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Abstract
In this paper, I investigate the possibilities and limitations of fractal analysis meth-
ods applied to archaeological and synthetic settlement plans, with the goal of pro-
viding quantitative measures of spatial randomness or noise, as well as potential 
tools for automated culture-historical attribution of settlement plans and socio-
economic intra-site differentiation. The archaeological sample is made from Linear 
Pottery settlements in south-west Slovakia and Trypillia settlements in the Southern 
Bug—Dnieper interfluve in central Ukraine, all based upon high-quality geomag-
netic site plans. Synthetic plans are constructed as geometrically ideal versions of 
the archaeological ones, with varying degrees of added spatial noise. A significant 
correlation between fractal dimension and noise level is revealed for synthetic settle-
ment plans, independently of size, density, house-size distribution and basic layout. 
However, several methodological challenges persist, and further systematic explora-
tion on larger samples is needed before these results may be generalised. All analy-
sis is performed in the R language and the script is made freely available in order to 
facilitate further development.

Keywords  Fractal analysis · Settlement plans · Lacunarity · Linear Pottery · 
Trypillia

Introduction

The documentation and interpretation of settlement plans is and has always been 
a major task for archaeologists. Intra- and cross-cultural comparisons are mostly 
done through detailed qualitative or semi-quantitative descriptions and typologies. 
It is furthermore generally assumed that certain characteristics of a settlement plan’s 
layout will reflect aspects of the social and economic organisation of its society, 
depending on a range of culture-specific factors (e.g. Eglash, 1999; Ensor, 2013; 
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Fraser, 1968; Furholt, 2016). A strong grid-like regularity of a settlement layout 
may reflect the presence of overall planning, as exemplified through imperial Roman 
cities and military camps. Conversely, irregular or fractal-like settlement layouts 
should be expected to reflect more autonomous or self-organised builders (see Batty, 
2005; Batty & Longley, 1994; D’Acci, 2019; Lagarias & Prastacos, 2021; Tannier & 
Pumain, 2005, for theoretical discussions within Urban Science). Irregularity levels 
on settlement plans could thus potentially serve as a proxy for the level of plan-
ning, and furthermore be indicative of the type and scale of social organisation at 
hand. Interpreting socio-political systems from settlement plans alone would prob-
ably be over-optimistic, as spatial regularity can result from shared cultural norms 
of e.g. house placement and orientation, without interference from any top-down 
architect. However, fractal patterns are only exceptionally known to result from 
conscious human planning (and mostly from the twentieth century onwards), and 
regular grids do not emerge from random processes, so a quantifiable irregular-
ity index would in any case be useful as a basis for further social interpretation. 
But in the absence of adequate reproducible quantitative methods fit for this pur-
pose, studies that have aimed in this direction within Archaeology have so far been 
largely dependent on qualitative description. The arguably best options have been 
approaches based on multivariate statistics methods like correspondence analysis 
(e.g. Furholt, 2016), which, while performing reasonably well, may suffer from the 
issue of reproducibility.

The term fractal, from latin fractus meaning broken or irregular, was pinned 
by the French-American mathematician Benoît Mandelbrot (1975; popularised in 
English in 1982), and was loosely defined as a set exhibiting the properties of 
self-similarity — the same pattern is repeated over and over — and scale invari-
ance — the pattern looks similar no matter the scale of observation. The term 
also alludes to the fact that such patterns are characterised by dimension values 
that are fractions rather than integers like in Euclidean geometry (fractals with 
integer dimension values do exist, but are special cases). Mandelbrot elegantly 
showed how fractals could convincingly model a range of natural and social phe-
nomena, from the mapping of craters on the Moon and the distribution of galax-
ies, to road networks and corporate hierarchies. Fractal analysis of spatial pat-
terns is often centred on the estimation of the pattern’s fractal dimension (denoted 
D, see Methods section for details; in Mandelbrot’s works also referred to as the 
Hausdorff–Besicovitch dimension). This is a measure of the degree to which a 
pattern fills its embedding space, and — in contrast to simpler density measures 
— it is measured across a range of different scales. In theoretical fractal patterns, 
the scales can range from the infinitely small to the infinitely large, but when 
working with empirical data, there will always be a lower and an upper bound to 
meaningful scales. Furthermore, empirical fractals are often referred to as self-
affine rather than self-similar when the smaller copies of the pattern are stretched 
or distorted versions of the whole. When elements of randomness are added to the 
construction of a fractal, one can talk of statistical self-similarity, often resulting 
in surprisingly natural-looking shapes (see Mandelbrot, 1982: 200–4 and 236 for 
details). Methods for estimating the fractal dimension of empirical patterns have 
continued to be developed since (see Methods section), but in general terms, any 
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pattern consisting of dots or segments of a straight (i.e. one-dimensional) line, 
has a fractal dimension between 0 and 1. Furthermore, for a pattern that stretches 
across a two-dimensional plane without filling it entirely, like a settlement plan, 
1 < D < 2, and for a pattern embedded in three-dimensional space, like a topo-
graphic landscape, has a fractal dimension between 2 and 3. The higher the value, 
the more fully the pattern fills its embedding Euclidean space. 

While this framework allows for quantification of even the most irregular pat-
terns, a significant drawback recognised by Mandelbrot, is that by itself it is far from 
being a full characterisation. Just as a specific mean value can characterise very dif-
ferent looking distributions, a fractal dimension estimate can be the same for very 
different looking patterns. This is why he also proposed a complementary measure, 
lacunarity, from the latin lacuna meaning lake or gap. It quantifies the regularity 
in distribution of gaps between elements, also across scales. Together, the fractal 
dimension and lacunarity of a pattern provide a good quantitative description of its 
texture. For two-dimensional patterns, both analyses are done on binary images with 
pixels being either occupied (pattern) or non-occupied (background). 

In recent years, this fractal image analysis has increasingly been used within the 
field of Urban Science for the purpose of quantifying and comparing different urban 
textures, providing an empirical basis for interpretations on functional and social 
aspects — like the interplay between modern city centres and suburbs, socioeco-
nomic disparities, housing price and density gradients from the centre, efficiency of 
urban transport networks, access to green areas, as well as various growth processes 
over time (for a recent review, see Jahanmiri & Parker, 2022). This development 
has been greatly facilitated by advances and accessibility of computing software, 
and the recent advent of open-source programming has aided in the transparency 
of the applied methods and increased the comparability of different studies. Within 
Archaeology, application of fractal analysis for the quantification and study — 
including through simulation — of settlement plans, was proposed already in the 
seminal paper by Zubrow, (1985), and has been sporadically attempted since, mainly 
by Mesoamerican specialists (Brown & Witschey, 2003; Farías-Pelayo, 2017; Ole-
schko et al., 2000). Apart from settlement plans, the analysed patterns can be site 
topography (Farías-Pelayo, 2017), artworks (Brown et al., 2005; Lara Galicia, 
2013), artifact outlines (Farías-Pelayo, 2017; Zubrow, 1985), or use-wear surface 
textures (Rees et al., 1988; Stemp, 2014). Fractal analysis is furthermore not limited 
to the study of images and patterns embedded in geographical space. As a general 
methodological toolkit, it has potential for application within a wide variety of top-
ics, from lithic technology to demography, social networks, diffusion and migration 
(for overviews, see Brown et al., 2005; Diachenko, 2018. For a more detailed intro-
duction, see Brown & Liebovitch, 2010). Fractals are moreover intimately related 
to power-law and Zipf’s law distributions and derived approaches (e.g. Crabtree 
et al., 2017; Grove, 2011; Maschner & Bentley, 2003; Strawinska-Zanko et al., 
2018), including Settlement Scaling Theory (Gomez-Lievano et al., 2012; Lobo et 
al., 2020; Smith et al., 2021), with much overlapping theoretical framework (see 
Mandelbrot, 1982: 341–8). Many other applications that have not yet been tested in 
Archaeology are also conceivable. The systematic exploration of this potential is, 
however, long overdue. Most studies, including this one, only scratch the surface of 
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what is possible, and the groundwork necessary for the generalisation of the meth-
ods has yet to be done. 

In the present study, I provide a first attempt of a systematic exploration of how 
different settlement related variables — layout, size, density and house-size distri-
bution — as well as varying degrees of added random spatial noise, influence esti-
mates of fractal dimension and lacunarity on computer simulated settlement plans. 
Results are furthermore compared to those from a set of analysed archaeological 
settlement plans, sampled from two late Prehistoric study areas: Linear Pottery set-
tlements in the Žitava valley in south-west Slovakia, and Trypillia settlements in the 
Southern Bug—Dnieper interfluve in central Ukraine. The overall goal is to assess 
the applicability of fractal dimension and lacunarity estimates as measures of spatial 
regularity/irregularity in settlements, and thus as quantitative proxies for household 
autonomy versus urban planning, as well as for quantitative characterisation of set-
tlement plans within and across culture-historical settings. Though this study rep-
resents only a first step towards a formal generalisation of fractal analysis methods 
for this purpose, all analysis here is done through an R code script which is freely 
available for consultation and further development (see Data and Code Availability 
statement below), hopefully facilitating further research.

Material and Methods

When sampling settlement plans for the present study, I wished to factor out the 
almost omnipresent issue of missing data, since the question dealt with here — the 
relationships between fractal dimension, lacunarity and various settlement layout 
parameters — is still within quite uncharted territories. Geomagnetic imagery has 
undergone a rapid development in recent years, making it now possible to map entire 
settlements effectively where no architectural remains are preserved on the surface 
(e.g. Rassmann et al., 2014, 2016). Furthermore, sampling settlement plans from dif-
ferent culture-historical groups that have different settlement characteristics facilitates 
evaluation of the effects of these characteristics on the fractal dimension estimates. 
An underlying assumption of this analysis is that the following parameters are rel-
evant for comparison with fractal dimension and lacunarity: basic layout, element 
count (i.e. number of buildings), element size distribution (house sizes), and image 
density (fraction of black pixels to total pixel count). The selection of the Žitava Val-
ley Linear Pottery settlements in south-west Slovakia and the central Ukrainian Tryp-
illia B2/C1 settlements (including two so-called mega-sites), was based on their large 
variation within these parameters, while at the same time representing comparable 
architectural traditions within the technical possibilities of wood-post structures, and 
both being extensively documented through recent geomagnetic surveys with very lit-
tle missing data (Hale, 2020; Müller-Scheeßel et al., 2020; Ohlrau, 2020; for general 
overviews of the sites, see Furholt et al., 2020; Gaydarska, 2020; Müller, Rassmann 
& Videiko, 2016; Ohlrau, 2020). The Linear Pottery and Cucuteni-Trypillia cultural 
complexes are also, arguably, situated on opposite ends of the spectrum of social 
complexity and hierarchy within the European Neolithic/Chalcolithic, and the social 
organisation of both have been vividly debated (e.g. Coudart, 2015 and Hofmann et 
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al., 2019 for discussions specifically related to architecture). Contributing to these 
debates is, however, not the primary focus of this paper.

The binary plan images used for the actual analysis were prepared from settle-
ment shapefiles that were generously shared from the GIS analysts of the different 
projects that generated the data (Hale, 2020; Müller-Scheeßel et al., 2020; Ohlrau, 
2020). These had been drawn by the different authors based on their expert interpre-
tations of the geomagnetic images and on targeted excavations. The shapefiles have 
thus been drawn by at least three different individuals, but on the other hand this 
ensures that the data used for the present analysis is consistent with the extant spatial 
analyses made by the different projects. Interpreting the presence and size of a house 
from anomalies in a geomagnetic image is not done exactly the same way in Linear 
Pottery and Trypillia contexts. The former house type is generally a longhouse of 
various dimensions, limited on the long sides by extraction pits that provided mate-
rial for the wall daub upon construction. These longitudinal pits are what is easiest 
to spot from Linear Pottery house remains on geomagnetic scans, and their loca-
tion and length provide approximate outlines of the associated houses (Winkelmann 
et al., 2020: 41–45). Trypillia houses are not as identifiable from extraction pits, 
even though they also had wattle-and-daub walls, but the very recurrent practice of 
house destruction by burning at the end of their use-life made these houses even 
more recognisable on geomagnetic images. Houses are in these cases outlined by 
the raised clay platform and floor which collapsed on the spot during destruction, 
though a few cases of walls collapsing outwards — and thus disturbing the read-
ing of the house outline and size — have also been documented through excavation 
(Chernovol, 2012: 183–4). A further challenge with Trypillia settlement plans is that 
not all houses were burnt, and some are subject to erosion — about 21% (610 of 
2932) of the surveyed houses at Maidanetske (Ohlrau, 2020: 61–4) and 26% (368 of 
1445) at Nebelivka (Hale, 2020: 124–9) were recorded as unburnt, eroded or prob-
able structures — but these can often be interpreted, albeit with some less certainty, 
from weaker features. Recent studies have increasingly come to question the label-
ling of these houses as “unburnt” or “eroded”, since excavations tend to yield highly 
burnt materials also here, though in lesser quantities, indicating that these houses 
may simply be constructed with less daub or lacking a raised clay platform, possibly 
indicating a different function (see Pickartz et al., 2019: 1649–50 for further discus-
sion on this point). For both the Linear Pottery and the Trypillia settlements that 
were included in the present study, there is little to no evidence of overlap between 
houses, suggesting that inhabitants to a large extent avoided constructing new houses 
on slots where there had already been one, for some time after abandon of the previ-
ous house. All features interpreted as building structures, no matter the type, were 
included in the images prepared for this analysis. For the Linear Pottery culture, 
there are commonly used typologies of houses based on size and number of internal 
modules (Coudart, 1998; Modderman et al., 1970: 100–120), while especially Tryp-
illia mega-sites are known to be organised around so-called mega-structures (e.g. 
Hofmann et al., 2019; Müller, Hofmann & Ohlrau, 2016) or assembly houses (e.g. 
Chapman et al., 2016; Hale, 2020: 133–8). In this paper, no categorical distinction 
is made between such house types, since the goal of the analysis is to quantify the 
overall layout and noise in the settlement plan. No features other than buildings were 
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included in the analysis. The images analysed in this paper were created in QGIS 
3.20.1, as boolean (black-and-white) raster layers with 0.5 m resolution, where poly-
gons were rendered with no stroke and black fill, cropped to the minimal extent of 
the vector layer (Figs. 1, 2 and 3).

For two settlements — the Linear Pottery site of Vráble and the Trypillia site 
of Nebelivka — assignment of houses into quarters was equally drawn from expert 
interpretations reported in the dedicated publications (Hale, 2020: 139; Winkelmann 
et al., 2020). While the separation of Vráble into three “neighbourhoods” is quite 
obvious from the plan itself, the sorting of Nebelivka into “quarters” from A to N is 
more dependent on expert arguments and intuition. Both the recognition of houses 
and their sizes, as well as higher level quarters or neighbourhoods, from geomag-
netic images, are tasks that may be automated in a not-too-distant future, but which 
remain for the time being dependent on some degree of subjective interpretation. 

Fig. 1   Individual settlement plans analysed for this paper. Plans a-c, e and f represent Linear Pottery set-
tlements in the Žitava valley of south-west Slovakia, while d and g-i represent Trypillia settlements in the 
Southern Bug—Dnieper interfluve in central Ukraine. Plans a and h show neighbourhoods (a) and quar-
ters (b) that were also analysed separately. All lines, letters and scales are for illustration only and were 
not included in the analyses. All images were generated in QGIS 3.20.1 with 0.5  m resolution. After 
Müller-Scheeßel et al., (2020; a-c, e and f), Ohlrau (2020; d, g and i) and Hale, (2020; h)
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A direct analysis of the geomagnetic images themselves would, on the other hand, 
include more noise from both geological features and archaeological structures from 
other periods (in many cases including modern ones) or features that are otherwise 
less related to the architectural layout of the settlement.

In order to investigate possible temporal dynamics of fractal dimension (D) and 
lacunarity (L) values, a subset was prepared of images with coeval settlement plans 
only, that is plans consisting only of features that coexisted at a given point in time. 
This was not possible for the Trypillia settlements, since the vast majority of houses 
have not been individually dated. Statistical estimations of numbers of coeval houses 
based on Bayesian modelling of available radiocarbon dates have been made both 

Fig. 2   Temporal development of Linear Pottery settlement at Vráble (south-west Slovakia), with 16 sepa-
rate time samples at 20 years intervals (years cal. BCE). For each time sample, only houses that were 
already constructed but not yet abandoned (in black) were analysed. Grey shaded houses show the total 
settlement plan for illustration only. For the analysis, image frames were adjusted for each time sample. 
GIS data and house construction model after Müller-Scheeßel et al., (2020); house duration model after 
Meadows et al., (2019)
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for Nebelivka (Millard, 2020: 253–6; Müller et al., 2022) and Maidanetske (Ohlrau, 
2020: 233–5; Ohlrau, 2022: 86–8), indicating possible maximum coeval habitation 
at these mega-sites of about 33% and 52% of houses respectively. These analyses 
cannot tell, however, which houses were coeval, and thus for the time being no reli-
able images of coeval settlement plans can be reconstructed, even though general 
tendencies are proposed (Shatilo, 2021: 247; Müller et al., 2022: 218–9). For Lin-
ear Pottery houses, a dating proxy was recently proposed from the observation that 
house orientation drifts anti-clockwise within settlements at an approximate rate 
of ca. 1.3 degrees per decade (the exact linear relationship between house orienta-
tion and modelled construction date needs to be calibrated for each settlement, see 
Müller-Scheeßel et al., 2020). The dating model proposed for Vráble, with construc-
tion year cal. BCE as mean orientation + 651.016

0.129486
 was applied to all houses at the settle-

ment. House duration was set to the median of 27.5 years reported in Meadows et 
al., (2019), and 16 temporal samples with 20 years intervals were defined for coeval 
settlement plans (Fig. 2). Note that both the modelled house construction year and 
the house duration parameters are attributed with some level of uncertainty that is 
difficult to account for precisely. Variations in these values could potentially result in 
different numbers of houses on the coeval settlement plans, and thus interfere with 
the D and L estimates. A quantitatively more robust analysis could be performed by 
replacing the single values (construction year and house duration) with probabil-
ity distributions, and generating multiple plans per time sample through bootstrap-
ping. This would however result in a computationally far more demanding exercise, 
beyond the scope of this paper. The D and L estimates of the temporal slices of 
Vráble reported here should thus be considered as illustrative only.

The subset of synthetic settlement plans with varying levels of added noise 
was constructed by imitation of the empirical plans of Nebelivka and Moshuriv 

Fig. 3   The preparation process for the images analysed in this study, from raw geomagnetic (left), to 
archaeologically interpreted (centre) and binary with buildings only (right). The first two steps were done 
within the cited research projects (see Fig. 1), and the last step by the author based on the shared shape-
files. The frame of the resulting binary images was reduced to minimal height and width. The figure 
shows this process for the Nebelivka site plan, with left and centre images adapted from Chapman et al., 
(2018),  © D. Hale under the ADS Terms of Use and Access
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(Trypillia), Vráble and Úľany (Linear Pottery), as an attempt of replicating their 
D and L levels with the given values of house count (“n”), house-size distribution 
(proxied through the Gini coefficient), and basic layout (grid layout for the Linear 
Pottery and radial for the Trypillia settlements). The layouts were further detailed 
with actual distance measurements between clusters/neighbourhoods for the Lin-
ear Pottery settlements and radii for the Trypillia settlements (a single radius for 
the circular Moshuriv, two for the oval Nebelivka, see code script for more details). 
The plan images were generated in R using the ggplot2 package (Wickham, 2016), 
houses were rendered as circles with areas proportional to house sizes using the 
geom_circle()-function from the ggforce package (Pedersen & RStudio, 2022) and 
adding coord_fixed() to ensure identical distances on the x and y axes. Attempts 
were made towards representing houses as rectangles rather than circles, which for 
the Linear Pottery plans would be straight-forward, while resulting in overly com-
plex code for the Trypillia plans, where houses are oriented in all directions. Ini-
tial attempts of Linear Pottery plans with houses simulated as circles and rectangles 
respectively made little difference in D and L estimates, however, and it was pre-
ferred to keep a single rendering method on all synthetic plans. All plot details other 
than houses were removed, and the plots were stored with minimal extent and 0.5 m 
pixel resolution. Each synthetic settlement plan was rendered in seven versions with 
varying levels of added noise. The zero-noise plot was an idealised imitation of the 
real settlement plan in each case, while the noisy plans were generated by letting 
each house perform a random walk, i.e. a displacement in a random direction with 
an arbitrary step length of five metres and a given number of steps. For each settle-
ment, a rendering was stored with 1, 2, 4, 8, 16 and 32 steps, resulting in four sets of 
seven plots (including the zero noise plots), in total 28 synthetic plots (Fig. 4). This 
procedure is not meant to model in any way how exactly the various archaeological 
settlement plans were generated in the past (houses do not perform random walks), 

Fig. 4   Synthetic plan series imitating the archaeological plans of (clockwise from top) Vráble (Fig. 1a), 
Moshuriv (Fig. 1g), Nebelivka (Fig. 1h) and Úľany (Fig. 1b), each in seven versions with varying levels 
of added spatial noise. All images were generated in R 4.2.2 using the ggplot and ggforce packages, with 
0.5 m resolution. See text for further details



1151

1 3

Quantifying Spatial Complexity of Settlement Plans Through…

but rather to establish a set of cases with gradual shift from simple geometric forms 
towards randomness, in order to test to which extent the fractal dimension and lacu-
narity estimates are fit as quantifications of this variation. As indicated above, the 
synthetic plans were constructed copying the actual values of house count and house 
sizes as well as (to some extent) the actual measures between parts of the settle-
ments they were meant to imitate (Fig. 5). Image density however, though obviously 
correlated to these variables, proved more difficult to fix when generating the plans, 
especially because of edge effects resulting from the voids between the rectangular 
minimal image frame and the irregular settlement perimeter, but also from houses 
walking outwards during their random walks and thus expanding the minimal frame 
and lowering the image density. The density parameter was thus recorded post hoc, 
and its influence on D and L could only be evaluated through regression analysis on 
the results (see Results section). In total, a series of 70 images were generated for 
fractal analysis (Table 1).

The images were analysed for fractal dimension (D) and lacunarity (L) estimates, 
through the so-called box-counting and gliding box algorithms respectively. In Mandel-
brot, (1982), both these values were calculated from mathematically constructed fractals, 
drawing from scaling characteristics of the patterns’ given initiator and generator (e.g. 
ibid.: 42–57). Empirical patterns, however, are generally less regular in construction, and 
these characteristics tend to be far more difficult if not impossible to read from the pat-
terns. Various methods for estimating both D and L from empirical data were therefore 
developed and explored over the following decade (Allain & Cloitre, 1991; Klinkenberg, 
1994). The box-counting method consists of covering the pattern with a set of square 
grids of increasing tile (i.e. box) size, while counting the number of boxes that intersect 

Fig. 5   Values of Gini index of house sizes (a), image density (b, defined as fraction of foreground pixels 
in image) and house count (c) compared between the synthetic settlement plans (blue bars) and their 
archaeological counterparts (red bars). Gini and house count values were drawn from the archaeological 
plans and baked into the synthetic ones upon creation (Gini via house-size distribution), while b values 
were measured post hoc, leading to larger variation within the synthetic series
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with the pattern for each box size. The size range usually lies from the pixel size to the 
smallest square that can cover the entire pattern, in dyadic steps (i.e. box length is dou-
bled for each successive grid, dividing number of boxes by four; Klinkenberg, 1994: 
34–36). D being defined as 

where N is number of elements (or box count) and r is scale (e.g. Mandelbrot, 1982: 
36–7; note that Mandelbrot defined r as a fraction of the largest size rather than as 
a multiple of the smallest, for which D would be defined as logN∕logr ), is found by 
plotting the logarithm of the box count to the logarithm of box size, as the slope of 
the line fitted by linear regression times -1 (or logN ∼ (−D)logr ). To my knowledge, 
the more recent critique and adjustments to this method of fitting power-law models 
(cf. Clauset et al., 2009) have not yet been properly addressed in the fractal analysis 
literature. Box-counting in the present analysis was performed this way using the 
fract2D()-function from the fractD package (Mancuso, 2021). Somewhat similarly, 
the gliding box algorithm is performed using an array of box sizes, but instead of 
counting boxes in a grid that overlap with the pattern, here a single box is displaced 
incrementally across the image for each box size, and a given lacunarity index is cal-
culated for each box size resulting in a distribution. Though there seems to be some 
variability as to exactly how this lacunarity index is calculated (see. Hingee et al., 
2019: 271–2), generally it is an average spread of foreground pixel mass (i.e. black 
pixel count) for the given box size, given as variance divided by square mean, or

(cf. in set notation, Eq. 12 in Hingee et al., 2019; also Eq. 2 in Allain & Cloi-
tre, 1991 or Eq. 2 in Cheng, 1997). Kassel Hingee and colleagues (2019) recently 
demonstrated that this lacunarity index is mathematically equivalent to spatial 

logN

log( 1∕
r
)

� = 1 +

(

�

�

)2

Table 1   Summary of image 
series analysed for this paper

Series Category n

Quarters Nebelivka 14
Quarters Vráble 3
Settlements Linear Pottery 5
Settlements Trypillia 4
Synthetic Moshuriv 7
Synthetic Nebelivka 7
Synthetic Úľany 7
Synthetic Vráble 7
Time Vráble 16
Total 70
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covariance, with the advantage that this allows for a far greater tolerance to both 
missing data and irregular observation windows, both of which being highly perva-
sive issues in Archaeology. Though these features were not included in the present 
study — as all images were created as rectangular and only settlement plans with 
minimal amounts of missing data were analysed — future and hopefully more gen-
eralised applications should benefit from them. L estimates were nonetheless calcu-
lated here using the gbl()-function from the lacunaritycovariance package written 
by the same authors (Hingee et al., 2019), and using the “GBLcc.pickaH” estimator 
(the default). The function only provides the distribution of the lacunarity index over 
the analysed scales, and not a single summary L value for the entire image, so this 
was calculated, as with D, as the power-law exponent of the distribution, approxi-
mated as the slope of a linear regression on log scales. Note that also here, there 
is no consensus as to how to summarise the lacunarity distribution across scales in 
a single value (Hingee et al., 2019: 271–2; Karperien, 2013). Besides the power-
law exponent which is mainly used here, other methods include using the arithme-
tic mean of all index values or the prefactor — rather than the exponent — to the 
power-law approximation of the distribution. All three methods are notably pro-
posed in the FracLac software manual (Karperien, 2013). These summary statis-
tics for lacunarity — exponent, mean and prefactor — were included in this study 
in order to elucidate how they correlate with each other and with the other param-
eters, but most focus was given to the exponent L (hence simply L), primarily for 
its consistency with the method for calculating fractal dimension, but also since it 
was seemingly the one used in the above mentioned archaeological study by Farías-
Pelayo, (2017), which served as the main impetus for the present study. 

It should furthermore be noted that both the box-counting and the gliding box 
algorithms can be performed on fractal as well as non-fractal and multifractal data 
(e.g. Plotnick et al., 1996; Klinkenberg, 1994: 29), and the resulting D and L esti-
mates do not by themselves guarantee that the analysed data actually has a fractal 
structure — which is why they are sometimes referred to as box-counting dimension 
and gliding box lacunarity. These are nevertheless useful quantifications of spatial 
patterns, though very little attention has been given to how they describe a pattern 
of regularly spaced Euclidean objects compared to a self-similar one (possibly since 
strictly Euclidean patterns are rare in nature). This was the motivation for the simu-
lation part of the study presented below (Section 3.1). In the remainder of the study, 
the overall goal was to test whether D and L estimates could allow for differentiation 
of settlement plans based on culture-historical attribution (Section 3.2), or intra-site 
subdivision in space (quarters/neighbourhoods, Section 3.3) and time (phases, Sec-
tion 3.4). For these questions, the issue of the pattern being self-similar or not is of 
secondary relevance.

Results

Fractal dimension (D) and lacunarity (L) estimates of the entire dataset are rep-
resented in Fig.  6, showing how all the different image series give internally 
homogenous results, as well as a general strong correlation between the two 
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variables. See Tab. 2 (online repository, Data and Code Availability statement 
below) for the complete data table, where these are reported together with house 
count, image density, house-size distribution (proxied through the Gini coeffi-
cient), mean L and prefactor L. Settlement, quarter/neighbourhood and synthetic 
plans overlap to a large extent, while the Vráble time samples — ignoring sample 
01 which represents a single house — all have lower D and higher L levels than 
the cumulative plan of Vráble as well as the other settlements and quarters, to 
some degree reflecting overall lower density and house count, but possibly also 
higher grid irregularity. Maidanetske represents an outlier regarding both high 
D and low L. The correlation plot (Fig. 7) shows that the L statistic chosen here 
— the exponent of a power-law approximation to the lacunarity index — has the 
strongest correlation to D out of the three statistics (Spearman’s coeff. = -0.85), as 
pointed out by others (see e.g. Equation 12 in Allain & Cloitre, 1991; implicitly 
in Mandelbrot, 1982: 315–7). Plotnick et al., (1996: 5463) show that this expo-
nent will equal D − E (Euclidean dimension) for theoretical self-similar mono-
fractals, but that scale-specific effects will cause deviations in empirical cases. 
The other two L statistics — mean L and prefactor L — are so correlated between 
each other that they should in practice be interchangeable. Both are less cor-
related to D (Spearman’s coeff. = -0.57) but in turn very dependent on density 
(-0.99, they follow power-law functions of density; see online repository for more 
detail). The potential use of these lacunarity measures for spatial analysis would 
merit further investigation. Concerning the difference between the time series and 
the total settlement of Vráble (Fig. 6), the results exemplify the well-known effect 
that temporal depth can have on how we interpret archaeological data, and show 
that cumulative settlement plans are not directly comparable to their temporally 
coeval constituents when it comes to settlement layout. In the following, I discuss 
the internal results and possible interpretations for each image series.

Fig. 6   Fractal dimension (D) 
and lacunarity (L) estimates of 
all settlement images (N = 70), 
calculated using box-counting 
and gliding-box algorithms 
respectively. After the correla-
tion between D and L (Spear-
man’s coeff. = -0.85), house 
count had the strongest cor-
relation to D (0.82) and image 
density to L (-0.81)
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Synthetic Data

Some general observations can be made from the results for the synthetic settlement 
plans (Fig. 8). Though the D and L estimates of the archaeological plans do not fit 
perfectly within the spectre of results from their synthetic counterparts, they are all 
grouped at roughly the same parts of the plot. Furthermore, within each series of 
synthetic settlement plans, D and L estimates are roughly correlated to noise level 
(defined by step count in random walk). When analysed separately from the total 
dataset, D is here — as the only one of the included parameters — significantly 
correlated to noise (Spearman’s coeff. = -0.49 with p = 0.01, N = 28), indicating that 
it may be possible to model noise on archaeological settlement plans using the frac-
tal dimension. Such modelling would however be premature at the present stage 
due to the small sample size and the grouped nature of the data. The correlations 
of noise ~ L (Spearman’s coeff. = 0.33, p = 0.08), and noise ~ density (Spearman’s 
coeff. = -0.36, p = 0.06), are weaker and not entirely significant, meaning that they 
would perform poorly, at least on their own, as proxies for noise. 

Comparing the plot of D and L of the synthetic plans and their archaeological 
counterparts (Fig. 8) with the settlement plans themselves (Figs. 1 and 4), we see 
that as the houses are spread more randomly across the image, the fractal dimen-
sion decreases and lacunarity increases, and the weaker correlation to density indi-
cates that this cannot be explained simply by the slight increase in image size as 
a few houses “wander” outwards. Random spatial noise is thus less “space filling” 
than all the simple geometric shapes that form the ideal settlement plans (orthogo-
nal grids and concentric circles and ovals). Furthermore, despite differences in size 

Fig. 7   Correlation table with 
Spearman’s (rank) correlation 
coefficients between variables 
D, L, n, density, Gini and 
two supplementary summary 
statistics of L, for all images 
(N = 70). All correlations except 
Gini ∼ [density,LmeanandLprefactor] 
were significant with p < 0.05
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and layout, the Linear Pottery settlement of Vráble (313 houses) and the Trypillia 
settlements of Moshuriv (84 houses) and Nebelivka (1494 houses) have similar rela-
tive distributions between built space and voids, while at Úľany (Linear Pottery, 34 
houses) the empty space in the settlement is relatively bigger. 

Complete Settlement Plans

When D and L estimates are compared between complete settlement plans, an 
important question is whether or not these can be used to distinguish between 
settlements of different culture-historical units. Figure 9 shows that the Trypillia 
sites have consistently higher D values, though with minimal margin, than the 
Linear Pottery sites. L values are — with the exception of Talne 3 — lower for 
the Trypillia settlements than the Linear Pottery settlements. This indicates — 
maybe somewhat counter-intuitively — that the plans of these latter ones have 
more variation in their layouts and open spaces and that they are less space fill-
ing. As an example, Čierne — the Linear Pottery settlement with the lowest lacu-
narity estimate, is the one with the lowest degree of clustering of houses into 
separate groups (Fig. 1c). If we extrapolate the finding from Fig. 8 — that noise 
is inversely correlated to D — we could interpret the settlements as ranging from 
noisy or irregular small Linear Pottery settlements like Úľany and Čifare towards 
more geometrically regular Trypillia mega-sites (Figs.  1 and 9). It has been 
noted in the consecrated literature that the site plan of Maidanetske is somewhat 

Fig. 8   D and L estimates for synthetic settlement plans (coloured circles, N = 28) and their archaeologi-
cal counterparts (black dots, N = 4). For each synthetic group, the smallest circle corresponds to an ideal 
geometric settlement plan, and larger circles indicate more added spatial noise. Noise step increments 
were exponential from 1 to 32. The line paths within each group are added for visibility
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“overgrown” compared to other Trypillia mega-sites like Nebelivka (e.g. Ohlrau, 
2020: 284). René Ohlrau argues that this is due to the relatively longer occupa-
tion span of the site, where towards the end there was little space left for new 
house construction without building on top of previously abandoned and burnt 
houses, thus forcing ahead more chaotic deviations from the overall regularities 
in the plan. Inversely, Johannes Müller and colleagues show to the relatively more 
rapid decline in house construction in the inner quarters of Nebelivka, leaving 
them more sparsely occupied than those at Maidanetske (Müller et al., 2022). It 
is possible that this aspect of the site plans of Maidanetske and Nebelivka is what 
causes them to differ in their fractal dimension estimates. This, however, seem-
ingly contradicts the above-mentioned negative correlation between noise and 
fractal dimension, since Maidanetske then should be expected to be more “noisy” 
and thus have lower D than Nebelivka. On the other hand, the tightly packed 
streed grids at Maidanetske are undoubtedly more “space filling” (so higher D) 
than the more loose and open layout at Nebelivka, and the open central space of 
this latter one is larger (relatively speaking) than the one at Maidanetske, caus-
ing a more uneven distribution of gaps between houses (i.e. higher L, Fig. 1: h-i). 
Only larger and more systematic studies can allow for more elaboration on this 
point. In any case, it seems clear that the temporal depth of settlements should 
be a parameter to account for when analysing total settlement plans, as differing 
temporal depths in otherwise similar settlements can have significant effects on 
the appearance of their plans, as also seen in the differing results between the 
total plan of Vráble and those of its various temporal samples (see below).

Fig. 9   D and L estimates for archaeological settlement plans from the Linear Pottery (LBK, red) and 
Trypillia cultures (blue). For this subset, no other variables than L were significantly correlated to D, but 
house count was correlated to L (Spearman’s coeff. = -0.77, p = 0.02, N = 9)
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Spatial Subdivisions

The interest of comparing D and L values of different sections within large settle-
ments lies in the potential for identifying quarters that have different settlement tex-
tures, possibly reflecting differences in social and/or economic organisation. This 
approach is increasingly being applied in Urban Science on contemporary cities, for 
the study of economic and functional differentiation between e.g. suburbs and city 
centres (Jahanmiri & Parker, 2022). 

The 14 quarters of Nebelivka and the three neighbourhoods of Vráble were ana-
lysed for D and L estimates (Figs. 1a, h and 10). The spread of estimates was larger 
within both groups than between them, preventing cultural identification of the quar-
ters based on these parameters alone, but rather indicating that neighbourhoodwise, 
the relationship between built and unbuilt space was similar in both settlements. The 
total site plan of Vráble lies centrally between the three neighbourhoods, and close 
to the South-West neighbourhood, while Nebelivka’s total estimates are towards the 
lower right end of the plot, with D values probably drawn up and L values down 
by its high house count and Gini (cf. Figs. 5 and 7). The Nebelivka quarter values 
actually seem to follow a spatial South-East — North-West gradient, with the high 
D and low L values of quarters D, F and G in the north-west end (and L in the south-
east end, Fig. 1h) reflecting the dominance of grid-like house rows inside the inner 
main circle, while the low D and high L values of quarters A, N, M, J, K and I reflect 
relatively few inner houses and thus dominance of the (mostly empty) main house 
circles, the remaining quarters B, E, H and C being somewhere in-between. This 
tendency is also reflected in the correlation with both D and L for this subset with 

Fig. 10   D and L estimates for separate Vráble neighbourhoods (blue) and Nebelivka quarters (red). For 
this subset, apart from their correlation to each other, both D and L were most strongly correlated to 
image density (Spearman’s coeff. = 0.72 and -0.83 respectively, both with p < 0.01, N = 17)
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image density (Fig. 10). Another possibility that cannot yet be excluded is that this 
apparently spatial gradient could be only a statistical artefact due to grid orientation 
and the radial structure of the settlement. In the case of the Vráble neighbourhoods, 
it does seem that both fractal dimension and lacunarity capture some difference in 
internal openness between the South-East neighbourhood and the two others. Visu-
ally (Fig.  1a) it would seem that both the North and South-West neighbourhoods 
have more closed layouts than the South-East, but the South-West neighbourhood 
could possibly be drawn artificially towards the upper left of the plot (Fig.  10) 
because of edge effects due to its more irregular outline (i.e. including relatively 
more empty space in the corners of the rectangular image).

Temporal Subdivisions

In the present study sample, fine-grained temporal development within a large settle-
ment could only be observed at Vráble, where house-orientation has been shown to 
correlate with construction date (Müller-Scheeßel et al., 2020). Given the uncertain-
ties related to this method (see above), some observations can still be made concern-
ing the temporal dynamics of D and L within the Vráble settlement (Fig. 11).

The temporal path of D and L of the Vráble time samples starts from the top-left 
and stretches towards the bottom-right in its middle (sample 9, ca. 5130 cal. BCE), 
before turning back again towards its point of origin. The variation in L is somewhat 
wider than the variation in D. Over its ca. 300  years development from ca. 5290 
to 4950 cal. BCE, the size of Vráble, as measured by house count, follows a clas-
sic “battleship” curve, which in the D-L plot is well reflected by the larger samples 
being situated towards the bottom right of the plot — in this case, house count and 
density are closely related variables since in most time samples new houses appear 
within the already established settlement perimeter, and don’t contribute to a much 
larger image frame. More specifically, and ignoring the atypical samples 1, 2 and 16 
that only include one or two of the three neighbourhoods, both the D and L values 

Fig. 11   D and L estimates for 
the settlement plan of Vráble 
at time samples of 20 years 
intervals from 1 (ca. 5290 cal. 
BCE) to 16 (ca. 4990 cal. BCE). 
Image density and house count 
were closely correlated to D and 
L. Density to D and L: Spear-
man’s coeff. = 0.52 and -0.98 
with p = 0.04 and < 0.01 respec-
tively. House count to D and L: 
Spearman’s coeff. = 0.94 and 
-0.54 with p < 0.01 and = 0.03 
respectively. Sample 1 had very 
deviant values and was left out 
(see Fig. 6). The path between 
points is added for readability
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increase steadily over time from sample 4 (ca. 5230 cal. BCE), to a stable point at 
s.7 (ca. 5170), where they remain relatively unchanged until s.10 (ca. 5110) from 
where they decrease to another plateau at s.11–13 (ca. 5090–5050), before decreas-
ing rapidly until s.15 (ca. 5010).

Pinpointing exactly what it is in the sampled settlement plans that follows this 
trajectory is, again, not obvious. It seems that the estimates are strongly linked to 
house count and density — as the settlement grows, lacunarity decreases and fractal 
dimension increases, the plan becomes more regularly “filled”, and inversely after 
population peak. Regarding variation in Gini index, there is little variation over 
time, and it seems more randomly distributed rather than correlated to other vari-
ables (see online repository, Tab. 2). If the observation on synthetic plans is general, 
that lower D values reflect more noise from ideal geometric plans, it could be argued 
that the variations in D over time at Vráble refer to variation in the visibility of the 
grid-like settlement layout. In fact, the early and late time samples of Vráble do 
seem more chaotic, while the middle time samples (roughly 7–10, or between 5170 
and 5110  cal. BCE following the temporal model), house placement at construc-
tion seems to have been done increasingly with respect to already existing houses 
(Fig. 2). Again, this interpretation depends on the accuracy of the house orientation 
as temporal proxy (Müller-Scheeßel et al., 2020) as well as the modelled duration of 
houses (Meadows et al., 2019), the uncertainty of both being difficult to quantify. A 
larger simulation-based study could potentially allow for more elaboration on this 
point but would also be computationally far more demanding.

Note that the estimated D values for the early and late time samples 1–6 and 
11–16 fall below the expected lower threshold of 1, even though they are measured 
on a two-dimensional plane. This can be thought of as a result of the pattern being so 
thinly scattered in the plane, that if all the foreground pixels were aligned in a single 
straight line, this would have to be interrupted into segments — like the Cantor set 
— for it to provide such small box-counts at the smaller scales. Mandelbrot termed 
such scattered spatial patterns spatial Lévy dust (e.g. Mandelbrot, 1982: 292).

Discussion

The results presented above show that the interpretation of fractal dimension and 
lacunarity estimates on settlement plan layouts is not a straight-forward matter. Both 
measures are correlated with, but not reduced to, other variables such as element 
count, image density, and size distribution between elements. The experimental part 
of this study shows that neither fractal dimension nor lacunarity estimates can be 
fully simulated through only these parameters, and they represent thus spatial reali-
ties which are not quantified through the other applied parameters. Furthermore, the 
simulation study indicates that fractal dimension does covary significantly with lev-
els of random noise, although at the present stage there is insufficient support for 
extrapolating this correlation onto archaeological settlement plans. However, with 
these results, the possibility of modelling noise levels on settlement plans should 
not be disregarded, as it seems like a realistic goal given larger amounts of data. The 
subsequent parts of this study show that for archaeological settlement plans, whether 
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they are analysed as they are or subdivided into spatially or temporally coherent 
parts, in many cases can be interpreted in terms of compactness of layouts and vari-
ability of internal open spaces through estimates of fractal dimension and lacunar-
ity. Further study could give clearer appreciation of unwanted biases such as edge 
effects, grid rotation and missing data.

Interpretations of fractal dimension levels on archaeological settlement plans have 
until now been limited by the near absence of comparative material in the published 
literature. The perhaps most elaborate archaeological paper in this direction so far 
was written by Clifford Brown and Walter Witschey about 20 years ago (Brown & 
Witschey, 2003). Here they estimated the fractal dimensions of two ancient Maya 
settlements, including also intra-site variations, through box-counting. While the 
analysis itself was thorough and well argued, they interpreted a multi-level social 
structure from the results, simply from the fact that the obtained D values were frac-
tions and not integers, indicative of a settlement structure consisting of “clusters of 
clusters of clusters” (ibid. pp. 1625–8). While their conclusions might well be cor-
rect (judging from other strains of evidence), they are not supported by the results 
of their fractal analysis, since any pattern — self-similar or not — that does not fill 
entirely its embedding Euclidean dimension, will be expected to have a fractional 
dimension when estimated through box-counting. In this study, I have shown how 
very different-looking settlement plans may result in nearly identical fractal dimen-
sion values (Fig. 9). While adding lacunarity to the analysis does improve the quanti-
tative characterisation of irregular patterns, the two parameters did not suffice alone 
to convincingly distinguish between Trypillia and Linear Pottery settlement plans. 
As another example of somewhat premature interpretations of fractal dimension 
measures of settlement plans, Klaudia Oleschko and colleagues, in their innovative 
study of the Teotihuacán plan, highlighted the similarity of the D value of the Ciu-
dadela quarter and the theoretical fractal known as the Sierpinski Carpet at D ≈ 1.89 
(Oleschko et al., 2000). Again, a single value of fractal dimension can result from 
very different patterns, and the result is less convincing due to the applied meth-
odology: the researchers had used aerial and satellite photographs in the analysis, 
rather than simplified binary maps, in such a way that it is likely that the result was 
heavily influenced by other factors such as vegetation, roads and paths as well as 
shadows. In the present study, I have opted for interpreted plans with buildings ren-
dered as black filled polygons, while Brown and Witschey, (2003) opted for empty 
building outlines only. Both approaches have arguments for and against, but the 
influence on estimated D and L values remain for the time being unknown. Finally, 
yet an unfounded assumption regarding fractal dimension values is that since they 
represent a measure of geometric complexity in a certain sense, they are expected to 
increase over time. Castrejón-Pita et al., (2003) proposed the use of fractal dimen-
sion as a proxy for relative time in order to construct a chronology of the notoriously 
difficult-to-date Nasca geoglyphs in Peru, suggesting that the making of low-dimen-
sional images of parallel lines and simple geometric forms would have been a tech-
nical prerequisite to later creations of more complex and naturalistic imagery. How-
ever intuitive this idea may seem, counter-examples abound throughout History and 
Prehistory. Without the examples being otherwise comparable, the case presented 
above of the temporal development of the Neolithic settlement plan of Vráble does 
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at least demonstrate that dimensional values of human constructed features can both 
increase and decrease over time.

The question of spatial variation in D and L measures within patterns seems par-
ticularly promising, in that it may serve to identify quarters or neighbourhoods with 
differing socio-economic functions. This methodology may however be more fit-
ting for later periods where there are clearer signs of spatial differentiation within 
societies, e.g. between administrative, sacred, residential and artisanal or industrial 
areas. On the other hand, systematic use of fractal analysis precisely within con-
texts where such spatial differentiation is debated — like the European Neolithic 
— may in the end prove more useful. Application of this methodology on later con-
texts, e.g. Roman urban contexts, could serve to demonstrate more unambiguously 
that the method actually does what it promises. Mapping of varying fractal dimen-
sion and lacunarity values across an image can be done by dividing the image into 
a grid, with arbitrary tile sizes depending on desired resolution, and perform the 
box-counting and gliding box algorithms within each tile. The investigation of vari-
ations in dimension across scale, rather than space, within a pattern, is called multi-
fractal analysis, and has to my knowledge never been attempted in Archaeology (see 
Karperien, 2013, for an introduction to the open-source software plugin FracLac 
for ImageJ, that can be used for this purpose). These approaches could potentially 
become useful in image recognition and computer vision applications on remote 
sensing imagery. There is an ongoing revolution in the domain of automated detec-
tion of archaeological sites and structures (e.g. Guyot et al., 2021; Olivier & Vaart, 
2021), and the inclusion of fractal analysis methods to the applied under-the-hood 
machine learning processes could possibly allow for the detection and automated 
interpretation of more complex archaeological remains like architectural ensembles. 
A significant challenge here, however, is the associated computational cost of the 
analyses. 

The differing results between the temporally coeval plans of Vráble and the total 
(temporally accumulated) settlement plans show that fractal dimension values of 
such data sets are not directly comparable with each other. It is — as always with 
intra-site spatial analyses — vital to always recognise the temporal depth and resolu-
tion of the data set one is analysing, and thus to construct one’s research questions 
accordingly (Perreault, 2019). I would argue that questions of spatial complexity 
and noise relative to scales of social organisation are better investigated through data 
sets consisting of coeval or near coeval settlement plans — which can admittedly be 
hard to produce in many archaeological settings — while total plans of settlements 
could potentially serve for image recognition purposes and automated culture-his-
torical interpretation. As suggested by the above results (Fig. 9), differences in frac-
tal dimension may even be indicative — all other things being equal — of temporal 
depth itself: two characteristics that distinguish Maidanetske from Nebelivka being 
that the former has a site-plan that has been described as “overgrown”, while also 
being a site with a longer occupation span than the latter (Ohlrau, 2020). This is also 
a possibility that merits further investigation.

Finally, the perhaps major obstacle to a more widespread use of fractal analysis 
among archaeologists (as well as other humanists and social scientists) has until now 
been the overly specialised and somewhat opaque nature of the methodology. As for 
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now, box-counting and gliding-box algorithms are not implemented in standard GIS 
software, and more specialised software or coding is necessary to perform the analy-
sis. In a detailed assessment of different available softwares using archaeological 
and synthetic data, Sabrina Farías-Pelayo reported significant discrepancies in the 
obtained results on identical images, caused mainly by differing algorithms used to 
convert images into binary format (Farías-Pelayo, 2015: 124–140). It is worth not-
ing that the available softwares are mostly developed in research labs and oriented 
towards usage within specific disciplines, and that software for more general use 
is still largely non-existent. The above mentioned FracLac plugin remains perhaps 
the most commonly used, due to its relative user-friendliness and the wide array of 
proposed analyses (Karperien, 2013). The analyses presented in the present paper 
have been performed through a custom-made script in the open source program-
ming language R (see online repository), hopefully enhancing reproducibility of the 
results, as well as encouraging further development. However, also when opting for 
direct coding, several issues persist. The two packages used here for box-counting 
and gliding box functions — fractD (Mancuso, 2021) and lacunaritycovariance 
(Hingee et al., 2019) respectively — are recently and independently developed, and 
are imperfectly compatible with each other. Further streamlining these, and adding 
functionalities like local and multifractal scans, would certainly increase their use-
fulness and applicability.

Conclusion

In the present study, fractal dimension and lacunarity estimates were calculated on a 
series of 70 binary images of archaeological and synthetic settlement plans, allow-
ing for an in-depth empirical exploration of how these parameters relate to factors 
such as settlement layout, size, density and house-size distribution, as well as the 
more elusive factor of noise or irregularity from simple geometric patterns. A sig-
nificant negative correlation between fractal dimension and noise was observed, 
indicating that it could potentially serve as a quantitative proxy for this in compara-
tive studies. Furthermore, in comparisons between archaeological settlement plans 
of various layouts, fractal dimension seemed to correspond well to the compactness 
of buildings and the internal coherence of the geometric layout, while lacunarity 
described the variability of gaps between buildings and groups of buildings. This 
was illustrated by Trypillia settlements having generally higher fractal dimension 
and lower lacunarity than Linear Pottery settlements, but also with relatively large 
variation within each culture group. For the Trypillia mega-site of Nebelivka, the 
fractal analysis allowed for a quantitative differentiation of internal quarters between 
those that were dominated by internal streets and those dominated by the main cir-
cular street, and for the Linear Pottery settlement of Vráble, fractal analysis indi-
cated a process of filling and emptying of the settlement’s internal layout over time. 
While much remains before the nature of these factors are fully understood, it seems 
clear that fractal analysis methods are well suited for investigations on the varia-
bility of textures in archaeological settlement plans. It is furthermore argued here 
that settlement textures can be indicative of a range of underlying socio-cultural 
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factors, like social hierarchies, settlement planning, household autonomy and eco-
nomic function, in addition to more primary chrono-cultural characteristics such as 
culture groups, settlement types and duration, illustrating the importance and wide 
potential of these methods. Fractal analysis in the wider sense — including methods 
that are not explored in this paper — holds even more possibilities that need to be 
further explored by archaeologists (Diachenko, 2018). This insight has now been 
recognised by specialists for several decades (Zubrow, 1985), but maybe the current 
democratisation of open-source programming (Schmidt & Marwick, 2020) is what 
is needed for the fractalist framework to be further integrated into archaeological 
method and theory.
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