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Abstract
Optimizationmodulo theories (OMT) is an important extensionofSMTwhich allows for find-
ing models that optimize given objective functions, typically consisting in linear-arithmetic
or Pseudo-Boolean terms. However, many SMT and OMT applications, in particular from
SW and HW verification, require handling bit-precise representations of numbers, which
in SMT are handled by means of the theory of bit-vectors (BV) for the integers and that
of floating-point numbers (FP) for the reals respectively. Whereas an approach for OMT
with (unsigned) BV objectives has been proposed by Nadel & Ryvchin, unfortunately we are
not aware of any existing approach for OMT with FP objectives. In this paper we fill this
gap, and we address for the first time OMT with FP objectives. We present a novel OMT
approach, based on the novel concept of attractor and dynamic attractor, which extends the
work of Nadel and Ryvchin to work with signed-BV objectives and, most importantly, with
FP objectives. We have implemented some novel OMT procedures on top of OptiMath-

SAT and tested them on modified problems from the SMT-LIB repository. The empirical
results support the validity and feasibility of our novel approach.

Keywords Optimization Modulo Theories · OMT Satisfiability Modulo Theories · SMT
Floating-Point Arithmetic attractor dynamic attractor

1 Introduction

Optimization modulo theories (OMT) [6–9,20–23,28–32,35,36,38–43] is an important
extension to satisfiability modulo theories which allows for finding models that optimize
one or more objectives, which typically consist in some linear-arithmetic or Pseudo-Boolean
function application.
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Nevertheless, many SMT and OMT applications, in particular from SW and HW verifica-
tion, require handling bit-precise representations of numbers, which in SMT are handled by
means of the theory of bit-vectors (BV) for the integers and that of Floating-Point Numbers
(FP) for the reals respectively and their combination (BV ∪ FP). For instance, during the
verification process of a piece of software, one may look for the minimum/maximum value
of some int or double parameter causing an SMT(BV ∪ FP) call to return sat—which
typically corresponds to the presence of some bug—so that to guarantee a safe range for
such parameter; also, one may want to find the maximum relative difference in the double
values returned by two implementations of the same function.

Example 1 Consider some C/C++ library implementation of some mathematical function
f : DoubleN �−→ Double. Suppose one wants to substitute it with a new implementation
f ′(...) of the same function. Given the ranges [l, u] for the values of x , one may want to find
the maximum relative difference between the value returned by the two functions. This can
be done, e.g., by finding the maximum value of ε s.t. the SMT(BV ∪ FP) formula

(| f (x) − f ′(x)| > ε ∗ max{| f (x)|, | f ′(x)|}) ∧ (1)

( f (x) = ...) ∧ ( f ′(x) = ...) ∧ ∧N
i=1((li ≤ xi ) ∧ (xi ≤ ui ))

is satisfiable, where ( f (x) = ...) and ( f ′(x) = ...) are the SMT(BV ∪ FP)1 encodings of
the implementations of the functions f and f ′ respectively.2 Notice that here it is strictly
necessary to use bit-precise representation of numbers provided by BV ∪ FP —rather than
standard non-linear arithmetic—in order to reproduce the truncating and rounding errors and
their propagation. (E.g., two C functions computing iteratively a0 + a1 ∗ x + ... + an ∗ xn

and a0 + x ∗ (a1 + x ∗ (... + x ∗ (an))..)) by floating-point arithmetic may return different
values on the same input value x , although they are mathematically equivalent.)

OMT for the theory of (unsigned) bit-vectors was proposed by Nadel and Ryvchin [32],
although a reduction of the problem to MaxSAT was already implemented in the SMT/OMT
solver Z3 [10]. The work in [32] was based on the observation that OMT on unsigned BV
can be seen as lexicographic optimization over the bits in the bitwise representation of the
objective, ordered from the most-significant bit (MSB) to the least-significant bit (LSB).
Notice that, in this domain, this corresponds to a binary search over the space of the values
of the objective.

In this paper (as in [44]) we address—for the first time to the best of our knowledge—
OMT for objectives in the theory of signed Bit-Vectors and, most importantly, in the theory of
Floating-Point Arithmetic, by exploiting some properties of the two’s complement encoding
for signed BV and of the IEEE 754-2008 encoding for FP respectively. (We consider the
former as a straightforward extension of [32], and the latter as our main contribution.)

We start from introducing the notion of attractor, which represents (the bitwise encoding
of) the target value for the objective which the optimization process aims at. This allows us to
easily leverage the procedure of [32] to work with both signed and unsigned bit-vectors, by
minimizing lexicographically the bitwise distance between the objective and the attractor, that
is, by minimizing lexicographically the bitwise-xor between the objective and the attractor.

Unfortunately there is no such notion of (fixed) attractor for FP numbers, because the
target value changes as long as the bits of the objective are updated from theMSB to the LSB,
and the optimization process may have to change dynamically its aim, even in the opposite

1 Notice that the implementation of f , f ′ may contain also some integers, so that BV ∪ FP is needed.
2 Here we use “| f (x) − f ′(x)| > ε ∗ max{| f (x)|, | f ′(x)|}” to handle the case f (x) = f ′(x) = 0.
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Optimization Modulo the Theories... 1073

direction. (For instance, as soon as the minimization process realizes there is no solution
with a negative value for the objective and thus sets its MSB to 0, the target value is switched
from −∞ to 0+, and the search switches direction, from the maximization of the exponent
and the significand to their minimization.).

To cope with this fact, we introduce the notions of dynamic attractor and attractor trajec-
tory, representing the dynamics of the moving target value, which are progressively updated
as soon as the bits of the objective are updated from the MSB to the LSB. Based on these
ideas, we present novel OMT procedures for FP objectives, which require at most n + 2,
incremental calls to anBV∪FP solver, n being the number of bits in the representation of the
objective. Notice that these procedures do not depend on the underlying BV ∪FP procedure
used, provided the latter allows for accessing and setting the single bits of the objective.

Notice that, unlike with the BV domain, this does not simply perform binary search over
the space of the values of the objective. Rather, it first performs (a lexicographic bitwise
search corresponding to) binary search of the exponent values, which very-rapidly converges
to the right order of magnitude, followed by binary search on the significand values, which
fine-tunes the final result.

We have implemented these OMT procedures on top of the OptiMathSAT OMT solver
[43]. We have run an experimental evaluation of the procedures on modified SMT problems
from the SMT-LIB library. The empirical results support the validity and feasibility of the
novel approach.

The rest of the paper is organized as follows. In Sect. 2 we provide the necessary back-
ground on BV and FP theories and reasoning. In Sect. 3 we provide the novel theoretical
definitions and results. In Sect. 4 we describe our novel OMT procedures. In Sect. 5 we
present the empirical evaluation. In Sect. 6 we conclude, hinting some future directions.

2 Background

We assume some basic knowledge on SAT and SMT and briefly introduce the reader to the
Bit-Vector and Floating-Point theories.

Bit-VectorsA bit is a Boolean variable that can be interpreted as 0 or 1. A Bit-Vector (BV)
variable v[n] is a vector of n bits, where v[0] is the Most Significant Bit (MSB) and v[n − 1]
is the Least Significant Bit (LSB).3 A BV constant of width n is an interpreted vector of
n values in {0, 1}. We overline a bit value or a BV value to denote its complement (e.g.,
[11010010] is [00101101]). ABV variable/constant ofwidth n can be unsigned, inwhich case
its domain is [0, 2n − 1], or signed, which we assume to comply with the Two’s complement
representation, so that its domain is [−2(n−1), 2(n−1) − 1]. Therefore, the vector [11111111]
can be interpreted either as the unsigned BV constant 255[8] or as the signed BV constant
−1[8]. Following theSMT- LIBv2 standard [4],wemayalso represent aBV constant inbinary
form (e.g. 28[8] is written #b00011100). A BV term is built from BV constants, variables and
interpretedBV functionswhich represents standard Register-Transfer Level (RTL) operators:
word concatenation (e.g. 3[8] ◦ x[8]), sub-word selection (e.g. (3[8][6 : 3])[4]), modulo-n sum
and multiplication (e.g. x[8] +8 y[8] and x[8] ·8 y[8]), bit-wise operators (like, e.g., andn , orn ,
xorn , nxorn , notn), left and right shift <<n , >>n . A BV atom can be built by combining
BV terms with interpreted predicates (either signed or unsigned ones) like ≥n , <n (e.g.

3 Although most often in the literature the indexes i ∈ [0, ..., n − 1] use to grow from the LSB to the MSB,
in this paper we use the opposite notation because we always reason from the MSB down to the LSB, so that
to much simplify the explanation.
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1074 P. Trentin, R. Sebastiani

0[8] ≥8 x[8]) and equality. We refer the reader to [4,25] for further details on the syntax and
semantics of Bit-Vector theory.

There are two main approaches for BV satisfiability, the “eager” and the ”lazy” approach,
which are substantially complementary to one another [26]. In the eager approach, BV
terms and constraints are encoded into SAT via bit-blasting [17,18,24,25,33,34]. In the lazy
approach, BV terms are not immediately expanded—so to avoid any scalability issue—and
the BV solver is comprised by a layered set of techniques, each of which deals with a sub-
portion of the BV theory [11,16,19,25].

Floating-Point The theory of Floating-Point Numbers (FP), [4,14,37], is based on the
IEEE standard 754-2008 [5] for floating-point arithmetic, restricted to the binary case. AFP
sort is an indexed nullary sort identifier of the form (_ FP < ebits > < sbi ts >) s.t. both
ebits and sbi ts are positive integers greater than one, ebits defines the number of bits in the
exponent and sbi ts defines the number of bits in the significand, including the hidden bit. A
FP variable v[n] with sort (_ FP < ebits > < sbi ts >) can be indifferently viewed as a
vector of n

def= ebits + sbi ts bits, where v[0] is the Most Significant Bit (MSB) and v[n − 1]
is the Least Significant Bit (LSB), or as a triplet of bit-vectors 〈sign, exp, sig〉 s.t. sign is a
BV of size 1, exp is a BV of size ebits and sig is a BV of size sbi ts − 1. A FP constant
is a triplet of BV constants. Given a fixed floating-point sort, i.e. a pair 〈ebits, sbi ts〉, the
following FP constants are implicitly defined:

value Symbol BV Repr.

plus infinity (_ +oo < ebits > < sbi ts >) (fp #b0 #b1...1 #b0...0)
minus infinity (_ -oo < ebits > < sbi ts >) (fp #b1 #b1...1 #b0...0)
plus zero (_ +zero < ebits > < sbi ts >) (fp #b0 #b0...0 #b0...0)
minus zero (_ -zero < ebits > < sbi ts >) (fp #b1 #b0...0 #b0...0)
not-a-number (_ NaN < ebits > < sbi ts >) (fp t #b1...1 s)

where t is either 0 or 1 and s is a BV which contains at least a 1.
Setting aside specialFP constants, the remainingFP values can be classified to be either

normal or subnormal (a.k.a. denormal) [5]. AFP number is said to be subnormalwhen every
bit in its exponent is equal to zero, and normal otherwise. The significand of a normal FP
number is always interpreted as if the leading binary digit is equal 1,whereas for denormalized
FP values the leading binary digit is always 0. This allows for the representation of numbers
that are closer to zero, although with reduced precision. Notice that the absolute value of
any subnormal FP number is smaller than the absolute value of any non-zero normal FP
number, and that the value contribution of the significand bits is always less significant than
that of the exponent bits.

Example 2 Let x be the normal FP constant (_ FP #b0 #b1100 #b0101000), and
y be the subnormal FP constant (_ FP #b0 #b0000 #b0101000), so that their cor-
responding sort is (_ FP< 4 >< 8 >). Then, according to the semantics defined in the IEEE
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standard 754-2008 [5], the floating-point value of x and y in decimal notation is:

x = (−1)0 · 2(12−7) ·
(

1 +
7∑

i=1

(
x[4 + i] · 2−i

))

= 1 · 25 ·
(

1 + 1

22
+ 1

24

)

= 42

y = (−1)0 · 2(0−7+1) ·
(

0 +
7∑

i=1

(
y[4 + i] · 2−i

))

= 1 · 2−6 ·
(

1

22
+ 1

24

)

= 5

210
.

Notice that with (_ FP < 4 >< 8 >) the smallest strictly-positive normal value is 2−6,
whereas the greatest subnormal value is 2−6 · ∑7

i=1 2
−i , which is smaller than 2−6. �

The theory of FP provides a variety of built-in floating-point operations as defined in the
IEEE standard 754-2008. This includes binary arithmetic operations (e.g. +,−, �,÷), basic
unary operations (e.g. abs,−), binary comparison operations (e.g. ≤,<, �=,=,>,≥), the
remainder operation, the square root operation and more. Importantly, arithmetic operations
are performed as if with infinite precision, but the result is then rounded to the “nearest”
representable FP number according to the specified rounding mode. Five rounding modes
are made available, as in [5].

The most common approach for FP-satisfiability is to encode FP expressions into BV
formulas based on the circuits used to implement floating-point operations, using appropriate
under- and over-approximation schemes—or a mixture of both—to improve performance
[15,45–47]. Then, the BV-Solver is used to deal with the FP formula, using either the
eager or the lazy BV approach. An alternative approach, based on abstract interpretation,
is presented in [12,13,27]. With this technique, called Abstract CDCL (ACDCL), the set of
feasible solutions is over-approximated with floating-point intervals, so that intervals-based
conflict analysis is performed to decide FP-satisfiability.

3 Theoretical Framework

We first present our generalization of [32] to the case of signed Bit-Vector Optimization
(Sect. 3.1), and then move on to deal with Floating-Point Optimization (Sect. 3.2).

3.1 Bit-Vector Optimization

Without any loss of generality, we assume that every objective function f (...) is replaced by
a variable obj of the same type by conjoining “obj = f (...)” to the input formula. We use the
symbol n to denote the bit-width of obj, and obj[i] to denote the i-th bit of obj, where obj[0]
and obj[n−1] are the Most Significant Bit (MSB) and the Least Significant Bit (LSB) of obj
respectively.4 We define the Bit-Vector Optimization problem as follows.

Definition 1 (OMT[BV](BV ∪ T )) Let ϕ be a SMT(BV ∪ T ) formula for some (possibly
empty) theory T and obj be a—signed or unsigned—BV variable occurring in ϕ. We call an
Optimization Modulo BVproblem for BV ∪ T , OMT(BV ∪ T ), the problem of finding
a BV ∪ T -model M for ϕ (if any) whose value of obj is a minimum wrt. the total order
relation ≤n for signed BVs if obj is signed, and the one for unsigned BVs otherwise. (The
dual definition where we look for the maximum follows straightforwardly)

4 Same as with Footnote 3.
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1076 P. Trentin, R. Sebastiani

Notice that the definition is independent on the extra theory T , provided that obj is aBV term.
(In practice T may be empty, or contain FP or/and other theories like e.g. that of arrays.)
Hereafter, unless otherwise specified and when it is not necessary to make T explicit, we
will abbreviate “OMT[BV](BV ∪ T )” into “OMT[BV]”.

We generalize the unsigned BV maximization procedures in [32] to the case of signed and
unsigned BV optimization. To this extent, we introduce the novel notion of BV attractor.

Definition 2 (Attractor, attractor equalities). When minimizing [resp. maximizing], we call
attractor for obj the smallest [resp. greatest] BV-value attr of the sort of obj. We call vector
of attractor equalities the vector A s.t. A[k] def= (obj[k] = attr [k]), k ∈ [0..n − 1].
Example 3 If obj[8] is an unsigned BV objective of width 8, then its corresponding attractor
attr is 0[8], i.e. [00000000], when obj[8] is minimized and it is 255[8], i.e. [11111111],
when obj[8] is maximized. When obj[8] is instead a signed BV objective, following the two’s
complement encoding, the corresponding attr is −128[8], i.e. [10000000], for minimization
and 127[8], i.e. [01111111], for maximization. �

In essence, the attractor can be seen as the target value of the optimization search and
therefore it can be used to determine the desired improvement direction and to guide the
decisions taken by the optimization search. By construction, if a model M satisfies all
equalities A[i], then the evaluation of obj in M is attr .

We use the symbol μk to denote a generic (possibly partial) assignment which assigns at
least the k most-significant bits of obj. We use the symbol τk to denote an assignment to the
k most-significant bits of obj. Given i < k, we denote by μk[i][resp.τk[i]] the value in {0, 1}
assigned to obj[i] by μk[resp.τk]. Moreover, we use the expression [[μk]]i where i ≤ k to
denote the restriction of μk to the i most-significant bits of obj, obj[0], ..., obj[i − 1]. Given
a model M of ϕ and a variable v, we denote by M(v) the evaluation of v in M. With a little
abuse of notation, and when this does not cause ambiguities, we sometimes use an attractor
equality A[i] def= (obj[i] = attr [i]) to denote the single-bit assignment obj[i] := attr [i] and
weuse its negation¬A[i] to denote the assignment to the complement value obj[i] := attr [i].
Definition 3 (lexicographic maximization) Consider an OMT[BV] instance 〈ϕ, obj〉 and the
vector of attractor equalities A. We say that an assignment τn to obj lexicographically
maximizes A wrt. ϕ iff, for every k ∈ [0..n − 1],
– τn[k] = attr [k] if ϕ ∧ [[τn]]k ∧ A[k] is unsatisfiable,
– τn[k] = attr [k] otherwise.

where A[k] is the attractor equality (obj[k] = attr [k]). Given a model M for ϕ, we say
that M lexicographically maximizes A wrt. ϕ iff its restriction to obj lexicographically
maximizes A wrt. ϕ.

Starting from the MSB to the LSB, τn[resp.M] in Definition 3 assigns to each obj[k]
the value attr [k] unless it is inconsistent wrt. ϕ and the assignments to the previous obj[i]s,
i ∈ [0..k − 1].

Notice that this corresponds to the minimization of
∑n−1

k=0 2
n−1−k · (obj[k] xor1 attr [k])

[resp.maximization of
∑n−1

k=0 2
n−1−k · (obj[k] nxor1 attr [k])]—wherexorn is the bitwise-

xor operator and nxorn is its complement—because 2n−1−i >
∑n−1

k=i+1 2
n−1−k for every

n > i ≥ 0.5

5 This reduces to the well-known inequality 2m >
∑m−1

j=0 2 j for m
def= n − i − 1 and j

def= n − 1 − k.
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The following fact derives from the above definitions and the properties of two’s comple-
ment representation adopted by the SMT- LIBv2 standard for signed BV . 6

Theorem 1 An optimal solution of an OMT[BV] problem 〈ϕ, obj〉 is any modelM of ϕ which
lexicographically maximizes the vector of attractor equalities A.

Proof (We investigate the minimization case, since the maximization case is dual.)
In the case of minimization with unsigned BV , attr is [00...00], so that the lexicographic

maximization of A corresponds to minimize
∑n−1

k=0 2
n−1−k · obj[k] which is the standard

minimization for unsigned BV .
In the case of minimization with signed BV , attr is [10...00], so that the lexicographic

maximization of A corresponds to minimize 2n−1 ·obj[0]+∑n−1
k=1 2

n−1−k ·obj[k]which—by
means of subtracting the constant value 2n−1—is equivalent to minimize −2n−1 · obj[0] +∑n−1

k=1 2
n−1−k · obj[k], which is the standard minimization for two’s complement BV . ��

Definitions 2 and 3 with Theorem 1 suggest thus a direct extension to the minimiza-
tion/maximization of signed BV of the algorithm for unsigned BV in [32]: apply the
unsigned-BVmaximization [resp. minimization] algorithm of [32] to the objective obj′ def=
(obj nxorn attr)[resp.obj′ def= (obj xorn attr)] instead of simply to obj [resp.obj].
Example 4 Let obj[3] be a signed 3-bit BV goal to be minimized and attr

def= [100] (i.e.−4[3])
be its attractor, and A

def= [obj[0] = 1, obj[1] = 0, obj[2] = 0] be the corresponding vector
of attractor equalities. Consider the three assignments

τ3
def= {A[0],¬A[1],¬A[2]} (for whichobj[3]=[111],i.e−1[3]

)

τ ′
3

def= {¬A[0], A[1], A[2]} (for whichobj[3] = [000], i.e−0[3])
τ ′′
3

def= {A[0],¬A[1], A[2]} (for whichobj[3] = [110], i.e −2[3])

Then τ3 is lexicographically better than τ ′
3, because τ3 satisfies the attractor equality corre-

sponding to the MSB whereas τ ′
3 does not; τ3 is lexicographically worse than τ ′′

3 because–all
the rest being equal—τ ′′

3 makes the attractor equality (obj[2] = 0) true. Indeed, τ3 is nearer
in value to the attractor than τ ′

3 and is farther in value than τ ′′
3 . �

3.2 Floating-Point Optimization

We define the Floating-Point Optimization problem as follows.

Definition 4 (OMT[FP](FP ∪ T )) Let ϕ be a SMT(FP ∪ T ) formula for some (possibly
empty) theory T and obj be a FP variable occurring in ϕ. We call anOptimizationModulo
FPproblem for FP ∪T ,OMT[FP](FP ∪T ) the problem of finding a FP ∪ T -model M
for ϕ (if any) whose value of obj, is either

– minimum wrt. the usual total order relation ≤ for FP numbers, if ϕ is satisfied by at
least one model M′ s.t. M′(obj) is not NaN,

– some binary representation of NaN, otherwise.

(The dual definition where we look for the maximum follows straightforwardly.)

6 If the standard adopted were the sign-and-magnitude binary encoding, then Theorem 1 would not hold.
Nevertheless, in such a case we could use a simplified version of the technique for FP optimization in
Sect. 3.2.
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As with BV , the definition is independent on the extra theory T , provided that obj is a FP
term. In practice T may be empty, or contain BV or/and other theories like e.g. that of arrays.
Hereafter, unless otherwise specified and when it is not necessary to make T explicit, we
will abbreviate “OMT[FP](FP ∪ T )” into “OMT[FP]”.

Definition 4 is necessarily convoluted because obj can beNaN. In fact, in the SMT- LIBv2

standard the comparisons {≤,<,≥,>} between NaN and any other FP value are always
evaluated false because NaN has multiple representations at the binary level (see Table 1).
Also, requiring the optimal solution to be always different from NaN makes the resulting
OMT[FP] problem 〈ϕ ∧ ¬IsNaN(obj), obj〉 unsatisfiable when ϕ is satisfied only by models
M s.t. M(obj) is NaN. For these reasons, we admit NaN as the optimal solution value for
obj if and only if ϕ is satisfied only by models M s.t. M(obj) is NaN.

In the rest of this section we assume that we have already checked, in sequence, that

(i) the input formula ϕ is satisfiable—by invoking an SMT(FP) solver on ϕ. If the solver
returns unsat, then there is no need to proceed;

(ii) ϕ is satisfied by at least one model M′ s.t. M′(obj) is not NaN—by invoking an
SMT(FP) solver on ϕ∧¬IsNaN(obj) if the modelM returned by the previous SMT call
is s.t. M(obj) is NaN. If the solver returns unsat, then we conclude that the minimum
is NaN.

Thus,we can safely focus our investigation on the restrictedOMT[FP] problem 〈ϕnoNaN, obj〉,
where ϕnoNaN

def= ϕ ∧ ¬IsNaN(obj), knowing it is satisfiable.
In Sect. 3.1, we have introduced the concept of a BV attractor, showing how this value

can be used to drive the optimization search towards the optimum value, when minimizing or
maximizing a signed or unsigned BV goal. However, in the case of floating-point optimiza-
tion, it is not possible to statically determine the attractor value in advance, before the search
is even started. This is due to the more complex representation of FP variables, which uses
three separate Bit-Vectors (i.e. sign, exponent and significand), and the presence of various
classes of special values (i.e. zeros, infinity, NaN), which make Definition 2 ambiguous for
FP optimization. We illustrate this problem with the following example.

Example 5 Let 〈ϕnoNaN, obj〉 be an OMT[FP] problem where obj is a FP objective, of sort
(_ FP 3 5), to be minimized. To make our explanation easier to follow, we show in
Table 1 a short list of sample values for an FP variable of the same sort as obj. Each FP
value is represented as a triplet of bit-vectors 〈sign, exp, sig〉—following the SMT- LIBv2

conventions described in Sect. 2—and also in decimal notation.
From Table 1, we immediately notice that the binary representation of both the exponent

and the significant of a Floating-Point number grows in opposite directions in the positive
and in the negative domains. In addition, by sorting the values according to their binary repre-
sentation, we observe that −∞ [resp. +∞ ] is not the smallest [resp. greatest] representable
FP value in the negative [resp. positive] domain. In fact, both extreme ends of the table are
occupied by NaN, which has multiple binary representations.

In what follows, we temporarily disregard the effects of unit-propagation, which might
assign some (or all) bits of obj as a result of some constraints in ϕnoNaN, and pick some values
as candidate attractors for an FP goal to be minimized.

Assume that the optimal value of the FP goal is the sub-normal FP value (fp #b1
#b000 #b1111) (i.e. −15

64 ). Suppose that the attractor is chosen to be equal to the value
−∞ listed at row 9 in Table 1, which is the smallest FP value wrt. total order relation ≤ for
FP numbers. Then, it can be seen that after both the sign and the exponent bits have been
decided to be equal #b1 and #b000 respectively, the remaining bits of the attractor pull the
search in the wrong direction, that is, towards 0−.�
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Table 1 Sample values for a FP
variable with sort (_ FP 3 5)

Sign Exp Sig Value

1 #b0 #b111 #b1111 NaN

... ... ... NaN

2 #b0 #b111 #b0000 +∞
3 #b0 #b110 #b1111 31

2
... ... ... ...

4 #b0 #b000 #b0001 1
64

5 #b0 #b000 #b0000 0+
6 #b1 #b000 #b0000 0−

7 #b1 #b000 #b0001 − 1
64

... ... ... ...

8 #b1 #b110 #b1111 − 31
2

9 #b1 #b111 #b0000 −∞
... ... ... NaN

10 #b1 #b111 #b1111 NaN

Selecting a different FP value as candidate attractor would not solve the problem; rather,
it would result in a different set of issues. For instance, an attractor equal to the NaN value
listed at row 10 in Table 1, which is the smallest representable FP value according to the
binary ordering, would solve the problem for the previous case in which the optimum FP
value is (fp #b1 #b000 #b1111). However, this attractor would remain an unsuitable
choice for an OMT[FP] instance where obj is forced to be positive, because after the sign bit
of the objective function has been decided to be equal #b0 the remaining bits of the attractor
drive the search in the wrong direction, that is, towards +∞. �

Since there is no statically-determined FP value that can be used as an attractor when
dealing with floating-point optimization, we introduce the new concept of dynamic attractor.

Definition 5 (Dynamic attractor) Let 〈ϕnoNaN, obj〉 be a restrictedOMT[FP] problem, where

ϕnoNaN
def= ϕ∧¬IsNaN(obj) is a satisfiable SMT(FP) formula and obj is aFP objective to be

minimized [resp.maximized]. Let k ∈ [0..n] and τk be an assignment to the kmost-significant
bits of obj.

Then, we say that an FP-value attrτk for obj is a dynamic attractor for objwrt. τk iff
it is the smallest [resp. largest] FP value different from NaN s.t. the k most-significant bits
of attrτk have the same value of the k most-significant bits of obj in τk . We call vector of
attractor equalities the vector Aτk s.t. Aτk [i] def= (obj[i] = attrτk [i]), i ∈ [0..n − 1].

The following fact derives from the above definitions and the properties of IEEE 754-2008
standard representation adopted by SMT- LIBv2 standard for FP .

Lemma 1 Let 〈ϕnoNaN, obj〉 be a restricted minimization [resp.maximization] OMT[FP]
problem, let τk be an assignment to obj[0]...obj[k − 1] and attrτk be its corresponding

dynamic attractor, for some k ∈ [0..n − 1]. Let τk+1
def= τk ∪ {obj[k] := attrτk [k]} and

τ ′
k+1

def= τk ∪ {obj[k] := attrτk [k]}, and let M, M′ two models for ϕnoNaN which extend τk+1

and τ ′
k+1 respectively.

Then M(obj) ≤ M′(obj) [resp.M(obj) ≥ M′(obj)].
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Proof (We prove the case of minimization, since the case of maximization is dual wrt. the
value of the sign bit.) We distinguish three cases based on the value of k.

Case k = 0 (sign bit). Then attrτ0 [0] = 1, τ1 = {obj[0] = 1} and τ ′
1 = {obj[0] = 0},

where obj[0] is the MSB of obj and represents the sign of the floating-point value. Then obj
is smaller or equal zero in every model M and larger or equal zero in every model M′ of
ϕnoNaN, so that M(obj) ≤ M′(obj) is verified.

Case k ∈ [1..ebits] (exponent bits), where ebits is the number of bits in the exponent
of obj. Then, attrτk [k] is 1 if τk[0] = 1 and 0 otherwise.

In the first case, obj can only be negative-valued in both M and M′. More precisely,
M(obj) can be either −∞ or a normal negative value, whereas M′(obj) can be either a
normal or a sub-normal negative value. Hereafter, we consider only the case in which both
have a normal negative value, because the case in which M(obj) = −∞ or M′(obj) is sub-
normal are both trivial, given that the absolute value of any sub-normalFP number is smaller
than the absolute value of any non-zero normal FP number. Furthermore, we disregard the
significand bits in M and M′ because their contribution to the value of obj is always less
significant than that of the bits in the exponent. Given these premises, the exponent value of
obj in every possible M is larger than the exponent of obj in every possible M′ by a value
equal to 2ebits−k and therefore, given that both M(obj) and M′(obj) are negative-valued,
M(obj) ≤ M′(obj).

The case in which τk[0] = 0, that is when obj can only be positive-valued in both M and
M′, is dual.

Case k > ebits (significand bits). Then there are three sub-cases.
If for every i ∈ [1..ebits] the value of τk[i] is equal 1, then the only possible value of

M(obj) for every possible M is +∞, and therefore attrτk [k] = 0. On the other hand, there
exists no possible model M′ of ϕnoNaN, because the assignment obj[k] = 1 would imply obj
being equal to NaN, so that the statement M(obj) ≤ M′(obj) is vacuously true.

If instead there is some i ∈ [1..ebits] s.t. τk[i] = 0, then attrτk [k] is 1 if τk[0] = 1 (i.e.
obj is negative-valued) and 0 otherwise (i.e. obj is positive-valued). In both cases, we can
disregard the exponent bits in M and M′ because their contribution to the value of obj is the
same in either model. For the same reasons, since M(obj) and M′(obj) can only be either
both normal or both sub-normal, we can ignore the contribution of the leading hidden bit and
focus on the bits of the significand.

When τk[0] = 1 and obj must be negative-valued, the decimal value of the significand in
M is larger than the decimal value of every possible significand inM′ by exactly 2−(k−ebits).
Given that both M(obj) and M′(obj) are negative-valued, we have that M(obj) ≤ M′(obj).

The case in which τk[0] = 0, that is when obj can only be positive-valued in both M and
M′, is dual. ��

Notice that Lemma 1 states “M(obj) ≤ M′(obj)” and not “M(obj) < M′(obj)” because,
e.g., we may have M(obj) = 0− and M′(obj) = 0+, and (0− < 0+) is false in FP .

Lemma 1 states that, given the current assignment τk to the k most-significant-bits of obj,
obj[k] = attrτk [k] is always the best extension of τk to the next bit (when consistent). A
dynamic attractor attrτk can thus be used by the optimization search to guide the assignment
of the k + 1-th bit of obj towards the direction of maximum gain which is allowed by τk , so
that to obtain the “best” extension τk+1 of τk . Once the (new) assignment τk+1 is found, the
OMT solver can compute the dynamic attractor attrτk+1 for obj wrt. τk+1 and then use it to
assign the k + 2-th bit of obj, and so on.

Let 〈ϕnoNaN, obj〉 be an OMT[FP] instance, s.t. obj is a FP variable of n bits, and τ0 be
an initially empty assignment. If at each step of the optimization search the assignment of
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the k-th bit of obj is guided by the dynamic attractor for obj wrt. τk , then the corresponding
sequence of n dynamic attractors (of increasing order k) is unique and depends exclusively
on ϕnoNaN. Intuitively, this is the case because the (current) dynamic attractor always points
in the direction of maximum gain. We illustrate this in the following example.

Example 6 Let 〈ϕnoNaN, obj〉 be an OMT[FP] problem where obj is a FP objective, of sort
(_ FP 3 5), to be minimized, as in Example 5. At the beginning of the search, nothing
is known about the structure of the solution. Therefore, τ0 = ∅ and, since obj is being
minimized, the dynamic attractor attrτ0 for obj wrt. τ0 is (fp #b1 #b111 #b0000)
(i.e. −∞), which gives a preference to any feasible value of obj in the negative domain.

If we discover that the domain of the objective function can only be positive, so that the
first bit of obj is permanently set to 0 in τ1, then the new dynamic attractor for obj wrt. τ1
(i.e. attrτ1 ) is equal to (fp #b0 #b000 #b0000) (i.e. 0+). Otherwise, attrτi remains
−∞ until, e.g., we discover there is no solution ≤ −8 so that the second bit in the exponent
is forced to 0. Then attrτ3 becomes (fp #b1 #b101 #b1111) (i.e., −31

4 ). ) Notice that
all significand bits in the attractor pass from 0 to 1 because now we have a finite solution. �
Definition 6 (Attractor trajectory Aϕ) We consider the restricted OMT[FP] problem

〈ϕnoNaN, obj〉 s.t. ϕnoNaN
def= ϕ ∧ ¬IsNaN(obj) as in Definition 5, a triplet of inductively-

defined sequences 〈{τ0, τ1, ..., τn}, {attrτ0 , attrτ1 , ...., attrτn }, {Aτ0 , Aτ1 , ..., Aτn }〉—where
each τk is an assignment to the first k most-significant bits of obj s.t. τk ⊂ τk+1, attrτk is
its corresponding dynamic attractor and Aτk is its corresponding vector of attractor equali-
ties—so that, for every k ∈ [0..n − 1]:
(i) τk+1[k] = attrτk [k] if ϕnoNaN ∧ τk ∧ Aτk [k] is unsatisfiable,
(ii) τk+1[k] = attrτk [k] otherwise.
Then we define the attractor trajectory �ϕ as the vector [Aτ0 [0], ..., Aτn−1 [n − 1]].
The attractor trajectory �ϕ contains those attractor equalities (obj[k] = attrτk [k]) which are
of critical importance for the decisions taken by the optimization search. Intuitively, this is
the case because the value of the k-th bit of obj (i.e. obj[k]) is still undecided in τk .

Example 7 Let 〈ϕnoNaN, obj〉 be a restricted OMT[FP] problem where obj is a FP objective,
of sort (_ FP 3 5), to be minimized, as in Example 5. We consider the case in which
the input formula ϕnoNaN requires obj to be larger or equal 29

2 and it does not impose any
other constraint on the value of obj. Given the sequence of (partial) assignments τ0, ..., τ8 in
Fig. 1, the corresponding list of dynamic attractors and the corresponding vectors of attractor
equalities, then the attractor trajectory Aϕ is equal to the vector [obj[0] = 1, obj[1] =
0, obj[2] = 0, obj[3] = 0, obj[4] = 0, obj[5] = 0, obj[6] = 0, obj[7] = 0]. �
Lemma 2 Consider 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 , ...., attrτn , Aτ0 , ..., Aτn , and �ϕ as in
Definition 6. Then τn lexicographically maximizes �ϕ wrt. ϕnoNaN.

Proof By Definition 6, we have that, for each k ∈ [0..n − 1],
(i) τk+1[k] = attrτk [k] if ϕnoNaN ∧ τk ∧ Aτk [k] is unsatisfiable,
(ii) τk+1[k] = attrτk [k] otherwise.
By construction, τk = [[τn]]k . Therefore, we can replace τk with [[τn]]k so that

(i) [[τn]]k+1[k] = attr[[τn ]]k [k] if ϕnoNaN ∧ [[τn]]k ∧ A[[τn ]]k [k] is unsatisfiable,
(ii) [[τn]]k+1[k] = attr[[τn ]]k [k] otherwise.
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Fig. 1 An example of FP optimization using the dynamic attractor. (“[...]” denotes the value of the attractor
attrτi . “�⇒ sat/unsat” denotes the satisfiability of ϕnoNaN ∧ τk ∧ Aτk [k]. For ease of illustration, we have
underlined the critical bit attrτk [k] in the attractors and each attractor equality of the attractor trajectory �ϕ

inside the vectors of attractor equalities.)

We notice the following facts. For each k ∈ [0..n − 1], [[τn]]k ⊂ τn . Furthermore, for
each k ∈ [0..n − 1], Aϕk = A[[τn ]]k [k] because Aϕk = Aτk [k] by the definition of attractor
trajectory, and Aτk [k] = A[[τn ]]k [k] by the equality τk = [[τn]]k . Thus, we can replace [[τn]]k+1

with τn and A[[τn ]]k [k] with Aϕk, as follows. For each k ∈ [0..n − 1],
(i) τn[k] = attrτn [k] if ϕnoNaN ∧ [[τn]]k ∧ Aϕk is unsatisfiable,
(ii) τn[k] = attrτn [k] otherwise.
Hence, τn lexicographically maximizes Aϕ wrt. ϕnoNaN. ��

Finally, we make the following two observations. The first is that the sequence τ0, ..., τn
in Definition 6 can be iteratively constructed using its list of requirements, for instance, by
means of a sequence of incremental calls to an SMT solver. The second, more important,
observation is that τn corresponds to the assignment of values which makes obj optimal in
ϕnoNaN. Using the above definitions, we show that the following fact holds.

Theorem 2 Let 〈ϕnoNaN, obj〉, τ0, ..., τn, attrτ0 , ...., attrτn , Aτ0 , ..., Aτn , and �ϕ be as in
Definition 6. Then, any model M of ϕnoNaN which lexicographically maximizes the attractor
trajectory �ϕ is an optimal solution for the OMT[FP] problem 〈ϕnoNaN, obj〉.

Proof (We prove the case of minimization, since the case of maximization is dual.)
By Lemma 2we have that τn lexicographicallymaximizeAϕ . LetM be amodel of ϕnoNaN

which lexicographically maximizes Aϕ , and let μ be its restriction to obj. Since both τn and
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M lexicographically maximize Aϕ , from the uniqueness of τn , we immediately notice that
μ = τn , so that τk = [[μ]]k for each k ∈ [0..n] and μ lexicographically maximize Aϕ .

By definition, M is an optimal solution for 〈ϕnoNaN, obj〉 iff there exists no other model
M′ for it s.t. M′(obj) < M(obj). Hence, we show by contradiction that no such M′ can
exist.

Assume (for the sake of contradiction), that there exists a model M′ for ϕnoNaN, s.t.
M′(obj) < M(obj), and let μ′ be the restriction of M′ to obj. Then there must be at
least one index i for which μ[i] �= μ′[i]. Let m be the smallest such index. Recalling that
τm = [[μ]]m and τm+1 = [[μ]]m+1, we set τ ′

m+1
def= [[μ′]]m+1. Then, τm ⊂ τm+1, τm ⊂ τ ′

m+1,

τm+1 �= τ ′
m+1. In particular, τm+1[m] = τ ′

m+1[m] and therefore τm+1[m] = attrτm [m] if
τ ′
m+1[m] = attrτm [m], and vice versa.
Then, we distinguish two cases.
In the first case, τm+1[m] = attrτm [m] and τ ′

m+1[m] = attrτm [m] . From τm+1[m] =
attrτm [m] and the fact that μ lexicographically maximizes Aϕ , we derive that ϕnoNaN ∧ τm ∧
�ϕ[m] is unsatisfiable, where Aϕm

def= (obj[m] = attrτm [m]). Since τm ⊂ τ ′
m+1 ⊆ μ′ and

τ ′
m+1[m] = attrτm [m], we conclude that ϕnoNaN ∧ μ′ |� ⊥, so that M′ cannot be a model of

ϕnoNaN, contradicting the initial assumption.
In the second case, τm+1[m] = attrτm [m] and τm+1[m] = attrτm [m] . Therefore, by

Lemma 1, for every pair of models M1, M2 for ϕnoNaN which extend respectively τm+1 and
τ ′
m+1 we have that M1(obj) ≤ M2(obj). Since τm+1 = [[μ]]m+1 and τ ′

m+1 = [[μ′]]m+1, it
follows that M′(obj) �< M(obj), contradicting the initial assumption. ��

4 OMT[FP] Procedures

In this paper, we consider two approaches for dealingwithOMT[FP]: a baseline linear/binary
search, based on the inline OMT schema forLAA objectives presented in [39], and Floating-
Point Optimization with Binary Search (ofp- bs), a brand-new engine inspired by the obv- bs
algorithm for unsigned bit-vectors in [32] and by Theorem 2 and relative definitions in
Sect. 3.2.

4.1 OMT-Based Approach

The OMT-based approach for OMT[FP] adapts the linear- and binary-search schemata for
OMT with LAA objectives presented in [39] to deal with FP objectives.

In the basic linear-search schema, the optimization search is advanced by means of a
sequence of linear cuts, each of which forces the OMT solver to look for a new model
M′ which improves the value of obj wrt. the most recent model M. In the binary-search
schema, instead, the OMT solver learns an incremental sequence of cuts which bisect the
current domain of the objective function. For clarity, we recap here the essential elements of
the binary-search schema presented in [38,39]. At the beginning of the optimization search
and following each update of the lower- (lb) and upper- (ub) bounds of obj, the OMT solver
computes a pivoting value pivot

def= floor(ρ ·ub+(1−ρ) · lb), for some value of ρ (e.g. 12 ).
If pivot lies inside the range ]lb, ub], a cut of the form (obj < pivot) is learned. Otherwise,
if—due to rounding side-effects of FP operations—pivot lies outside the range ]lb, ub], a
cut of the form (obj < ub) is learned instead. If the cut is satisfiable, the upper-bound of obj
is updated with a newmodel value of obj. Otherwise, the lower-bound is made equal to pivot
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[resp. ub]. The algorithm terminates when the search interval [lb, ub[ becomes empty. In
general, it is reasonable to expect the binary-search schema to converge towards the optimal
solution faster than the linear-search schema, because the feasible domain of a FP goal
can be comprised by an exponentially large number of values (wrt. the bit-width of the cost
function).

In either schema, whenever the optimization engine encounters for the first time a solution
s.t. obj = NaN, the OMT solver learns a unit-clause of the form ¬(isNaN(obj)) so as to
look for an optimal solution different from NaN (if any).

When dealing with FP objectives, differently from the case of LRA in [39], it is not
necessary to implement a specialized optimization procedurewithin theFP-Solver in order to
guarantee the termination of the optimization search. Indeed, such procedure is not available
when Floating-Point terms are bit-blasted into bit-vectors eagerly, or when the acdcl FP-
Solver is used, because by the time the optimization procedure is called the domain interval
of anyFP term contains a singleton value. Conversely, such a minimization procedure could
be envisaged when the OMT solver uses a lazy FP-Solver as back-end, so as to speed-up
the convergence towards the optimal solution7.

4.2 Floating-Point Optimization with Binary Search

The Floating-Point Optimization with Binary Search algorithm, ofp- bs, is a new engine for
OMT[FP](FP∪T )–hereafter simply OMT[FP]–which is inspired by the obv- bs algorithm
for OMT[BV] [32] and implements Definition 6 and Theorem 2. Here T may be empty, or
contain BV and other theories (e.g. that of arrays). We assume that an SMT(BV ∪ FP ∪ T )-
solving procedure is available—hereafter simply “SMT”—even when BV is not part of T ,
because we need accessing explicitly to each bit in obj, which is not possible with plain FP .

The optimization search tries to lexicographically maximize the (implicit) attractor tra-
jectory vector Aϕ , which is incrementally derived from the current value of the dynamic
attractor. The raw value of the dynamic attractor’s bits drive the optimization search towards
the direction of maximum gain at any given point in time, without disrupting any decision
that has been already made. The dynamic attractor is incrementally updated along the search,
based on the outcome of the previous rounds of the optimization search. At each round, one
bit of the objective function is assigned its final value. The first round decides the sign, the
next batch of rounds decides the exponent, and the remaining rounds decide the fine-grained
details of the significand.

The pseudo-code of ofp- bs is shown in Fig. 2. The arguments of the algorithm are the
input formula ϕ and the FP objective obj, where obj is a FP variable with ebits bits in the
exponent, sbi ts − 1 in the significand and n

def= ebits + sbi ts bits overall.
The procedure starts by checking whether the input formula ϕ is satisfiable and imme-

diately terminates if this is not the case (rows 1–3). If M(obj) = NaN, then the procedure
checks whether there exists a model M′ for ϕ ∧ ¬IsNaN(obj) (rows 4–5). If this is not the
case, the procedure terminates immediately and returns the pair 〈sat, M〉 (row 7). Otherwise,
the model M is updated with the new model M′ (row 9). In every case, ϕ is permanently
extended with the constraint ¬IsNaN(obj) (row 10).

At this point, the procedure initializes the value of the dynamic attractor by invoking an
external function update_dynamic_attractor() with the empty assignment τ as param-
eter, so that the returned value is equal to −∞ when minimizing and +∞ when maximizing

7 Currently, there is no such specialized optimization procedure embedded within the lazy FP-Solver of
OptiMathSAT, so we won’t describe this approach any further.
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Fig. 2 ofp- bs Algorithm for floating-point optimization

Fig. 3 The function update_dynamic_attractor()

(rows 11–12). Then, the execution moves to the section of code implementing the core part
of the ofp- bs algorithm (rows 13–24), which consists of a loop over the bits of obj, starting
from the MSB obj[0] down to the LSB obj[n − 1] (Fig. 3).

Inside this loop, ofp- bs first checks whether the value of obj[i] in M matches the i-th
bit of the (current) dynamic attractor attrτ . If this is the case, then the i-th bit is already
set to its “best” value in M. Thus, the assignment τ is extended so as to permanently set
obj[i] = attrτ [i] (row 16), and the optimization search moves to the next iteration of the
loop. If instead obj[i] �= attrτ [i] in M, we need to verify whether the value of the objective
function in M can be improved by forcing the i-th bit of obj equal to the i-th bit of the
dynamic attractor. To do so, we incrementally invoke the underlying SMT solver, this time
checking the satisfiability of ϕ under the list of assumptions τ ∪{obj[i] = attrτ [i]} (row 18).
If the SMT solver returns sat, then the value of the objective function has been successfully
improved. Hence, τ is extended with an assignment setting obj[i] equal to attrτ [i], andM is
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Fig. 4 An example of FP optimization using the dynamic attractor. (“�⇒ sat/unsat” denotes the satisfi-
ability of ϕnoNaN ∧ τk ∧ Aτk [k] . For ease of illustration, we have underlined the critical bit attrτk [k] in the
attractors and each attractor equality of the attractor trajectory �ϕ inside the vectors of attractor equalities.)

replaced with the new model M′ (rows 20–21). Otherwise, it is not possible to improve the
objective function by toggling the value of obj[i], and τ is extended so as to permanently set
obj[i] �= attrτ [i] (row 23). At this point, there is a mismatch between the value of the first
i + 1 bits of obj in M, corresponding to the assignment τ , and those of the current dynamic
attractor. This mismatch is resolved by calling the functionupdate_dynamic_attractor()
with the updated assignment τ and the current loop iteration index i as parameters (row 24).
In either case, the execution moves to the next iteration of loop.

After exactly n iterations of the loop, the optimization search terminates with the pair
〈sat, M〉, where M is the optimum model of the given OMT[FP] instance. The ofp- bs

algorithm requires at most n + 2 incremental calls to an underlying SMT(FP) solver. The
test in rows 15−16 allows for saving lots of such SMT calls when the current model already
assigns obj[i] to its corresponding value in the attractor.

The function update_dynamic_attractor() takes as input τ , a (partial) assignment
over the k most-significant bits of obj, and i , the index of of the current loop iteration in
ofp- bs. When obj is minimized (The implementation is dual when obj is maximized), the
procedure essentially works as follows. If τ = ∅, then nothing is known about the solution
of the problem, so −∞ is returned. Otherwise, the procedure must compute the smallest
FP value different from NaN (if any) which extends τ . In this case, the procedure starts by
flipping the value of attrτ [i], forcing obj[i] = attrτ [i] (row 3). This ensures that the value
of the first i + 1 bits of obj in M, corresponding to the assignment τ , is the same as the first
i+1 bits of the current dynamic attractor. The remaining n− i−1 bits of attrτ may also need
to be updated to reflect this change. Since τ �= ∅ then we know that the sign of the objective
function has been permanently decided in τ . If obj[0] = 0 in τ , i.e. obj must be positive, the
procedure must return the smallest positiveFP value admitted by τ . Hence, we update attrτ
with

⋃ j=n−1
j=i+1 attrτ [ j] = 0 and return the corresponding FP value (rows 4–6). If obj[0] = 1

in τ , i.e. obj can be negative values, the procedure must return the largest negative FP value
admitted by τ . When i ≤ ebits then at least one bit in the exponent of obj is assigned to 0 in
τ (i.e. obj[i]). If that is the case, then we update attrτ with

⋃ j=n−1
j=i+1 obj[ j] = 1 and return

the corresponding FP value (rows 7–10). In practice, we notice that the block of code at
rows 4–10 needs to be executed at most once because the decision of tracking the smallest
positive value or the largest negative value (different from −∞) is permanent.

Example 8 Let 〈ϕnoNaN, obj〉 be a restricted OMT[FP] problem where obj is a FP objective,
of sort (_ FP 3 5), to be minimized. We consider the case in which the input formula
ϕnoNaN requires obj to be larger or equal −21

4 and it does not impose any other constraint on
the value of obj. Given the sequence of (partial) assignments τ0, ..., τ8 in Fig. 4, it can be
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seen that after determining the unsatisfiability of obj[2] = attrτ2 [2], the dynamic attractor
must start tracking the largest negative value different from −∞. Hence, the value of the
last n − i − 1 bits of the dynamic attractor are set to be equal 1. Any subsequent call to
update_dynamic_attractor() needs only to flip the value of attrτ [i], because the last
n − i − 1 bits of the dynamic attractor are already set to be equal 1. �

We stress the fact that, unlike with the LA [38,41] and BV [32] objective domains, ofp-
bs does not simply perform binary search over the space of the values of the objective.
Rather, after deciding the sign, it first performs binary search of the exponent values, which
very-rapidly converges to the right order of magnitude, followed by binary search on the
significand values, which fine-tunes the final result.

Example 9 To understand the range-pruning power of binary search over the exponent,
consider the case of a 32-bit FP obj with 8-bit exponent and 23-bit significand. After
assigning, e.g., the sign bit to 0 (positive value) the range of possible values is [0+,+∞]
([0+,+3.4.1038] if we exclude +∞); assigning then the first exponent bit to 0, the range
reduces to [0+, 2.0], reducing the range by more than a 1038 factor; by further setting the
second exponent bit to 0, [0+, 1.1 · 10−19], further reducing the range by more than a 1019

factor, and so on. �

4.3 Search Enhancements

Given a FP value attr and a FP goal obj, (a combination of) the following techniques can
be used to adjust the behavior of the optimization search, similarly what has been proposed
for the case of OMT[BV] by Nadel et al. in [32].

– branching preference: the bits of the FP objective obj are marked, inside the OMT
solver, as preferred variables for branching starting from theMSB down to the LSB. This
ensures that conflicts involving the value of the objective function are handled as early
as possible, possibly reducing the amount of work that needs to be redone after each
back-jump.

– polarity initialization: the phase-saving value of each obj[i] is initialized with the value
of attr [i]. This encourages the OMT solver to assign the bits of obj so as to reassemble
the bits of attr , thus possibly speeding-up the convergence towards the optimal value.

In the case of the basic OMT schema described in Sect. 4.1, the effectiveness of either
technique depends on the initial choice for attr . In the lucky case, the value of attr pulls
the optimization search in the right direction and speeds up the search. In the unlucky case,
when attr pulls in the wrong direction, there is no visible effect or an overall slow down. For
instance, in the case of the linear-search optimization schema, enabling both options with an
unlucky choice of attr can cause the OMT solver to start the search from the furthest possible
point from the optional solution, and thus enumerate an exponential number of intermediate
solutions. Naturally, the OMT-based optimization search algorithm is still guaranteed to
terminate even in the worst-case scenario, but the unpredictable performance makes using
either technique a generally unsuitable option in practice.

In the case of the ofp- bs algorithm described in Sect. 4.2, we use the latest value of the
dynamic attractor attrτ for both the branching preference (lines 11 and 18 of Fig. 2) and
the polarity initialization (rows 12 and 19 of Fig. 2) techniques. We observe that the value
of every bit in the dynamic attractor can change after the sign of the objective function has
been decided. Furthermore, the value of all the significand’s bits in the dynamic attractor can
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also change during the process of determining the optimal exponent value of the objective
function (see, e.g., Example 5). As a consequence, if the OMT solver applies either enhance-
ment before the correct improving direction is known, this may cause the underlying OMT
engine to advance the search starting from a sub-optimal set of initial decisions. Enabling
both enhancements at the same time could make things even worse. In order to mitigate
this issue, we have designed a variant of our optimization-search approach which does not
apply either enhancement on those bits of the objective function for which the best improving
direction is not yet known. We have called this variant safe bits restriction.

5 Experimental Evaluation

We have implemented the procedures described in the previous sections on top of the Opti-
MathSATOMTsolver (v. 1.6.2), and assessed its performanceon a set ofOMT[FP] formulas
that have been automatically generated using the SMT(FP) benchmark-set of [4]. The for-
mulas, the results and the scripts necessary to reproduce these results are made publicly
available and can be downloaded from [1,2]. The experiments have been performed on an
i7-6500U 2.50GHz Intel Quad-Core machine with 16GB of ram and running Ubuntu Linux
17.10. For each job pair we used a timeout of 600 seconds.

Experiment Setup. The OMT[FP] instances used in this experiment have been auto-
matically generated starting from the satisfiable formulas included in the SMT(FP)

benchmark-set of [4].We did not consider any of the unsatisfiable instances that are present in
the remote repository. For each of the original SMT(FP) formulas we applied the following
transformations. First, we either relaxed or removed some of the constraints in the original
problem, so as to broaden the set of feasible solutions. This step is necessary because the
majority of the original SMT(FP) formulas admits only one solution. Second, for each FP
variable v appearing inside a SMT(FP) problemwe generated a pair of OMT[FP] instances,
one for the minimization and another for the maximization of v. At the end of this step,
we obtained 39536 OMT[FP] formulas. Third, we randomly selected up to 300 OMT[FP]
instances from each of the five groups of problems in the OMT[FP] benchmark-set. This
filtering step yielded a total of 1120 SMT- LIBv2 formulas.

The first two OMT-based baseline implementations we have considered are OptiMath-

SAT(omt+lin) and OptiMathSAT(omt+bin), that run the linear- and the binary-search
respectively. These configurations have been tested using both the eager and the lazy FP
approaches. The third baseline implementation we have considered, named OptiMath-

SAT(eager+obv- bs), is based on a reduction of the OMT[FP] problem to OMT[BV] and
it uses OptiMathSAT’s implementation of the obv- bs engine presented by Nadel et al.
[32].8 For this test, we have generated an OMT[BV] benchmark-set using a BV encoding
that mimics the essential aspects of the ofp- bs algorithm described Sect. 4.2. We compared
these baseline approaches with a configuration using the ofp- bs algorithm and the eager
FP approach, namelyOptiMathSAT(eager+ofp- bs).We have separately tested the effect
of enabling the branching preference (bp), the polarity initialization (pi) and the safe bits
restriction (so) enhancements described in Sect. 3.2, whenever these options were supported
by the given configuration. We have not included other tools in our experiment because we
are not aware of any other OMT[FP] solver.

Last, in order to assess the significance of the optimization problems used in this exper-
iment, we have collected the run-time statistics of OptiMathSAT on the SMT formulas

8 Notice that the binaries of the original OMT[BV] tools presented in [32] are not publicly available.
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Table 2 (Top) Comparison among various OptiMathSAT (here simply “OM”) configurations on the
OMT[FP] benchmark-set

tool, configuration and encoding inst. term. t.o. u bt st time (s)

OM (eager+omt+lin) 1120 1003 117 0 5 73 76,375

OM (eager+omt+lin+pi) 1120 1003 117 0 5 71 76,785

OM (eager+omt+lin+bp) 1120 956 164 0 6 105 77,480

OM (eager+omt+lin+bp+pi) 1120 873 247 0 77 217 54,859

OM (lazy+omt+lin) 1120 868 252 0 93 203 29,832

OM (eager+omt+bin) 1120 1014 106 0 11 281 67,834

OM (eager+omt+bin+pi) 1120 970 150 0 8 285 69,765

OM (eager+omt+bin+bp) 1120 1016 104 0 14 205 68,255

OM (eager+omt+bin+bp+pi) 1120 991 129 0 65 321 56,941

OM (lazy+omt+bin) 1120 900 220 0 90 243 33,260

OM (eager+obvbs) [reduction] 1120 1013 107 0 14 141 65,954

OM (eager+ofpbs) 1120 1017 103 0 9 171 70,732

OM (eager+ofpbs+pi) 1120 1019 101 0 34 280 64,896

OM (eager+ofpbs+pi+so) 1120 1018 102 0 7 179 71,430

OM (eager+ofpbs+bp) 1120 975 145 0 2 145 65,543

OM (eager+ofpbs+bp+so) 1120 1000 120 0 3 124 68,390

OM (eager+ofpbs+bp+pi) 1120 1001 119 0 77 273 60,365

OM (eager+ofpbs+bp+pi+so) 1120 1006 114 19 32 245 59,463

virtual best 1120 1074 46 – 559 1074 27,788

OM (eager+smt) [no optimization] 1120 1048 72 – – – 9259

The columns list the total number of instances (inst.), the number of instances solved (term.), the number of
timeouts (t.o.), the number of instances uniquely solved by the given configuration (u), the number of instances
solved faster than any other configuration (bt), the total number of instances solved with the best time (st) and
the total solving time for all solved instances (time)

obtained by stripping the objective function from each OMT instance, so that no optimiza-
tion is to be performed. We named this configuration OptiMathSAT(eager+smt).

For all problem instances, we verified the correctness of the optimal solution found by
each configuration with an SMT solver (MathSAT5). When terminating, all tools returned
the same optimum value.

Experiment Results.The results of this experiment are listed in Table 2: Fig. 5 depicts
the log-scale cactus plot of the same data, for a visual comparison among the different
configurations; in addition, Figs. 6, 7 and 8 show a selection of relevant pairwise comparisons
among variousOptiMathSAT configurations, focusing on variants of theOMT-based linear-
search approach, of the OMT-based binary-search approach, and of the ofp- bs approach
respectively.

Concerning OMT-based linear-search optimization, we observe thatOptiMathSAT per-
forms the best when no enhancement is enabled. In particular, the empirical evidence suggests
that enabling branching preference significantly increases the number of timeouts, generally
deteriorating the performance (plot 1A in Fig. 6). Enabling only polarity initialization does
not result in an appreciable change on the running time of the solver (plot 1B in Fig. 6). In
contrast, enabling both enhancements at the same time has a small chance to result in a small
improvement of the search time (plot 2A in Fig. 6), but it generally worsens the performance
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Fig. 5 Cactus plots of the data displayed in Table 2

and results in a drastic increase in the number of timeouts (Table 2).We justify these results as
follows. First, when only polarity initialization is used, the phase-saving value that is being
set by OptiMathSAT does not really matter because the optimization search is dominated
by the structure of the formula itself rather than by the bits of theFP objective. Second, when
polarity initialization is used on top of branching preference, there is an even more drastic
decrease in performance due to the fact that the initial phase-saving value that is statically
assigned by the OMT solver to the bits of the FP objective cannot be expected to be “good
enough” for any situation. In fact, as illustrated in example 5, the initial phase-saving can
be misleading and force the OMT solver—when running in linear-search—to explore an
exponential number of intermediate satisfiable solutions.

In the case of the OMT-based binary-search optimization approach, we observe that it
solvesmore formulas than linear-search and it generally appears to be faster (plot 3B in Fig. 6).
Overall, polarity initialization does not seem to be beneficial, whereas enabling branching
preference increases the number of formulas solved within the timeout. This behavior is
different from the linear-search approach, and we conjecture that it is due to the fact that,
with theOMT-based binary-search approach, branching over the bits of the objective function
can reveal in advance any (partial) assignment to the bits of the objective function that it is
inconsistent wrt. the pivoting cuts learned by the optimization engine.

Using the lazy FP engine results in fewer formulas being solved, although a significant
number of these benchmarks is solved faster than with any other configuration (over 90
instances, for both configurations).

TheOptiMathSAT(eager+obv- bs) configuration is able to solve 1013 formulas within
the timeout, showing that OMT[FP] can be reduced to OMT[BV] effectively, and that—on
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A B

Fig. 6 Pairwise comparisons onOMT[FP] formulas usingOMT-based linear-search and other configurations.
(Blue points denote satisfiable benchmarks, green denotes a timeout.) (Color figure online)
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A B

Fig. 7 Pairwise comparisons on OMT[FP] formulas using OMT-based binary-search and other configura-
tions. (Blue points denote satisfiable benchmarks, green denotes a timeout.)
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A B

Fig. 8 Pairwise comparisons on OMT[FP] formulas using the ofp- bs engine and other configurations. (Blue
points denote satisfiable benchmarks, green denotes a timeout.) (Color figure online)
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the given benchmark-set—the performance of this approach are comparable with the best
OMT[FP] configurations being tested.

Overall, the best performance is obtained by using the ofp- bs engine, with up to
1019 benchmark-set instances solved in correspondence to theOptiMathSAT(eager+ofp-

bs+pi) configuration. In plot 2B of Figs. 6 and 7, we show the pairwise comparison of the best
ofp- bs configuration with the best OMT-based run. Similarly to the case of OMT-based
optimization with linear-search, we observe that enabling branching preference generally
makes the performance worse (plot 1A in Fig. 8). Instead, when polarity initialization is
used we observe a general performance improvement that does not only result in an increase
in the number of formulas being solved within the timeout, but also a noticeable reduction
of the solving time as a whole. This is in contrast with the case of OMT-based optimiza-
tion, and it can be explained by the fact that ofp- bs uses an internal heuristic function to
dynamically determine and update the most appropriate phase-saving value for the bits of
the objective function. An equally important role is played by the safe bits restriction, that
limits the effects of branching preference and polarity initialization to only certain bits of
the dynamic attractor. As illustrated by the plots in the second and third rows of Fig. 8 and
by the data in Table 2, tThis feature is particularly effective when used in combination with
branching preference.

The results of OptiMathSAT over the SMT-only version of the benchmark-set (no opti-
mization) are reported in the last row of Table 2 and in the scatter-plot 3B in Fig. 7, and
show that for a large number of instances the OMT problem is considerably harder than its
SMT-only version. There are a few exceptions to this rule, that we ascribe to the fact that
the removal of the objective function alters the internal stack of formulas, and this can have
unpredictable consequences on the behavior of various internal heuristics that depend on it.
A solution can be found in a shorter amount of time when the sequence of (heuristic) choices
is compatible with its assignment and it requires little back-tracking effort.

6 Conclusions and FutureWork

We have presented for the first time OMT procedures for (signed bit-vectors and) floating-
point objectives, based on the novel notions of attractor and dynamic attractor, which we
have implemented in OptiMathSAT and tested on modified problems from SMT-LIB.

Ongoing research involves implementing our ofp- bs procedure on top of the ACDCL
SMT(FP) procedure—which is not immediate to do efficiently because the latter approach
does not allow directly accessing and setting the single bits of the objective (sinceBV andFP
are not signature-disjoint). Future research involves experimenting the new OMT procedure
directly on problems coming from bit-precise SW and HW verification, produced, e.g., by
the NuXmv model checker [3].
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