Journal of Automated Reasoning (2019) 63:1103-1134
https://doi.org/10.1007/s10817-018-9486-0

@ CrossMark

Efficient Active Automata Learning via Mutation Testing

Bernhard K. Aichernig’ - Martin Tappler'

Received: 8 October 2018 / Accepted: 10 October 2018 / Published online: 25 October 2018
© The Author(s) 2018

Abstract

System verification is often hindered by the absence of formal models. Peled et al. proposed
black-box checking as a solution to this problem. This technique applies active automata
learning to infer models of systems with unknown internal structure. This kind of learning
relies on conformance testing to determine whether a learned model actually represents the
considered system. Since conformance testing may require the execution of a large number
of tests, it is considered the main bottleneck in automata learning. In this paper, we describe
a randomised conformance testing approach which we extend with fault-based test selec-
tion. To show its effectiveness we apply the approach in learning experiments and compare
its performance to a well-established testing technique, the partial W-method. This evalua-
tion demonstrates that our approach significantly reduces the cost of learning. In multiple
experiments, we reduce the cost by at least one order of magnitude.

Keywords Conformance testing - Mutation testing - FSM-based testing - Active automata
learning - Minimally adequate teacher framework

1 Introduction

Since Peled et al. [26] have shown that active automata learning can provide models of black-
box systems to enable formal verification, this kind of learning has turned into an active area of
research in formal methods. Due to its close relation to testing, model learning has also gained
popularity in the testing community, leading to the development of various combinations
with model-based testing [3]. Active learning of automata in the minimally adequate teacher
(MAT) framework, as introduced by Angluin [5], assumes the existence of a teacher. This
teacher must be able to answer two types of queries, membership and equivalence queries.
The former corresponds to a single test of the system under learning (SUL) to check whether
a sequence of actions can be executed or to determine the outputs produced in response to a
sequence of inputs. Equivalence queries on the other hand correspond to the question whether
a hypothesis model produced by the learner represents the SUL. The teacher either answers
affirmatively or with a counterexample showing non-equivalence between the SUL and the
hypothesis.
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The first type of query is simple to implement for learning black-box systems. It gener-
ally suffices to reset the system, execute a single test and record observations. Equivalence
queries, however, are more difficult to implement. Peled et al. [26], as one of the first to
combine learning and formal verification, proposed to implement these queries via confor-
mance testing. In particular, they suggested to use the conformance testing algorithm by
Vasilevskii [35] and Chow [9].

This method is also referred to as W-method and there exist optimisations of it, like
the partial W-method [16] or an approach by Lee and Yannankakis [22], but all have the
same worst-case complexity [7]. All three methods share two issues. They require a fixed
upper bound on the number of states of the black-box system which is generally unknown.
Additionally, the size of the constructed test suite is exponential in this bound. Therefore,
implementing the equivalence oracle can be considered “the true bottleneck of automata
learning” [7].

In practice, there is limited time for testing and therefore also for learning. The ZULU
challenge [10] addressed this issue by limiting the number of tests to be executed [17].
More concretely, competitors learned finite automata from a limited number of membership
queries without explicit equivalence queries. Equivalence queries thus had to be approximated
through clever selection of membership queries. This led to a different view of the problem:
rather than “trying to prove equivalence”, the new target was “finding counterexamples
fast” [17].

We propose an implementation of equivalence queries based on mutation testing [20],
more specifically on model-based mutation testing [2]. This approach follows the spirit of the
ZULU challenge by trying to minimise the number of tests for executing equivalence queries.
We use a combination of random testing, to achieve high variability of tests, and mutation
analysis, to address coverage appropriately. To illustrate the effectiveness of our approach,
which has been implemented based on the LearnLib library [19], we will mainly compare it
to the partial W-method [16] and show that the cost of testing can be significantly reduced
while still learning correctly. In other words, our method reliably finds counterexamples
with less testing. In addition to that, we also compare it to purely random testing and to an
effective implementation of a randomised conformance testing method described by Smeenk
et al. [30].

Parts of this paper have been published in the proceedings of the 9th NASA Formal
Methods Symposium (NFM 2017) [4]. In this extended version, we provide an explicit and
thorough description of our mutation technique and of our optimised mutation analysis. Addi-
tionally, we significantly enhanced the evaluation. It now covers experiments with models of
16 systems. Originally, we presented experiments with models of only two systems.

We target systems which can be modelled with a moderately large number of states, i.e.
with up to about fifty states. This restriction is necessary, because mutation analysis is a
computationally intensive task for large systems. Nevertheless, there exists a wealth of non-
trivial systems, such as implementations of communication protocols, which can be learned
nonetheless. This is feasible if suitable abstractions are applied, which is generally done in
learning-based verification.

The rest of this paper is structured as follows. Section 2 discusses related work and Sect. 3
introduces preliminaries along with an example demonstrating active automata learning. The
main part of this article comprises three sections. Section 4 presents our proposed process for
test-suite generation involving mutation-coverage-based selection, while Sect. 5 introduces a
mutation technique tailored towards active automata learning. The evaluation of the test-suite
generation is shown in Sect. 6, which is based on our implementation available at [32]. We
conclude the paper in Sect. 7.
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2 Related Work

We address conformance testing in active automata learning. Hence, there is a relationship
to the W-method [9,35] and the partial W-method [16], two conformance testing methods
implemented in LearnLib [19]. However, we handle fault coverage differently. By generating
tests to achieve transition coverage, we also test for “output” faults, but do not check for
“transfer” faults. Instead we present a fault model directly related to the specifics of learning
in Sect. 5.

We combine model-based mutation testing and random testing, which we discussed in
previous work [1,2]. Generally, random testing is able to detect a large number of mutants
fast, such that only a few subtle mutants need to be checked with directed search techniques.
While we do not aim at detecting all mutants, i.e. we do not apply directed search, this
property provides a certain level of confidence. By analysing mutation coverage of random
tests, we can guarantee that detected mutations do not affect the learned model.

Howar et al. [17] noted that it is necessary to find counterexamples with few tests for
automata learning to be practically applicable. We generally follow this approach. Further-
more, one of the heuristics described in [17] is based on Rivest and Schapire’s counterexample
processing [28], similar to the fault model discussed in Sect. 5. More recent work in this area
has been performed by Smeenk et al. [30], who implemented a partly randomised confor-
mance testing technique. In order to keep the number of tests small, they applied a technique
to determine an adaptive distinguishing sequence described by Lee and Yannakakis [21]. With
this technique and domain-specific knowledge, they succeeded in learning a large model of
industrial control software. The same technique has also been used to learn models of Trans-
mission Control Protocol (TCP) implementations [14] and of SSH implementations [15].

3 Preliminaries

3.1 Mealy Machines

We use Mealy machines because they are well-suited to model reactive systems and they have
successfully been used in contexts combining learning and some form of verification [11,14,
23,33]. Moreover, the Java-library LearnLib [19] provides efficient algorithms for learning
Mealy machines.

Basically, Mealy machines are finite state automata with inputs and outputs. The execution
of such a Mealy machine starts in an initial state and by executing inputs it changes its state.
Additionally, exactly one output is produced in response to each input. Formally, Mealy
machines can be defined as follows.

Definition 1 A Mealy machine M is a 6-tuple M = (Q, qo, I, O, §, A) where

— Q is a finite set of states

— qo is the initial state,

— 1/0 are finite sets of input/output symbols,

— §: Q x I — Q is the state transition function, and
— A1 Q x I — O is the output function.

We require Mealy machines to be input-enabled and deterministic. The former demands
that outputs and successor states must be defined for all inputs and all states, i.e. § and A must
be total. A Mealy machine is deterministic if it defines at most one output and successor state
for every pair of input and state, i.e. § and A must be functions in the mathematical sense.
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Fig.1 A Mealy machine modelling a car alarm system

Example 1 (Mealy Machine Model of a Car Alarm System) Figure 1 shows a Mealy
machine modelling a simple car alarm system. It has the inputs Open, Close, and Lock
for opening, closing, and locking the doors of a car. Another input Wait denotes waiting
for some time. Depending on the current state, the system reacts with one of the outputs
O = {Opened, Ack, Q, Armed, Alarm} to each input, where Q denotes quiescent behaviour,
i.e. the absence of outputs. There are two main requirements for the car alarm system: (1)
it must be Armed if the doors have been closed and locked for some time and (2) it must
produce an Alarm if the doors are opened in the Armed state.

Transitions of the Mealy machine are labelled by pairs of inputs and outputs separated by
a slash. We have for instance 8 (g2, Wait) = g3 and A(q2, Wait) = Armed.

Notational Conventions and Terminology Let s, s’ € $* be two sequences of input/output
symbols, i.e. § = I or § = O, then s - 5" denotes the concatenation of these sequences. The
empty sequence is represented by €. The length of a sequence is given by |s|. We implicitly
lift single elements to sequences, thus for ¢ € S we have e € S* with |e| = 1. As a result,
the concatenation s - e is also defined. Zero-based indexed access to the ith element of a
sequence s = So---S,—1 is denoted by s[i] = s;. Expressions of the form s[@i], where
® € {<, <, >, >}, may be used to select prefixes/suffixes of s consisting of elements with
indexes j satisfying j @i, e.g. s[< i] = so---si—1. A set of sequences S is prefix-closed, if
it contains all prefixes of each element of S.

We extend § and A to sequences of inputs in the standard way. Let s € I* be an input
sequence and ¢ € Q be a state, then §(g,s) = ¢’ € Q is the state reached by executing s
starting in state g. For s € I* and ¢ € Q, the output function A(q, s) =t € O™ returns the
outputs produced in response to s executed in state g. Furthermore, let A(s) = A(qo, s) and
8(s) = 8(qo, s). For a state ¢, the set acc(q) = {s € I*|8(qo, s) = g} contains the access
sequences of g, i.e. the sequences leading to ¢. Note that other authors define a unique access
sequence s € I* for each ¢ [18].

In learning, we need to determine whether two Mealy machines are equivalent. Equiva-
lence is usually defined with respect to outputs [14], i.e. two deterministic Mealy machines
are equivalent if they produce the same outputs for all input sequences. Two Mealy
machines (Q1, qo;, I, O, 81, 11) and (Q2, qo, I, O, 82, Ap) are equivalent iff Vs € I* :
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A1(go1,s) = X2(qos, s). A counterexample to equivalence is thus an s € [* such that
*1(qo1, $) # A2(qo2, $)-

3.2 Active Automata Learning

We consider learning in the minimally adequate teacher (MAT) framework [5]. Algorithms
in this framework infer models of black-box systems, also referred to as SULs, through
interaction with a so-called teacher.

3.2.1 Minimally Adequate Teacher Framework

The interaction is carried out via two types of queries posed by the learning algorithm and
answered by a MAT. These two types of queries are usually called membership queries and
equivalence queries. In order to understand these basic notions of queries, consider that
Angluin’s original L* algorithm is used to learn a deterministic finite automaton (DFA)
representing a regular language known to the teacher [5]. Given some alphabet, the L*
algorithm repeatedly selects strings and asks membership queries to check whether these
strings are in the language to be learned. The teacher may answer either yes or no.

After some queries, the learning algorithm uses the knowledge gained so far and forms a
hypothesis, i.e. a DFA consistent with the obtained information which should represent the
regular language under consideration. The algorithm presents the hypothesis to the teacher
and issues an equivalence query in order to check whether the language to be learned is
equivalent to the language represented by the hypothesis automaton. The response to this
kind of query is either yes signalling that the correct DFA has been learned or a counterexample
to equivalence. Such a counterexample is a witness showing that the learned model is not yet
correct, i.e. it is a word from the symmetric difference of the language under learning and
the language accepted by the hypothesis.

After processing a counterexample, learning algorithms start a new round of learning.
The new round again involves membership queries and a concluding equivalence query. This
general mode of operation is used by basically all algorithms in the MAT framework with
some adaptations. These adaptations may for instance enable the learning of Mealy machines
as described in the following.

3.2.2 Learning Mealy Machines

Margaria et al. [23] and Niese [25] were among the first to infer Mealy-machine models
of reactive systems using an L*-based algorithm. Another L*-based learning algorithm for
Mealy machines has been presented by Shahbaz and Groz [29]. They reuse the structure
of L*, but substitute membership queries for output queries. Instead of checking whether
a string is accepted, they provide inputs and the teacher responds with the corresponding
outputs. For a more practical discussion, consider the instantiation of a teacher. Usually we
want to learn the behaviour of a black-box SUL of which we only know the interface. Hence,
output queries are conceptually simple: provide inputs to the SUL and observe produced
outputs. However, there is a slight difficulty hidden. Shahbaz and Groz [29] assume that
outputs are produced in response to inputs executed from the initial state. Consequently, we
need to have some means to reset a system. As discussed in the introduction, we generally
cannot check for equivalence. It is thus necessary to approximate equivalence queries, e.g., via
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Fig.2 The interaction between SUL, teacher and learning algorithm [30]

Algorithm 1 General pattern for active automata learning from black-box SULs.

Input: SUL with a RESET operation and a function TEST : I* — O* executing a sequence of inputs and
collecting the produced outputs
Output: learned Mealy machine

1: repeat

2: t < select sequence for output query

3 RESET

4:  u < TEST(t) > perform output query
5 store (t, u)

6: until sufficient information to build hypothesis
7: H=1(0,q0, 1, 0,6, 1) < build hypothesis

8: Generate test suite 7 C I* from H > perform equivalence query
9: forallt € T do

10:  RESET

11:  u < TEST(?)

12: if u # A(qq, t) then

13: extract information from counterexample ¢ and goto 1

14:  endif

15: end for

16: output H

conformance testing as implemented in LearnLib [19]. To summarise, a learning algorithm
for Mealy machines relies on three operations:

1. reset: resets the SUL
2. output query: performs a single test executing inputs and recording outputs
3. equivalence query: conformance testing between SUL and hypothesis

As shown in Fig. 2, the teacher is usually a component communicating with the SUL. An
equivalence query results in a positive answer if all conformance tests pass, i.e. the SUL
produces the same outputs as the hypothesis. If there is a failing test, the corresponding input
sequence is returned as counterexample.

Learning Process for Black-Box Systems Based on the three operations described above,
active automata learning of black-box SULs usually implements the general pattern given in
pseudo-code by Algorithm 1. We can see that this algorithm follows the process introduced
for L*. It asks output queries until it can build a hypothesis (Line 1 to Line 6). Then, it
asks an equivalence query via testing (Line 8 to Line 15), and if it finds a counterexample
to equivalence, it goes back to asking output queries. Aside from this general process, there
are also algorithm-dependent operations, which we left abstract, like how output queries are
selected (Line 2) or how information is stored (Line 5).
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Table 1 Initial observation table
S E
for the car alarm system
Open Lock Close Wait
S
€ Q Ack Ack o
S-1
Lock Opened Ack Ack 0
Open 0 Ack Ack 0
Close Opened Ack Ack 0
Wait o Ack Ack 0]

We will now discuss relevant aspects of the learning process on the basis of the car
alarm system introduced in Example 1, by performing one round of learning, i.e. executing
Algorithm 1 until Line 13.

The way how information is stored, what output queries are performed, and how much
information is necessary to build a hypothesis depends on the specific learning algorithm.
Common to various approaches is that they maintain a set of input sequences identifying states
of the hypothesis [5,18,31]. The states reached by these sequences are usually distinguished
by outputs produced in response to another set of input sequences. In other words, states are
distinguished by their future behaviour [31]. We denote the first set of sequences by S and
the distinguishing input sequences by E. In L*-based learning, we need to perform output
queries for all s - ¢, with s € S and e € E, therefore we refer to S as prefixes and to E as
suffixes.

Example 2 (Deriving a First Hypothesis withL%,) The information gained during learning
via L, is stored in an observation table [5,31], whose structure is defined by a prefix-closed
set of prefixes S C I™* identifying states and a set of suffixes £ C I*. Commonly these sets
are initialised to S = {€} and E = I. The rows of the table are labelled by elements S and
S - 1, i.e. their one-input-extensions, while the columns are labelled by elements from E. To
fill the table cells, we perform output queries for S - E and S - I - E and store outputs of the
SUL in response to suffixes from E (note that this is sufficient, because S is prefix-closed).
The initial observation table for the car alarm system is given by Table 1. This table however
is not closed, therefore we cannot build a hypothesis (condition in Line 6 of Algorithm 1 is
not satisfied). Consequently, we add further elements to S and E while performing additional
output queries until the observation table is closed and consistent [5]. Since these aspects are
not relevant to the scope of the paper, we refer to [5] for a formal definition of closedness
and consistency. In our example, we add Lock, Lock - Close, and Lock - Close - Wait to S,
such that we can build the hypothesis shown in Fig. 3. Note that S now contains access
sequences of all four states of the hypothesis, the sequences in E distinguishes them, and the
one-input-extensions S - I define transitions in the hypothesis.

In Line 8 of Algorithm 1, we need to derive a set of test cases to perform an equivalence
query. Observe the similarity to the definition of equivalence between Mealy machines,
which requires equivalent outputs in response to all sequences of inputs. Since we cannot
test all input sequences, i.e. due to the incompleteness of testing, learned models may be
incorrect. If we, e.g., test with the W-method [9,35], the learned model may be incorrect if
the assumed maximum number of states of the SUL is too low. This suggests that we should
generate meaningful tests with low redundancy to cover as much of the potential state space
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Fig.3 First hypothesis derived during learning

of the black-box SUL as possible. This is the main goal of the test-case generation approach
presented in this paper. Another possible conclusion from the incompleteness of testing is
that testing should concentrate on finding counterexamples rather than showing equivalence
as suggested by Howar et al. [17]. In the following example, we present a counterexample
between the SUL in Fig. 1 and the hypothesis shown in Fig. 3. We further demonstrate a way
to extract relevant information from the counterexample (Line 13 of Algorithm 1). Note that
there are various alternative ways to process counterexamples.

Example 3 (A Counterexample for the Car Alarm System) Although the first hypothesis
in Fig. 3 has only four states, executing the partial W-method [16] with a depth of 2, i.e.
assuming the SUL has at most 6 states, generates already 546 tests. One of these tests is the
input sequence t = Close - Lock - Wait. The hypothesis produces the outputs Ack - Ack - Q for
t, while the SUL produces Ack - Ack - Armed (see Fig. 1). Intuitively, this counterexample
reveals the fault that Close and Lock lead to the same state, if performed in the initial state
q0-

We can extract this information from ¢ via a decomposition of ¢ presented by Rivest and
Schapire [28]. Actually, they introduced this decomposition in combination with “reduced
observation tables” [28,31], which imposes constraints on how observation tables are
extended. They basically required all sequences in S to be distinguished by sequences in
E. The rationale behind the decomposition is that the existence of a counterexample implies
that there are two sequences s, s’ in S and S - I leading to the same state, although they reach
different states in the SUL. The decomposition extracts a distinguishing suffix v showing
that the future behaviours of s and s’ are different, i.e. the sequences should lead to different
states. Adding v to set E causes at least one new state to be added to the hypothesis derived in
the next round of learning. Here, in this example we extract Lock - Wait from ¢ which shows
that Close and Lock reach different states in the SUL. As a result, the next round of learning
adds the state g4 resulting the final model shown in Fig. 1.

We built our mutation technique in relation to the counterexample decomposition tech-
nique by Rivest and Schapire [28], which we will present in Sect. 5 along with further details
on the actual decomposition. The general idea behind our test-case generation approach is
to generate test cases, which are able to distinguish the current hypothesis from as many
potential succeeding hypotheses as possible.
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Algorithm 2 The test-case generation algorithm.

Input: My = (Sh,s0n, I, O, Ah,h)s Pretrys 11:  if p # None then

Pstop» maxSteps, linfix, 12: rSteps < rSeq(1, linfix)
Output: test 13: test < test - p - rl - rSteps
1: state < sop 14: state < §(5(rS, rl), rSteps)
2: test < € 15: if |test| > maxSteps then
3: if coinFlip(0.5) then 16: break
4:  test < rSeq(I, linfix) 17: else if coinFlip(psiop) then
5 state < §(state, test) 18: break
6: end if 19: end if
7: loop 20:  else if —coinFlip(prewry) then
8 rS < rSel(Sp) > (rS, rI) defines 21: break
9 rl < rSel(I) > a transition 22:  endif
10:  p < path(state, rS) 23: end loop

4 Test-Suite Generation

We had shown previously “that by adding mutation testing to a random testing strategy
approximately the same number of bugs were found with fewer test cases” [2]. Motivated
by this, we developed a simple, yet effective test-suite generation technique. The test-suite
generation has two parts, (1) generating a large set of tests 7 and (2) selecting a subset
Tse1 C T to be run on the SUL.

4.1 Test-Case Generation

The goal of the test-case generation is to achieve high coverage of the model under con-
sideration combined with variability through random testing. Algorithm 2 implements this
form of test-case generation. The procedure may start with a random walk through the model
(Line 3 to Line 6) and then iterates two operations. First, a transition of the model is chosen
randomly and a path leading to it is executed (Line 8 to Line 10). If the transition is not
reachable, another target transition is chosen. Second, another short random walk is executed
(Line 12). These two operations are repeated until a stopping criterion is reached.

Stopping Test-case generation stops as soon as the test has a length greater than a maximum
number of steps maxSteps (Line 15). Alternatively, it may also stop dependent on probabilities
Prewry (Line 20) and pgop (Line 17). The first one controls the probability of continuing in
case a selected transition is not reachable while the second one controls the probability of
stopping prematurely.

Random Functions  Test generation uses three random functions. The function coinFlip is
defined for p € [0, 1] by P(coinFlip(p) = true) = p and P(coinFlip(p) = false) = 1 — p.
The function rSel selects a single sample from a set according to a uniform distribution, i.e.
Ve € S: P(rSel(S) = e) = |1T| The function rSeq takes a set S and a bound » € N and
creates a sequence of length / < b consisting of elements from S chosen via rSel, whereby [
is chosen uniformly from [0 .. b].

We assume a given Mealy machine My = (S, son, I, O, An, o) in the following. This
Mealy machine is also one of the parameters of Algorithm 2. The test-case generation is
further controlled by the stopping parameters and /inax € N, an upper bound on the number
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Algorithm 3 Breadth-first exploration implementing path.

Input: My = (Sh, sop, I, O, An, ), arguments s, s’ of path
Output: either path € I* such that §(s, path) = s” or None
visited < {}
next <— emptyQ() > an empty queue of states to explore
next <— enqueue(next, (s, €)) > and traces leading to those states
while next £ emptyQ() do
(S¢, path) < dequeue(next)
if sc ¢ visited then > current state not visited yet
visited < visited U {s¢}
foralli € I do
sp < 8(sc, 1)
if s, = s’ then > we found the target state
return path - i
end if
next <— enqueue(next, (s,, path - i))
end for
end if
end while
return None > did not find a path to the target s’

of random steps executed between visiting two transitions. The function path returns a path
leading from the current state to another state. Currently, this is implemented via a breadth-
first exploration given by Algorithm 3, but other approaches are possible as long as they
satisfy path(s,s’) = None iff $i € I* : 8(s,i) = s’ and path(s,s') = i € I'* such that
8(s,i) = s', where None ¢ I denotes that no such path exists.

4.2 Test-Case Selection

To account for variations in the quality of randomly generated tests, not all generated tests
are executed on the SUL, but rather a selected subset. This selection is based on coverage,
e.g., transition coverage. For the following discussion, assume that a set of tests T of fixed
size ng should be selected from a previously generated set 7' to cover elements from a
set C. In a simple case, C can be instantiated to the set of all transitions, i.e. C = Sy x [
as (s,i) € Sy x I uniquely identifies a transition because of determinism. The selection
comprises the following steps:

1. The coverage of single test cases is analysed, i.e. each test case r € T is associated with
aset C; C C covered by t.

2. The actual selection has the objective of optimising the overall coverage of C. It is
implemented by Algorithm 4 . We greedily select test cases until either the upper bound
nge is reached (Line 2 and Line 3), all elements in C are covered (second condition in
Line 2), or we do not improve coverage (Line 4 and Line 5).

3. If ng tests have not yet been selected, then further tests are selected which individually
achieve high coverage. For that ¢ € T \ T are sorted in descending size of C; and the

first nge] — | Tsel| tests are selected.!

! Note that more sophisticated test suite reduction/prioritisation strategies could be used. However, this is
beyond the scope of this paper.
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Algorithm 4 Coverage-based test selection

Input: 7, C, C; forallt € T, nge| 5 break > no improvement
Output: T 6 end if

I: Tgel < 9 T Tsel < Tsel U{topt}

2: while |Tge]| < nge) A C # ¥ do 8: €« C\ Croy

3: topt < argmingcr |C \ Ct| 9: end while

4: if CN Cyyp =Y then

4.3 Mutation-Based Selection

A particularly interesting selection criterion is selection based on mutation. The choice of
this criterion is motivated by the fact that model-based mutation testing can effectively be
combined with random testing [2]. Generally, in this fault-based test-case generation tech-
nique, known faults are injected into a model creating so-called mutants. Test cases are
generated which distinguish these mutants from the original model and thereby test for the
corresponding faults.

Thus, in our case we alter the hypothesis My, creating a set of mutants MSy. The
objective is now to distinguish mutants from the hypothesis, i.e. we want tests that show that
mutants are observably different from the hypothesis. Hence, we can set C = MSpy,, and
Ci = {Mmut € MSmut | An(t) 7 Amue ()}

4.3.1 Type of Mutation

The type of faults injected into a model is governed by mutation operators, which basically
map a model to a set of mutated models (mutants). There is a variety of operators for pro-
grams [20] and also finite-state machines [13]. As an example, consider a mutation operator
change output which changes the output of each transition and thereby creates one mutant
per transition. Since there is exactly one mutant that can be detected by executing each tran-
sition, selection based on such mutants is equivalent to selection with respect to transition
coverage. Hence, mutation can simulate other coverage criteria. In fact, for our evaluation
we implemented transition coverage via mutation.

Blindly using all available mutation operators may not be effective. Fault-based testing
should rather target faults likely to occur in the considered application domain [27]. Thus,
we developed a family of mutation operators, called split-state operators, directly addressing
active automata learning. We will discuss this kind of mutation in Sect. 5.

4.4 The Complete Process

Now that we have discussed test-case generation, coverage-based selection, and mutation-
based selection in particular, we want to give an overview of the proposed process for
executing an equivalence query eqg via mutation-based conformance testing. The data flow
of the complete process involving test suite derivation and execution is shown in Fig. 4.
The input for this process is a hypothesis 7, a learned intermediate Mealy machine
model. From this model H, we generate a set 7 of randomised test cases via Algorithm 2
and we generate a set MSp, of mutants. Then, we analyse the mutation coverage C; of
each test case r € T'; i.e. we execute each ¢ and determine which of the mutants produces
outputs different from the hypothesis’ outputs. Next, the test suite for conformance testing is
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Fig. 4 Data flow for tgst-sulte hypothesis H
generation and execution
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created by selecting a subset T of T based on the coverage information C; and by applying
Algorithm 4. Finally, we execute all test cases of the test suite Tge]. A test case producing
different outputs on the SUL than the outputs predicted by the hypothesis is a counterexample
to equivalence. If such a counterexample is found, it is returned to the learning algorithm. If
no counterexample is found, we assign a PASS verdict to the test suite. Such a PASS verdict
translates to a positive answer to the equivalence query eq.

5 Mutation for Learning

We gave a general overview of test-suite generation in the previous section. In the following,
we present a mutation technique specifically targeting conformance testing in active automata
learning. Hence, instantiating the process shown in Fig. 4 with this technique yields an
efficient testing method for learning. In the following, we will first introduce split state
mutation operators, defining the form of mutants in our implementation of mutation testing.
After that, we will present our implementation of mutant generation and optimised mutation
analysis. We conclude the section with specifics affecting mutant generation and mutation
analysis.

5.1 Split-State Mutation Operator Family

There are different ways to process counterexamples in the MAT framework, such as by
adding all prefixes to the used data structures [5]. An alternative technique due to Rivest and
Schapire [28] takes the “distinguishing power” of a counterexample into account. The basic
idea is to decompose a counterexample into a prefix u, a single action a and a suffix v such
that v is able to distinguish access sequences in the current hypothesis. In other words, the
distinguishing sequence v shows that two access sequences, which were hypothesised to lead
to the same state, actually lead to observably nonequivalent states (see also Example 3). This
knowledge is then integrated into the data structures.
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Fig.5 Demonstration of split state. a A possible hypothesis model, b A possible SUL/mutant

Since it is an efficient form of processing counterexamples, adaptations of it have been
used in other learning algorithms such as the TTT algorithm [18]. This algorithm makes the
effect of this decomposition explicit. It splits a state g reached by an access sequence derived
from u and a. The splitting further involves (1) adding a new state ¢’ reached by another
access sequence derived from u and a (which originally led to ¢) and (2) adding sequences
to the internal data structures which can distinguish ¢ and ¢q’.

The development of the split-state family of mutation operators is motivated by the prin-
ciple underlying the TTT and related algorithms. Basically, we collect pairs (u, u") of access
sequences of a state ¢, add a new state ¢’ and redirect u’ to ¢’. Furthermore, we add transi-
tions such that ¢’ behaves the same as g except for a distinguishing sequence v. Example 4
illustrates this mutation operator.

Example 4 (Split State Mutation) A hypothesis produced by a learning algorithm may be
of the form shown in Fig. 5a. Note that not all edges are shown in the figure and dashed
edges represent sequences of transitions. The access sequences acc(gn3) of gns thus include

-i1 and i - 1. A possible corresponding black-box SUL is shown in Fig.5b. In this case,

the hypothesis incorrectly assumes that i - i} and i i} lead to the same state. We can model
a transformation from the hypothesis to the SUL by splitting g3 and gn4 and changing the
output produced in the new state ¢y as indicated in Fig. 5b. State gp 4 has to be split as well
to introduce a distinguishing sequence of length two while still maintaining determinism. A
test case covering the mutation is 1 . '1 in-

A mutant models a SUL containing two different states ¢ and ¢’ which are assumed to be
equivalent by the hypothesis. By executing a test covering a mutant My, we either find an
actual counterexample to equivalence between SUL and hypothesis or prove that the SUL
does not implement M. Hence, it is possible to guarantee that the SUL possesses certain
properties. This is similar to model-based mutation testing in general, where the absence of
certain faults, those modelled by mutation operators, can be guaranteed [2].

Split state is a family of mutation operators as the effectiveness of the approach is influ-
enced by several parameters, such that the instantiation of parameters can be considered a
unique operator. The parameters are:

1. Max. number of sequences n,.: an upper bound on the number of mutated access
sequences leading to a single state.

2. Length of distinguishing sequences k: for each splitting operation we create |7 |* mutants,
one for each sequence of length k. Note that this requires the creation of k new states.
Coverage of all mutants generated with length k implies coverage of all mutants with
length [ < k.

3. Split at prefix flag: redirecting a sequence u’ - a from g to ¢’ usually amounts to changing
8(8(son, u'), a) = q to 8(8(son, u'), a) = q'. However, if the other access sequence in
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the pair is u - a with 8 (sop, u”) = 8(son, u), this is not possible because it would introduce
non-determinism. This flag specifies whether the access sequence pair (u - a, u’ - a) is
ignored or whether further states are added to enable redirecting u’ - a. We generally set
it to true.

5.2 Implementation of Mutant Generation

The generation of mutants is implemented by Algorithm 5. It requires the auxiliary function
subset(S, k) = 8 where |S'| =k, S’ C Sif|S| > k and S’ = S otherwise. In the main loop
(Line 2 to Line 6), we look at all unordered pairs {s1, s2} of nycc access sequences for a state
q. Via the function SPLIT, we create mutants for these pairs. This function returns the empty
set if one sequence is a prefix of the other (Line 8). The reason for this is that we would alter
the behaviour for an input sequence v if we would redirect a prefix of v.

Otherwise, we compute the suffix eqSuf along which both s; and s, visit the same states
and execute the same inputs (Line 10). Then, we decompose s into a prefix si , an input pl,
and the suffix eqSuf. Mutants are created for all distinguishing sequences distSeq (Line 13
to Line 41). Initially, mutants are copies of the original Mealy machine except for the state
gsp reached by s{ - pl, the state which is split, and the transition leading to this state (Line
14 to Line 16). We create a new state g, for gy reached by pl. Furthermore, we create states
along the sequence eqSuf (see Split at prefix flag above) to ensure determinism and along
the distinguishing sequence distSeq (Line 27 to Line 31). Finally, we mutate the last output
corresponding to the last input of distSeq (Line 25). All other transitions, added in lines 27
to 31 and in lines 35 to 38, ensure that the mutant produces the same outputs as the original
hypothesis if the distinguishing sequence is not executed.

In the implementation of acc(q), we collect access sequences by performing a breadth-
first exploration while traversing every state at most twice. Therefore, we may not find all
nacc access sequences for state ¢. This strategy is motivated by performance considerations
and the mutant sampling strategy reduce to min, which we commonly use.

5.3 Efficiency Considerations and Optimisation

While test-case generation can efficiently be implemented, mutation-based selection is gen-
erally computationally intensive. It is necessary to check which of the mutants is covered by
each test case. Since the number of mutants may be as large as |S| * nacc * |/ ¥, this may
become a bottleneck. Consequently, cost reduction techniques for mutation [20] need to be
considered.

5.3.1 Optimisation of Mutation Analysis

We reduce execution cost by avoiding the explicit creation of mutants. Essentially only
the difference to the hypothesis is stored and executed. This optimisation is based on the
following observation. In Algorithm 5, we can see that a mutant is uniquely identified by the
3-tuple (M, (gpre, pI), v) where M is the original Mealy machine, (gpre, p/) is a transition
of M (Line 14) and v = eqSuf - distSeq is the sequence leading to the mutated output (Line
18). Hence, we basically check for coverage of a combination consisting of: (1) a sequence
leading to transition (gpre, pI), (2) the transition (¢pre, pI), and (3) the sequence v.

Given that insight, we implemented an efficient mutation analysis technique. Instead of
explicitly creating all mutants, we rather generate all 3-tuples which implicitly describe all
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Algorithm 5 The mutant generation algorithm

Input: hypothesis M = (Q, qo, I, O, 8, X),nacc, k
Output: set of mutants Mut
1: Mut < {}

2: forg € Q do > mutants for all unordered pairs of access sequences of ¢

3. for {s1, 52} € {{s1,52}|s1, 52 € subset(acc(q), nacc)} do

4: Mut < Mut U SPLIT(s1, s2, M, k) U SPLIT(s7, 51, M, k)

5:  end for

6: end for

7: function SPLIT(s, 52, (Q, q0, I, O, 8, A), k)

8: if 35 : 51 - 5 = 5o then return {} > 51 prefix of sp ?
9: else

10: eqSuf < argmax{|s| (37,55 18] -5 =51 A5y -5 =53 AS(s]) = 8(s5)}

11: si -pl - eqSuf < s1 > equivalent behaviour of 51 and s, along eqSuf
12: Mutants < {}

13: for all distSeq € 1 K do > all possible distinguishing sequences of length k
14: gsp < 8(s] - pD), gpre < 8(s)) & gsp is split
15: M —(Q,q0.1,0,8 })st. 0’ = 0, =X, and &' = 8\ {(gpre. 1. gsp)}

16: Q' « Q' Uf{gs}, 8 < 8 U{(gpre. I, gs)} foranew g5 ¢ Q > copy original
17: dpremut < 9s

18: v < eqSuf - distSeq

19: newQ <« {}

20: for j =0to |v|—1do

21: Gorig ‘*S(S; -pl-vl< jD

22: dnorig < 8(s1 - pl - v[< j])

23: if j = |v| — | then > mutation transition back to original states
24: 8§ «8u {(‘Ipremup v[jl, qnorig)}

25: VAU {(gpre pye> VL] omut)} st omue # A(qGorig, v[J 1)

26: else > new states with indistinguishable behaviour
27: Q' < Q'Ulqy),foranew g, ¢ Q'

28: newQ < newQ U {(qn, qnorig)}

29: 8« §'U {(QPremu[v vljl, gn)}

30: V=AU {(gpre pug- VL1 A (qorig, v/ D)}

31: qpreue < 4n

32: end if

33: end for

34: for all (¢, qorig) € newQ do

35: foralli € I do > copy original behaviour for transitions from new states
36: & (_S/U{(qviva(qorigvi))}

37: A 2 U{(q. i Morigs 1))

38: end for

39: end for

40: Mutants < Mutants U {M} > add mutant
41: end for

42: return Mutants

43:  endif

44: end function

mutants. Let these tuples be stored in a set /Mut. We arrange this information in an NFA
created by Algorithm 6. An NFA is a 5-tuple (S, so, X, T, F) with states S, an initial state
so € S, an alphabet X, transitions 7 € S x X x S, and final states F € S. Since it is
non-deterministic, there may be several transition (s, e, s”) for a source state s and a symbol
e. Here, we set ¥ = I, i.e. the symbols are the inputs of the original Mealy machine.
Furthermore, let S C Q U X x IMut for a set of fresh symbols X. A state of the NFA is
either a state of the original Mealy machine, or a new state corresponding to a mutant in
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Algorithm 6 NFA-based mutant representation.

Input: hypothesis M = (Q, qo, I, O, §, A), mutants IMut

Output: nondeterministic finite automaton (NFA) NMut

1: NMut < (S, 50,1, T, F) with § <= Q,50 <= g0, T < {(q.i,8(q,1)))lg € Q,i € I}, F < {}
2: for all M’ = (M, (q. pI), v) € IMut do

3: s« (x, M) newstates.t.s ¢ S, S < SU (s}

4: T < TU{(q,pl s)} > s corresponds to state that is split
5: forj=0to|v|]—1do > add new states along sequence leading to mutation
6: s" < (x, M) new state s.t. s’ ¢ S, S < SU{s'}

7: T < T U{(s,v[j].s")}

8: if j = [v] — 1 then

9: F <« FU{s"} > final state corresponds to mutation
10: end if

11: s <

12:  end for

13: end for

Algorithm 7 Mutation analysis using NFA-based mutant representation.

Input: rest € I*,NMut = (S, sy, X, T, F)

Output: Covered mutants cMut

1: eMut < {} > covered mutants
2: state < {so}

3: blocked < {}

4: for j =0 to |test| — 1 do > execute all steps of a test
5 next < {}

6:  forall s € state do

7 n <« {} > partial next state for state s
8 for all r = (s, test[j],s') € T s.t. As” : blocked(s”) =t do > follow unblocked ¢
9: if s/ = (x, M) then > update blocked if t was added for mutant
10: if 3t : (s, t') € blocked then > if current state s blocks a trans.
11: blocked < (blocked U {(s', blocked(s))}) \ {(s, blocked (s))}

12: else > block ¢ with target state s’
13: blocked < blocked U {(s’, 1)}

14: end if

15: end if

16: n < nuUf{s’} > add target state s” to next state
17: end for

18: if n = {} A3t : blocked(s) = t then > no trans. executed and blocked a trans.
19: blocked < blocked \ {(s, blocked(s))} > unblock transition
20: end if

21: next < next\Un

22:  end for

23:  cMut < cMut U {M'|3x : (x, M) € next A (x, M) € F} > newly covered mutants
24:  state < next

25: end for

IMut. The generation of the NFA by Algorithm 6 works as follows. Initially, the NFA has the
same structure as the original Mealy machine but without outputs. Then, we add transitions
and corresponding new states for (¢, pI) and v of all mutants (Line 3 to Line 11). The last
state added for each of the mutants is a final state of the NFA (Line 9). Roughly speaking,
a testing sequence fest € I* covers a mutant M’ if it reaches the corresponding final state
(x, M’). However, we also need to account for the fact that mutants are deterministic, i.e.
checking reachability in the NFA is not sufficient.

The actual mutation analysis is implemented by Algorithm 7. It implements a non-
deterministic exploration of the NFA (Line 4 to Line 25), but if we enter an execution
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path corresponding to a mutant we temporarily block the corresponding transition (Line 9
and Line 13). Blocked transitions cannot be traversed (Line 8) and are stored in a mapping
blocked, which maps from states to transitions. The exploration of the NFA works like the
execution of several mutants in parallel. The blocking of transitions ensures that each mutant
is executed at most once. Without it, we could execute multiple instances of a single mutant
in parallel.

If we follow an execution path corresponding to a mutant, we update blocked such that
the newly reached state blocks the initially blocked transition (Line 10 and Line 11). If we
are in a state blocking a transition and the current input test[j] did not lead to a new state,
then we left the execution path of the corresponding mutant. Consequently, we unblock the
transition (Line 18 and Line 19). Finally, we identify covered mutants via final states, i.e. if
we visit a final state (x, M) with a test 7, then ¢ covers the mutant M’ (Line 23).

5.3.2 Mutant Sampling

Since the optimisation shown above does not solve the problem completely, mutant reduction
techniques need to be considered as well. Jia and Harman identify four techniques to reduce
the number of mutants [20]. We use two of them: Selective Mutation applies only a subset
of effective mutation operators. In our case, we apply only one mutation operator. With
Mutant Sampling, only a subset of mutants is randomly selected and analysed while the rest
is discarded.

Prior to sampling we collect all implicitly described mutants /Mut. Then, we apply three
types of sampling strategies in our experiments:

L . . . . [IMut|
1. Fraction: this sampling strategy is parameterised by a real r. Given that, we select —5—

of the mutants, where each mutant is select uniformly at random from all mutants /Mut.

Hence, the resulting mutants are given by subset (IMut, wg—}”').

2. Reduce to Minimum (redmin): for this strategy, we partition /Mut into sets IMut, where
g is the state that is split for creating mutants in /Mut,. A mutant M’ = (M, (¢, pI), v)
with M = (0, qo, I, 0,8, A) is in IMuts, pry. After partitioning, we compute m =
ming g ([IMut,|), the minimum number of mutants in a set. Then, we select only m
mutants from these sets and combine them again, i.e. the resulting mutants are given by
U 7€0 subset(IMut,, m). With this strategy we achieve a uniform coverage of all states.

3. Reduce to Mean (redmean): this strategy is similar to the last, but we select the average

. . IMut
number of mutants in the sets IMut,,i.e. m = W It may be necessary to apply

this strategy if there are states ¢ with only one access sequence, that is, |acc(g)| = 1. In
this case, there would be no access sequence pairs for g and consequently we would not
create mutants for ¢ such that redmin would discard all mutants.

5.4 Further Discussion

In essence, the parameter choices, like the bound on the number of access sequences, the
number of selected tests, the sample size, etc. need to take the cost of executing tests on the
SUL into account. Thus, it is tradeoff between the cost of mutation analysis and testing, as
a more extensive analysis can be assumed to produce better tests and thereby require fewer
test executions. In the conference version of this paper, we identified two additional ways to
reduce the number of mutants. We have extended the first approach and we have evaluated
the second approach as well, which we previously considered as future work.
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1. Mutation analysis of executed tests: we keep track of all tests executed on the SUL. Prior
to test-case selection, these test cases are examined to determine which mutants are cov-
ered by the tests. These mutants can be discarded because we know for all executed tests
t and covered mutants My that Ap () = Agu(f) and Ap(f) # Amu () which implies
Asul(t) # Amut(?), i.e. the mutants are not implemented by the SUL. This extension
prevents unnecessary coverage of already covered mutants and reduces the number of
mutants to be analysed. This takes the iterative nature of learning into account as sug-
gested in [17] in the context of equivalence testing. Previously, we checked only the tests
executed for equivalence queries. We have now extended the mutation analysis to take
membership queries into account as well. By doing that, we are able discard mutants
whose mutations could be detected with a low number of interactions and consequently
reduce computation time.

2. Adapting to learning algorithm: by considering the specifics of a learning algorithm,
the number of access sequences could be reduced. For instance in observation-table-
based learning, as in L* [5], it would be possible to create mutants only for access
sequences stored in the rows of a table. We evaluated this approach for L* combined
with counterexample processing described by Rivest and Schapire [28]. The evaluation
showed that access sequences are non-uniformly distributed across states. A few states
are reached by a large number of sequences while others are reached by only a few.
Consequently, mutation analysis would concentrate on those states for which there are
many access sequences. This turned out to be detrimental and a uniform coverage of all
states should be preferred. Applying the redmin sampling strategy would achieve this.
However, it would also discard too many mutants since it is likely that some states are
reached by very few sequences in the observation table. As a result, we do not apply this
approach, i.e. and we do not use data structures of learning algorithms.

6 Evaluation

In the following, we evaluate two variations of our new test-suite generation approach. We will
refer to test-case generation with transition-coverage-based selection as transition coverage.
The combination with mutation-based selection will be referred to as mutation. We compare
these two techniques to alternatives in the literature: the partial W-method [16] and the random
version of the approach discussed in [30], available at [24]. We refer to the latter as random
L & Y. Note that this differs slightly from [14,30] in which also non-randomised tests, i.e.
complete up to some bound, were generated.

In comparison to the conference version of the paper, we significantly extended the eval-
uation. Previously we evaluated the approach on two case studies, one implementation of
a TCP server and one implementation of an MQTT broker. We now consider three imple-
mentations of TCP and four of MQTT in our evaluation. Additionally, we also evaluated the
approach on nine implementations of TLS servers as well. Since we changed parts of the
implementation, e.g. to optimise runtime, we redid all experiments which have already been
presented. Due to optimisations, we could also perform more thorough mutation analysis in
some cases and therefore changed the measurement setups slightly. The examined systems
are summarised in Table 2. This table includes the number of states and inputs of the true
Mealy machine model and a short description of each system. For in-depth descriptions, we
refer to the publications referenced in the table.
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Table 2 A short description of examined systems

System #States #Inputs Short description
TCP servers
Ubuntu 57 12 Models of TCP server/client implementations from

three different vendors have been learned and
analysed by Fiterdu-Brostean et al. [14]. We simulated
the server models available at [34]

Windows 38 13
BSD 55 13
MQTT brokers
emqttd 1.0.2 18 9 Models of an MQTT [6] broker interacting with two
clients. We discussed the learning setup in [33]
VerneMQ 0.12.5p4 17
HBMQTT 0.7.1 17 9
Mosquitto 1.4.9 18
TLS servers
GnuTLS 3.3.8 16 11 Models of TLS servers learned by de Ruiter and
Poll [11], which are available at [12]
GnuTLS 3.3.12 9 12
miTLS 0.1.3 8
NSS 3.17.4 8
OpenSSL 1.0.1j 11 7
OpenSSL 1.0.11 10 7
OpenSSL 1.0.2 7
RSA BSAFE for C 4.0.4 9 8
RSA BSAFE for Java 6.1.1 6 8

6.1 Measurement Setup

To objectively evaluate randomised conformance testing, we investigate the probability of
learning the correct model with a limited number of interactions with the SUL, i.e. only
a limited number of tests may be executed. We generally base the cost of learning on the
number of executed inputs rather than on the number of tests/resets. This decision follows
from the observation that resets in the target application area, communication protocols, can
be done fast (simply start a new session), whereas timeouts and quiescent behaviour cause
long test durations [11,33]. Note that we take previously learned models as SULs. These
models are given in a textual format specifying Mealy machines comprising the available
inputs, outputs, transitions, and states. To simulate them, we built a test driver which produces
outputs corresponding to given input sequences. Consequently, we still take a black-box view
in which we interact with the simulated systems only via testing. As compared to testing of
the actual systems, simulation of models allows fast test execution enabling a thorough
evaluation.

We refer to one execution of a learning algorithm as a learning run, i.e. a learning run
consists of several rounds which are concluded by an equivalence query that is carried out
via testing. To estimate the probability of learning the correct models with a given setup, we
perform 50 learning runs and calculate the relative frequency of learning the correct model.
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In the following, we refer to such an execution of 50 learning runs as a single experiment. We
deem learning reliable if the corresponding probability estimation is equal to one. Note that
given the expected number of states of each system, we can efficiently determine whether
the correct model has been learned, since the L* algorithm guarantees that learned models
are minimal with respect to the number of states [5].

In order to find a lower limit on the number of tests required by each method to work
reliably, we bounded the number of tests executed for each equivalence query and gradually
increased this bound. Once all learning runs of an experiment succeeded we stopped this
procedure. As in Sect. 4, we refer to this bound also as nge] because it defines the number
of tests selected for execution. For learning with the partial W-method [16] we gradually
increased the depth parameter implemented in LearnLib [19] until we learned the correct
model. Since this method does not use randomisation, we did not run repeated experiments
and report the measurement results for the lowest possible depth-parameter value.

As all algorithms can be run on standard notebooks, we will only exemplarily com-
ment on runtime. For a fair comparison, we evaluated all equivalence-testing approaches
in combination with the same learning algorithm, i.e. L* with Rivest and Schapire’s
counterexample-handling implemented by LearnLib 0.12 [19].

6.2 TCP

The number of tests and steps required to reliably learn the different TCP-servers are given
in Table 3. In order to perform these experiments, we generated 200,000 tests as a basis for
the test selection of the approaches mutation and transition coverage. From these tests, we
selected the number of tests given in the third row of Table 3 to perform each equivalence
query. For random L & Y we generated the number of tests given in the third row but we
did not perform coverage-based selection from the tests generated by this approach. For the
partial W-method this row includes the depth-parameter value which determines the set of
tests to be executed for each equivalence query.

The test-case generation with Algorithm 2 has been performed with parameters
maxSteps = 60, prewy = 0.95, psiop = 0.05, and lipix = 6. The chosen parameters for
mutation selection are k = 2 (length of distinguishing sequence) and nycc = 100. Due to our
implementation of acc (see Sect. 5) which may return only a fraction of access sequences,
setting n,cc to a value as large as 100 has the effect that no access sequences are discarded.
Since we sample mutants afterwards, we set it to such a large value. We performed sampling
by first applying the redmin sampling strategy and then fraction sampling with r = 1. Note
that we used the same setup for all TCP implementations. We only varied the bound ng
on the number of equivalence tests. With that, we want to demonstrate that it is possible to
learn several systems from the same application domain with similar setup. In practice, it
is therefore possible to learn a model with a conservatively chosen setup, i.e. with a large
number of tests, and then use this model to fine-tune parameter settings. These parameters
may then be used to learn further models with similar structure.

As noted above, we executed 50 learning runs for each experiment. During one run, the
number of tests for a single equivalence query (there may be several in one run), is bounded
by the number given in Row 3 of Table 3. We collected data on the overall number of tests
executed for equivalence/membership queries as well as the overall number of inputs executed
during those tests. The table shows these values averaged over all 50 runs of an experiment,
where eq stands for equivalence test queries and mem stands for membership queries. We
also show further statistics with respect to the number of test steps executed for equivalence
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Table 3 Performance measurements for learning TCP-server models

Mutation Transition coverage Partial W-method RandomL & Y
Ubuntu
ngel/depth 3500 5000 2 44,000
Mean # tests [eq.] 4074 5628 793,939 65,716
Mean # steps [eq.] 154,551 350,678 7,958,026 703,315
Median # steps [eq.] 151,758 334,147 643,785
Q1 # steps [eq.] 141,497 322,584 588,320
Q3 # steps [eq.] 164,089 346,430 761,456
Min. # steps [eq.] 132,953 313,800 519,250
Max. # steps [eq.] 226,119 612,634 1,338,526
Mean # tests [mem. ] 9015 9237 13,962 11,896
Mean # steps [mem.] 120,195 128,276 147,166 138,340
BSD
ngel/depth 1500 2000 5 58,000
Mean # tests [eq.] 2037 2361 2,105,585,114 96,224
Mean # steps [eq.] 91,089 152,301 30,435,822,650 1,069,553
Median# steps [eq.] 86,031 147,513 1,002,069
Q1 # steps [eq.] 77,142 139,952 857,912
Q3 # steps [eq.] 99,824 156,330 1,225,874
Min. # steps [eq.] 69,771 131,788 728,148
Max. # steps [eq.] 152,133 270,108 1,985,223
Mean # tests [mem.] 8989 9437 15,608 12,219
Mean # steps [mem.] 132,126 141,588 170,416 146,893
Windows
ngel/depth 3500 2500 2 40,000
Mean # tests [eq.] 4337 3006 521,635 49,594
Mean # steps [eq.] 144,074 178,985 4,597,896 514,458
Median# steps [eq.] 131,750 167,658 492,830
Q1 # steps [eq.] 125,873 158,452 455,614
Q3 # steps [eq.] 158,914 195,210 555,076
Min. # steps [eq.] 120,173 152,442 419,910
Max. # steps [eq.] 210,253 298,169 839,380
Mean # tests [mem.] 5939 5999 7919 6865
Mean # steps [mem. ] 65,137 63,547 67,834 68,563

testing as we regard this to be the most important measure of performance. In addition to
the complete information given in the table, we summarise the most important measures of
performance in bar charts. Figure 6 provides an overview of the average number of required
equivalence test steps and Fig. 7, provides an overview of the required ne], i.e. the minimum
number equivalence tests to learn reliably.

In Table 3, we see that the average number of tests and steps required for membership
queries is roughly the same for all techniques. This is what we expected as the same learning
algorithm is used in all cases, but the numbers shall demonstrate that techniques requiring
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Fig.7 Minimum number of tests per equivalence query to reliably learn TCP models

less equivalence tests do not trade membership for equivalence tests. It can be considered
a coincidence that learning with the partial W-method requires more membership queries
while also requiring more equivalence tests. With this out of the way, we can concentrate on
equivalence testing.

Figure 6 shows that mutation pays off in this experiment as it performs best for all different
systems. It performs for instance significantly better than transition coverage for Ubuntu,
which requires 2.27 times as many equivalence test steps on average. The average cost of
test selection is approximately 324 s for mutation and 9 s for transition coverage. However,
considering the large savings in actual test execution, mutation performs better. Compared
to the conference version of this paper, we generate more tests and perform less aggressive
mutant sampling, therefore we see an increase in runtime. The small performance gain of
mutation over transition coverage for Windows shows that our mutation analysis may not
add value in some situations.

Considering the minimum required number of equivalence tests nge depicted in Fig. 7,
mutation and transition coverage show similar performance. Given that transition coverage
executed more test steps suggests that it favours longer tests than mutation. Since both
techniques require relatively few tests, they are applicable in setups, where reset operations
are computationally expensive.
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We also evaluated random L & Y with a middle sequence of expected length 3 for BSD and
Ubuntu and length 4 for Windows (similar to [14] where 4 was used). For this setup, random
L & Y requires significantly more steps and tests than both alternatives (see Figs. 6 and 7).
There may be more suitable parameters, however, which would improve the performance
of random L & Y. Moreover, the implementation also offers test generation for complete
conformance testing up to some bound which may be beneficial as well. Nevertheless, the
model structure of the TCP-servers seems to be well-suited for our approach.

All randomised approaches outperformed the partial W-method. For instance for Ubuntu,
mutation reduces the number of equivalence test steps by a factor of 51.5 on average (Row
5 of Table 3). Taking the membership queries into account (Row 11 of Table 3), the overall
cost of learning is reduced by a factor of 29.5. Looking at the average number of executed
equivalence tests (Row 4 of Table 3) rather than at the test steps, we see an even larger
reduction. The relative gap between equivalence tests shows a reduction by a factor of about
195 on average. This is an advantage of our approach as we can flexibly control test length
and thereby account for systems with expensive resets. The enormously large number of tests
required for the partial W-method for BSD highlights a problem of complete conformance
testing. Increasing the depth parameter causes an exponential growth of the number of tests.
In practice executing such a large number of tests, as required to correctly learn the BSD
model, would be infeasible. Pure random testing is not a viable choice in this case as well.
A learning experiment with Ubuntu showed that it is infeasible to reliably learn correct
models. We executed 1,000,000 tests with a uniformly distributed length between 1 and 50
and succeeded in learning correctly in only 4 out of 50 runs.

Finally, we want to investigate the distribution of equivalence test steps. The gap between
the first quartile Q1 and the third quartile O3 is generally relatively small. Therefore, half
of the runs of an experiment require roughly the same number of test steps. In other words,
we see a uniform performance across runs. In general, the ratio between minimum and
maximum number of steps is not very large as well. It is largest for random L & Y and BSD
with a value of 2.73. This property of uniform performance of the randomised approaches
can be explained by the following observations. Only few tests are usually required to find
a counterexample in the early phases of learning while the last equivalence queries require
thorough testing. Put differently, a large portion of the state space can be explored with a
small number of tests. Since there are no extreme outliers, we give only average numbers of
equivalence test steps for the next case studies.

6.3 MQTT

The number of tests and steps required to reliably learn models of four different MQTT
brokers are given in Table 4. In order to perform these experiments, we used largely the
same setup as for the TCP experiments, but generated only 50,000 tests as a basis for selec-
tion. Additionally, we decreased the maximum test length maxSteps to 40 and changed the
parameter r of the fraction sampling strategy to 0, i.e. we effectively only applied the redmin
strategy. In contrast to the conference version of the paper we set k = 2 instead of k = 3, i.e.
the lengths of the distinguishing sequences are shorter. This allows less aggressive sampling
and serves to show that the same parameters as for TCP may be used while still achieving
satisfactory performance. We applied random L & Y with a middle sequence of expected
length 3. We also provide a graphical overview of the most important performance measure,
the average number of equivalence test steps, in Fig. 8.
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Table 4 Performance measurements for learning MQTT-broker models

Mutation Transition coverage Partial W-method RandomL & Y
emqttd
ngel/depth 175 200 2 1085
Mean # tests [eq.] 253 253 72,308 1664
Mean # steps [eq.] 11,058 11,822 487,013 11,857
Mean # tests [mem.] 1647 1603 1808 1683
Mean # steps [mem. ] 13,655 12,942 11,981 12,005
HBMQTT
ngel/depth 200 325 2 4350
Mean # tests [eq.] 255 374 49,860 5173
Mean # steps [eq.] 10,986 17,212 334,298 35,781
Mean # tests [mem. ] 1067 1044 1033 1111
Mean # steps [mem.] 9116 8257 6133 7513
Mosquitto
ngel/depth 150 100 2 650
Mean # tests [eq.] 187 132 59,939 1036
Mean # steps [eq.] 8201 6102 400,781 7240
Mean # tests [mem. ] 1309 1372 1355 1378
Mean # steps [mem.] 10,686 10,218 8623 9271
VerneMQ
ngel/depth 125 125 2 1200
Mean # tests [eq.] 183 177 56,609 1692
Mean # steps [eq.] 7983 8245 375,263 11,947
Mean # tests [mem. ] 1295 1336 1279 1350
Mean # steps [mem.] 10,410 10,063 7985 9193
7‘ N8 mutation
= 30,000 |- BB transition coverage
2, U0 random L& Y
§
@ 20,000 |- .
B
g
g 10,000 |- N= N7 .
LB = E

emqttd HBMQTT Mosquitto VerneMQ

Fig.8 Average number of equivalence test steps required to reliably learn MQTT models

As before, Table 4 shows that the randomised approaches outperform the partial W-
method. Considering test execution time in non-simulated setups highlights that applying such
a randomised approach may save significant amounts of time. In the original test setup [33],
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Fig.9 Average number of equivalence-test steps required to reliably learn the correct emqttd-broker model

execution time was, e.g., heavily affected by network communication. The execution of
a single test step while learning VerneMQ models took 600ms (waiting for outputs from
two clients with a timeout of 300ms per client). As a result, it would take approximately
(375,263 +7985) - 0.6 s =~ 63.9h to learn a model of VerneMQ with the partial W-method.
Applying the mutation-based approach mutation on the other hand would require (7983 +
10,410)- 0.6 s ~ 3.1 h while still learning reliably. Since these calculations take membership
and equivalence queries into account, this gives us a reduction of learning time by a factor
of about 20.6. We see varying but large reductions for all other MQTT brokers as well.

Figure 8 shows that all three of the randomised approaches perform similarly well with
no clear winner. For instance for emqttd, random L & Y performs best in terms of executed
test steps, if we take membership queries into account (Row 7 of Table 4). The transition
coverage approach requires the least number of steps for the Mosquitto model, but performs
only slightly better than random L & Y. However, mutation also performs well for this
example. We assume that our mutation-based approach produces good results in general, but
will not be the best-performing solution in all circumstances.

Figure 9 shows how reliably each of the three approaches learned the emqttd model.
Additionally, it also provides a comparison to undirected random testing in which each input
is chosen uniformly at random from all available inputs and where the test length is uniformly
distributed between 1 and 50. As noted at the beginning of this section, we say that a model is
learned reliably if it is learned correctly with a high probability. We estimate the probability
of learning correctly by computing the relative number of successful learning runs, i.e. runs
in which the correct model was learned. This estimation is denoted by pcorrect as given by the
y-axis in Fig. 9. The x-axis gives the required number of equivalence test steps. We see in the
figure that the increase of both random L& Y and transition coverage is more stable than that
of mutation. Although allowing for more equivalence test steps generally increases reliability
of learning, we also see slight drops for mutation. The reason for this behaviour is that we
are able to cover only a small portion of the mutants with a low number of tests such that
we may select tests covering irrelevant mutants. Covering all transitions on the other hand
is simpler and random L & Y follows a rather different approach. However, if we allow for
sufficiently many tests to be selected and executed, these drops can be expected to disappear.
Despite these drops, mutation requires slightly less steps to learn reliably. Furthermore, we
see that random testing may successfully be applied but it is less reliable at producing correct
results.
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6.4 TLS

For the last case study, we learn models of nine TLS-server implementations [11]. The models
were originally learned by de Ruiter and Poll while taking domain-specific knowledge into
account. They stopped executing a test once the connection between TLS server and test
harness had been closed. This is reflected in the structure of the models such that we may use
shorter tests. Therefore, we set the following parameters for test generation: maxSteps = 20,
Pretry = 0.95, psiop = 0.05, and linax = 3, i.e. we reduced the bound on test length. Since
there are nine implementations with varying structure (see number of states in Table 2), we
decided to perform a thorough coverage analysis by generating 300,000 tests as a basis for test
selection. We used the same mutation parameters as before but a different sampling strategy.
Some of the states of the considered models were reached by only one access sequence such
that no mutants would be produced for these states. As a result, redmin would discard all
mutants produced for the other states as well. Instead, we applied the redmean strategy and
fraction sampling with r = 1.

Since we have seen that membership queries are not affected by equivalence testing, we
give only measurement results for equivalence testing. These are listed in Table 5 and like
for all other models, we provide an overview of the average number of executed equivalence
test steps shown in Fig. 10. The first issue to notice is that for transition coverage and the
OpenSSL models, we would need to set the equivalence test bound ng to a value larger than
10,000. For this reason, we stopped at this point and deemed learning infeasible with this
setup. The same holds for random L& Y and GnuTLS 3.3.8 where we performed experiments
with up to 20,000 tests because the generated tests were shorter than the tests generated with
Algorithm 2. The mutation approach on the other hand was successful for all models.

In Table 5, we notice favourable performance of the partial W-method. It even requires
the lowest number of test steps for OpenSSL 1.0.2. This stands in stark contrast to previous
observations but is simply caused by the low depth parameter required for TLS models. It
actually highlights the effect of the depth parameter. To correctly learn the GnuTLS 3.3.8
model, a depth parameter of 3 is required. For this model, mutation needs three orders of
magnitude less test steps. If we were to choose 2 as parameter value for all other models to
be on the “safe side”, the performance of the partial W-method would drastically drop. Note
that we usually do not know the required depth in practice.

Comparing the randomised approaches in Fig. 10, we see that mutation generally performs
well. It is not the best performing solution in all cases, though. We made this observation
above for MQTT and here we see it again. Hence, mutation may be better suited to changing
environments. In comparison to the other approaches, it shows the worst performance for
miTLS, for which it requires three times as many test steps as transition coverage. However,
it performs best for other models, like for OpenSSL 1.0.1j. Note that it does not show extreme
outliers as well. The different versions of OpenSSL for example cannot be efficiently learned
with transition coverage.

It should be noted that the non-randomised version of random L & Y discussed in [30]
can be assumed to perform best for the models requiring a depth of 1. The reason for that is
that it implements an effective method for computing distinguishing sequences. Moreover,
the partial W-method already performs well for these models.
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Table 5 Performance measurements for learning TLS-server models

Mutation Transition coverage Partial W-method RandomL & Y

GnuTLS 3.3.8

ngel/depth 100 200 3 > 20,000

Mean # tests [eq.] 182 283 709,845 -

Mean # steps [eq.] 2888 3513 4,979,346 -
GnuTLS 3.3.12

ngel/depth 100 300 1 7600

Mean # tests [eq.] 141 333 1354 8776

Mean # steps [eq.] 2441 5819 5815 52,536
miTLS 0.1.3

ngel/depth 300 100 1 700

Mean # tests [eq.] 347 122 1017 884

Mean # steps [eq.] 5913 2027 4508 4939
NSS 3.17.4

ngel/depth 200 100 1 1000

Mean # tests [eq.] 274 138 1428 1357

Mean # steps [eq.] 4206 2115 5970 7932
OpenSSL 1.0.1j

ngel/depth 1100 > 10,000 2 12,400

Mean # tests [eq.] 1209 - 13,853 15,392

Mean # steps [eq.] 16,635 - 78,615 100,332
OpenSSL 1.0.11

ngel/depth 800 > 10,000 2 15,300

Mean # tests [eq.] 864 - 12,666 18,332

Mean # steps [eq.] 11,566 - 68,524 115,122
OpenSSL 1.0.2

ngel/depth 500 > 10,000 1 500

Mean # tests [eq.] 529 - 916 690

Mean # steps [eq.] 7934 - 3621 3970
RSA BSAFE for C 4.0.4

ngel/depth 100 5000 1 1100

Mean # tests [eq.] 125 5831 980 1369

Mean # steps [eq.] 1656 106,563 4188 8209
RSA BSAFE for Java 6.1.1

ngel/depth 200 100 1 600

Mean # tests [eq.] 254 137 960 873

Mean # steps [eq.] 4235 2247 3877 4793

6.5 Discussion, Limitations and Threats to Validity

The measurements shown and discussed above suggest that our mutation-based test-selection
pays off. Mutation performed very well in the TCP case study, but did not perform best
in all other cases. Still, it generally showed good performance in comparison to the other
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Fig. 10 Average number of equivalence test steps required to reliably learn TLS models

randomised approaches. There are, e.g., systems for which transition coverage performs
slightly better, i.e. mutation-based selection may not add value for these systems. It should be
noted that a crucial aspect of mutation is that it uses Algorithm 2 for test generation. Initially,
we generated test cases purely randomly. These tests, however, would fail to reach most of the
mutations. The coverage-directed generation of Algorithm 2 mitigates this issue. Although
we extended the evaluation in comparison to the conference version of this paper, it is still
limited to variations of three types of systems. Our approach may fail for other systems,
especially from other application domains. However, we generally target communication
protocols as application domain.

‘We mainly compared mutation with the partial W-method. The total cost of learning in our
setting is given by the average combined number of test steps for equivalence and membership
queries. Mutation improves upon the partial W-method with respect to this measure by at least
one order of magnitude for all MQTT and TCP models. It may be argued that the comparison
is unfair because the partial W-method provides guarantees while mutation aims at optimising
coverage. In the considered setup, however, mutation provides guarantees as well. Since the
automata learned with L™ are minimal [5], we can state: if we learn a model, then it is either
correct or the SUL has more states than the learned model. The (partial) W-method performed
with depth d provides the stronger guarantee: if we learn a model with & states, then it is
either correct or the SUL has more than k + d states [16]. Given the difference in guarantees,
we bounded the number of equivalence test steps for the partial W-method in one experiment
and tried learning the Ubuntu TCP-server model. Testing with the partial W-method with
depth 2 while bounding the number of steps by 226,119 (the maximum number of steps
required by mutation), resulted in a model with 27 states. Hence, the guarantee given would
be that the model is either correct or the system has more than 29 states. Strictly speaking,
the guarantee would actually be weaker because we did not execute all tests prescribed by
the technique. If we learn with mutation, we come up with a lower bound on the number of
states of 57, as we learn the true model. Thus, conditioned on allowed test execution time,
learning with mutation is able to give stronger guarantees in learning.

An advantage of the randomised approaches is that they can be controlled more flexibly
through parameters. However, a large number of parameters also increases the difficulty of
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finding suitable parameters. This holds for all performed experiments. There may be better
parameters for mutation as well as for random L & Y. In general, we tried to find parameters
that would work for one of the MQTT/TCP/TLS models and use these settings for all the other
models as well. Since we developed the mutation technique, there may be a bias affecting
the learning performance. Put differently, it is likely that we are able to find well-suited
parameters for our approach but not for random L & Y. For this reason, performance gains
of mutation over random L & Y may be smaller in general.

Another risk related to the large parameter space of mutation is that it may be possible that
only a small portion of the parameters actually produces good results. To limit the risk that
we found good parameters by chance, we used the same parameter settings for all systems of
a certain type. The TLS case study shows that the same parameter settings may work nicely
for various different systems. Still, finding parameters for mutation is likely to be the most
difficult.

Another benefit of randomised approaches is that randomness introduces variability which
may help. For the BSD case study, we needed to set the depth of the partial W-method to
5. In principle, this implies for mutation that mutants should be created with distinguishing
sequences of length & = 5. But we set k = 2 and still learned successfully. This may be
explained by the fact that if we cover a large number of mutants with k = 2, we will with high
probability cover mutants with k£ > 2 as well. Additionally, variability in tests may help to
explore the search space more thoroughly. Pure random testing did not perform well, though.
Without any form of directed testing, we fail to reach relevant portions of the search space.

A shortcoming of mutation is that mutation analysis is computationally intensive although
we spend effort optimising it. Therefore, we target moderately-sized systems with this
approach. As random L & Y generates tests much more efficiently, it can be applied for larger
systems as well. It has, e.g., been used to learn a system with more than 3000 states [30].
Applying mutation to systems with significantly more than 100 states would likely not pay
off. We would have to perform aggressive mutant sampling which would negatively impact
the effectiveness of mutation-based selection.

In general, we did not evaluate the influence of mutant sampling. We have observed during
development that sampling is detrimental to performance if we discard too many mutants.
However, a thorough evaluation would be necessary to explore the effects and limitations of
sampling.

7 Conclusion

We presented a fast test-case generation technique which accompanied with appropriate test-
case selection yields effective test suites. In particular, we further motivated and described
a fault-based test selection approach with a fault model tailored towards learning. We per-
formed various experiments in the domain of communication protocols. They showed that it
is possible to reliably learn system models with a significantly lower number of test cases,
as compared to complete conformance testing with, e.g., the partial W-method [16].

A potential drawback of our approach, especially of split-state-based test selection, is the
large number of parameters, which according to our experience heavily influence learning
performance. However, our evaluation showed that it is possible to efficiently learn several
similar models with the same parameters. Additionally, mutation-based selection applies
mutant sampling, thus it is of interest to determine the influence of sampling and whether
corresponding observations made for program mutation [20] also hold for FSM mutation.
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We conclude that mutation-based test-suite generation is a promising technique for con-
formance testing in active automata learning. Despite initial success, we believe that it could
show its full potential for testing more expressive types of models like extended finite state
machines [8]. This would enable the application of more comprehensive fault models. Finally,
alternatives to the simple greedy test-selection may also provide benefits.
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