton and not even a finite
set in general. Thus, u←c is undone, not flipped. Since u←c may appear in justifications,
undoing it requires the removal of all its consequences (i.e., justified assignments with u←c

in the justification). A Boolean decision L is then forced (for a consequence L of u←c in
the conflict) to prevent repeating the same first-order decision u←c that caused a conflict.
Another remark is that since each assignment has a level, conflict solving can proceed by
considering an assignment that stands out, because its level is the greatest level in the conflict.
Clearly, such an assignment is not unique in general.

The main workhorse of conflict solving is the Resolve rule. Resolve explains a conflict
E � {A} by replacing a justified assignment A with its justification H (see Fig. 1). Since
H0 ∪ E � {A} | ⊥, and H �A is sound, H0 ∪ E ∪ H | ⊥ follows, and E ∪ H is still a
conflict. If A is first-order, it is an input assignment (H = ∅), and Resolve removes A from the
conflict, not from the trail. For example, Resolve turns a conflict {u1� u2, f (u1) �� f (u2)}
into {u1� u2, f (u1)←red, f (u2)←blue}, if { f (u1)←red, f (u2)←blue}� f (u1) �� f (u2) is on
the trail. Intuitively, one can think ofResolve continuing to unfold the conflict, until it contains
an assignment A that stands out in the above sense. This outstanding assignment A is either
a first-order or a Boolean assignment.

If A is a first-order assignment with levelΓ (A) = m, rule UndoClear applies by going
back to Γ ≤m−1 (see Fig. 1), which means that it undoes A and clears the trail of all its
consequences. Note that m−1 ≥ 0 implies m > 0, that is, A is a decision. UndoClear solves
the above conflict produced byResolve by removing f (u2)←blue, whose level ism = 4, and

{ f (u1)←red, f (u2)←blue}� f (u1) �� f (u2). Going back to Γ ≤m−1 does not represent a loop,

because Γ ≤m−1 is new, as it must contain some late propagation. Indeed, A was acceptable
when it was decided, which means it did not cause a conflict. If A became later part of a
conflict, it must be that some late propagation L with levelΓ (L) < m was added to the trail
after A, so that L is in Γ ≤m−1. In the example, the late propagation is u1� u2 on level 3. A
Deduce step based on u1� u2 �EUF f (u1)� f (u2) adds f (u1)� f (u2) to the trail, making
f (u2)←red a forced decision.
If A is a Boolean assignment L in a conflict E � {L} such that levelΓ (E) = m and

levelΓ (L) > m, CDSAT [11] applies the Backjump rule, which solves the conflict by
producing the trail Γ ≤m, E �L . In other words, it jumps back to level m and adds to the
trail the justified assignment E �L , which is sound because H0 ∪ (E � {L}) | ⊥ yields
H0 ∪ E | L . Here the Backjump rule is replaced with the more general LearnBackjump,
which behaves like Backjumpwhen H and L in its definition in Fig. 1 are {L} and L , respec-
tively. LearnBackjump and the notion of clausal formmentioned in Fig. 1 will be illustrated
in Sect. 3.2.

Last, UndoDecide covers a situation where Resolve cannot apply. Reconsider Resolve
explaining a conflict E � {A} by replacing a Boolean justified assignment A with its justifi-
cation H . The condition of Resolve in Fig. 1 requires that H does not contain a first-order
decision A′ such that levelΓ (A′) = m = levelΓ (E � {A}). Indeed, suppose that A is {A′}�L
and levelΓ (E) < m: if Resolve unfolds E �{A} into E �{A′}, UndoClear becomes applica-

123

52 M. P. Bonacina et al.

ble. If UndoClear undoes A′, and then Decide retries A′, and Deduce reiterates {A′}�L , the
system loops. Thus,Resolve is forbidden, and eitherUndoDecide or LearnBackjump applies.
If an assignment other than L in the conflict has levelm (see the condition of UndoDecide in
Fig. 1),UndoDecide undoes A′ and its consequences by going back toΓ ≤m−1 and decides L .
If L is the only assignment of levelm in the conflict, LearnBackjump applies like Backjump.

The CDSAT transition system is non-deterministic, as it leaves room for heuristic choices.
Thus, multiple CDSAT-derivations from a given input exist. The addition of a search plan that
controls the application of the transition rules yields a CDSAT procedure, whose derivation
from a given input is unique.

3.2 Lemma Learning in CDSAT

The CDCL procedure can learn a propositional resolvent that was generated to explain a
conflict. For example, consider a CDSAT trail containing

∅�a ∨ b, ∅�¬a ∨ d, . . . , ?d, ?b, {d,¬a ∨ d}�a,

where ∅�a ∨ b and ∅�¬a ∨ d belong to the input assignment H0 and have level 0; ?d has
level 1, ?b has level 2, and {d,¬a ∨ d}�a is a late propagation and has level 1. Clause a∨ b is a

conflict clause for CDCL, and {a ∨ b, a, b} is a conflict for CDSAT. The CDCL procedure
can learn b ∨ d , resolvent of a ∨ b and the CDCL justification ¬a ∨ d of a.

CDSAT [11] can apply the Backjump rule, which fires when CDSAT reaches a con-
flict state 〈Γ ; E � {L}〉, where levelΓ (E) = m and levelΓ (L) > m, producing the trail
Γ ≤m, E �L . In the example, E = {a ∨ b, a}, L = b, levelΓ (E) = 1, levelΓ (L) = 2 > 1,
and Backjump produces the trail

∅�a ∨ b, ∅�¬a ∨ d, . . . , ?d, {d,¬a ∨ d}�a, {a ∨ b, a}�b.

Alternatively, CDSAT [11] can Resolve the conflict into {a ∨ b, d, ¬a ∨ d, b} and then
apply Backjump to yield the trail

∅�a ∨ b, ∅�¬a ∨ d, . . . , ?d, {d,¬a ∨ d}�a, {a ∨ b, d, ¬a ∨ d}�b.

Either way, CDSAT [11] learns b, not b∨ d . The new rule LearnBackjump of Fig. 1 enables
CDSAT to learn the justified assignment {a ∨ b, ¬a ∨ d}�b ∨ d from the conflict {a∨b, d, ¬a∨
d, b}, forming clause b ∨ d from the subset {d, b} of the conflict.

In general, LearnBackjump empowers CDSAT to turn any Boolean subset of a conflict
into a disjunction of Boolean terms, that the system can learn, and that we call clause, slightly
abusing the terminology because Boolean terms are formulæ. This requires ∨ ∈ F∞, which
is the case whenever T∞ includes propositional logic. If ∨ /∈ F∞, only unit clauses will be
learned. Suppose that E � H is a conflict, where H contains only Boolean assignments. This
means that H0 ∪ (E � H) | ⊥, where H0 is the input assignment. If H is a singleton L ,
we have H0 ∪ (E � {L}) | ⊥, hence H0 ∪ E | L , and E �L can be learned. If H is not a
singleton, it can be rewritten as the singleton

((∧

(l←true)∈H l
)
∧

(∧

(l←false)∈H ¬l
))
←true

123

CDSAT: Lemmas, Modules, and Proofs 53

Fig. 2 Propositional extract from
a CDSAT derivation

whose flip is ((
∧

(l←true)∈H l)∧(
∧

(l←false)∈H ¬l))←false. In order to get a clause, the latter
assignment can be rewritten in the equivalent form

((∨

(l←true)∈H ¬l
)
∨

(∨

(l←false)∈H l
))
←true

leading to the next definition.

Definition 1 (Clausal form of an assignment in a conflict) Given a conflict E � H , where
H is a Boolean assignment, the clausal form of H is the singleton Boolean assign-
ment ((

∨
(l←true)∈H ¬l) ∨ (

∨
(l←false)∈H l))←true, or, equivalently, ((

∧
(l←true)∈H l) ∧

(
∧

(l←false)∈H ¬l))←false.

The new rule LearnBackjump allows CDSAT to perform learning and backjumping,
or learning and restart, and it subsumes the Backjump rule [11], adding the capability of
learning clauses. We examine these features in this order. Learning and backjumping is the
generic behavior of LearnBackjump. This rule singles out a Boolean subset H of the conflict
E � H , such that levelΓ (H) > levelΓ (E). Then, it solves the conflict by jumping back to
a level m, such that levelΓ (E) ≤ m < levelΓ (H), and learning a clausal form L of H .
The system learns L by adding to the trail the justified assignment E �L , which is sound,
because H0 ∪ (E � H) | ⊥ implies H0 ∪ E | L , as L is a clausal form of H . As L may
be a new Boolean term, it must belong to B. Note that H does not necessarily contain all
Boolean assignments in the conflict: it is the search plan that chooses a Boolean subset H
and a destination level m.

Example 1 Consider the conflict on the last line of Fig. 2. If LearnBackjump is applied with
H = {l2, l4}, and E = {(¬l2∨¬l4∨¬l5), (¬l4∨l5)}, ((¬l2∨¬l4) ← true) is a clausal formof
H , levelΓ (H) = 4, and levelΓ (E) = 0, so that any destination level m such that 0 ≤ m < 4
can be picked. A standard choice for m would be the second highest level in the conflict,
namely m = 2, in which case the LearnBackjump step jumps over decision A3 and yields

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)�(¬l2∨¬l4).
The derivation continues from level 2 with ¬l2∨¬l4 added to level 0.

We consider next learning and restart. It is common to restart after learning a clause, and
search planswith aggressive restart proved successful in SAT solving. LearnBackjumpmakes
this kind of search plan possible in CDSAT. Assume that the destination level m is chosen to
be the smallest, that is, m = levelΓ (E). If levelΓ (E) is 0, LearnBackjump produces a trail
of the form Γ ≤0, E �L , performing a restart and adding E �L to level 0.

Example 2 The LearnBackjump step of Example 1 with destination level m = 0 generates

Γ0, (¬l2∨¬l4∨¬l5), (¬l4∨l5)�(¬l2∨¬l4).

123

54 M. P. Bonacina et al.

We analyze next how LearnBackjump subsumes the Backjump rule [11] recalled in
Sect. 3.1 and at the beginning of this section. LearnBackjump behaves in the same way
as Backjump, if it picks as H a singleton L , as L is a clausal form of a singleton Boolean
assignment L in a conflict. However, while Backjump goes back to level m = levelΓ (E),
LearnBackjump allows to choose any destination level m such that levelΓ (E) ≤ m <

levelΓ (L).

Example 3 In the conflict on the last line of Fig. 2, the level of l4 is greater than that of the rest
of the conflict E = {(¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)}, as levelΓ (l4) = 4 > levelΓ (E) = 2.
Thus, Backjump could apply; LearnBackjump mimics it with H = {l4} and m = 2 to yield

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)�l4.

Alternatively, if m = 3, LearnBackjump produces

Γ0, ?A1, ?l2, ?A3, (¬l2∨¬l4∨¬l5), l2, (¬l4∨l5)�l4.

The side-conditions L /∈ Γ and L /∈ Γ prevent LearnBackjump frombreaking plausibility
or adding to the trail a clause that is already there.

Example 4 Consider the first conflict in Fig. 2: 〈Γ ; (¬l2∨¬l4∨¬l5), l2, l4, l5〉. For a
LearnBackjump stepwith E = {¬l2∨¬l4∨¬l5} and H = {l2, l4, l5}, we have levelΓ (H) = 4
and levelΓ (E) = 0. Regardless of the choice of destination level m, 0 ≤ m < 4, a clausal
form of H is redundant since clause¬l2∨¬l4∨¬l5 is already on the trail and LearnBackjump
does not add it.

Unlike Backjump, LearnBackjump does not require that the conflict contains a singleton
assignment L of level greater than the rest of the conflict.

Example 5 In the first conflict in Fig. 2 both l4 and l5 have level 4. If we apply LearnBackjump
with H = {l4, l5}, E = {(¬l2∨¬l4∨¬l5), l2}, levelΓ (H) = 4, levelΓ (E) = 2, and destina-
tion level m = 2, the resulting trail is

Γ0, ?A1, ?l2, E �¬l4∨¬l5
where (¬l4 ∨ ¬l5) ← true on level 2 is a clausal form of H .

We inspect last the learning of clauses. In CDCL, the last conflict clause generated prior to
backjumping is called backjump clause: the procedure learns this clause and jumps back to a
prior level, undoing at least one decision and satisfying the learned clause by placing one of
its literals on the trail. An assertion clause is a conflict clause such that only one of its literals,
termed assertion literal, is falsified on the current, or greatest, level of the trail. The First
Unique Implication Point (1UIP) heuristic [45] picks as backjump clause the first generated
assertion clause, as destination level the smallest where the assertion literal is undefined and
all other literals of the assertion clause are false, and places the assertion literal on the trail.

The Backjump rule of CDSAT [11] generalizes this behavior, taking into account that,
unlike in CDCL, a CDSAT trail is not a stack. Backjump applies to a conflict E � {L} such
that levelΓ (L)>levelΓ (E), but levelΓ (L) is not necessarily the current one, and Backjump
puts E �L on the trail without learning an assertion clause. However, if a CDSAT conflict
has the form E � {L} with levelΓ (L)>levelΓ (E), it is possible to extract from the conflict
an assertion clause, and LearnBackjump does it.

Let κ = l1∨· · ·∨lq be an assertion clause and lq its literal such that L = (lq←false) is
on the current level. Assume that κ ∈ B. In order to learn κ , it suffices to take the Boolean

123

CDSAT: Lemmas, Modules, and Proofs 55

subset H = H ′ � {L} of the conflict that makes κ false: for all i , 1≤i≤q , (li←false) ∈ H
if and only if li ∈ κ and (li←true) ∈ H if and only if ¬li ∈ κ . By Definition 1, the
assignment K = (κ←true) is a clausal form of H . Let E be the rest of the conflict. Then the
system applies LearnBackjump with destination level m = levelΓ (E � H ′), which means
that m ≥ levelΓ (H ′). This choice satisfies the condition levelΓ (E) ≤ m < levelΓ (H),
because levelΓ (E) ≤ levelΓ (E � H ′) < levelΓ (H) = levelΓ (L). This LearnBackjump
step yields the trail

Γ ≤m, E �K ,

and κ is learned. The theory module for Bool features inference rules for unit propagation
(see Sect. 4.1) that allow the inference:

{K } � H ′ �Bool L. (1)

Indeed, K is (l1 ∨ . . . ∨ lq−1 ∨ lq) ← true, and H ′ makes l1, . . . , lq−1 false, so that unit
propagation infers lq . Since L makes lq false, L makes lq true. Because the destination level
m of the LearnBackjump step was chosen in such a way that m ≥ levelΓ (H ′), the premises
K , H ′ of inference (1) are all on the trail Γ ≤m, E �K . Furthermore, literal lq is in B, since
L was on the trail. Thus, all conditions for a Deduce step with inference (1) are met. The
resulting trail is

Γ ≤m, E �K , {K }�H ′ �L

which is similar to the Γ ≤m, E�H ′ �L produced by Backjump, except for the learned clause
K . The advantage is that K can be reused in future branches of the search. The smaller the
level of E �K , which is levelΓ (E), the longer K may remain on the trail and be used for
inferences.

Example 6 Continuing Example 1 from

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)�(¬l2∨¬l4),
rule Deduce with inference (1) generates

Γ0, ?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)�(¬l2∨¬l4), (¬l2∨¬l4), l2 �l4.

A comparison between Examples 3 and 6 shows the difference between LearnBackjump
imitating Backjump, and a LearnBackjump Deduce sequence that backjumps, learns the
assertion clause, and asserts the assertion literal by Deduce. A CDSAT search plan may
restrict the application of LearnBackjump to 1UIP assertion clauses and couple it with
Deduce systematically.

3.3 Soundness, Completeness, and Termination with Lemma Learning

In this section we present definitions about theory modules that appeared in [11], but must be
reproduced because they are indispensable for what follows in Sects. 4 and 5, and we discuss
how replacing Backjump with LearnBackjump is harmless for the soundness, termination,
and completeness of CDSAT.

Every theory module includes the equality inference rules of Fig. 3. The first two rules
allow any module to infer an assignment to an equality from assignments to its sides. Indeed,
in the presence of first-order assignments, there are two ways to make an equality t1�s t2

123

56 M. P. Bonacina et al.

Fig. 3 Equality inference rules, where t1, t2, and t3 are terms of sort s

true: either assign the same value to t1 and t2 or assign true to t1�s t2. Dually, there are two
ways to make t1�s t2 false: either assign distinct values to t1 and t2 or assign false to t1�s t2.
The first two equality rules provide a bridge between these two ways (cf. the two ways for a
term to be relevant to a theory in Sect. 3.1). The remaining equality rules are standard rules
for reflexivity, symmetry, and transitivity.

In order to explain theory conflicts, theory inferences may introduce new (i.e., non-input)
terms. For termination, all new terms must come from a finite local basis associated with the
module and dependent on the input problem. We say that a set X of terms is closed if (i) it is
closed with respect to the subterm ordering, or�-closed for short: for all u ∈ X , t�u implies
t ∈ X , and (ii) it is closed with respect to equality: for all t, u ∈ X of sort s, s �= prop,
(t �s u) ∈ X . The second condition excludes prop, because otherwise a non-empty closed
set is necessarily infinite, as it would contain, for all terms t of sort s, the infinite series
l1 = (t �s t), l2 = (l1�prop l1), l3 = (l2�prop l2), etc. The closure⇓ X of a set X of terms is
the smallest closed set containing X . The closure operation is idempotent, as⇓(⇓ X) =⇓ X ,
and monotone: if X ⊆ Y then ⇓ X ⊆ ⇓Y .

Definition 2 (Basis) A basis for theory T with signature Σ is a function basis from sets of
terms to sets of terms, such that for all sets X of terms:

– X ⊆ basis(X) (extensiveness),
– If X is finite then basis(X) is finite (finiteness),
– basis(X) = basis(⇓ X) = ⇓basis(X) (closedness),
– For all sets Y of terms, if X ⊆ Y then basis(X) ⊆ basis(Y) (monotonicity),
– basis(basis(X)) = basis(X) (idempotence), and
– fvΣ(basis(X)) ⊆ fvΣ(X) ∪ V∞ (no introduction of foreign terms).

For each theory Tk in the union, 1≤ k ≤ n, the theory module Ik has a basis, called local
basis and denoted basisIk or basisk , such that for all sets X of terms (e.g., X = G(H0)

for input assignment H0 in a CDSAT-derivation), basisk(X) contains all terms that Ik can
generate starting from those in X . Given a T -assignment J , we abbreviate basis(G(J)) as
basis(J). The global basis B is stable if for all k, 1≤ k ≤ n, basisk(B) ⊆ B.

Definition 3 (Assignment expansion) A T -module I with local basis basis expands a T -
assignment J by adding either (1) a T -assignment A that is acceptable for I in J , or (2)
a Boolean assignment l←b derived by an I-inference J ′ �I (l←b) such that J ′ ⊆ J ,
(l←b) /∈ J , and l ∈ basis(J).

Case (1) covers Decide and Case (2) covers Deduce, Fail, and ConflictSolve.

Definition 4 (One-theory-completeness)Given theory T , a T-module I is complete for T, if,
for all plausible T -assignments J , either I can expand J or there exists a T +[fvΣ(J)]-model
M such that M | J .

For completeness in a union T∞ of theories, the theories need to agree on cardinalities
of shared sorts and equalities between shared terms. CDSAT achieves this by requiring that

123

CDSAT: Lemmas, Modules, and Proofs 57

every theory agrees on both counts with a leading theory, say T1, which has all the sorts, that
is, such that S1 = S∞.

Definition 5 (Leading-theory-compatibility) Let T1 be the leading theory, T , Σ , and S stand
for Tk , Σk , and Sk , 2≤ k ≤ n, and N be a set of terms. A T -assignment J is leading-theory-
compatible with T sharing N , if for all T +1 [V1]-model M1 such that M1 | JT1 with
fvΣ1

(J ∪ N) ⊆ V1, there exists a T +[V]-model M with fvΣ(J ∪ N) ⊆ V , such that (i)
M | J , (ii) for all sorts s ∈ S, |sM| = |sM1 |, and (iii) for all s ∈ S and terms u, u′ ∈ N
of sort s, M(u) =M(u′) if and only if M1(u) =M1(u′).

Since in a worst-case scenario all terms are shared, the next definition picks as set of
shared terms the set of all terms occurring in the assignment.

Definition 6 (Leading-theory-completeness) For a non-leading theory T , a T -module I is
leading-theory-complete, if for all plausible T -assignments J , either I can expand J or J is
leading-theory-compatible with T sharing G(J).

Note that if I cannot expand J , all applicable equality inference steps (see Fig. 3) have been
applied, and therefore J = JT .

The next theorem summarizes the requirements for soundness, termination, and com-
pleteness of CDSAT: Sects. 4 and 5 will show how to fulfill those for completeness and
termination, respectively.

Theorem 1 CDSAT with lemma learning and global basis B is

– Sound: if the theory modules are sound, whenever a CDSAT-derivation reaches state
unsat, the input problem is unsatisfiable;

– Terminating: if B is finite and closed, every CDSAT-derivation from an input problem in
B is guaranteed to terminate; and

– Complete: if there is a leading theory T1, module I1 is complete for T1, modules Ik’s,
2≤ k ≤ n, are leading-theory-complete, and B is stable, whenever a CDSAT-derivation
from an input problem in B reaches a state other than unsat such that no transition rule
applies, there exists a T +∞ -model that globally endorses the assignment on the trail, hence
the input problem.

We conclude this section with a discussion of how the soundness, termination, and com-
pleteness arguments for CDSAT [11] carry over to CDSAT with LearnBackjump. The proof
of soundness rests on soundness of the theory modules and on showing that CDSAT transi-
tions transform sound states into sound states, meaning that justified assignments are sound
and conflicts are indeed conflicts: LearnBackjump does not change this, because it adds
sound justified assignments.

The proof of termination begins by using acceptability of decisions to show that a CDSAT
trail does not contain distinct assignments to the same term, unless they are input assignments.
For Boolean assignments, this means that CDSAT rules preserve plausibility, and so does
LearnBackjump, since in essence it flips a Boolean assignment. Next, the closedness of B
and the relevance of decided terms1 are employed to show that if the input assignment H0

is in B, so are all derived trails: this holds also with LearnBackjump, because the learned
clause is required to be in B. Then, one uses the finiteness of B to get an upper bound on trail

1 This proof works also if relevance (see Sect. 3.1) of term u is weakened to u ∈ B, which allows CDSAT to
decide the value of u even if u /∈ G(Γ).

123

58 M. P. Bonacina et al.

length, hence a trail measure, and shows that CDSAT transitions reduce the trail measure
with respect to a well-founded ordering: LearnBackjump does it like Backjump.

For completeness, one preliminarily observes that ifB is stable, then it is closed (by exten-
siveness and closedness of all basisk’s, see Definition 2). Then, one uses the closedness of
B and the completeness of the theory modules to show that, whenever a CDSAT-derivation
reaches a state other than unsat such that no transition rule applies, its trail Γ is model-
describing. Replacing Backjump with LearnBackjump preserves this result, because if
LearnBackjump does not apply, Backjump does not apply either, as LearnBackjump sub-
sumes Backjump. Γ is model-describing if ΓT1 is endorsed by a T +1 -model, and for all k,
2≤ k ≤ n, ΓTk is leading-theory-compatible with Tk sharing the set of shared terms of the
problem. The generic assignment J of the definitions of leading-theory-compatibility and
leading-theory-completeness (see Definitions 5 and 6) is instantiated to ΓTk , and a theory
module Ik , 2≤ k ≤ n, is leading-theory-complete sharing G(ΓTk), hence sharing the set of
shared terms of the problem, since the latter is a subset ofG(ΓTk) for all problems. The proof
of completeness is achieved by showing that a model-describing trail is globally endorsed
by a T +∞ -model, which is independent of transition rules.

4 Completeness of TheoryModules

In previous work we defined theory modules for Bool, EUF, Arr, LRA, and generic Nelson-
Oppen theories [11]. In this section we add a theory module for a generic non-stably infinite
theory, we specify local bases for all these theory modules, and we prove that all these
theory modules are leading-theory-complete for all suitable leading theories, fulfilling a key
requirement for the completeness of CDSAT (see Theorem 1).

A theory module is an inference system, that is, a set of inference rules, and it represents
an abstraction with respect to a theory satisfiability procedure. A theory satisfiability pro-
cedure implements the inference rules of the module, a search plan, and other algorithmic
components, such as those of a full-fledged CDCL procedure for Bool, a congruence-closure
algorithm for EUF, or an LRA-procedure that keeps polynomials in normal form as sums of
monomials and maintains lower and upper bounds for each rational variable.

We begin with a lemma that will be used several times in the sequel. Given a T -assignment
J , let �J

s be the binary relation over Gs(J) defined by t1�J
s t2 if and only if (t1�s t2) ∈ J .

The lemma shows that if module I for theory T cannot expand J , the relation �J
s is an

equivalence, and J provides T -values for all terms that are relevant to T . For terms of
sort s other than prop, this result relies on two hypotheses: first, J does not exhaust the
supply of s-sorted T -values, so that a decision is doable; second, the only I-rules with
first-order assignments as premises are equality inferences (see Fig. 3), so that the analysis
of acceptability of decisions is module-independent. If T + offers infinitely many s-sorted
T -values, the first hypothesis is satisfied a priori.

Lemma 1 If T -module I cannot expand a plausible T -assignment J , then:

1. For all sorts s ∈ S\{prop}, the relation�J
s is an equivalence, and if {t1←c1, t2←c2} ⊆ J ,

then c1 and c2 are identical if and only if t1�J
s t2;

2. Assignment J gives a value to every formula that is relevant to T in J ;
3. Assignment J gives a value to every term t of sort s ∈ S\{prop} that is relevant to T in

J , provided that (i) there exists a T -value of sort s that J does not use, and (ii) the only
I-inferences involving first-order assignments of sort s are equality inferences.

123

CDSAT: Lemmas, Modules, and Proofs 59

Proof All claims are proved by way of contradiction.

1. Assume that �J
s is not reflexive. This means there exists a term t ∈ Gs(J) such that

(t �s t) /∈ J . The Boolean assignment t �s t can be derived by reflexivity (see Fig. 3),
and (t �s t) ∈ basisI(J) since basisI(J) is closed and therefore contains all equalities
between terms in Gs(J) for s �= prop. Thus, I can expand J , which is a contra-
diction. The cases for symmetry and transitivity are analogous. Similarly, assume that
{t1←c1, t2←c2} ⊆ J , c1 and c2 are identical, but (t1�s t2) /∈ J : then I can expand J by
an equality inference deriving t1�s t2. Conversely, assume (t1�s t2) ∈ J , and c1 and c2
are distinct: by plausibility (t1 ��s t2) /∈ J , and I can expand J by an equality inference
deriving t1 ��s t2.

2. Assume l is a relevant formula without assigned value. Then l←b (for either truth value)
is acceptable for I in J , and therefore I can expand J .

3. Assume that J does not assign a value to such a relevant term t . We find an acceptable
assignment for t , so that I can expand J . It suffices to find a value that does not cause
a conflict (see Sect. 3.1 for acceptability). Consider the �J

s -equivalence class e of t (the
relation �J

s is an equivalence by Part (1)). If none of the terms in e are assigned a value
in J , then t←c, where c is the T -value of sort s that J does not use, is acceptable,
because otherwise there would be an assignment (t2←c2) ∈ J and an equality inference
t←c, t2←c2 � t �� t2 such that (t � t2) ∈ J , meaning t2 ∈ e is assigned a value. If for a
term t1 ∈ e, J contains t1←c1, then t←c1 is acceptable, because otherwise there would
be an assignment (t2←c2) ∈ J and an equality inference t←c1, t2←c2 � (t � t2)←b

such that (t � t2)←b ∈ J : if b is true, then c1 is c2, t1�J
s t2 (by Part (1)), hence t�J

s t2 by
transitivity (since t1 ∈ e), so that {t � t2, t �� t2} ⊆ J , violating plausibility; if b is false,
then c1 and c2 are distinct, (t � t2) ∈ J , hence t�J

s t2, and, by transitivity (since t1 ∈ e),
t1�J

s t2, so that c1 and c2 should be identical by Part (1). ��
The definition of leading-theory-compatibility with theory T (see Definition 5) refers

to a generic set N of shared terms and considers models whose sets of variables include
the set of free variables of J ∪ N , for J a T -assignment. The definition of leading-theory-
completeness (see Definition 6) instantiates N to be G(J) in order to cover all possible
sets of shared terms. Thus, when proving leading-theory-completeness we are interested in
showing the existence of a T -model whose set of variables includes fvΣ(J ∪ G(J)), with
Σ the signature of theory T . Clearly, fvΣ(J ∪ G(J)) = fvΣ(G(J)). On the other hand,
in general, fvΣ(G(J)) �= fvΣ(J), because there can be two Σ-foreign terms u, t ∈ G(J)

such that u � t , so that u ∈ fvΣ(G(J)), but u /∈ fvΣ(J). The following remark is stated as
a corollary of Lemma 1, because Lemma 1 will be applied to show that a T -assignment J
assigns values to all terms in G(J), or to all equalities between terms in G(J), and then the
following corollary will be applied to conclude that in such cases fvΣ(G(J)) = fvΣ(J), so
that it suffices to build a T -model whose set of variables includes fvΣ(J).

Corollary 1 For all signatures Σ = (S, F) and assignments J , if either (1) for all terms
t ∈ G(J) there is an assignment (t←c) ∈ J , or (2) for all distinct terms t, u ∈ Gs(J) of
sort s ∈ S \ {prop} there is an assignment ((t � u)←b) ∈ J , then fvΣ(G(J)) = fvΣ(J).

Proof The direction fvΣ(J) ⊆ fvΣ(G(J)) is trivially true, as (t←c) ∈ J implies t ∈ G(J).
The direction fvΣ(G(J)) ⊆ fvΣ(J) follows from either hypothesis. ��
The corollary is true regardless of signatureΣ ; however, it will be applied to a T -assignment
J and the signature Σ of theory T .

123

60 M. P. Bonacina et al.

The following lemma is useful to prove leading-theory-completeness for a theory module
I1 and then extend the result to a module I2 with additional inference rules, that is, such that
I1 ⊆ I2 (modules are sets of inference rules).

Lemma 2 Let I1 and I2 such that I1 ⊆ I2 be modules for a theory T . If all inference rules
in I2\I1 take only Boolean assignments as premises, then if I1 is leading-theory-complete,
I2 also is leading-theory-complete.

Proof We need to show that I2 can expand a plausible T -assignment J whenever I1 can (see
Definition 6). If I1 expands J by an inference (Case (2) of Definition 3), then I2 can do it
too, since I1 ⊆ I2. If I1 expands J by a decision (Case (1) of Definition 3), we need to show
that the decision is acceptable also for I2. By way of contradiction, suppose that the decision
is acceptable for I1 but not for I2. By definition of acceptability (see Sect. 3), this means that
the decision is a first-order assignment u←c and there is an inference J ′ ∪ {u←c} �I2 L
with L ∈ J and J ′ ⊆ J . Furthermore, this I2-inference applies a rule in I2\I1, because
u←c is acceptable for I1. It follows that this rule in I2\I1 takes a first-order assignment as
premise, contradicting the hypothesis that all rules in I2\I1 take only Boolean assignments
as premises. ��

Let x be an arbitrary variable of sort prop, � stand for (x �prop x)←true, and ⊥ for
x ��prop x : no model endorses ⊥ and � � is an equality inference.

4.1 Propositional Logic

For propositional logic the signature ΣBool has only the sort prop and symbols �prop for
equality, ¬:prop → prop for negation, ∨: (prop×prop) → prop for disjunction, and
∧: (prop×prop) → prop for conjunction. Let Bool+ be the trivial extension, and Ieval

Bool the
module that only adds to the equality inference rules of Fig. 3 an inference rule for evaluation
of formulæ:

l1←b1, . . . , lm←bm �Bool l←b

where l is in the closure of formulæ l1, . . . , lm under the ΣBool-connectives, and b is its truth
value determined by b1, . . . , bm and the truth tables. Given a set X of terms, basisBool(X)

contains all subformulæ of formulæ in X by closedness (seeDefinition 2), and all disjunctions
of subformulæ in X for lemma learning.

Theorem 2 Module Ieval
Bool is leading-theory-complete for all leading theories.

Proof Let J be a plausible Boolean assignment that Ieval
Bool cannot expand. Since all for-

mulæ in Gprop(J) are relevant to Bool, J assigns them values by Part (2) of Lemma 1.
This has two consequences: first, fvΣBool

(G(J)) = fvΣBool
(J) by Corollary 1; second, J

determines a unique Bool+[fvΣBool
(J)]-model M such that M | J . We show that J is

leading-theory-compatible with Bool sharing G(J). Let T1 be a leading theory. Since J is a
Boolean assignment, JT1 = J . For all T +1 [V1]-model M1 such that fvΣ1

(G(J)) ⊆ V1 and
M1 | J , we have that |propM| = |propM1 | = 2, and for all terms l and p in Gprop(J),
M(l) =M(p) if and only ifM1(l) =M1(p), since this happens if and only if l and p are
assigned the same value in J . ��

123

CDSAT: Lemmas, Modules, and Proofs 61

Let IBool be the module that adds to Ieval
Bool rules for negation elimination, conjunction

elimination, and unit propagation as in CDCL:

¬l �Bool l l1 ∨ · · · ∨ lm �Bool li l1 ∨ · · · ∨ lm, {l j | j �= i} �Bool li
¬l �Bool l l1 ∧ · · · ∧ lm �Bool li l1 ∧ · · · ∧ lm, {l j | j �= i} �Bool li

where 1 ≤ j, i ≤ m. Then by Lemma 2 we have

Corollary 2 Module IBool is leading-theory-complete for all leading theories.

4.2 The Theory of Equality

For the theory of equality EUF, with signature ΣEUF = (S, �S ∪ F), the extension EUF+
may either be trivial or add a countably infinite set of values for each sort in S\{prop} and no
axioms. A minimal module Im

EUF complements the equality inference rules (see Fig. 3) with
an inference rule

(ti � ui)i=1...m, f (t1, . . . , tm) �� f (u1, . . . , um) �EUF ⊥ (2)

for all f ∈ F , that fires when the trail violates a congruence axiom of equality. In case of
non-trivial extension, the equality inference rules are the only rules that make use of first-
order assignments, and values are employed as labels of congruence classes of terms. For
example, the first-order assignment

t1←c, t2←c, t3←c3, t4←c4, t5←c5

and the Boolean assignment

t1� t2, t1 �� t3, t1 �� t4, t1 �� t5, t3 �� t4, t3 �� t5, t4 �� t5

represent the same four congruence classes. The first-order assignment is an optimization,
because it encodes equalities and disequalities between terms without listing them explicitly,
whereas a Boolean assignment requires

(m
2

)
hence O(m2) literals for m terms in the worst

case.
The local basis basisEUF has to ensure that all formulæ that may be needed to reason

about equality are available. Given a set X of terms, by closedness basisEUF(X) contains all
equalities between subterms of terms in X of a sort s other than prop. Then basisEUF adds
the following equalities between formulae: the formula �, and all equalities l �prop l ′, such
that either (i) l and l ′ are formulæ in X with the same root symbol f ∈ F , or (ii) X contains
terms f (t1, . . . , tm, l, u1, . . . , um) and f (t ′1, . . . , t ′m, l ′, u′1, . . . , u′m) with f ∈ F . We prove
completeness assuming the non-trivial EUF+: the proof rests on showing that if Im

EUF cannot
expand an assignment, all equalities are determined.

Theorem 3 Module Im
EUF is leading-theory-complete for all leading theories.

Proof Let T1 be a leading theory, with signature Σ1 and extension T +1 , and J a plausible
EUF-assignment that Im

EUF cannot expand. We show that J is leading-theory-compatible with
EUF sharing G(J). We begin by observing that every formula l ∈ Gprop(J) is relevant to
EUF, and therefore J assigns a value to l by Part (2) of Lemma 1 (†). For s other than prop,
every term u ∈ Gs(J) is relevant to EUF, as EUF+ has (infinitely many) values for such
sorts. Moreover, the only EUF-inferences using first-order assignments are equality infer-
ences, and therefore J assigns a value to every such term u by Part (3) of Lemma 1 (‡). It
follows that fvΣEUF

(G(J)) = fvΣEUF
(J) by Corollary 1. LetM1 be a T +1 [V1]-model such that

123

62 M. P. Bonacina et al.

fvΣ1
(G(J)) ⊆ V1 andM1 | JT1 . We build an EUF+[V]-modelM with V = fvΣEUF

(J) that
fulfills the requirements for leading-theory-compatibility (see Definition 5). First, M inter-
prets the sorts in S asM1 does. This suffices for Part (ii) of Definition 5. Second,M interprets
every variable t ∈ fvΣEUF

(J) asM1(t), every EUF-value c such that (t←c) ∈ J asM1(t), and
every other EUF-value arbitrarily. The interpretation of EUF-values is well-defined, because
if {t←c, u←c} ⊆ J then (t � u) ∈ JT1 , by definition of T1-view and because T1 has all
the sorts, so that M1(t) = M1(u) since M1 | JT1 . Third and last, M interprets every
symbol f : (s1× · · ·×sm)→s in F as follows: for all elements e1 ∈ sM1

1 . . . em ∈ sM1
m ,

if G(J) contains no term f (t1, . . . , tm) such that M1(t1) = e1, . . . ,M1(tm) = em ,
then fM(e1, . . . , em) is an arbitrary element in sM1 ; otherwise, fM(e1, . . . , em) is
M1(f (t1, . . . , tm)). Note that fM is well-defined: indeed, if there is in G(J) another
term f (u1, . . . , um) such that M1(u1) = e1, . . . ,M1(um) = em , then by (†) and (‡), J
assigns values to t1, . . . , tm, u1, . . . , um, f (t1, . . . , tm), and f (u1, . . . , um). Also, J con-
tains assignments (ti � ui)←bi , for 1 ≤ i ≤ m, and (f (t1, . . . , tm)� f (u1, . . . , um))←b,
because otherwise an equality inference could expand it. The truth values b1, . . . , bm are all
true, because M1 | JT1 . The truth value b is true, as otherwise inference rule (2) could
expand J . Since M1 | JT1 , M1(f (t1, . . . , tm)) = M1(f (u1, . . . , um)), and fM is well-
defined. This completes the construction ofM. For Part (i) of Definition 5, we need to show
that for all (t←c) ∈ J , we have M(t) = M1(t) = cM. For Part (iii) of Definition 5, we
need to show that for all t ∈ G(J), we have M(t) = M1(t). Both claims are proved by a
straightforward induction on the structure of terms. ��

If EUF+ is trivial, Im
EUF is still leading-theory complete. The proof follows the same pattern:

it is simpler as there are no EUF-values and no first-order assignments, and the key point is
that the assignment gives a value to t �s u for all terms t and u of sort s ∈ S\{prop}. Let
IEUF be the module obtained by adding to Im

EUF inference rules that propagate consequences
of assignments on the trail, according to the congruence axioms of equality for all f ∈ F :

(ti � ui)i=1...m �EUF f (t1, . . . , tm)� f (u1, . . . , um)

(ti � ui)i=1...m,i �= j , f (t1, . . . , tm) �� f (u1, . . . , um) �EUF t j �� u j .

Corollary 3 Module IEUF is leading-theory-complete for all leading theories.

4.3 The Theory of Arrays

The theory of arrays Arr features sorts for arrays, indices, and values, and function symbols
to select and store array elements. Given a set of basic sorts that includes prop, let⇒ be the
array sort constructor, so that I⇒V is the sort of arrays with indices of sort I and values
of sort V . We use a, b, c, and d for variables of an I⇒V sort, u and v for variables of sort
V , and i , j , and k for variables of sort I . In signature ΣArr = (S, F), the set of sorts S is the
free closure of the set of basic sorts with respect to⇒, and the set of symbols F is

�S ∪ {(selectI⇒V : (I⇒V)×I→V) | (I⇒V) ∈ S}
∪ {(storeI⇒V : (I⇒V)×I×V→(I⇒V))) | (I⇒V) ∈ S}
∪ {(diffI⇒V : (I⇒V)×(I⇒V)→I) | (I⇒V) ∈ S}.

Sort subscripts can be omitted when clear, and store(a, i, v) and select(a, i) may be abbre-
viated as a[i]:=v and a[i]. The symbol diff is the Skolem function symbol in the clausal
form of the→ direction of the extensionality axiom ∀a ∀b ((∀i a[i]� b[i]) ↔ a� b): the

123

CDSAT: Lemmas, Modules, and Proofs 63

function diff maps two arrays to an index, called witness, where they differ. Similar to EUF,
the extension Arr+ may either be trivial, or add a countably infinite set of values for each
sort in S\{prop} and no axioms. Module IArr augments the equality inference rules of Fig. 3
with inference rules that apply when the trail violates an array axiom. Rules (3)–(5) detect
violations of the congruence axioms for the ΣArr-symbols:

a� b, i � j, a[i] �� b[j] �Arr ⊥ (3)

a� b, i � j, u� v, (a[i]:=u) �� (b[j]:=v) �Arr ⊥ (4)

a� c, b� d, diff(a, b) �� diff(c, d) �Arr ⊥. (5)

Violations of the select-over-store axioms

∀a ∀b ∀i ∀ j ∀v (i � j → select(store(a, i, v), j)� v)

∀a ∀b ∀i ∀ j ∀v (i �� j → select(store(a, i, v), j)� select(a, j))

are detected by rules (6) and (7) of IArr:

b� (a[i]:=v), i � j, b[j] �� v �Arr ⊥ (6)

b� (a[i]:=v), i �� j, j � k, a[j] �� b[k] �Arr ⊥. (7)

The last inference rule builds into IArr the extensionality axiom:

a �� b �Arr a[diff(a, b)] �� b[diff(a, b)]. (8)

MostArr-satisfiability procedures replace every disequality between arrays with a disequality
between their elements at the witness index in a preprocessing phase (see [9, Sect. 6 and 7]
for more background and references). Rule (8) is the only rule of IArr that produces new
terms. Similar to IEUF, IArr reasons about Arr-values, if present, by the equality inference
rules, treating Arr-values as labels of equivalence classes.

For the local basis, for all sets X of terms, basisArr(X) is the smallest closed set Y such
that X ⊆ Y , � ∈ Y , and:

1. For all terms l1 and l2 of sort prop that occur as subterms of terms in Y with select, store,
or diff as root symbol, (l1�prop l2) ∈ Y ;

2. For all terms t, u ∈ Y of an array sort, t[diff(t, u)] ∈ Y and u[diff(t, u)] ∈ Y .

Clause (1) adds equalities between formulæ that may be needed and whose presence is not
already guaranteed by closedness of local bases. Clause (2) adds the terms that may be
generated by rule (8); it preserves finiteness, because diff produces terms of an index sort
which is structurally smaller, in terms of the array sort constructor⇒, than the array sort of
its arguments.

As arrays represent functions that can be updated, a model can interpret an array as an
updatable function and an array sort as a set of updatable functions. Given generic sets U and
V , let VU denote the set of functions from U to V . A set W ⊆ VU is an updatable function
set from U to V , if every function obtained by a finite number of updates to a function in W
is in W . As done for EUF, we prove completeness assuming a non-trivial extension.

Theorem 4 Module IArr is leading-theory-complete for all leading theories T1 such that for
all T1-models M1 and array sorts I⇒V of ΣArr, there is an updatable function set X from
IM1 to VM1 such that |(I⇒V)M1 | = |X |.
Proof Let J be a plausibleArr-assignment that IArr cannot expand.We show that J is leading-
theory-compatiblewithArr sharingG(J). By the same reasoning at the beginning of the proof

123

64 M. P. Bonacina et al.

of Theorem 3, J assigns values to all terms in G(J) (†), and fvΣArr
(G(J)) = fvΣArr

(J) by
Corollary 1. Let T1 be a leading theory that satisfies the hypothesis, Σ1 its signature, T +1 its
extension, and M1 a T +1 [V1]-model such that fvΣ1

(G(J)) ⊆ V1 and M1 | JT1 . For all
array sorts I⇒V of ΣArr, let X be the updatable function set from IM1 to VM1 such that
|(I⇒V)M1 | = |X |. We organize the proof in two parts.

1. Definition of a bijective function φ : (I⇒V)M1 → X :
We pick an updatable function f0 ∈ X that will be used as default in the sequel. Then, we
begin by defining the restriction φY of φ to the finite subset Y ⊆ (I⇒V)M1 consisting
of those elements a such that M1(t) = a for some term t ∈ G(J). For all a ∈ Y , let
Ra ⊆ IM1×VM1 be the relation defined by the following set of pairs:

{(M1(i),M1(t[i])) | t[i] ∈ G(J), M1(t) = a} ∪
{(M1(i),M1(u)) | t[i]:=u ∈ G(J), M1(t[i]:=u) = a} ∪

{(M1(i),M1(t[i])) | t[k]:=u ∈ G(J), M1(t[k]:=u)=a, M1(i) �=M1(k)}.
In other words, Ra is the set of index-value pairs dictated by those terms in G(J) where
either select is applied to an array term thatM1 interprets as a or the application of store
forms an array term that M1 interprets as a. Since G(J) is finite, Ra is finite. Also, Ra

is a partial function Ra : IM1 → VM1 , because otherwise IArr could expand J by rules
(6)–(7). Let φY (a) be the total function that is identical to Ra where Ra is defined, and
maps every e ∈ IM1 where Ra is undefined to f0(e) ∈ VM1 . Since Ra is finite, φY (a)

differs from f0 by finitely many updates, and therefore φY (a) ∈ X .
Next, we show that φY is injective. By way of contradiction, suppose that there are

two elements a, a′ ∈ Y such that a �= a′ and φY (a) = φY (a′). Since a, a′ ∈ Y , it is
a =M1(t) and a′ =M1(t ′) for some terms t, t ′ ∈ G(J). This means thatM1 | t �� t ′.
By (†), J assigns values to t and t ′, and therefore it also assigns a truth value b to
t � t ′, because otherwise an equality inference could expand it. Also, ((t � t ′)←b) ∈ JT1

by definition of theory view. Since M1 | t �� t ′ and M1 | JT1 , b must be false,
or, equivalently, (t �� t ′) ∈ J . Therefore, also t[diff(t, t ′)] �� t ′[diff(t, t ′)] ∈ J , because
otherwise IArr could expand J by rule (8). As before, (t[diff(t, t ′)] �� t ′[diff(t, t ′)]) ∈ JT1 .
Since M1 | JT1 , it follows that M1(t[diff(t, t ′)]) �= M1(t ′[diff(t, t ′)]). By definition
of φY (a) for a generic a, we have:

φY (a)(M1(diff(t, t ′))) =M1(t[diff(t, t ′)])
φY (a′)(M1(diff(t, t ′))) =M1(t ′[diff(t, t ′)]).

Since the two right-hand sides are different, the two left-hand sides are also different, so
that φY (a) �= φY (a′), a contradiction.

Given that φY is injective, we can extend φY to the sought-after bijective function φ,
by taking as pre-images of the elements of X that are not images of elements of Y other
elements of (I⇒V)M1 and there are enoughdistinct such elements as |(I⇒V)M1 | = |X |.

2. Construction of an Arr+[V]-model M with V = fvΣArr
(J):

The first part of the definition ofM follows the same pattern as in the proof of Theorem 3:
M interprets all sorts in S, all variables t ∈ fvΣArr

(J), and all Arr-values c such that
(t←c) ∈ J , as M1 does, and all other Arr-values arbitrary. The point on sorts suffices
for Part (ii) of Definition 5. Then, for all array sorts I⇒V ,M interprets the select, store
and diff symbols as follows:

– For all array-index pairs (a, e)∈ (I⇒V)M×IM, let selectMI⇒V (a, e) = φ(a)(e) ∈
VM;

123

CDSAT: Lemmas, Modules, and Proofs 65

– For all array-index-value triples (a, e, v) ∈ (I⇒V)M×IM×VM, let f ∈ X be
the function mapping e to v and every other e′ ∈ IM to φ(a)(e′) ∈ VM; then
storeMI⇒V (a, e, v) = φ−1(f) ∈ (I⇒V)M;

– For all pairs (a, a′) ∈ (I⇒V)M×(I⇒V)M with a �= a′, diffMI⇒V (a, a′) = e ∈ IM

such that φ(a)(e) �= φ(a′)(e), and diffMI⇒V (a, a) is an arbitrary element of IM.

By construction, M satisfies the Arr-axioms and it is an Arr+[fvΣArr
(J)]-model. Parts (i)

and (iii) of Definition 5 follow by induction on the term structure. ��
The same property holds for the trivial Arr+ with an almost identical proof, except that

non-Boolean terms in G(J) are not assigned values. Rules obtained from rules (3)–(7) by
removing the last premise and adding its flip as conclusion can be added to IArr, preserving
leading-theory-completeness by Lemma 2.

4.4 Linear Rational Arithmetic

Theory LRA has signature ΣLRA with sorts SLRA = {prop,Q} and set of symbols FLRA with
equality symbols �{prop,Q} , the constant 1 :Q, the symbol +: (Q×Q)→Q for addition, the
predicates <,≤ : (Q×Q)→prop for the orderings, and the collection of unary function
symbols {c· :Q→Q | c ∈ Q}, indexed by the setQ of the rational numbers, for multiplication
by constants. The extension LRA+ adds constants for all rational numbers, namely Σ+

LRA =
({prop,Q}, FLRA ∪ {q̃ :Q | q ∈ Q}) with axioms q̃ �Q q·1 for all q ∈ Q.

The Fourier-Motzkin (FM) algorithm [41,43,52] determines the satisfiability of a set of
linear inequalities over the reals, by applying variable elimination until either it generates
a contradiction, in the form of a constraint 0 ≤ q̃ with negative q̃, in which case the algo-
rithm returns unsatisfiable, or it eliminates all variables, in which case the algorithm returns
satisfiable.

Variable eliminationworks as follows: select a variable x ; if x appears onlywith positive, or
negative, coefficients, remove all constraints where x appears; otherwise, compute all linear
combinations of constraints t1+c1·x≤u1 and t2−c2·x≤u2 where x appears with positive
and negative coefficient, respectively, generating the constraint c2·t1+c1·t2≤c2·u1+c1·u2
(if a premise is a strict inequality, the result is also strict). Alternatively, the constraints
where x appears with positive coefficient are rearranged into upper bounds x ≤ t , those
where x appears with negative coefficient are rearranged into lower bounds u ≤ x , and
the computation of all linear combinations is replaced by that of all transitive closures,
concatenating u ≤ x and x ≤ t to generate u ≤ t (if a premise is strict, the result is also).

Since a linear combination eliminating x recalls a propositional resolution inference elim-
inating the propositional variable of the literals resolved upon, a single linear combination, or
transitive closure step, is known as Fourier-Motzkin (FM) resolution. A variable x appearing
only with one sign parallels a pure literal in a set of clauses, and the elimination of all con-
straints where x occurs reminds one of the pure literal rule that eliminates, or deems satisfied,
all clauses where a pure literal occurs [18]. The FM-algorithm resembles the level-saturation
strategy for resolution: select a propositional variable l, add all resolvents generated by resolv-
ing upon l, remove all clauses where l appears, and repeat, until either the empty clause arises
or the set is emptied.

Given m constraints in n variables the FM-algorithm generates m2n

4n constraints in the
worst case (e.g., [41]), whereas the simplex algorithm (e.g., [41,52]) is exponential in the
worst case [39], but polynomial in practice [54]. Thus, most LRA-satisfiability procedures
adopt a modern version of the simplex algorithm that deals also with strict inequalities [26].

123

66 M. P. Bonacina et al.

Fig. 4 An infinite series of
FM-resolution inferences from
input R = {l0, l1, l2}

However, conflict-driven LRA-satisfiability procedures [21,40,46] apply FM-resolution only
to explain LRA-conflicts, just like the CDCL procedure applies resolution only to explain
Boolean conflicts [44,45]. These procedures stand to the FM-algorithm like CDCL stands
to level-saturation by resolution. Similar to MCSAT [35], CDSAT embeds a conflict-driven
LRA-satisfiability procedure and applies FM-resolution only to solve conflicts. A difference
between CDSAT and MCSAT in this regard is that the Deduce rule of CDSAT covers both
propagation and conflict explanation, allowingCDSAT to applyFM-resolutionmore liberally.
Therefore, we consider an ILRA module that features FM-resolution:

t1 �1 x, x �2 t2 �LRA t1 �3 t2,

where t1, t2, and t3 are terms of sortQ,�1, �2, �3 ∈ {<,≤}, and�3 is< if and only if either
�1 or �2 is <. Since FM-resolution concatenates inequalities, ILRA has equality elimination
rules to replace an equality by inequalities:

t1�Q t2 �LRA t1 ≤ t2 t1�Q t2 �LRA t2 ≤ t1,

and positivization rules to handle flipped inequalities based on the totality of the ordering on
Q:

t1 < t2 �LRA t2 ≤ t1 t1 ≤ t2 �LRA t2 < t1.

Let t0, . . . , tm be terms of sort Q, and l a formula whose normal form is in the closure of
t1, . . . , tm with respect to the symbols of FLRA. Module ILRA also has an evaluation rule to
evaluate the truth value of l when values for t1, . . . , tm are available on the trail:

t1←q̃1, . . . , tm←q̃m �LRA l←b.

For example, (z←1) �LRA (w+2�Q w+z)←false is an evaluation inference, which does
not need a value for w, because the normal form of w+2�Q w+z is −z + 2�Q 0. Let x be
a free ΣLRA-variable of sort Q that does not occur free in t0, t1, and t2. The last rule of ILRA,
beside the equality rules of Fig. 3, is disequality elimination, which detects a situation where
there is no value for x :

t1 ≤ x, x ≤ t2, t1�Q t0, t2�Q t0, x ��Q t0 �LRA ⊥.

FM-resolution and disequality elimination apply also to formulæ reducible to the form of
their premises, as in y−x<0, 3·x<5 �LRA y< 5

3 for FM-resolution.
The FM-algorithm bundles in one step all FM-resolutions on one variable, eliminating

it altogether; as there are finitely many variables, the algorithm terminates. However, other
strategies for applying FM-resolution may generate infinitely many terms as shown in Fig. 4:
the never-halting series alternates FM-resolutions on a variable x with FM-resolutions on
another variable y.

In CDSAT, the FM-algorithm can be emulated with ILRA-inferences, as a series ofDeduce
transitions applied with a level-saturation search plan. The local basis can be set to those

123

CDSAT: Lemmas, Modules, and Proofs 67

terms that are newly generated by the algorithm, in finite numbers, so that termination follows.
This search plan thus provides a decision procedure for satisfiability, but it is not conflict-
driven and is as inefficient as the FM-algorithm. Other search plans may be more interesting,
but may raise termination issues: were it not for the finite global basis of CDSAT that forces
termination, the infinite series of Fig. 4 could also be emulated in CDSAT, for instance as a
never-ending search phase that never generates any conflict. While a conflict-driven search
plan would not apply Deduce in this manner, this infinite series may ensue also if Deduce
only explains conflicts, as detailed in the following example.

Example 7 Consider the set R = {l0 : − 2·x − y<0, l1 : x + y<0, l2 : x<−1} of Fig. 4.
Suppose that Decide tries y←0. The LRA-procedure sees LRA-conflict {−2·x−y < 0, x <

−1, y←0} and explains it by the FM-resolution inference {−y < 2·x, 2·x < −2} �LRA
−y < −2, so that Deduce places l3 : −y < −2 on the trail. Literal l3 is a late prop-
agation, as it has level 0, but it comes after the first decision. The evaluation inference
y←0 �LRA −y<−2 reveals conflict {y←0, −y < −2} on the trail. Since its level is 1,
ConflictSolve fires, and UndoClear solves the conflict by undoing y←0. If Decide tries
next x←−2, the LRA-procedure detects LRA-conflict {x + y < 0, −y < −2, x←−2} and
explains it by the FM-resolution inference {x < −y, −y < −2} �LRA x < −2, so that
Deduce puts l4 : x < −2 on the trail. The evaluation inference x←−2 �LRA x<−2 exposes
conflict {x←−2, x < −2} on the trail. Since its level is 1, ConflictSolve applies, and
UndoClear solves the conflict by retracting x←−2. A subsequent Decide with y←3 causes
LRA-conflict {−2·x − y<0, x<−2, y←3}, that Deduce explains by the FM-resolution
{−y<2·x, 2·x<−4} �LRA −y<−4, generating l5 : −y < −4. The evaluation inference
y←3 �LRA −y<−4 gets conflict {y←3, −y < −4} on the trail, and the same ConflictSolve
UndoClear pair of transitions undoes y←3. Again, a Decide with x←−3 leads to LRA-
conflict {x + y < 0, −y < −4, x←−3}, explained by Deduce with the FM-resolution
{x < −y, −y<−4} �LRA x<−4, so that l6 : x<−4 is added to the trail. Evaluation infer-
ence x←−3 �LRA x<−4 unveils conflict {x←−3, x<−4} on the trail, so that ConflictSolve
and UndoClear apply, repealing x←−3. The last FM-resolution in Fig. 4 may respond to a
Decide with y←5, so that LRA-conflict {−2·x − y < 0, x < −4, y←5} is explained by
Deduce with FM-resolution {−y<2·x, 2·x<−8} �LRA −y<−8, adding l7 : −y<−8 to the
trail. The evaluation inference y←5 �LRA −y<−8 shows conflict {y←5, −y<−8} on the
trail, so that ConflictSolve applies and UndoClear removes y←5.

Awell-known solution to this problem assumes a total ordering≺LRA onΣLRA-variables of
sortQ and restricts FM-resolution by requiring that the resolved variable x is≺LRA-maximum
in both premises [11,21,35,40,46].

Example 8 Assuming y ≺LRA x , the first FM-resolution step in Fig. 4, namely
{−y<2·x, 2·x<−2} �LRA −y<−2, still applies, as it eliminates the≺LRA-maximumvariable
x , and generates l3 : −y < −2. The secondFM-resolution step of the diverging series, namely
{x<−y, −y<−2} �LRA x<−2, is barred, because y is not the ≺LRA-maximum variable in
the premises. Thus, all CDSAT-derivations embedding that diverging series of FM-resolution
inferences are excluded. Multiple CDSAT-derivations discover that R is LRA-unsatisfiable.
One that does it by mere theory propagations at level 0 begins with Deduce placing l3 on
the trail. Another Deduce applies FM-resolution to compute linear combination l0 + 2l1 as
{−y<2·x, 2·x<−2·y} �LRA −y<−2·y, adding the normal form l4 : y < 0 of−y < −2·y to
the trail. A third Deduce with FM-resolution inference {2<y, y<0} �LRA 2<0, computing
linear combination−l3+l4, expands the trail with l5 : 2<0. The evaluation step ∅ �LRA 2 < 0
leads to a Fail transition as 2<0 has level 0.

123

68 M. P. Bonacina et al.

In CDSAT, termination is ensured by the finiteness of the global basis B which restricts
Deduce. For completeness, B must be stable, requiring in particular that basisLRA(B) ⊆ B
for the local basis basisLRA. Thus, basisLRA must be limited so as to never introduce infinitely
many terms, which is obtained by incorporating the restriction to FM-resolution as follows.
For all sets X of terms, basisLRA(X) is the smallest closed set Y such that X ⊆ Y , � ∈ Y ,
and, for all terms t1 and t2 of sort Q:

1. If t1�Q t2∈Y then t1 ≤ t2∈Y and t2 ≤ t1∈Y ;
2. If (t1 < t2)∈Y then (t2 ≤ t1)∈Y , and if (t1 ≤ t2)∈Y then (t2 < t1)∈Y ;
3. If (t1 �1 x) ∈ Y and (x �2 t2) ∈ Y , then (t1 �3 t2) ∈ Y , where �1, �2, �3 ∈ {<,≤},

�3 is < if and only if either �1 or �2 is <, and x is the ≺LRA-maximum variable in both
fvQΣLRA

(t1 �1 x) and fvQΣLRA
(x �2 t2).

Clauses (1) and (2) add the terms that may be generated by the equality elimination and
positivization rules, respectively, which do not challenge finiteness. Clause (3) adds the
terms that may be inferred by FM-resolution, and it preserves finiteness thanks to the ≺LRA-
based restriction. The side-condition of Deduce (see Fig. 1) ensures that the evaluation rule
evaluates a formula in B.

For ILRA to be complete with FM-resolution thus restricted, it suffices to add the following
inference rule, named detection of an empty solution space:

{y1←q̃1, . . . , ym←q̃m} � E �LRA ⊥
where y1, . . . , ym are ΣLRA-variables of sort Q, E is an LRA-assignment such that for all x
in fvQΣLRA

(E), x ≺LRA yi or x = yi for some i , 1≤ i ≤m, and {y1←q̃1, . . . , ym←q̃m} � E is
unsatisfiable. Alternatively, and in practice, since Deduce applies FM-resolution to explain
LRA-conflicts typically due to decisions on rational variables, onemay adopt a search plan that
selects rational variables for decisions in ≺LRA-increasing order. We call such a search plan
sensible. An LRA-assignment J generated by a sensible search plan is also termed sensible
and has the following property: for all variables x, y ∈ fvQΣLRA

(J), if x ≺LRA y and J assigns
a value to y, then J assigns a value to x .

Toward completeness, since ILRA does not fulfill Condition (ii) of Part (3) of Lemma 1,
we prove another lemma. Preliminarily we observe that the evaluation rule of ILRA subsumes
the equality inference rules that take as premises first-order assignments (the first two in
Fig. 3), and therefore we can assume that evaluation and detection of an empty solution
space are the only rules of ILRA that deal with first-order assignments. Also, the only sort of
LRA other than prop is Q, and all terms in GQ(J) are relevant to LRA in an LRA-assignment
J . Given LRA-assignment J and variable x ∈ fvQΣLRA

(J), a unit constraint [35] about x in J
is a singleton Boolean assignment L ∈ J where only x is unassigned: J assigns a value to
all y, y ∈ fvQΣLRA

(L) and y �= x .

Lemma 3 If module ILRA cannot expand a plausible LRA-assignment J , then J assigns values
to all terms in GQ(J).

Proof As a preliminary remark, all Boolean assignments in J concern terms of the form
t1 ≤ t2, t1 < t2, or t1 ��Q t2, because otherwise an equality elimination or positivization
inference rule could expand J . We begin by showing that J assigns values to all variables in
fvQΣLRA

(J). Byway of contradiction, assume this is not the case, and let x be the≺LRA-smallest

variable to which J does not assign a value. If J is sensible, for all variables y ∈ fvQΣLRA
(J)

such that y �= x , if J assigns a value to y then y ≺LRA x (†). No LRA-assignment x←q̃ is
acceptable for ILRA in J (‡), because otherwise ILRA could expand J by a decision. Property

123

CDSAT: Lemmas, Modules, and Proofs 69

(‡) implies that for all values q̃ there exist L ∈ J and J ′ ⊆ J such that J ′ ∪ {x←q̃} �LRA L .
This means that the space of possible solutions for x is empty: we distinguish three cases.

1. For variable x the lower bound is greater than the upper bound:
E = {t1 ≤ x, x ≤ t2, t1←q̃1, t2←q̃2} ⊆ J and q̃2 < q̃1; every assignment x←q̃
triggers an evaluation inference contradicting either t1 ≤ x or x ≤ t2 or both. It follows that
t1 ≤ x and x ≤ t2 are unit constraints about x in J , because the evaluation rule determines
the value of a Boolean term when all its rational subterms are assigned. If x is the ≺LRA-
maximum variable in fvQΣLRA

(t1 ≤ x) ∪ fvQΣLRA
(x ≤ t2), the FM-resolution inference

{t1 ≤ x, x ≤ t2} �LRA t1 ≤ t2 is enabled. If J is sensible, this is guaranteed by (†).
Otherwise, if y1, . . . ym are the variables other than x in fvQΣLRA

(t1 ≤ x)∪ fvQΣLRA
(x ≤ t2),

x ≺LRA yi for some i , 1≤ i ≤m. Since t1 ≤ x and x ≤ t2 are unit constraints about x
in J , {y1←q̃3, . . . , ym←q̃3+k} ⊆ J (3 + k = m). As {y1←q̃3, . . . , ym←q̃3+k} � E is
unsatisfiable, an inference by the detection of an empty solution space rule is enabled.

2. For variable x the lower bound and the upper bound are equal, but one of them is
strict: either E = {t1 < x, x ≤ t2, t1←q̃, t2←q̃} ⊆ J or E = {t1 ≤ x, x <

t2, t1←q̃, t2←q̃} ⊆ J . The reasoning is the same as in Case (1) except that the
enabled instance of FM-resolution is either {t1 < x, x ≤ t2} �LRA t1 < t2 or
{t1 ≤ x, x < t2} �LRA t1 < t2.

3. The lower bound and the upper bound for x are equal, and neither is strict, but a disequality
excludes the only possible value: {t1 ≤ x, x ≤ t2, t1 � t0, t2 � t0, x �� t0} ⊆ J , so that
a disequality elimination is enabled.

In all three cases an inference is enabled, contradicting the hypothesis. Thus, J assigns values
to all variables in fvQΣLRA

(J). We complete the proof by showing that J assigns values to all
non-variable terms t ∈ GQ(J). Since J assigns values to all variables x1, . . . , xr in t (i.e.,
{x1←q̃1, . . . , xr←q̃r } ⊆ J), these assignments dictates a value q̃ for t . If t←q̃ is acceptable
for ILRA in J , ILRA can expand J deciding t←q̃ , a contradiction. If t←q̃ is not acceptable
for ILRA in J , it means that t←q̃ enables an evaluation step generating L for some L ∈ J ;
then also {x1←q̃1, . . . , xr←q̃r } enables an evaluation inference generating L , and ILRA can
expand J , again a contradiction. ��

The above lemma applies to any plausible LRA-assignment J , without requiring that J
is sensible: if J is sensible, the rule for detection of an empty solution space plays no role
in the proof of the lemma, whereas it does if J is not sensible (cf. Case (1) in the proof). It
follows that if the CDSAT search plan is sensible, and therefore all generated assignments
are sensible, the rule for detection of an empty solution space is unnecessary.

Theorem 5 Module ILRA is leading-theory-complete for all leading theories whose models
interpret Q as an infinite set.

Proof Let J be a plausible LRA-assignment that ILRA cannot expand. We show that J is
leading-theory-compatible with LRA sharing G(J). Assignment J gives values to all terms
inGprop(J) by Part (2) of Lemma 1 and to all terms inGQ(J) by Lemma 3 (†). Since SLRA =
{prop,Q}, G(J) = Gprop(J) � GQ(J), and fvΣLRA

(G(J)) = fvΣLRA
(J) by Corollary 1. Let

T1 be a leading theory, and M1 a T +1 [V1]-model such that fvΣ1
(G(J)) ⊆ V1, M1 | JT1 ,

and |QM1 | is infinite. We define an LRA+[V]-modelMwith V=fvΣLRA
(J), and we show that

it satisfies Definition 5.M interpretsQ as Q, every symbol inΣ+
LRA in the standard way (e.g.,

q̃ as q), and every Q-sorted ΣLRA-variable x ∈ fvΣLRA
(J) as q̃ for (x←q̃) ∈ J . For Part (i)

of Definition 5, we show that M | J . For all (t←c) ∈ J , there are three cases: t is either

123

70 M. P. Bonacina et al.

a ΣLRA-variable, or a formula, or a non-variable term of sort Q. If t is a ΣLRA-variable, then
M(t) = cM by construction ofM. Otherwise, J assigns values to allQ-sorted subterms of t
by (†). If t is a formula andM(t) �= cM, then ILRA can expand J with an evaluation inference
deriving t←c. If t is a non-variable term of sort Q andM(t) �= cM, then ILRA can expand J
with an evaluation inference deriving t ��Q t . Both conclusions contradict the hypothesis that
ILRA cannot expand J , and thereforeM(t) = cM holds. For Part (ii) of Definition 5, QM is
countably infinite. IfQM1 is countably infinite, we are done. Otherwise, |QM1 | is some larger
infinite cardinality: |QM1 | > |QM|. Since Σ+

LRA is countable, by the Löwenheim-Skolem

theorem, there exists another LRA+[V]-modelM′ such that |QM′ | = |QM1 | andM′ agrees
with M on everything else. For Part (iii) of Definition 5, we observe that J ⊆ JT1 by the
definition of theory view, since J is an LRA-assignment and T1 has the sorts of LRA, so that
LRA-values are also T1-values. Thus,M1 | JT1 implies M1 | J . For all t, t ′ ∈ Gprop(J),
M1 | J and M | J suffice for M(t) = M(t ′) if and only if M1(t) = M1(t ′). For all
t, t ′ ∈ GQ(J), J assigns a truth value to t �Q t ′, because if this were not the case, J could be
expanded by an equality inference, since J gives values to t and t ′ by (†). Thus,M1 | J and
M | J imply M(t) =M(t ′) if and only if (t �Q t ′) ∈ J if and only if M1(t) =M1(t ′).

��
A module I is unit-constraint complete [35] for sort s of its theory T , if for all trails Γ

and unassigned variables x of sort s for which Γ contains a unit constraint, module I offers
either an acceptable assignment x←c or an inference revealing a conflict. The above results
show that ILRA is unit-constraint complete for Q. In general, unit-constraint completeness is
subsumed by the CDSAT completeness requirements on theory modules.

4.5 Generic Theories: Stable Infiniteness and Beyond

We consider first a generic theory T with signature Σ = (S, F) that can be part of a
combination by equality sharing (e.g., [42,48,49]): (i) there exists a decision procedure for
the T -satisfiability of conjunctions, or, equivalently, sets of T -literals; and (ii) T is stably
infinite (every T -satisfiable Σ-formula has a T -model with countably infinite domains for
all sorts in S \ {prop}). In equality sharing the decision procedures cooperate by exchanging
equalities between shared variables toward building an arrangement, namely a satisfiable set
of sorted equalities and disequalities telling whether any two variables of the same sort are
equal (e.g., [9, Sect. 3] for more background). CDSAT handles T with a black-box theory
module Ibb

T . The extension T + either is trivial or adds a countably infinite set of values for
each sort s∈S\{prop} and no axioms. Module Ibb

T includes the equality inference rules and
a black-box inference rule

l1←b1, . . . , lm←bm �T ⊥,

where l1, . . . , lm are Σ-formulæ (Σ-atoms as Σ has no connectives). A black-box inference
J �T ⊥ applies if the set of literals defined by the Boolean assignment J , namely CJ =
{l | (l←true) ∈ J } ∪ {¬l | (l←false) ∈ J }, is found T -unsatisfiable by the T -satisfiability
procedure. If T + is non-trivial, the only rules of Ibb

T that may use first-order T -assignments
are the equality inference rules, and T -values act as labels of congruence classes of terms.
The local basis only adds �: for all sets X of terms, basisT (X) = X ∪ {�}. Indeed, in
equality sharing, no new terms introduced by non-trivial inferences are shared.

Theorem 6 Module Ibb
T is leading-theory-complete for all leading theories whose models

interpret all sorts other than prop as countably infinite sets.

123

CDSAT: Lemmas, Modules, and Proofs 71

Proof Let J be a plausible T -assignment that Ibb
T cannot expand. We show that J is leading-

theory-compatible with T sharing G(J) (see Definition 5). Let T1 be a leading theory
satisfying the hypothesis, Σ1 its signature, T +1 its extension, and M1 any T +1 [V1]-model
such that fvΣ1

(G(J)) ⊆ V1 and M1 | JT1 . We distinguish two cases depending on the
choice of T +.
1. Trivial T +: all terms l ∈ Gprop(J) including all equalities t �s u for t, u ∈ Gs(J) of sort

s ∈ S \ {prop} are relevant to T , so that J assigns them values by Part (2) of Lemma 1
(†), and fvΣ(G(J)) = fvΣ(J) by Corollary 1. CJ is T -satisfiable, because otherwise Ibb

T
could expand J with a black-box inference. Thus, there exists a T -modelM′ ofCJ . Since
T + is trivial, it suffices to interpret the Boolean values as themselves to get from M′ a
T +[V]-modelM, with V = fvΣ(J), such thatM | J , fulfilling Part (i) of Definition 5.
For Part (ii), since T is stably infinite, we let M interpret every sort in S \ {prop} as a
countably infinite set, thus agreeing with M1. For Part (iii), J ⊆ JT1 by definition of
theory view, so thatM1 | JT1 impliesM1 | J . For all terms t, u ∈ Gprop(J), J gives
them values by (†), M(t) =M(u) if and only if {t←b, u←b} ⊆ J since M | J , and
M1(t) = M1(u) if and only if {t←b, u←b} ⊆ J since M1 | J , so that M and M1

agree. For all terms t, u ∈ Gs(J) with s ∈ S \ {prop}, J gives a value to t �s u by (†),
M(t) = M(u) if and only if (t �s u) ∈ J since M | J , M1(t) = M1(u) if and only
if (t �s u) ∈ J since M1 | J , so that M and M1 agree.

2. Non-trivial T +: by the same reasoning in the proof of Theorem 3, assignment J gives
values to all terms in G(J) (†), and fvΣ(G(J)) = fvΣ(J) by Corollary 1. Also, J assigns
a truth value to t �s u for all t, u ∈ Gs(J) of sort s ∈ S \ {prop} (‡), because otherwise
I could expand J with an equality inference, since J assigns values to t and u by (†) and
(t �s u) ∈ basisT (J) by closedness of the local basis. As in Case (1), the set CJ has a
T -modelM′. We show how to get fromM′ a T +[V]-modelM, with V = fvΣ(J), such
that M | J . Let M interpret the sorts in S, the symbols in F , and the Σ-variables as
M′ does. The Boolean values are interpreted as themselves. For a non-Boolean T +-value
c of sort s, either it is never used in J or there is some assignment (t←c) ∈ J . In the
first case we letM interpret c arbitrarily in sM. In the second case t appears in equalities
in J by (‡), hence t appears in CJ , and we define cM as M′(t). The interpretation of
T +-values is well-defined, because if {t1←c, t2←c} ⊆ J , then (t1�s t2) ∈ J by (‡) and
(t1�s t2) ∈ CJ , so that M′(t1) = M′(t2). By construction, M | J , and the rest of the
proof is the same as in Case (1). ��
This theorem shows that the equality-sharing method is a special case of the CDSAT

framework. Indeed, when the T -module cannot expand a T -assignment J (the T -view of
the trail) it follows that: (1) there exists a T -model endorsing J , and (2) J determines the
truth value of all equalities, hence it defines an arrangement of shared variables. If this is the
case for all theories in T∞, an endorsing T∞-model also exists, by the CDSAT completeness
theorem [11, Theorem 4]. This remark applies also tomodel-based theory combination [23],
which is a way to implement equality sharing and relies on equality sharing for completeness.
Theorem 6 still holds if the black-box rule is restricted to apply only to T -unsatisfiable cores
or minimal T -unsatisfiable assignments, where it suffices to remove an element to make the
assignment T -satisfiable.

We describe next how CDSAT also handles a generic non-stably infinite theory T with
signature Σ = (S, F). Suppose T is stably infinite for the sorts in S \ {prop, s1, . . . , sk},
whereas all T -models interpret sorts s1, . . . , sk as sets of fixed finite cardinalitiesm1, . . . ,mk ,
respectively. The proof of Theorem 6 can be adapted to prove the following.

123

72 M. P. Bonacina et al.

Theorem 7 Module Ibb
T is leading-theory-complete for all leading theories whose models

interpret all sorts in S \ {prop, s1, . . . , sk} as countably infinite sets and s1, . . . , sk as sets of
cardinality m1, . . . ,mk, respectively.

For example, T could be a theory of bitvectors of different lengths, where for all l,
1 ≤ l ≤ k, sl is the sort bv[l] of bitvectors of length l andml = 2l . Theorem 7 does not need k
to befinite: for bitvectors, l could range over all nonzero natural numbers. Thus, the cardinality
constraints in T affect the choice of the leading theory T1, for which S1 = S∞. If the leading
theory can be picked so that all theory modules involved in the combination are leading-
theory complete, the cardinality constraints in T are imposed to the other theories sharing
{s1, . . . , sk} or a subset thereof. More generally, different theories in the union T∞ may pose
cardinality requirements on a shared sort s, and the leading theory T1 acts as an aggregator of
such requirements (see [11, Examples 9 and 10]). Once chosen, the leading theory T1 needs
a theory module I1 that can be used in CDSAT and that enforces the cardinality constraints.

We illustrate this point for an at-most-m cardinality constraint on sort s, given an integer
m>0. The constraint can be expressed by the sentence ∀x0, . . . ,∀xm .

∨
0≤i �=k≤m xi �s xk ,

for x0, . . . , xm distinct variables of sort s, which could be an axiom or a theorem of one of the
non-leading theories in T∞, or an axiom of the leading theory T1, resulting from aggregating
cardinality constraints from non-leading theories in T∞. For instance, if T2 entails the at-
most-m1 cardinality constraint on s and T3 entails the at-most-m2 cardinality constraint on s,
the leading theory T1 is picked so that its models satisfy the at-most-min(m1,m2) cardinality
constraint. Then, theory module I1 for T1 includes the at-most-m inference rule:

∧

0≤i �=k≤m ui ��s uk �T1 ⊥

where u0, . . . um are any m + 1 distinct terms of sort s. If T +1 is non-trivial with values for
sort s, the at-most-m inference rule can be abbreviated as u0←c0, . . . , um←cm �T1 ⊥, for
c0, . . . , cm any distinct m+1 T1-values of sort s. If both T and the leading theory T1 have
non-trivial extensions, T + and T +1 use different sets of constant symbols to name s-sorted
elements, and the construction of a T∞-model for an assignment J that cannot be expanded
establishes a bijection between the s-sorted T -values that appear in J and the s-sorted T1-
values that appear in J (see [11, Sect. 9.3, Theorem4]).Amodulewith an at-most-m inference
rule satisfies a lemma that complements Lemma 1.

Lemma 4 If a T -module I with the at-most-m inference rule for sort s cannot expand a
plausible T -assignment J , the relation �J

s is an equivalence with at most m equivalence
classes.

Proof By definition of�J
s (see the text in Sect. 4 preceding Lemma 1), for all t1, t2 ∈ Gs(J),

t1�J
s t2 if and only if (t1�s t2) ∈ J . By Part (1) of Lemma 1 the relation�J

s is an equivalence.
If �J

s had m+1 equivalence classes, J would contain an instance of the premises of the at-
most-m inference rule for sort s, and I could expand J , a contradiction. ��

This lemma suffices to obtain the following theorem that says how to build a leading
theory and its module to enforce the at-most cardinality constraint coming from the theories
in T∞. Given a theory T1, let T s≤m

1 be T1 plus the at-most-m cardinality constraint on sort s
as additional axiom. Given a theory module I, let Is≤m be I plus the at-most-m inference
rule on sort s.

Theorem 8 If I1 is sound and complete for theory T1, then Is≤m
1 is sound and complete for

theory T s≤m
1 .

123

CDSAT: Lemmas, Modules, and Proofs 73

Once the enforcement of cardinality constraints is handled by the leading theory module,
it is not necessary to handle them in other modules.

Theorem 9 Given a theory T with signatureΣ = (S, F) and a leading theory T1 that entails
the at-most-m constraint on sort s ∈ S, a T-module I is leading-theory complete if and only
if Is≤m is leading-theory complete.

Proof The (⇒) direction holds by Lemma 2. The (⇐) direction holds because whenever the
at-most-m inference rule of Is≤m can be applied to expand an assignment J , there can be no
T1-model endorsing JT1 so that leading-theory compatibility is vacuously true. ��

In summary, the completeness of a leading theory module with the appropriate at-most
rules ensures that cardinality constraints on shared sorts are satisfied; and all theories sharing
those sorts concur on their cardinalities by leading-theory-completeness of their modules.

5 Global Basis Construction

Termination of CDSAT requires the global basis B to be finite and closed, and completeness
requires it to be stable (see Theorem 1). The meaning of stability of B (for all k, 1≤ k ≤ n,
basisk(B) ⊆ B) is that the global basis “contains” the local bases basis1, . . . ,basisn asso-
ciated to the theory modules I1, . . . , In for theories T1, . . . , Tn : for all sets X of terms, if
X ⊆ B then for all k, 1≤ k ≤ n, basisk(X) ⊆ basisk(B) by monotonicity (see Definition 2)
and basisk(X) ⊆ B by stability. Thus, for all input assignments H , if H is in B, or, equiva-
lently, G(H) ⊆ B, no Ik-inference can take us outside of B. In this section we show how to
build a stable global basis from local ones.

The existence of a finite stable global basis does not necessarily follow from that of
local bases. Given input assignment H and X0=G(H), a module Ik may introduce a term
u0 in Y0=basisk(X0), which prompts I j to introduce a term t1 in X1=basis j (basisk(X0)),
which in turns prompts Ik to introduce a term u1 in Y1=basisk(basis j (basisk(X0))), and
so on. In other words, even if all these sets are finite,

⋃
m≥0 Xm may be infinite, where

Xm+1=basis j (basisk(Xm)). The aim is to find sufficient conditions on local bases to avoid
such cyclic behavior. Since the problem arises from a cyclic alternation, the point is whether
it is possible to permute local bases, relating basis j (basisk(X)) and basisk(basis j (X)). To
this end, we introduce the following notions.

Definition 7 (Production and consumption of a sort) Let basis be a basis for theory T with
signature Σ = (S, F). For all sorts s ∈ S, basis produces sort s if for some closed set of
terms X and term t of sort s, t ∈ basis(X) \ X ; basis consumes sort s if for some closed
set of terms X and term t of sort s, basis(X � {t}) � ⇓ (basis(X) � {t}), where t is either a
Σ-variable or an equality whose strict subterms are in X .

In plain words, basis produces sort s if its application to a closed set X yields some term t
of sort s which is not in X and does not arise from the closure of X , since X is already closed;
basis consumes sort s if its application to X � {t}, where t is a term of sort s, yields some
term u which is not in ⇓(basis(X) � {t}), where basis is applied to X only. The restrictions
on what term t can be depend on what suffices for forthcoming Lemma 5.

Example 9 Most local bases produce prop, as they add�; basisBool produces and consumes
prop, as it forms clauses for lemma learning; basisEUF only produces prop by adding equali-
ties and does not consume any sort. For Arr, basisArr produces all sorts in ΣArr and consumes

123

74 M. P. Bonacina et al.

all array sorts: given array terms t and u of sort I⇒V , basisArr consumes I⇒V and produces
sorts I and V , by introducing terms diff(t, u), t[diff(t, u)], and u[diff(t, u)]; it produces also
array sorts, because arrays can be values or indices, as there can be arrays of arrays and array-
indexed arrays. For LRA, basisLRA produces sorts prop and Q and only consumes Q, where Q
is produced when polynomials are reduced to normal form. For example, the FM-resolution
y−x<0, 3·x<5 �LRA y< 5

3 produces prop by introducing y< 5
3 andQ by introducing 5

3 . The
bases of Ibb and Im

bb only produce prop and do not consume any sort.

The next move is to define a theory ordering on the theories that captures producer-
consumer dependencies between their local bases: for all k, j such that 1≤k �= j≤n, let Tk ≺
T j if there exists a sort s that basisk produces and basis j consumes. By the contrapositive, if
Tk �≺ T j , thenbasis j is independent ofbasisk , hencebasis j (basisk(X)) ⊆ basisk(basis j (X))

for all X . Intuitively, if ≺ is acyclic, the cyclic behavior described above cannot happen.
Formally, if ≺ is acyclic, the listing of the theories and a basis for T∞ can be defined
accordingly: for all k and j , 1≤k< j≤n, if Tk ≺ T j then k < j , and for all sets X of terms,
basis∞(X) = basisn(. . .basis1(X)). The next lemma shows that under these hypotheses
local bases can be permuted.

Lemma 5 If T1, . . . , Tn are disjoint theories with an acyclic ordering ≺, then for all k and
j , 1≤k< j≤n, and for all finite closed sets X of terms: (1) For all �-closed sets Y of
terms such that X⊆Y⊆basis j (X), it holds that basisk(Y) ⊆ ⇓ (basisk(X) ∪ Y); and (2)
basisk(basis j (X)) ⊆ basis j (basisk(X)).

Proof First, k < j implies j �< k, hence T j �≺ Tk , so that no sort produced by basis j is
consumed by basisk .

1. The proof is by induction on the (finite) cardinality of Y\X , denoted |Y\X |. For the base
case, if |Y\X | = 0 (i.e., Y = X), the claim is trivially true. For the induction hypothesis,
let the claim be true for any such Y with |Y\X | = q ≥ 0. For the induction step, let
|Y\X | = q + 1 and t be a term of largest size (symbol count) in Y\X . By hypothesis,
t is in basis j (X). Since the theories are disjoint, t is either Σ j -foreign, or Σk-foreign,
or an equality. By the last property of a basis in Definition 2, t being in V∞ is the only
way that it can be Σ j -foreign, in which case it is also Σk-foreign. Therefore, it is either
Σk-foreign or an equality. By �-closedness of Y , all strict subterms of t are in Y\{t},
hence in ⇓ (Y\{t}). Since t ∈ (basis j (X) \ X), the sort s of t is produced by basis j .
Last, basisk does not consume s, because basisk does not depend on basis j , as k < j by
hypothesis. By Definition 7 applied to basisk and the closed set ⇓(Y\{t}), we get

basisk(⇓(Y\{t}) ∪ {t}) ⊆ ⇓(basisk(⇓(Y\{t})) ∪ {t}) (†).

Next, we observe that X ⊆ (Y\{t}), since X ⊆ Y and t ∈ Y \ X , and Y\{t} is �-closed:
indeed, if it were t � u for some term u ∈ Y , then either u ∈ X , in which case t ∈ X ,
because X is closed, or u ∈ Y\X , in which case t would not be a term of greatest size in
Y\X . Therefore, we can apply the induction hypothesis to Y\{t} and get

basisk(Y\{t}) ⊆ ⇓(basisk(X) ∪ (Y\{t})) (‡).

123

CDSAT: Lemmas, Modules, and Proofs 75

Then the claim is established as follows:

basisk(Y) = basisk((Y\{t}) ∪ {t})
⊆ basisk(⇓(Y\{t}) ∪ {t}) by monotonicity of basisk
⊆ ⇓(basisk(⇓(Y\{t})) ∪ {t}) by (†)
= ⇓(basisk(Y\{t}) ∪ {t}) by closedness of basisk
⊆ ⇓(⇓(basisk(X) ∪ (Y\{t})) ∪ {t}) by (‡)
⊆ ⇓⇓(basisk(X) ∪ (Y\{t}) ∪ {t})
= ⇓(basisk(X) ∪ Y) by idempotence of ⇓ .

2. The second claim is derived as follows:

basisk(basis j (X)) ⊆ ⇓(basisk(X) ∪ basis j (X)) by Claim 1
⊆ ⇓(basis j (basisk(X)) ∪ basis j (X)) by extensiveness
= ⇓(basis j (basisk(X))) as X ⊆ basisk(X)

and by monotonicity of basis j
= basis j (basisk(X)) by closedness.

��
Next, we use Lemma 5 to show that basis∞(X) is stable.

Lemma 6 If T1, . . . , Tn are disjoint theories with an acyclic ordering that defines basis∞,
then for all k, 1≤ k ≤ n, basisk(basis∞(X))=basis∞(X) for all finite sets X of terms.

Proof We prove a more general property, namely that ∀ j , 1 ≤ k ≤ j ≤ n, we have
basisk(basis j (. . .basis1(X))) = basis j (. . .basis1(X)). The ⊇-direction holds by exten-
siveness of basisk . For the ⊆-direction, the proof is by induction on j . For the base case, if
j=k, the claim holds by idempotence. For the induction hypothesis, let the claim be true for
j . For the induction step, we prove the claim for j+1. Let Z stand for basis j (. . .basis1(X)).
Since k < j+1 and Z is closed by closedness of the bases, basisk(basis j+1(Z)) ⊆
basis j+1(basisk(Z)) holds by Lemma 5. Then, basisk(Z) ⊆ Z holds by induction hypothe-
sis, and basis j+1(basisk(Z)) ⊆ basis j+1(Z) follows by monotonicity of basis j+1. ��
Theorem 10 Given disjoint theories T1, . . . , Tn with modules I1, . . . , In and local bases
basis1, . . . ,basisn such that the theory ordering is acyclic, if basis∞ is defined based on the
theory ordering, then for all input assignments H, the set B=basis∞(G(H)) is a finite stable
global basis.

Proof The function basis∞ is a basis for the union theory T∞ according to Definition 2, as
it inherits the properties of local bases. Thus, B is finite, as G(H) is finite, and it is stable by
Lemma 6. ��

For example, basisBool(basisI(basisEUF(basisLRA(basisArr(G)(H))))), where I is a black-
box module for a generic theory T , is a global basis for the union of theories Bool, T , LRA,
EUF, and Arr, given an input assignment H . The next section opens the part of the article
devoted to proof generation in CDSAT.

6 Proof Reconstruction: Proof-Carrying CDSAT

When a derivation terminates detecting unsatisfiability, it is desirable to return a proof. Proof
reconstruction is the activity of extracting a proof from the final state of the derivation,
provided that the final state contains enough information. In this section we instrument
CDSAT for proof reconstruction.

123

76 M. P. Bonacina et al.

Fig. 5 Annotated equality inference rules, where t1, t2, and t3 are terms of sort s

6.1 Theory Proofs

Because CDSAT combines theory modules, proof reconstruction in CDSAT requires that all
theory modules produce proofs. Therefore, we assume that each theory module is equipped
with a proof annotation system that annotates theory inferences with theory proofs:

J ���k jk : L
states that module Ik infers L from J with theory proof jk . A theory proof from Ik is called
Tk-proof. Theory proofs, hence CDSAT proofs, may refer to singleton assignments by means
of identifiers. A T-assignment with identifiers is a set of triples a(t←c), where a is the
identifier of t←c. From now on all assignments are assignments with identifiers, the trail
contains a T∞-assignment with identifiers, and the subset relation between assignments take
identifiers into account. For example, IBool-inference (1) from Sect. 3.2 can be annotated
with a theory proof denoted UP(a, {a1, . . . , an}), as follows:

{aK } � H ′ ���Bool UP(a, {a1, . . . , an}) : L
where UP stands for unit propagation, and a1, . . . , an are the identifiers of the assignments
in H ′. Annotated ILRA-inferences include instances of Fourier-Motzkin resolution and of the
evaluation rule:

a1(e1 ≤ t), a2(t ≤ e2) ���LRA FM(a1, a2) : (e1 ≤ e2),
a1(x1←q1), . . . ,

am (xm←qm) ���LRA eval({a1, . . . , am}) : l←b.

Equality inferences are annotated with theory proofs as shown in Fig. 5. Assuming J is
a1(t1� u1), . . . , am (tm � um), an instance of annotated IEUF-inference is:

J ���EUF Cong(a1, . . . , am) : f (t1, . . . , tm)� f (u1, . . . , um)

where Cong stands for congruence.
If an assignment appears on the trail, its identifier in any theory proof is the same as its

identifier on the trail: for aDeduce transition supported by a theory inference J ���k jk : L , the
assignments in J appear on the trail Γ , and their identifiers in jk are the same as in Γ . Since
identifiers are mere names, theory proof annotations are stable under their permutations: any
permutation π of identifiers transforms a theory proof jk into a theory proof π(jk), such that,
if a1(t1←c1), . . . ,

am (tm←cm) ���k jk : L then

π(a1)(t1←c1), . . . ,
π(am)(tm←cm) ���k π(jk) : L.

For example, if 1(x←c1),
4(y←c1)���k Cong(1, 4) : f (x)� f (y), withπ(1) = 4 andπ(4) =

1, it is also 4(x←c1),
1(y←c1) ���k Cong(4, 1) : f (x)� f (y). The assumption that theory

modules have proof annotation systems is not a restriction, as the proof annotation system
can be a trivial one that uses a dummy theory proof for all theory inferences. The resulting
theory proofs convey no information, which is acceptable if they are not required to offer
more.

123

CDSAT: Lemmas, Modules, and Proofs 77

Fig. 6 Proof system for the CDSAT proof terms

6.2 Proof Terms, Proof System, and Invariants for CDSAT

In order to enable CDSAT to compose theory proofs into CDSAT proofs, we will equip the
CDSAT transition systemwith the capability of building proof terms. These proof terms keep
track of soundness invariants that ensure that transitions do not change the problem, so that
invariant-preserving transition rules are sound. The CDSAT soundness invariants are:

1. For all justified assignments H �A on the trail, H0 ∪ H | A, and
2. For all conflict states 〈Γ ; E〉, H0 ∪ E | ⊥,
where H0 is the input, or initial, assignment. A proof term is either a deduction proof term
recording why a justified assignment is on the trail to enforce (1), or a conflict proof term
recording why a conflict is a conflict to enforce (2). The two kinds of proof terms are defined
mutually recursively as follows.

Definition 8 (CDSAT proof terms) A CDSAT proof term is

– Either a deduction proof term j ::= in(A) jk lem(H .c),
– Or a conflict proof term c ::= cfl(jk, a) res(j, a A.c), where:

(i) in, lem, cfl, and res, abbreviating initial, lemma, conflict, and resolve, respectively, are
the CDSAT proof constructors; (ii) A is a singleton assignment, jk is a Tk-proof for some
k, 1≤ k ≤ n, H is a Boolean assignment with identifiers, a is the identifier of a singleton
Boolean conflicting assignment in cfl(jk, a), and the identifier of A in res(j, a A.c); and (iii)
the dot notation means that res(j, a A.c) binds a in c and lem(H .c) binds the identifiers of
H in c.

The CDSAT proof terms come with the CDSAT proof system in Fig. 6. Its first three rules
establish the derivability of judgments of the form H ��� j : A. Proof term in(A) witnesses
the fact that an initial assignment A holds. The second rule coerces a theory proof jk into a
CDSAT deduction proof term. The third rule says that, whenever there is a conflict including
a Boolean assignment H , a clausal form of H is a lemma entailed by the rest of the conflict.
The proof term lem(H .c) carries H to record which part of the conflict became a lemma. If
identifiers of assignments in H occur in c, such occurrences are bound in lem(H .c). The last
two rules establish the derivability of judgments of the form E ��� c : ⊥. Proof term cfl(jk, a)

witnesses the conflict between the conclusion L of a theory inference, whose theory proof
is coerced into a CDSAT deduction proof term, and its flip L (with identifier a). Proof term
res(j, a A.c) is the only construct that combines two subproofs, connecting the conclusion
A of the left premise with the hypothesis a A of the right premise: the proof of A from H is
plugged as a subproof in the proof of⊥ from E � {a A} to get a proof of⊥ from E ∪ H . Any
occurrence of a in c is bound in res(j, a A.c). The following theorem connects provability
in the CDSAT proof system with endorsement, showing the soundness of the CDSAT proof
system.

123

78 M. P. Bonacina et al.

Fig. 7 The proof-carrying CDSAT transition system

Theorem 11 If H ��� j : A, then H0 ∪ H | A; if E ��� c : ⊥, then H0 ∪ E | ⊥.
Proof The proof is by structural induction. The base case covers in and coercion: if H ��� j : A
has the form ∅ ��� in(A) : A, then A is initial, which means that A ∈ H0 and H0 | A; if
H ��� j : A has the form J ��� jk : L , then J ���k jk : L and by soundness of theory inferences
J | L , hence H0 ∪ J | L . The induction step covers lem, cfl, and res. If H ��� j : A has the
form E ��� lem(H .c) : L , then E�H ��� c : ⊥, by induction hypothesis H0∪E�H | ⊥, hence
H0 ∪ E | L as L is a clausal form of H . If E ��� c : ⊥ has the form J ∪ {a L} ��� cfl(jk, a) : ⊥,
then J ��� jk : L , by induction hypothesis H0∪ J | L , hence H0∪ J ∪{a L} | ⊥. If E ��� c : ⊥
has the form E ∪ H ��� res(j, a A.c) : ⊥, then H ��� j : A and E � {a A} ��� c : ⊥; by induction
hypothesis H0 ∪ H | A and H0 ∪ E � {A} | ⊥, hence H0 ∪ E ∪ H | ⊥. ��

6.3 The Proof-Carrying CDSAT Transition System

In the proof-carrying CDSAT transition system (see Fig. 7), justified assignments are deco-
rated with deduction proof terms, and conflict states are triples of the form 〈Γ ; E; c〉, where
c is a conflict proof term. A justified assignment H � j :A carries a deduction proof term j
such that H ��� j : A. Initial assignments have the form ∅�in(A) :A where the deduction proof
term presents the initial assignment as a premise of the proof.

Comparing Figs. 1 and 7, Decide is unchanged as a decision does not carry a proof term;
Deduce is modified as the supporting theory inference J ���k jk : L is annotated with a theory
proof that the added justified assignment J � jk :L carries with itself. In Fig. 1 the choice
between Fail and ConflictSolve depends on the level of the conflict, whereas in Fig. 7 it

123

CDSAT: Lemmas, Modules, and Proofs 79

depends on the outcome of the conflict resolution phase, because proof-carrying CDSAT
fires Fail and returns unsat, if it can return a proof of unsatisfiability. If the outcome of
the conflict resolution phase is a trail, the conflict was solved and ConflictSolve applies; if
it is a state 〈Γ ; ∅; c〉, the system is still in conflict state, but there is no conflict to solve.
The system concludes that the input assignment is T +∞ -unsatisfiable and that proof term c
encodes the discovered proof of unsatisfiability: Fail applies and the derivation terminates
in state unsat(c) returning proof term c. It is simple to show that the conflict state rules of
proof-carrying CDSAT reduce a conflict state 〈Γ ; E; c1〉, where E �= ∅, to one of the form
〈Γ ; ∅; c〉 if and only if levelΓ (E) = 0; and that they solve the conflict producing some trail
Γ ′ different from Γ if and only if levelΓ (E) > 0.

Continuing with the conflict state rules, UndoClear and UndoDecide are unchanged.
Proof-carrying LearnBackjumpgenerates the proof term lem(H .c), recording that the learned
lemma L is a clausal form of H , and turning the conflict proof term c that represents a proof
of unsatisfiability of E � H into a deduction proof term that represents a proof of L from
E . The main rule for proof reconstruction is proof-carrying Resolve, which combines proof
term c, witnessing the unsatisfiability of the conflict, with proof term j witnessing that one
of the assignments in the conflict, named A, follows from prior assignments: A is retained in
the proof term res(j, a A.c). By applying this mechanism, proof-carrying CDSAT connects
a proof of why a conflict E follows from H0 with a proof of why E is unsatisfiable, and
generates a proof of unsatisfiability of H0. The following theorem shows that proof-carrying
CDSAT maintains provability invariants connecting the operations of the transition system
with provability in the CDSAT proof system.

Theorem 12 For all proof-carrying CDSAT-derivations

– If a trail containing H � j :A is generated, then H ��� j : A;
– If a conflict state 〈Γ ; E; c〉 is reached, then E ��� c : ⊥.

Proof The two claims are proved simultaneously by induction on the number of transition
steps yielding the justified assignment or the conflict state, respectively. The base case covers
input justified assignments, justified assignments placed on the trail by Deduce, and conflict
states of the form 〈Γ ; J ∪ {a L}; cfl(jk, a)〉. A justified assignment ∅�in(A) :A is on the trail
because A is initial: ∅ ��� in(A) : A follows by the in rule of the CDSAT proof system. For
a justified assignment J � jk :L placed on the trail by Deduce, J ���k jk : L , hence J ��� jk : L
by coercion. For a conflict state of the form 〈Γ ; J ∪ {a L}; cfl(jk, a)〉, we have J ���k jk : L ,
hence J ∪ {a L} ��� cfl(jk, a) : ⊥ by the cfl rule. The inductive step covers a justified assign-
ment placed on the trail by LearnBackjump and conflict states generated by Resolve. For
a justified assignment E �lem(H .c) :L , by induction hypothesis E � H ��� c : ⊥, and L is a
clausal form of H , so that E ��� lem(H .c) : L by the lem rule. For a conflict state of the form
〈Γ ; E ∪ H ; res(j, a A.c)〉, by induction hypothesis E � {a A} ��� c : ⊥, and (H � j :A) ∈ Γ , so
that E ∪ H ��� res(j, a A.c) : ⊥ by the res rule. ��

Theorems 11 and 12 together show that proof-carrying CDSAT builds a trace of proof
terms in such a way to keep track of the CDSAT soundness invariants through the provability
invariants. The next example expands Fig. 2 into a full derivation by proof-carrying CDSAT.
For the sake of readability, we omit identifiers and we abuse the formalism by building proof
terms made of assignments rather than their identifiers.

Example 10 Assume that the input assignment for the example in Fig. 2 is {¬l4 ∨ l5, ¬l2 ∨
¬l4 ∨¬l5, l2 ∨ (z� y), x �≤0∨ l2, x �≤0∨ l4, f (z)←blue, f (y)←red}, where l2 is y≥0,

123

80 M. P. Bonacina et al.

l4 is x+y>0, and x �≤0 abbreviates ¬(x≤0). The initial trail Γ0 contains these assignments.
The derivation proceeds as in Fig. 2 with decisions ?A1, ?l2, ?A3, ?l4, and propagation

(¬l4∨l5), l4 �l5, but here we assume that A1 is x←3/4. Let Γ1 be the trail up to this point. The
first conflict state is 〈Γ1; {¬l2∨¬l4∨¬l5, l2, l4, l5}; c1〉 with conflict proof term

c1 = cfl(UP(¬l2 ∨ ¬l4 ∨ ¬l5, {l2, l4}), l5)
that registers the conflict between l5 and ¬l5, the latter derived by Unit Propagation from
¬l2∨¬l4∨¬l5, l2, and l4. The Resolve step from Fig. 2 replaces l5 in the conflict by its jus-
tification {¬l4∨l5, l4}, yielding conflict state 〈Γ1; {¬l2∨¬l4∨¬l5, l2, l4,¬l4∨l5}; c2〉. The
associated conflict proof term is

c2 = res(UP(¬l4∨l5, {l4}), l5.c1),
which plugs on top of the leaf l5 of c1 its theory proof UP(¬l4∨l5, {l4}). Let LearnBackjump
solve the conflict as in Example 1 by placing on the trail

(¬l2∨¬l4∨¬l5), (¬l4∨l5)� j1 :¬l2∨¬l4,
with deduction proof term j1=lem({l2, l4}.c2) recording that conflict proof c2 showed
that the learned lemma ¬l2∨¬l4 is inferred from ¬l2∨¬l4∨¬l5 and ¬l4∨l5. Proceed-
ing as in Example 6, a Deduce step adds (¬l2∨¬l4), l2 � j2 :l4, with deduction proof term
j2 = UP(¬l2∨¬l4, {l2}). Suppose that the derivation continues with a Deduce step encap-
sulating the LRA evaluation inference

(x ← 3/4) ��� j3 : x≤0,
with deduction proof term j3 = eval({x ← 3/4}). The resulting trail Γ2 contains the initial
assignments followed by

?A1, ?l2, (¬l2∨¬l4∨¬l5), (¬l4∨l5)� j1 :(¬l2∨¬l4), (¬l2∨¬l4), l2 � j2 :l4, A1 � j3 :(x≤0).

At this stage, the LRA-procedure detects the LRA-conflict {l2, l4, x≤0} and explains it by the
FM-resolution inference

0 ≤ y, y ≤ −x ���LRA FM(0 ≤ y, y ≤ −x) : 0 ≤ −x,
mirrored in CDSAT proof system as the inference

y≥0, x+y>0, x≤0 ��� c3 : ⊥,

(see the cfl rule in Fig. 6) with conflict proof term

c3 = cfl(FM(0 ≤ y, y ≤ −x), 0 ≤ −x).
The conflict state is 〈Γ2; l2, l4, x≤0; c3〉. A Resolve step replaces l4 by its justification
{¬l2∨¬l4, l2}, producing conflict state 〈Γ2; {l2,¬l2∨¬l4, (x≤0)}; c4〉 with conflict proof
term c4 = res(j2, l4.c3) that expands upward leaf l4 of c3 with its proof j2. The system
exits from this conflict by a LearnBackjump transition that jumps back to level 1 and learns
lemma (x≤0)∨¬l2 with deduction proof term j4 = lem({x≤0, l2}.c4). The resulting trail
Γ3 contains the initial assignments followed by

?A1, (¬l2∨¬l4∨¬l5), (¬l4∨l5)� j1 :(¬l2∨¬l4), A1 � j3 :(x≤0), (¬l2∨¬l4)� j4 :(x≤0)∨¬l2.

123

CDSAT: Lemmas, Modules, and Proofs 81

With the last lemma the system has learned that if y ≥ 0 (l2) implies x+y>0 (¬l4), then
y ≥ 0 implies x≤0. Next, Deduce expands Γ3 with the assignments

(x≤0)∨¬l2, x≤0� j5 :l2, l2∨(z� y), l2 � j6 :z� y,

carrying proof terms j5=UP(x≤0∨¬l2, {x ≤ 0}) and j6=UP(l2∨(z� y), {l2}). A Deduce
step for EUF inference { f (z)←blue, f (y)←red} ��� j7 : f (z) �� f (y) further adds

f (z)←blue, f (y)←red� j7 : f (z) �� f (y)

where j7 = neq(f (z)←blue, f (y)←red). Let Γ4 be the resulting trail. At this point
ConflictSolve fires, as the EUF inference {z� y, f (z) �� f (y)} ��� c5 : ⊥ leads to conflict
state 〈Γ4; { f (z) �� f (y), z� y}; c5〉, with conflict proof term

c5 = cfl(Cong(z� y), f (z) �� f (y)).

A Resolve step yields conflict state 〈Γ4; { f (z) �� f (y), l2∨(z� y), l2}; c6〉, with conflict
proof term c6 = res(j6, (z� y).c5) that expands upward leaf z� y of c5 with its proof j6.
Similarly, another Resolve step produces conflict state

〈Γ4; { f (z) �� f (y), l2∨(z� y), (x≤0)∨¬l2, x≤0}; c7〉,
with conflict proof term c7 = res(j5, l2.c6) that expands upward leaf l2 of c6 with its proof
j5. The conflict is solved by a LearnBackjump transition that jumps back to level 0 and learns
x≤0 as

f (z) �� f (y), l2∨(z� y), (x≤0)∨¬l2 � j8 :(x≤0),
with deduction proof term j8 = lem({x≤0}.c7). As a byproduct, decision A1 is gone, and
the resulting trail Γ5 contains the initial assignments, the learned lemmas, namely¬l2∨¬l4,
x≤0∨ l2, and x≤0, and the level 0 propagation f (z) �� f (y). Lemma x≤0 enables Deduce
to perform two unit propagations involving input clauses:

x �≤0∨l2, x≤0� j9 :l2, x �≤0∨l4, x≤0� j10 :l4,

with j9 = UP(x �≤0∨l2, {x≤0}) and j10 = UP(x �≤0∨l4, {x≤0}). LetΓ6 beΓ5 thus expanded.
At this point the conflict in 〈Γ6; {¬l2∨¬l4, l2, l4}; c8〉 is at level 0. Conflict proof term
c8 = cfl(UP(¬l2∨¬l4, {l2}), l4) records the conflict between l4 and¬l4, the latter derived by
Unit Propagation from ¬l2 ∨ ¬l4 and l2. While CDSAT would halt, proof-carrying CDSAT
performs the series of Resolve steps in Fig. 8. When Resolve replaces a justified assignment
by its justification, the proof term evolves as seen before. When Resolve removes an initial
assignment from the conflict, the corresponding leaf in the associated proof term gets sur-
rounded by the in constructor to mark it as a leaf of the final proof. When the conflict is
empty, Fail fires returning unsat(c21).

This example shows how lemma learning avoids repeating work: if conflict
{¬l2∨¬l4∨¬l5, l2, l4, ¬l4∨l5} is solved by Backjump (see Example 3), rather than
LearnBackjump (see Examples 1 and 10), trail Γ1 of Example 10 would be expanded with

(¬l2∨¬l4∨¬l5), (¬l4∨l5), l2 � j11 :l4

where j11 = lem({l4}.c2). Conflict {¬l2∨¬l4, l2, l4}would not be detected as in Example 10,
and more steps would be necessary to discover it. Such steps would build another proof of
¬l2 ∨ ¬l4, possibly identical to the first forgotten one. Furthermore, lemmas can be reused

123

82 M. P. Bonacina et al.

Fig. 8 Conflicts and conflicts proof terms produced by the final series of steps in Example 10

and may appear multiple times in the final proof term. Lemma ¬l2∨¬l4 is used twice in
Example 10, and it occurs twice in c13 − c21: once in c8, and once in c12, because c12
contains j4, which contains c4, which contains j2, where ¬l2∨¬l4 appears. Also, deduction
proof terms referring tofirst-order decisions donot appear in thefinal proof term: an inspection
of c21 shows that j3 is absent. The reason is that first-order decisions play a role in finding
models, not proofs.An easy optimization avoids constructing deduction proof terms involving
first-order decisions.

7 Proof Reconstruction: From Proof Terms to Proofs

The motivation for using the proof-carrying CDSAT system is the ability to justify the unsat-
isfiability of an input with a proof. When CDSAT concludes unsat(c), the proof term c and
its associated derivation of ��� c : ⊥ can be considered as a proof of unsatisfiability of the
input, following Theorem 11. If need be, the rules of Fig. 6 can be used for proof checking. If
another proof format is preferred, c indicates how a proof in that format can be reconstructed,
having CDSAT traced in c how a contradiction was reached from a logical point of view.
Indeed, a deduction proof term j with H ��� j : A (resp. a conflict proof term c with E ��� c : ⊥)
can be decoded into, or can be seen as denoting, a proof of H0∪H | A (resp. H0∪ E | ⊥)
in the format of choice.

A first option is to decode proof terms into proofs after CDSAT halts, in a post-processing
phase. A second option consists of identifying first the proof operations corresponding to the
rules of Fig. 6 in the target proof format and then reading the proof-carrying CDSAT system
as manipulating directly the proofs denoted by proof terms such as in(A), jk , lem(H .c),
cfl(jk, a), and res(j, a A.c). In otherwords, aCDSAT-based solverwould build inmemory not
the proof terms, but the proofs themselves. Of course, the execution of the above-mentioned
proof operations during a CDSAT derivation may increase its runtime. In any case, proof-
carryingCDSAT ismodular in theway theory proofs are handled, reconstructed, and checked.
In Sect. 7.1 we exemplify proof reconstruction by showing how CDSAT proof terms can
be turned into resolution-style proof trees. In Sect. 7.2 we discuss yet another alternative
consisting of applying to CDSAT the LCF approach to proofs.

123

CDSAT: Lemmas, Modules, and Proofs 83

7.1 Proof Format Based on Resolution

A resolution proof is usually represented as a resolution proof tree with nodes labeled by
clauses. However, CDSAT views logical connectives as interpreted symbols of theory Bool,
treats formulæ as terms of sort prop, allows assignments such as (l1∨l2)←false, and does
not assume that the input is a set of clauses. Therefore, we distinguish between object-level
clauses of the form l1∨ · · · ∨lm , where the li ’s are terms of sort prop and ∨ is the symbol for
disjunction inΣBool, andCDSAT clauseswritten L1 || · · · || Lm , where the Li ’s are singleton
Boolean assignments and || is a meta-level symbol for disjunction. Reconstructed proofs
will use object-level clauses for input clauses and CDSAT clauses for generated clauses.
Since in CDSAT there are first-order assignments, we introduce guarded CDSAT clauses of
the form H → C , where H is a set of first-order assignments, which can be empty, and C is
a CDSAT clause. When there is no ambiguity, we use clause for CDSAT clause and guarded
clause for guarded CDSAT clause. The reconstruction of a resolution proof from a CDSAT
proof term yields a CDSAT resolution proof.

Definition 9 (CDSAT Resolution Proof)ACDSAT resolution proof is represented as a binary
tree such that:

1. A leaf is labeled with either an input singleton assignment, or a guarded clause that is a
theory lemma;

2. An internal node n is labeled with a guarded clause and has children n1 and n2 if its label
can be inferred from those of n1 and n2 by one of the following inference rules:

Binary Resolution: H1 → C1 || L H2 → C1 || L
BR

H1 ∪ H2 → C1 ||C2

Unit Resolution: L H → C || L
UR

H → C

First-order Assignment Elimination: A H , A→ C
FOAE

H → C

where L and A are input singleton assignments labeling leaves.

Theory lemmas are treated as leaves, because theory proofs involve inference rules other
than resolution. Since CDSAT treats propositional logic as a theory, there are also theory
lemmas for Bool or Bool-lemmas. If L0 is a clausal form of {L1, . . . , Lm} (see Definition 1),
the following clauses are Bool-lemmas:

∅ → L0 || L1 || · · · || Lm ∅ → L0 || Li (1≤i≤m). (9)

Indeed, L0 || L1 || · · · || Lm and L0 || Li , 1≤i≤m, are tautologies, since L0 is a clausal form
of {L1, . . . , Lm}, hence they can label leaves. The first Bool-lemma allows one to transform
the object-level clause to which L0 assigns true into a CDSAT clause:

. . .

H → C || L0 ∅ → L0 || L1 || · · · || Lm
BR

H → C || L1 || · · · || Lm

123

84 M. P. Bonacina et al.

Conversely, the other lemmas allow one to turn a CDSAT clause L1 || · · · || Lm into an
object-level clause:

. . .

H → C || L1 || · · · || Lm ∅ → L0 || L1
BR· · · ∅ → L0 || Lm

BR
H → C || L0

These transformations can be synthesized into derivable inference rules:

H → C || L0
Unfold

H → C || L1 || · · · || Lm

H → C || L1 || · · · || Lm
Fold

H → C || L0

that involve Bool-lemmas only if m ≥ 2, because if m = 1, L0 is simply L1. An assignment
H can be partitioned as HFO � {L1, . . . , Ln}, where HFO contains all the singleton first-
order assignments in H , and L1, . . . , Ln are all the singleton Boolean assignments in H . Let
Hclause be the clause L1 || · · · || Ln , that is, Hclause is a clausal form of {L1, . . . , Ln} (see
Definition 1) written as a CDSAT clause. Then CDSAT proof terms are transformed into
CDSAT resolution proofs by turning:

– a deduction proof term ∅ ��� in(A) : A into a leaf labeled A;
– a deduction proof term H ��� j : L of any other form into a proof of HFO → Hclause || L;

and
– a conflict proof term H ��� c : ⊥ into a proof of HFO → Hclause.

The application of this transformation to a proof term is denoted by surrounding the proof
term with � and �. The definition of this transformation is inductive and is given in Fig. 9,
which should be read together with Fig. 6. The first, second, and third cases in Fig. 9 are base
cases that yield leaves according toCase (1) inDefinition 9. The remaining cases are inductive
cases, where the recursive application of the transformation is represented as a subproof with
the transformed proof term as premise and the result of the transformation as consequence.
The rule for res in Fig. 6 is articulated into three rules in Fig. 9 distinguishing among Unit
Resolution,First-order Assignment Elimination, andBinary Resolution according to Case (2)
in Definition 9.

For instance, consider the transformation of a deduction proof term and a conflict proof
term that encapsulate a unit propagation, where K is a clausal form of H = H ′ � {L} as in
inference (1) from Sect. 3.2:

�{aK } � H ′ ��� UP(a, {a1, . . . , an}) : L�

�{aK } � H ′ � {a0L} ��� cfl(UP(a, {a1, . . . , an}), a0) : ⊥�

where a1, . . . , an are the identifiers of the elements of H ′. Both transformations yield the
Bool-lemma

∅ → K || H ′clause || L
by applying the second and the fourth rules in Fig. 9, respectively.

Since a CDSAT answer of the form unsat(c) means ∅��� c : ⊥, the resolution proof recon-
structed from c is a refutation, as its conclusion is the empty clause ∅ → ∅. Since first-order
decisions do not appear in proofs, first-order assignments may appear in proofs only if they
belong to the initial assignment of an SMA problem. If the input problem is an SMT prob-
lem, and therefore contains no first-order assignments, the reconstructed proof involves only

123

CDSAT: Lemmas, Modules, and Proofs 85

Fig. 9 Transformation of CDSAT proof terms into CDSAT resolution proofs

singleton Boolean assignments labeling leaves and guarded clauses of the form ∅ → C
labeling leaves or internal nodes. In other words, the reconstructed proof is a resolution
refutation in the standard sense, with leaves labeled by input assignments or theory lemmas.
On the other hand, Bool-lemmas are a non-standard feature that also enables the sharing
of resolution proofs. For instance, in the refutation of Example 10, the conflict proof term
c19 = res(j1, ¬l2∨¬l4.c18) (see Fig. 8), with j1 = lem({l2, l4}.c2), yields L1, L2 ��� c19 : ⊥,
where L1 is ¬l4∨l5 and L2 is ¬l2∨¬l4∨¬l5. The resolution proof reconstructed from c19
is:

�L1, L2, l2, l4 ��� c2 : ⊥�

∅ → L1 || L2 || l2 || l4
Fold∅ → L1 || L2 || (¬l2∨¬l4)

�¬l2∨¬l4 ��� c18 : ⊥�

∅ → (¬l2∨¬l4)
BR∅ → L1 || L2

In the proof reconstructed from c21, CDSAT clause ∅ → L1 || L2 resolves with initial assign-
ments L1 and L2 to yield ∅ → ∅. The double occurrence of¬l2∨¬l4 in c18 (see Example 10),
means that the resolution proof �¬l2∨¬l4��� c18 : ⊥� has two leaves labeled by the same Bool-
lemma

∅ → (¬l2∨¬l4) || l2 || l4.
An alternative refutation can be obtained by replacing those two leaves with the subproof
translating c2, and replacing (¬l2∨¬l4) by L1 || L2 in all nodes underneath. This avoids the
explicit conversions between the object-level clause ¬l2∨¬l4 and the CDSAT clause l2 || l4.
However, in this alternative proof, the subtree for c2 is duplicated. Such duplications are

123

86 M. P. Bonacina et al.

Fig. 10 API (Application Programming Interface) exported by a CDSAT kernel

customary in resolution proof trees where there is only one kind of clauses. By distinguishing
between object-level clauses and CDSAT clauses, and using the former for input clauses and
the latter for generated clauses, CDSAT natively supports the sharing of subproofs that one
obtains by replacing trees with directed acyclic graphs.

7.2 An LCF Architecture for CDSAT

Another example of proof format is the “dummy” one, where proofs do not contain any
information other than what they are supposed to be the proofs of :

1. A deduction proof for proof term j with H ��� j : L is the pair 〈H , L〉, and
2. A conflict proof for proof term c with H ��� c : ⊥ is H .

Although this proof format does not allow any proof checking, the trustworthiness of a
reasoner producing such proofs can still be established by the LCF programming abstraction
[30,47]. This approach uses a type theorem , whose constructed inhabitants are provable
formulæ. Actually, this type is defined as an alias for the type formula of formulæ, but
this is known only to a fixed and well-identified piece of code, called the LCF kernel. This
kernel hides the definition of theorem to the outside world and exports a range of kernel
primitives to manipulate inhabitants of type theorem in a safe and provably correct way.
For instance, assuming that⇒ denotes implication, a primitive

modus_ponens : theorem -> theorem -> theorem

takes as arguments two inhabitants F and G of type theorem, checks that F is of the form
G ⇒ R, and returns R as an inhabitant of theorem. The kernel can export a primitive that
reveals that an inhabitant of theorem is a formula, but not one that casts any inhabitant
of formula into type theorem. Thus, the existence of an inhabitant F of theorem
witnesses the fact that F is provable, as an inhabitant only results from a series of correct
manipulations by the kernel primitives: if the kernel code is trusted, then F can be trusted to
be a theorem, while no proof has ever been constructed in memory. CDSAT is well-suited
for the LCF approach: given a type assign for assignments and single_assign for
singleton assignments, a trusted kernel defines types

type deduction = assign * single_assign
type conflict = assign

hides their definitions to the outside world and exports a range of primitives corresponding
to the proof term constructs.

The signature in Fig. 10 lists hidden-type definitions and exported primitives. The prim-
itives check that the conditions of the rules in Fig. 6 are met: in checks that its argument
is one of the initial assignments; lem takes as arguments a conflict E and an assignment

123

CDSAT: Lemmas, Modules, and Proofs 87

H , checks that H is Boolean and included in E , computes a clausal form L of H , and pro-
duces the deduction 〈E\H , L〉, where \ is set subtraction. Primitive res takes a deduction
〈H , A〉 and a conflict, checks that A occurs in the conflict, and returns the conflict where A is
replaced by H . Primitives coerc and cfl take as arguments a Tk-proof, 1≤ k ≤ n, given as
an inhabitant of ’k theory_proof, a type parameterized by k. Their first argument is a
handler for theory Tk , whose type ’k theory_handler is parameterized by a matching
k, as implemented for example by a generalized algebraic datatype [19,55]. The handler
allows the primitives to check that Tk is one of the combined theories before coercing the
Tk-proof, trusted to be correct, into a deduction or a conflict. Proof-carrying CDSAT can be
programmed on top of this kernel, so that, when it halts with answer unsat(c), the proof term
c is an inhabitant of type conflict. The reveal primitive applied to c will return the
empty assignment. Although no proof has been constructed in memory, the answer is correct
by construction.

8 Discussion

Conflict-driven satisfiability procedures work by building partial assignments, detecting
conflicts when the assignment falsifies the input formula, and performing conflict-driven
inferences to explain conflicts and reorient the search. In prior work [11], we presented
CDSAT as a conflict-driven combination framework for disjoint theories and proved its
soundness, termination, and completeness. The present article has extended the theoretical
foundations of CDSAT in three main directions, namely lemma learning, properties of theory
modules (i.e., the theory inference systems that CDSAT orchestrates), and proof generation.

We generalized the lemma learning capability of CDSAT, in such a way that new clauses
can be formed and learned during backjumping from a conflict, and the destination level
of backjumping can be chosen according to different heuristics, including learn and restart.
Soundness, termination, and completeness of CDSAT are preserved.

We proved that the theory modules listed in [11] for the Boolean theory, equality, arrays
with extensionality, and linear rational arithmetic, as well as generic black-box modules for
stably infinite and non-stably infinite theories, are completewith respect to all suitable leading
theories in a union of theories, and admit finite local bases. We also showed how to get a finite
global basis for the union of the theories from finite local bases for the individual theories.
These results mean that the assumptions for the termination and completeness of CDSAT can
indeed be satisfied, complementing our previous general results [11]. By including black-
box modules for stably infinite theories CDSAT subsumes the equality-sharing method for
theory combination [42,48,49], also known asNelson-Oppen scheme, includingmodel-based
theory combination [23]. By handling also non-stably infinite theories, CDSAT goes beyond
equality sharing (see [9] for a survey of other approaches to this issue).

We presented a proof-carrying CDSAT transition system that constructs and carries proof
terms, so that a proof can be reconstructed when CDSAT discovers that the input problem
is unsatisfiable. CDSAT proof terms can be rendered in a number of proof formats, and the
resulting proofs checked by a trusted checker, or shown to be correct by construction in LCF
style. A translation to resolution-style proofs is illustrated as example.

Research on CDSAT as a new paradigm for theory combination has just begun, and there
are many directions for future work. Amain objective is an implementation of CDSAT, either
in the form of a CDSAT-based prototype (e.g., [6,14]) or by extending the implementation
of MCSAT in the Yices SMT solver [25]. An implementation can be used for exploring and

123

88 M. P. Bonacina et al.

evaluating different search plans and proof formats, the latter in connectionwith the objective
of efficient proof checking. The design of a CDSAT search plan involves both global issues
about reasoning in the theory union and local issues about reasoning in each theory. At the
local level, each theory search plan is in charge of detecting the applicability of inferences
and the acceptability of decisions. At the global level, the search plan decides which CDSAT
transition rule to apply next, coordinates the theory modules, prioritizing them with respect
to both decisions and deductions, and controls lemma learning.

CDSAT proofsmay be extended to account for preprocessing and inprocessing techniques
(e.g., [2,38]), evaluating the cost of proof generation and proof checking (e.g., [2,3]), and
studying proof formats to reduce it (e.g., [22]). At the foundational level, we may investigate
empowering CDSAT to handle unions of non-disjoint theories (e.g., [20,28]), or formulæ
with quantifiers, considering model-based conflict-driven instantiation (e.g., [4,51]), or inte-
grations with first-order logic modules (e.g., [13,15]).

Acknowledgements This work was started when the first author was visiting the Computer Science Labo-
ratory of SRI International, whose support is greatly appreciated, and completed while the first author was
participating in a program at the Simons Institute for the Theory of Computing. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of NSF, DARPA, or the US Government.

Funding Open access funding provided by Università degli Studi di Verona within the CRUI-CARE Agree-
ment.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Armand,M., Faure, G., Grégoire, B., Keller, C., Théry, L.,Werner, B.: Amodular integration of SAT/SMT
solvers to Coq through proof witnesses. In: Jouannaud, J.P., Shao, Z. (eds.) Proceedings of the 1st Inter-
national Conference on Certified Programs and Proofs (CPP), pp. 135–150. Springer (2011)

2. Barbosa,H.,Blanchette, J.C., Fleury,M., Fontaine, P.: Scalable fine-grained proofs for formula processing.
J. Autom. Reason. 64(3), 485–550 (2020)

3. Bjørner, N., de Moura, L.: Proofs and refutations, and Z3. In: Rudnick, P., Sutcliffe, G., Konev, B.,
Schmidt, R.A., Schulz, S. (eds.) Proc. 7th International Workshop on Implementation of Logics (IWIL),
CEUR Workshop Proc., vol. 418, pp. 123–132 (2008)

4. Bjørner, N., Janota, M.: Playing with quantified satisfaction. In: Fehnker, A., McIver, A., Sutcliffe, G.,
Voronkov,A. (eds.) Proceedings of the 20th InternationalConference onLogic for Programming,Artificial
Intelligence, and Reasoning (LPAR)—Short Papers, EPiC Series in Computing, vol. 35, pp. 15–27.
EasyChair (2015)

5. Blanchette, J.C., Böhme, S., Paulson, L.C.: Extending Sledgehammer with SMT solvers. In: Bjørner,
N., Sofronie-Stokkermans, V. (eds.), Proceedings of the 23rd International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 6803, pp. 116–130. Springer (2011)

6. Bobot, F., Graham-Lengrand, S., Marre, B., Bury, G.: Centralizing equality reasoning in MCSAT. In:
D’Silva, V., Dimitrova, R. (eds.), Proceedings of the 16th Workshop on Satisfiability Modulo Theories
(SMT) (2018)

7. Böhme, S.,Weber, T.: Fast LCF-style proof reconstruction for Z3. In: Kaufmann,M., Paulson, L.C. (eds.),
Proceedings of the 1st International Conference on Interactive Theorem Proving (ITP), Lecture Notes in
Computer Science, vol. 6172, pp. 179–194. Springer (2010)

123

http://creativecommons.org/licenses/by/4.0/

CDSAT: Lemmas, Modules, and Proofs 89

8. Bonacina, M.P.: On conflict-driven reasoning. In: Shankar, N., Dutertre, B. (eds.), Proceedings of the
6th Workshop on Automated Formal Methods (AFM), Kalpa Publications, vol. 5, pp. 31–49. EasyChair
(2018)

9. Bonacina, M.P., Fontaine, P., Ringeissen, C., Tinelli, C.: Theory combination: beyond equality sharing.
In: Lutz, C., Sattler, U., Tinelli, C., Turhan, A.Y. (eds.) Description Logic, Theory Combination, and All
That: Essays Dedicated to Franz Baader, Lecture Notes in Artificial Intelligence, vol. 11560, pp. 57–89.
Springer (2019)

10. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Proofs in conflict-driven theory combination. In:
Andronick, J., Felty, A. (eds.), Proceedings of the 7th ACM International Conference on Certified Pro-
grams and Proofs (CPP), pp. 186–200. ACM Press (2018)

11. Bonacina, M.P., Graham-Lengrand, S., Shankar, N.: Conflict-driven satisfiability for theory combination:
transition system and completeness. J. Autom. Reason. 64(3), 579–609 (2020)

12. Bonacina,M.P., Johansson,M.: Interpolation systems for ground proofs in automated deduction: a survey.
J. Autom. Reason. 54(4), 353–390 (2015)

13. Bonacina,M.P., Lynch, C.A., deMoura, L.: On deciding satisfiability by theorem provingwith speculative
inferences. J. Autom. Reason. 47(2), 161–189 (2011)

14. Bonacina, M.P., Mazzi, G.: The Eos SMT/SMA-solver: a preliminary report. In: Sharygina, N., Hendrix,
J. (eds.), Proceedings of the 17th Workshop on Satisfiability Modulo Theories (SMT) (2019). http://
smt2019.galois.com/proceedings.html

15. Bonacina,M.P., Plaisted, D.A.: Semantically-guided goal-sensitive reasoning: inference system and com-
pleteness. J. Autom. Reason. 59(2), 165–218 (2017)

16. Brauße, F., Korovin, K., Korovina, M., Müller, N.: A CDCL-style calculus for solving non-linear con-
straints. In: Herzig, A., Popescu, A. (eds.), Proceedings of the 12th International Symposium on Frontiers
of Combining Systems (FroCoS), Lecture Notes in Artificial Intelligence, vol. 11715, pp. 131–148.
Springer (2019)

17. Bromberger, M., Sturm, T., Weidenbach, C.: Linear integer arithmetic revisited. In: Felty, A.P., Middel-
dorp, A. (eds.), Proceedings of the 25th International Conference on Automated Deduction (CADE),
Lecture Notes in Artificial Intelligence, vol. 9195, pp. 623–637. Springer (2015)

18. Chang,C.L., Lee, R.C.T.: Symbolic Logic andMechanical TheoremProving.Academic Press, Cambridge
(1973)

19. Cheney, J., Hinze, R.: First-Class Phantom Types. Tech. Rep. CUCIS TR2003-1901, Cornell University,
Ithaca, NY, USA (2003)

20. Chocron, P., Fontaine, P., Ringeissen, C.: Politeness and combination methods for theories with bridging
functions. J. Autom. Reason. 64(1), 97–134 (2020)

21. Cotton, S.: Natural domain SMT: a preliminary assessment. In: Chatterjee, K., Henzinger, T.A. (eds.),
Proceedings of the 8th International Conference on Formal Modeling and Analysis of Timed Systems
(FORMATS), Lecture Notes in Computer Science, vol. 6246, pp. 77–91. Springer (2010)

22. Cruz-Felipe, L., Heule, M., Hunt Jr., W., Kaufmann, M., Schneider-Kamp, P.: Efficient certified RAT
verification. In: de Moura, L. (ed.), Proceedings of the 26th International Conference on Automated
Deduction (CADE), Lecture Notes in Artificial Intelligence, vol. 10395, pp. 220–236. Springer (2017)

23. deMoura, L., Bjørner, N.:Model-based theory combination. In:Krstić, S., Oliveras,A. (eds.), Proceedings
of the 5th Workshop on Satisfiability Modulo Theories (SMT 2007), Electronic Notes in Theoretical
Computer Science, vol. 198(2), pp. 37–49. Elsevier (2008)

24. de Moura, L., Jovanović, D.: A model-constructing satisfiability calculus. In: Giacobazzi, R., Berdine,
J., Mastroeni, I. (eds.), Proceedings of the 14th Internatinal Conference on Verification, Model Checking
and Abstract Interpretation (VMCAI), Lecture Notes in Computer Science, vol. 7737, pp. 1–12. Springer
(2013)

25. Dutertre, B.: Yices 2.2. In: A. Biere, R. Bloem (eds.), Proceedings of the 26th International Conference
on Computer Aided Verification (CAV), Lecture Notes in Computer Science, vol. 8559, pp. 737–744.
Springer (2014)

26. Dutertre, B., de Moura, L.: A fast linear-arithmetic solver for DPLL(T). In: Ball, T., Jones, R.B. (eds.),
Proceedings of the 18th International Conference on Computer Aided Verification (CAV), Lecture Notes
in Computer Science, vol. 4144, pp. 81–94. Springer (2006)

27. Fontaine, P., Marion, J.Y., Merz, S., Nieto, L.P., Tiu, A.: Expressiveness + automation + soundness:
towards combining SMT solvers and interactive proof assistants. In: Hermanns, H., Palsberg, J. (eds.),
Proceedings of the 12th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), Lecture Notes in Computer Science, vol. 3920, pp. 167–181. Springer
(2006)

28. Ghilardi, S., Nicolini, E., Zucchelli, D.: A comprehensive combination framework. ACMTrans. Comput.
Log. 9(2), 1–54 (2008)

123

http://smt2019.galois.com/proceedings.html
http://smt2019.galois.com/proceedings.html

90 M. P. Bonacina et al.

29. Goldberg, E.Y., Novikov, Y.: Verification of proofs of unsatisfiability for CNF formulas. In: Proceedings
of the Conference on Design Automation and Test in Europe (DATE), pp. 10886–10891. IEEE (2003)

30. Gordon, M., Milner, R., Wadsworth, C.: Edinburgh LCF: A Mechanized Logic of Computation. Lecture
Notes in Computer Science, vol. 78. Springer (1979)

31. Graham-Lengrand, S., Jovanović, D., Dutertre, B.: Solving bitvectors with MCSAT: explanations from
bits and pieces. In: Peltier, N., Sofronie-Stokkermans, V. (eds.), Proceedings of the 10th International
Joint Conference on Automated Reasoning (IJCAR), Lecture Notes in Artificial Intelligence, vol. 12166,
pp. 103–121. Springer (2020)

32. Heule, M., Hunt Jr., W., Wetzler, N.: Verifying resolutions with extended refutation. In: Bonacina, M.P.
(ed.), Proceedings of the 24th International Conference on Automated Deduction (CADE), Lecture Notes
in Artificial Intelligence, vol. 7898, pp. 345–359. Springer (2013)

33. Järvisalo, M., Heule, M., Biere, A.: Inprocessing rules. In: Gramlich, B., Miller, D., Sattler, U. (eds.),
Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR), Lecture Notes
in Artificial Intelligence, vol. 7364, pp. 355–370. Springer (2012)

34. Jovanović, D.: Solving nonlinear integer arithmetic with MCSAT. In: Bouajjani, A., Monniaux, D. (eds.)
Proceedings of the 18th International Conference on Verification, Model Checking and Abstract Inter-
pretation (VMCAI), Lecture Notes in Computer Science, vol. 10145, pp. 330–346. Springer (2017)

35. Jovanović, D., Barrett, C., de Moura, L.: The design and implementation of the model-constructing
satisfiability calculus. In: Jobstman, B., Ray, S. (eds.), Proceedings of the 13th International Conference
on Formal Methods in Computer Aided Design (FMCAD). ACM and IEEE (2013)

36. Jovanović, D., de Moura, L.: Cutting to the chase: solving linear integer arithmetic. J. Autom. Reason.
51, 79–108 (2013)

37. Jovanović, D., de Moura, L.: Solving non-linear arithmetic. In: Gramlich, B., Miller, D., Sattler, U. (eds.),
Proceedings of the 6th International Joint Conference on Automated Reasoning (IJCAR), Lecture Notes
in Artificial Intelligence, vol. 7364, pp. 339–354. Springer (2012)

38. Katz, G., Barrett, C.W., Tinelli, C., Reynolds, A., Hadarean, L.: Lazy proofs for DPLL(T)-based SMT
solvers. In: Piskac, R., Talupur, M. (eds.), Proceedings of the 16th International Conference on Formal
Methods in Computer-Aided Design (FMCAD), pp. 93–100. ACM and IEEE (2016)

39. Klee, V., Minty, G.J.: How good is the simplex algorithm? In: O. Shisha (ed.) Inequalities—III, pp.
159–175. Academic Press (1972)

40. Korovin, K., Tsiskaridze, N., Voronkov, A.: Conflict resolution. In: I.P. Gent (ed.), Proceedings of the
15th International Conference on Principles and Practice of Constraint Programming (CP), Lecture Notes
in Computer Science, vol. 5732, pp. 509–523. Springer (2009)

41. Kroening, D., Strichman, O.: Decision Procedures—An Algorithmic Point of View. Texts in Theoretical
Computer Science. Springer (2008)

42. Krstić, S.,Goel,A.:Architecting solvers for SATmodulo theories:Nelson-OppenwithDPLL. In: F.Wolter
(ed.), Proceedings of the 6th International Symposium on Frontiers of Combining Systems (FroCoS),
Lecture Notes in Artificial Intelligence, vol. 4720, pp. 1–27. Springer (2007)

43. Lassez, J.L., Maher, M.J.: On Fourier’s algorithm for linear arithmetic constraints. J. Autom. Reason. 9,
373–379 (1992)

44. Marques Silva, J., Lynce, I., Malik, S.: Conflict-driven clause learning SAT solvers. In: Biere, A., Heule,
M., Van Maaren, H., Walsh, T. (eds.) Handbook of Satisfiability, Frontiers in Artificial Intelligence and
Applications, vol. 185, pp. 131–153. IOS Press (2009)

45. Marques Silva, J.P., Sakallah, K.A.: GRASP: a search algorithm for propositional satisfiability. IEEE
Trans. Comput. 48(5), 506–521 (1999)

46. McMillan, K.L., Kuehlmann, A., Sagiv, M.: Generalizing DPLL to richer logics. In: Bouajjani, A., Maler,
O. (eds.), Proceedings of the 21st International Conference on Computer Aided Verification (CAV),
Lecture Notes in Computer Science, vol. 5643, pp. 462–476. Springer (2009)

47. Milner, R.: LCF: a way of doing proofs with a machine. In: Becvár, J. (ed.) Proceedings of the 8th
International Symposium on Mathematical Foundations of Computer Science (MFCS), Lecture Notes in
Computer Science, vol. 74, pp. 146–159. Springer (1979)

48. Nelson, G.: Combining satisfiability procedures by equality sharing. In: Bledsoe, W.W., Loveland, D.W.
(eds.) Automatic Theorem Proving: After 25 Years, pp. 201–211. AmericanMathematical Society (1983)

49. Nelson, G., Oppen, D.C.: Simplification by cooperating decision procedures. ACM Trans. Prog. Lang.
Syst. 1(2), 245–257 (1979)

50. Nieuwenhuis, R., Oliveras, A., Tinelli, C.: Solving SAT and SAT modulo theories: from an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T). J. ACM 53(6), 937–977 (2006)

51. Reynolds, A., Tinelli, C., de Moura, L.: Finding conflicting instances of quantified formulas in SMT. In:
Claessen, K., Kuncak, V. (eds.) Proceedings of the 14th Conference on Formal Methods in Computer
Aided Design (FMCAD). ACM and IEEE (2014)

123

CDSAT: Lemmas, Modules, and Proofs 91

52. Schrijver, A.: Theory of Linear and Integer Programming. Interscience Series in Discrete Mathematics
and Optimization. Wiley (1998)

53. Shankar, N.: Trust and automation in verification tools. In: Cha, S.S., Choi, J.Y., Kim, M., Lee, I.,
Viswanathan, M. (eds.) Proceedings of the 6th International Symposium on Automated Technology for
Verification and Analysis (ATVA), Lecture Notes in Computer Science, vol. 5311, pp. 4–17. Springer
(2008)

54. Spielman, D.A., Teng, S.H.: Smoothed analysis of algorithms: why the simplex algorithm normally takes
polynomial time. In: Proceedings of the 33rd Annual ACM Symp. on the Theory of Computing (STOC),
pp. 296–305. ACM Press (2001). Long version available at arXiv:cs/0111050v7 [cs.DS] 9 Oct. 2003

55. Xi,H., Chen,C., Chen,G.:Guarded recursive datatype constructors. In:Aiken,A.,Morrisett,G. (eds.) Pro-
ceedings of the 30th SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pp. 224–235. ACM Press (2003)

56. Zeljić, A., Wintersteiger, C.M., Rümmer, P.: Deciding bit-vector formulas with mcSAT. In: Creignou,
N., Le Berre, D. (eds.) Proceedings of the 19th International Conference on Theory and Applications of
Satisfiability Testing (SAT), Lecture Notes in Computer Science, vol. 9710, pp. 249–266. Springer (2016)

57. Zhang, L., Malik, S.: Validating SAT solvers using an independent resolution-based checker: practical
implementations and other applications. In: Proceedings of the Conference on Design Automation and
Test in Europe (DATE), pp. 10880–10885. IEEE (2003)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

http://arxiv.org/abs/cs/0111050v7

	Conflict-Driven Satisfiability for Theory Combination: Lemmas, Modules, and Proofs
	Abstract
	1 Introduction
	2 Basic Definitions
	3 CDSAT with Lemma Learning
	3.1 The CDSAT Transition System with Lemma Learning
	3.2 Lemma Learning in CDSAT
	3.3 Soundness, Completeness, and Termination with Lemma Learning

	4 Completeness of Theory Modules
	4.1 Propositional Logic
	4.2 The Theory of Equality
	4.3 The Theory of Arrays
	4.4 Linear Rational Arithmetic
	4.5 Generic Theories: Stable Infiniteness and Beyond

	5 Global Basis Construction
	6 Proof Reconstruction: Proof-Carrying CDSAT
	6.1 Theory Proofs
	6.2 Proof Terms, Proof System, and Invariants for CDSAT
	6.3 The Proof-Carrying CDSAT Transition System

	7 Proof Reconstruction: From Proof Terms to Proofs
	7.1 Proof Format Based on Resolution
	7.2 An LCF Architecture for CDSAT

	8 Discussion
	Acknowledgements
	References

