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Abstract
Purpose  With advances in immunology, increasing evidence suggests that immunity is involved in premature ovarian insuf-
ficiency (POI) pathogenesis. This study investigated the roles of immune checkpoint genes and immune cell infiltration in 
POI pathogenesis and development.
Methods  The GSE39501 dataset and immune checkpoint genes were obtained from the Gene Expression Omnibus database 
and related literature. The two datasets were intersected to obtain immune checkpoint-related differentially expressed genes 
(ICRDEGs), which were analyzed using Gene Ontology and Kyoto Encyclopedia of Gene and Genomes enrichment analysis, 
weighted correlation network analysis, protein–protein interaction and related microRNAs, transcription factors, and RNA 
binding proteins. The immune cell infiltration of ICRDEGs was explored, and receiver operating characteristic curves were 
used to validate the diagnostic value of ICRDEGs in POI.
Results  We performed ICRDEG functional enrichment analysis and found that these genes were closely related to immune 
processes, such as T cell activation. Specifically, they are enriched in various biological processes and pathways, such as 
cell adhesion molecule and T cell receptor signaling pathways. Weighted correlation network analysis identified seven hub 
genes: Cd200, Cd274, Cd28, neurociliary protein-1, Cd276, Cd40lg, and Cd47. Furthermore, we identified 112 microRNAs, 
17 RNA-binding proteins, and 101 transcription factors. Finally, immune infiltration analysis showed a clear positive cor-
relation between hub genes and multiple immune cell types.
Conclusion  Bioinformatic analysis identified seven potential ICRDEGs associated with POI, among which the immune 
checkpoint molecules CD200 and neurociliary protein-1 may be involved in the pathogenesis of POI.

Keywords  Gene Expression Omnibus database · Premature Ovarian Insufficiency · Immune checkpoint genes · 
Bioinformatics

Introduction

POI is defined as amenorrhea with high gonadotropin and 
low estrogen levels in women younger than 40 years [1]. The 
cessation of menses at a younger age leads to infertility and 
decline in psychological well-being and long-term quality 
of life of these patients. The pathogenesis of POI is diverse, 
including iatrogenic factors (post-surgery, radiotherapy, or 
chemotherapy), autoimmune ovarian function impairment, 
environmental factors (viruses, chemical agents, and radia-
tion), metabolic diseases (diabetes type 1, galactosemia, 
17-OH deficiency, and 21-OH deficiency), and unexplained 
factors [2]. Given the absence of an effective method to 
restore ovarian function in POI [3], it is necessary to identify 
markers of POI for earlier identification and intervention.
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The immune system is composed of several relevant 
molecular and chemical systems, their primary function is to 
protect the body from pathogens. The immune system plays 
multiple roles in the female reproductive system, mainly in 
gonadal activity and regulation of the female reproductive 
tract, and ovarian cycle [4]. Disease may occur if normal 
physiological interactions between the immune and repro-
ductive systems are dysregulated.

Immune checkpoint molecules exist on the surface 
of immune cells, and the negative regulation of effector 
immune cells prevents the body from being attacked by its 
own antigens [5]. The PD-1 immune checkpoint pathway 
is involved in follicle formation and ovulation [6, 7]. Lit-
tle is known about the normal interactions between female 
germ and immune cells, necessitating this relationship to 
be characterized.

Based on bioinformatics analysis, this study explored the 
possible pathophysiological process of ovarian disease from 
the perspective of immune checkpoint molecules related 
to POI based on the Weighted Gene Association Network 
Analysis (WGCNA) and immune infiltration. Further stud-
ies on the relation between POI and immune checkpoint 
genes, as well as immune cell infiltration, could provide new 
insights into the immune mechanisms associated with POI.

Materials and Methods

Data resource

We used “premature ovarian insufficiency” and “prema-
ture ovarian failure” as keyword on the Gene Expression 
Omnibus(GEO) database, microarray datasets were obtained 
with the accession no [8, 9]. Dataset GSE39501, obtained 
from Mus musculus, comprised samples from patients with 
POI and normal samples, totaling six samples. The data plat-
form file used was the GPL6887 Illumina MouseWG-6 v2.0 
expression beadchip. We included the expression profile data 
of three samples from patients with POI (POI group) and 
three normal samples (Normal group). The details of the 
dataset are listed in Table 1.

The published literatures included in PubMed database 
were searched with the key words “immune checkpoint 
genes”, and finally we identified 73 immune checkpoint 
genes for analysis [10] (see Table S1).

Differentially expressed genes (DEGs) associated 
with POI

We performed differential analysis of dataset GSE39501 
using the softwear package in R used for analysis of dif-
ferential gene expression [11] to obtain DEGs among the 
Normal and POI groups, and genes with |logFC|> 0 and 

P-value < 0.05 were selected as DEGs for further study. 
Genes with logFC > 0 and P-value < 0.05 were DEGs (upreg-
ulated genes), and those with logFC < 0 and P-value < 0.05 
were DEGs (downregulated genes).

To obtain the immune checkpoint-related DEGs 
(ICRDEGs) associated with POI, we crossed the DEGs 
in the GSE39501 dataset with immune checkpoint-related 
genes and drew a Venn diagram, the results of the differen-
tial analysis were presented in a volcano map and heat map 
using the R package ggplot2.

Functional and pathway enrichment analyses 
of DEGs

We performed Gene Ontology (GO) [12] and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) [13] annotation 
analysis of ICRDEGs using the R package clusterProfiler 
[14]. Entry screening criteria of P-value < 0.05 and FDR 
value (q.value) < 0.05 were considered statistically sig-
nificant, with P-value correction applied using the Benja-
mini–Hochberg method.

Gene Set Enrichment Analysis (GSEA)

We obtained data from the Molecular Signatures Database 
“m2.all.v2022.1” gene set, specifically using the “Mm.
symbols.gmt” gene set. GSEA [15] was performed with the 
expressed genes in the GSE39501 dataset, with the screen-
ing criteria P-value < 0.05 and FDR value (q.value) < 0.25 
indicating significant enrichment.

Gene Set Variation Enrichment Analysis (GSVA)

We obtained the “m2.all.v2022.1” gene set from Molecular 
Signatures Database. GSVA [16] was used to analyze the 
GSE39501 dataset for calculating the difference in func-
tional enrichment between the Normal and POI groups.

WGCNA

We performed WGCNA [17] on the GSE39501 dataset using 
the R package WGCNA. Selected genes with |logFC|> 0 and 
P-value < 0.05 were inputted in the WGCNA. The minimum 

Table 1   Premature ovarian insufficiency (POI) dataset information

POI: premature ovarian insufficiency

Species Mus musculus

Samples in Normal group 3
Samples in POI group 3
GPL GPL6887
Reference [8]
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number of module genes was set to 100, and the softpower 
was optimized with a soft threshold of 14. The combined 
shear height of the modules was set to 0.2, and the mini-
mum distance was set to 0.2 to assess the correlation of the 
Normal and POI groups with different modules. Genes in 
each module were recorded, and module eigengenes were 
considered. After selecting the modules of interest based 
on the correlation values, we identified all genes within the 
module as DEGs that are highly associated with POI.

Immune infiltration analysis

In this study, the immune cell infiltration status in the 
GSE39501 dataset was evaluated using the CIBERSORT 
(https://​ciber​sort.​stanf​ord.​edu/) [18] algorithm. Spearman 
correlation was employed to assess the correlation between 
various immune cells, and thus, determine the correla-
tion between genes with high correlation to candidate and 
immune infiltrating cells. The correlation between immune 
cells and ICRDEGs combined with the gene expression 
matrix of the POI dataset was then assessed, and the cor-
relation heat map was drawn using the R package pheatmap.

The enrichment scores calculated by the single-sample 
GSEA (ssGSEA) [19] algorithm in the R package GSVA 
were used to represent the infiltration level of each immune 
cell type in each sample, and the correlation between the 
immune infiltrating cells was determined by Spearman cor-
relation analysis.

For Spearman correlation analysis based on MCPcounter 
abundance estimates as well as expression of antigen genes, 
a P-value < 0.05 was considered statistically significant.

Protein–protein interaction (PPI) networks 
and mRNA‑microRNA (miRNA) mRNA‑RNA binding 
protein (RBP) mRNA‑transcription factor (TF) 
interaction networks

In this study, we used the STRING database [20] to screen 
the ICRDEGs selected from the differential analysis to con-
struct PPI networks associated with DEGs and to visual-
ize the PPI network model using Cytoscape. The closely 
linked local regions of the PPI network, which may represent 
molecular complexes, have specific biological functions.

The ENCORI [21] (https://​starb​ase.​sysu.​edu.​cn/) and 
miRDB databases [22] were used for miRNA target gene 
prediction and functional annotation. We used the ENCORI 
and miRDB databases to predict the miRNAs interacting 
with hub genes (mRNA) and then utilized the intersection 
part of the results of the two databases to draw the mRNA-
miRNA interaction network.

We searched for TFs bound to hub genes (mRNA) using 
the CHIPBase database [23] (version 3.0; https://​rna.​sysu.​
edu.​cn/​chipb​ase/).

Correlation analysis and receiver operating 
characteristic curve analysis of DEGs

The pROC package was used to plot the receiver operating 
characteristic curves of hub genes in the Normal and POI 
groups in the two datasets, and the area under the curve 
was calculated to evaluate the diagnostic value of hub gene 
expression for POI.

Statistical analysis

All data processing and analyses in this study were per-
formed using R software (Version 4.1.2). For the compari-
son of two continuous variables, the statistical significance 
of normally distributed variables was estimated using the 
independent Student’s t-test, and differences between non-
normally distributed variables were analyzed using the 
Mann–Whitney U test (i.e., Wilcoxon rank sum test). Chi-
square or Fisher's exact tests were used to compare and 
analyze the statistical significance between two groups of 
categorical variables. If not explicitly specified, the results 
were calculated as correlation coefficients between different 
molecules by Spearman correlation analysis, and all P-val-
ues were two-sided, with P < 0.05 considered statistically 
significant.

Results

Technical roadmap

Data standardization

This study mainly explored the biological characteristics of 
POI using bioinformatics methods, and a flow chart of the 
overall analysis is shown in Fig. 1. In the GSE39501 dataset, 
the samples were divided into the POI and Normal groups. 
Subsequently, the GSE39501 dataset (Fig. 2A–B) was stand-
ardized, data cleaning operations, such as annotated probes, 
were performed, and the data distribution before and after 
standardization was boxed. After normalization, the expres-
sion trends converged across different samples in the dataset.

Analysis of DEGs associated with POI

There were 9209 DEGs in total, including 4309 genes being 
up-regulated, and 4900 genes being down-regulated. We 
visualized the results with a volcano map based on the dif-
ferential analysis of this dataset (Fig. 3A).

To obtain ICRDEGs, we took the intersection of DEGs 
and immune checkpoint-related genes with |logFC|> 0 and 

https://cibersort.stanford.edu/
https://starbase.sysu.edu.cn/
https://rna.sysu.edu.cn/chipbase/
https://rna.sysu.edu.cn/chipbase/
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P-values < 0.05 obtained in the GSE39501 dataset. This pro-
cess yielded 14 ICRDEGs. The results were visualized using 
a Venn diagram (Fig. 3B).

We also analyzed the differences in expression between 
POI and Normal groups in the GSE39501 dataset (Fig. 3C) 
and used the R package pheatmap to generate a heat map 
illustrating the expression patterns of the 14 identified 
ICRDEGs (Btla, Btnl2, Cd160, Cd200, Cd274, Cd276, 
Cd28, Cd40lg, Cd44, Cd47, G0s2, Klrd1, neurociliary 
protein-1 [Nrp1], and Pdcd1). The results showed that 14 
DEGs clustered significantly in the two groups within the 
GSE39501 dataset.

Functional and pathway enrichment analyses 
of ICRDEGs

To analyze the biological processes associated with the 14 
ICRDEGs along with their molecular function, cellular com-
ponent, biological pathways, and relation with POI, we first 
performed GO (Table 2) and KEGG (Table 3) enrichment 
analysis for ICRDEGs. The screening criterion for enrich-
ment entries was defined as P-value < 0.05, with an asso-
ciated FDR value (q.value) < 0.05, considered statistically 
significant. The results of GO functional enrichment analysis 
and KEGG enrichment analysis are displayed as a bubble 
map (Fig. 4A–B) and a ring network map (Fig. 4C–D). Sub-
sequently, we showed the results of GO function enrichment 
analysis of ICRDEGs combined with logFC (Fig. 4E–F).

The results of these analyses showed that the genes were 
mainly enriched in the regulation immunity and inflam-
mation biological process(GO:0032088). For the cel-
lular component, the gene were mainly enriched the car-
riers of biomarkers in extracellular spaces(GO:0070062). 
Finally, regarding molecular function, the genes were 
mainly enriched in the receptor function(GO:0017154). 
Furthermore, KEGG enrichment analysis revealed that the 
ICRDEGs were mainly associated with pathways, such as 
cell adhesion molecules (mmu04514), T cell receptor signal-
ing pathway (mmu04660), allograft rejection (mmu05330), 
graft-versus-host disease (mmu05332), autoimmune thyroid 
disease (mmu05320), extracellular matrix-receptor interac-
tion (mmu04512), viral myocarditis (mmu05416), and pri-
mary immunodeficiency (mmu05340).

We used the R package Pathview (Fig. 5) to illustrate the 
results for cell adhesion molecules (Fig. 5A), T cell receptor 
signaling pathway (Fig. 5B), allograft rejection (Fig. 5C), 
primary immunodeficiency (Fig. 5D), and four KEGG path-
ways in the KEGG enrichment analysis.

GSEA and GSVA enrichment analysis of the POI 
dataset

To determine the effect of gene expression levels on POI, we 
analyzed the links between gene expression in the Normal and 
POI groups and biological processes, affected cellular com-
ponents, and molecular functions using GSEA enrichment 

Fig. 1   Technical Roadmap. 
POI: Premature ovarian insuf-
ficiency. GSEA: Gene Set 
Enrichment Analysis. GSVA: 
Gene Set Variation Analysis. 
ssGSEA: single-sample Gene 
Set Enrichment Analysis. 
GO: Gene Ontology. KEGG: 
Kyoto Encyclopedia of Genes 
and Genomes. PPI network: 
Protein–Protein Interaction 
network. ROC: Receiver 
Operating Characteristic PCA: 
Principal Component Analysis. 
ICRDEGs: immune checkpoint-
related differentially expressed 
genes. DEGs: Differentially 
Expressed Senes
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Fig. 2   Boxplot before and after 
correction of the GSE39501 
dataset for POI. A. Box plot 
of gene expression distribu-
tion between samples in the 
GSE39501 dataset before 
correction. B. Box plot of gene 
expression distribution among 
samples for the corrected 
GSE39501 dataset. Yellow 
represents the normal group 
and purple represents the POI 
sample group. POI: Premature 
ovarian insufficiency

Fig. 3   Differential gene analysis of the premature ovarian insuf-
ficiency dataset. A. Volcano plots of differential genes in the 
GSE39501 dataset. B. Venn diagram of the DEGs and ICRGs in the 

GSE39501 dataset. C. Heat map of differentially expressed genes in 
the GSE39501 dataset. DEGs: differentially expressed genes. ICRGs: 
immune checkpoint-related genes
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analysis. All genes in the GSE39501 dataset were signifi-
cantly enriched in the phosphatidylinositol 3-kinase (PI3K)-
AKT pathway (Fig. 6B), MAPK pathway (Fig. 6C), TGFbeta 
pathway (Fig. 6D), WNT pathway (Fig. 6E), NOTCH pathway 
(Fig. 6F), HEDGEHOG pathway (Fig. 6G), TP53 pathway 
(Fig. 6H), and other pathways (Table 4).

To explore the differences in the GSE39501 dataset 
between the POI samples and the corresponding normal 
samples, we performed GSVA enrichment analysis (Fig. 6I) 
and assessed the differences in functional enrichment. The 
results showed that the IL-2 pathway isogene set showed 
differences between the POI and Normal groups (Table 5).

WGCNA analysis to identify the co‑expression 
module in the GSE39501 dataset

We performed a WGCNA of all |logFC|-expressed genes 
(DEGs) in the GSE39501 dataset to screen for co-expression 

modules. In the course of the WGCNA, we first clustered 
the POI and Normal groups in GSE39501 using cluster tree 
and annotated the grouping information (without setting cut 
height). Subsequently, we set a screening criterion of 0.9 
to determine the optimal number of modules. DEGs were 
clustered in 14 modules: MEcyan, MEdarkgrey, MEdar-
kred, MEorange, MEred, MEdarkorange, MEmidnightblue, 
MEpurple, MEdarkturquoise, MEgrey60, MElightyellow, 
MElightcyan, MEblue, and MEmagenta (Fig. 7A). Sub-
sequently, we performed another round of clustering of 
the DEGs, visualizing the relation between the genes and 
their corresponding new modules. Finally, according to the 
expression pattern of the module genes and the different 
grouping information of the GSE39501 dataset, we obtained 
14 modules (MEcyan, MEdarkgrey, MEdarkred, MEorange, 
MEred, MEdarkorange, MEmidnightblue, MEpurple, 
MEdarkturquoise, MEgrey60, MElightyellow, MElight-
cyan, MEblue, and MEmagenta). The correlation between 

Table 2   GO enrichment analysis results of ICRDEGs

ICRDEGs: immune checkpoint-related differentially expressed genes. GO: Gene Ontology. BP: Biological Process. CC: Cellular Component. 
MF: Molecular Function

ONTOLOGY ID Description GeneRatio BgRatio pvalue p.adjust qvalue

BP GO:1903037 regulation of leukocyte cell–cell adhesion 9/14 287/23210 1.13e-14 7.44e-12 2.72e-12
BP GO:0050863 regulation of T cell activation 9/14 304/23210 1.91e-14 7.44e-12 2.72e-12
BP GO:0007159 leukocyte cell–cell adhesion 9/14 319/23210 2.95e-14 7.67e-12 2.80e-12
BP GO:1903039 positive regulation of leukocyte cell–cell adhesion 8/14 203/23210 8.56e-14 1.67e-11 6.10e-12
BP GO:0022407 regulation of cell–cell adhesion 9/14 395/23210 2.03e-13 3.17e-11 1.16e-11
CC GO:0070062 extracellular exosome 2/14 90/23436 0.001 0.029 0.023
CC GO:1903561 extracellular vesicle 2/14 98/23436 0.002 0.029 0.023
CC GO:0043230 extracellular organelle 2/14 113/23436 0.002 0.029 0.023
CC GO:0005883 neurofilament 1/14 10/23436 0.006 0.064 0.050
CC GO:0005769 early endosome 2/14 263/23436 0.010 0.090 0.070
MF GO:0023023 MHC protein complex binding 2/13 12/22710 1.99e-05 7.56e-04 4.40e-04
MF GO:0098632 cell–cell adhesion mediator activity 2/13 30/22710 1.30e-04 0.002 0.001
MF GO:0098631 cell adhesion mediator activity 2/13 39/22710 2.21e-04 0.003 0.002
MF GO:0005539 glycosaminoglycan binding 2/13 208/22710 0.006 0.043 0.025
MF GO:1990405 protein antigen binding 1/13 11/22710 0.006 0.043 0.025

Table 3   KEGG enrichment analysis results of ICRDEGs

ICRDEGs: immune checkpoint related differentially expressed genes. KEGG: Kyoto Encyclopedia of Genes and Genomes

ONTOLOGY ID Description GeneRatio BgRatio P-value p.adjust q.value

KEGG mmu04514 Cell adhesion molecules 5/9 175/8910 3.26e-07 8.81e-06 5.15e-06
KEGG mmu05235 PD-L1 expression and PD-1 check-

point pathway in cancer
3/9 88/8910 7.49e-05 0.001 5.91e-04

KEGG mmu04660 T cell receptor signaling pathway 3/9 103/8910 1.20e-04 0.001 6.31e-04
KEGG mmu04672 Intestinal immune network for IgA 

production
2/9 43/8910 8.02e-04 0.005 0.003

KEGG mmu05330 Allograft rejection 2/9 64/8910 0.002 0.008 0.005
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the two groups in GSE39501 is depicted in (Fig. 7B). Sub-
sequently, we applied a module merge shear height of 0.2 
to shear and combine modules with a merge shear height 
below 0.2 (Fig. 7C).

First, we conducted a subsequent analysis of DEGs in 
the 14 modules (MEblue, MEdarkgrey, MEdarkred, MEmid-
nightblue, MEred, and MEorange) (P < 0.05, absolute cor-
relation value 0.5). Second, we crossed the ICRDEGs in the 
GSE39501 dataset and the DEGs included in the six mod-
ules and generated a Venn diagram (Fig. 7D–I) to obtain the 
modules. As shown in Fig. 7, we obtained seven ICRDEGs 
(Cd200, Cd274, Cd28, Nrp1, Cd276, Cd40lg, and Cd47) as 
hub genes for our subsequent study.

We annotated the human chromosome locations for the 
seven hub genes and visualized them in a circle (Fig. 7J). 

The chromosome locations are as follows: CD28 on chro-
mosome 2, CD47 and CD200 on chromosome 3, CD274 
on chromosome 6, NRP1 on chromosome 10, CD276 on 
chromosome 15, and CD40LG on chromosome X.

We performed a functional similarity analysis of the 
seven hub genes by calculating the GO terms using the R 
package GOSemSim package. The analysis included the 
identification of GO Term Set (sets of GO terms), measur-
ing the Semantic similarity between the gene products and 
gene cluster. Subsequently, the results of the functional 
similarity analysis between the seven hub genes were visu-
alized through a boxplot (Fig. 7K). The results showed 
that Cd274 has the highest functional similarity with the 
other hub genes.

Fig. 4   Functional enrichment 
analysis (GO) and pathway 
enrichment (KEGG) analysis 
of ICRDEGs. A–B. Bubble 
diagram display of GO function 
enrichment analysis (A) and 
KEGG pathway enrichment 
analysis (B) of ICRDEGs. 
C–D. Ring network diagram 
display of GO function enrich-
ment analysis (C) and KEGG 
pathway enrichment analysis 
(D) of ICRDEGs. E–F. GO 
function enrichment analysis 
(E) and KEGG pathway enrich-
ment analysis (F) of ICRDEGs. 
ICRDEGs: immune checkpoint-
related differentially expressed 
genes. GO: Gene Ontology. 
BP: Biological Orocess. CC: 
Cellular Component. MF: 
Molecular Function. KEGG: 
Kyoto Encyclopedia of Genes 
and Genomes. The screen-
ing criteria for the GO and 
KEGG enrichment entries were 
P-value < 0.05 and FDR value 
(q.value) < 0.05
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Fig. 5   Pathway enrichment (KEGG) analysis of ICRDEGs. A–D 
Pathway enrichment (KEGG) enrichment analyses results for 
ICRDEGs. KEGG pathway cell adhesion molecules (A), T cell 
receptor signaling pathway (B), allograft rejection (C), and primary 

immunodeficiency (D). ICRDEGs: immune checkpoint-related differ-
entially expressed genes. KEGG: Kyoto Encyclopedia of Genes and 
Genomes
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Fig. 6   GSEA and GSVA enrichment analysis for the GSE39501 
Dataset. A. GSEA enrichment analysis of the GSE39501 data-
set. B–H. Differential genes in the GSE39501 dataset were sig-
nificantly enriched in the PI3K-AKT pathway (B), MAPK pathway 
(C), TGFBETA pathway (D), WNT pathway (E), NOTCH pathway 
(F), HEDGEHOG pathway (G), and TP53 pathway (H). I. GSVA 

analysis of the GSE39501 dataset. Yellow represents the Normal 
group and purple represents the POI group. POI: premature ovarian 
insufficiency. GSEA: Gene Set Enrichment Analysis. GSVA: Gene 
Set Variation Analysis. The screening criteria for determining sig-
nificant enrichment in GSEA and GSVA enrichment analyses were 
P-value < 0.05 and FDR value (q.value) < 0.25
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Expression and correlation analyses of the hub 
genes in the dataset

To further explore the differences in expression of the hub 
genes in the POI dataset, we selected the seven hub genes 
screened by constructing the WGCNA network (Cd200, 
Cd274, Cd28, Nrp1, Cd276, Cd40lg, and Cd47) and fur-
ther analyzed the correlation between the expression level 
in the GSE39501 dataset (Fig. 8A) and the Normal and POI 
groups. The results showed that the expression of hub gene 
Cd200 in the GSE39501 dataset was statistically significant 
(P < 0.001). The expression levels of hub genes Cd274, 
Cd276, Cd40lg, Cd47, and Nrp1 were significantly different 

between the Normal and POI groups (P < 0.01). Addition-
ally, the expression levels of hub gene Cd28 showed statisti-
cal significance in the Normal and POI groups (P < 0.05).

To further assess the correlation between the seven hub 
genes, we generated a heat map of the correlation between 
genes (Fig. 8B–H) and noted a statistically significant dif-
ference between Cd47 and Cd40lg (P = 0.033). The correla-
tion between Nrp1 and Cd200 showed a highly significant 
difference (P = 0.003).

To explore the differences in the expression of the seven 
hub genes in the POI dataset, we verified the differential 
expression of the genes among the Normal and POI groups, 
and the results are shown in Supplementary File Fig. S1.

Table 4   GSEA analysis of GSE39501

GSEA: Gene Set Enrichment Analysis

Description setSize enrichmentScore NES P-value p.adjust q.values

WP_PI3KAKT_SIGNALING_PATHWAY​ 303 -0.376173126 -1.598679568 0.002932551 0.028937013 0.02073761
BIOCARTA_MAPK_PATHWAY​ 79 -0.425258851 -1.521016048 0.011363636 0.059096028 0.042350963
WP_TGFBETA_SIGNALING_PATHWAY​ 124 -0.397233262 -1.525287822 0.00973236 0.055078479 0.039471801
ST_WNT_BETA_CATENIN_PATHWAY​ 34 -0.505713349 -1.526616872 0.027484144 0.102594864 0.073524253
REACTOME_SIGNALING_BY_NOTCH 171 -0.32276312 -1.290532187 0.048 0.152871724 0.109554991
REACTOME_HEDGEHOG_LIGAND_BIOGENESIS 62 -0.446509357 -1.527778106 0.015384615 0.070622419 0.050611312
REACTOME_REGULATION_OF_TP53_ACTIVITY 137 -0.441052681 -1.716255162 0.002475248 0.026832613 0.019229499
KEGG_VIRAL_MYOCARDITIS 54 0.627075344 1.986349836 0.001801802 0.026832613 0.019229499
KEGG_LEISHMANIA_INFECTION 61 0.624971251 2.014187572 0.001808318 0.026832613 0.019229499
KEGG_DRUG_METABOLISM_CYTOCHROME_

P450
59 0.551351776 1.767894742 0.001811594 0.026832613 0.019229499

REACTOME_INTERFERON_GAMMA_SIGNAL-
ING

71 0.634411829 2.085915206 0.001814882 0.026832613 0.019229499

REACTOME_COMPLEMENT_CASCADE 43 0.714853598 2.182780888 0.001824818 0.026832613 0.019229499
KEGG_ANTIGEN_PROCESSING_AND_PRESEN-

TATION
51 0.628595144 1.972941257 0.001834862 0.026832613 0.019229499

KEGG_SYSTEMIC_LUPUS_ERYTHEMATOSUS 52 0.715392314 2.247654932 0.001834862 0.026832613 0.019229499
REACTOME_ANTIMICROBIAL_PEPTIDES 51 0.683319413 2.14470168 0.001834862 0.026832613 0.019229499

Table 5   GSVA analysis of the GSE39501 dataset

GSVA: Gene Set Variation Analysis

logFC AveExpr t P-value adj.P.Val

GAVIN_IL2_RESPONSIVE_FOXP3_TARGETS_DN 1.236872591 0.025409892 9.520929316 2.91E-05 0.001366311
BIOCARTA_RARRXR_PATHWAY​ 1.205013925 0.042861334 9.392266038 3.18E-05 0.001366311
REACTOME_SYNTHESIS_OF_PI 1.12142358 -0.011477326 8.90115136 4.52E-05 0.001366311
REACTOME_PROTEIN_REPAIR 1.243469862 -0.022293938 8.777474541 4.95E-05 0.057411212
REACTOME_ACROSOME_REACTION_AND_SPERM_OOCYTE_

MEMBRANE_BINDING
1.288114651 -0.007619104 8.701379223 5.24E-05 0.124694938

REACTOME_RHO_GTPASES_ACTIVATE_ROCKS 1.111268476 -0.003744006 8.542065419 5.91E-05 0.124694938
REACTOME_ERYTHROCYTES_TAKE_UP_OXYGEN_AND_

RELEASE_CARBON_DIOXIDE
1.043380907 -0.015671294 8.520553726 6.00E-05 0.150420308

REACTOME_P75NTR_REGULATES_AXONOGENESIS 1.072790364 -0.010737151 8.511929511 6.04E-05 0.21282653
SCHAEFFER_PROSTATE_DEVELOPMENT_AND_CANCER_

BOX5_DN
1.007028576 -0.043604521 8.187051178 7.76E-05 0.272935559
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Fig. 7   WGCNA analysis identifies the co-expression module in 
the GSE39501 dataset. A. Sample module screening threshold in 
the GSE39501 dataset. B. Correlation analysis between cluster-
ing modules of DEGs and different groups in the GSE39501 data-
set. C. Results of DEGs in the GSE39501 dataset. D-I. DEGs in the 
GSE39501 dataset shown in Venn diagrams. MEblue (D), MEdark-

grey (E), MEdarkred (F), MEmidnightblue (G), MEorange (H), and 
MEred (I). J. Chromosomal localization map of hub genes. K. Visual 
presentation of hub genes Friends analysis. WGCNA: Weighted Gene 
Association Network Analysis. POI: Premature Ovarian Insufficiency. 
DEGs: Differentially Expressed Genes. ICRDEGs: immune check-
point-related differentially expressed genes
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PPI and mRNA‑miRNA mRNA‑TF mRNA‑RBP 
interaction networks

We used the STRING database for seven ICRDEGs (Cd200, 
Cd274, Cd28, Nrp1, Cd276, Cd40lg, and Cd47) for the PPI 
analysis, taking the minimum intercorrelation coefficient 
greater than 0.400 (minimum required interaction score: 
low confidence [0.150]) as the standard. The resulting PPI 
network was visualized and mapped using Cytoscape soft-
ware (Fig. 9A).

We used the mRNA-miRNA data from the ENCORI and 
miRDB databases with seven ICRDEGs (Cd200, Cd274, 
Cd28, Nrp1, Cd276, Cd40lg, and Cd47) for prediction of 

the interacting miRNAs. Subsequently, the intersection 
of the two database results was visualized by drawing the 
mRNA-miRNA interaction network using Cytoscape soft-
ware (Fig. 9B). Our mRNA-miRNA interaction network 
is composed of seven hub genes (mRNA) (Cd200, Cd274, 
Cd28, Nrp1, Cd276, Cd40lg, and Cd47), and a total of 112 
miRNA molecules, resulting in 121 mRNA-miRNA interac-
tion pairs (Table S2).

We searched for the TFs bound to the hub genes using 
the CHIPBase database (version 3.0). The mRNA-TF inter-
action network was then visualized using Cytoscape soft-
ware (Fig. 9C), resulting in interaction data for six hub 
genes (mRNA) (Cd47, Cd200, Cd274, Cd276, Nrp1, and 

Fig. 8   Differential expression and correlation analyses of the hub 
genes in the GSE39501 dataset. A. Comparative analysis of the 
expression levels of the hub genes in the GSE39501 dataset. B–H 
Scatter plots displaying correlation analysis results (CorResults) 
of the hub genes in the GSE39501 dataset. The symbol * indicates 

P < 0.05, which represents some statistical significance. The symbol 
* * indicates P < 0.01, representing high statistical significance. The 
symbol * * * indicates P < 0.001 and represents very high statistical 
significance. ICRDEGs: immune checkpoint-related differentially 
expressed genes. POI: premature ovarian insufficiency
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Fig. 9   Protein–protein interaction (PPI) and mRNA-miRNA, mRNA-
TF, mRNA-RBP interaction networks. A. The PPI network of the 
ICRDEGs. B. The hub genes-miRNA interaction network. C. The 
hub genes-transcription factor interaction network. D. The hub genes-

RBP interaction network. Yellow ellipse depicts mRNA. The blue 
ellipse depicts miRNA. The pink ellipse depict transcription factors. 
The green ellipse depicts the RBP. POI: premature ovarian insuffi-
ciency
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Cd40lg) and 101 TFs, forming 124 mRNA-TF interaction 
pairs (Table S3).

We used the mRNA-RBP data from the ENCORI data-
base to predict interactions with seven ICRDEGs (Cd200, 
Cd274, Cd28, Nrp1, Cd276, Cd40lg, and Cd47). The data-
base results were then visualized as an mRNA-RBP inter-
action network using Cytoscape software (Fig. 9D). Our 
mRNA-RBP interaction network is composed of six hub 
genes (mRNA) (Cd200, Cd274, Cd276, Cd28, Cd47, and 
Nrp1) and 17 RBP molecules, forming a total of 42 mRNA-
RBP interaction pairs (Table S4).

Immune infiltration analysis of the POI dataset

We used the CIBERSORT algorithm to calculate the corre-
lation between the expression profile data of the Normal and 

POI groups from 22 immune cells in the GSE39501 dataset. 
Based on the results of the immune infiltration analysis, we 
plotted the infiltration of 22 immune cells in each sample of 
the GSE39501 dataset (Fig. 10A) using bar charts.

We analyzed the differences in gene expression in 22 
immune cells among the Normal and POI groups and gen-
erated a group comparison diagram. The results are shown 
in Supplementary File Fig. S1.

We used the ssGSEA algorithm to calculate the correla-
tion between the expression profile data of the Normal and 
POI groups. Based on the results of the immune infiltra-
tion analysis, we identified a correlation between seven hub 
genes (Cd200, Cd274, Cd28, Nrp1, Cd276, Cd40lg, and 
Cd47) (Fig. 10B) (P < 0.05). In the GSE39501 dataset, a 
strong correlation was observed between the abundance of 
infiltrating immune cells, immature B cells, and CD40LG.

Fig. 10   Analysis of immune 
infiltration in the GSE39501 
dataset (CIBERSORT). A. Bar 
graph of immune infiltration 
results of 22 immune cells. 
B–C. Heat map of the correla-
tion analysis of ICRDEGs and 
immune cell expression. The 
symbol * indicates P < 0.05, 
which represents statistical 
significance. The symbol ** 
indicates P < 0.01, represent-
ing high statistical significance. 
ICRDEGs: immune checkpoint-
related differentially expressed 
genes. POI: premature ovarian 
insufficiency. In the heatmap, 
circles indicate genes with 
a positive correlation with 
the infiltration abundance of 
immune cells. Larger circles 
indicate stronger correlations. 
Yellow circles represent a 
negative correlation between 
genes and infiltration abundance 
of immune cells, with larger 
circles indicating a stronger 
correlation
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We assessed the correlation between the expression pro-
files of the Normal and POI groups in the GSE39501 dataset 
(Fig. 10C) using the MCPCounter algorithm. MCPCounter 
showed that the NRP1, CD47, CD40LG, CD28, CD276, 
CD274, and CD200 genes were significantly positively asso-
ciated with a variety of immune cells.

Discussion

In a previous study, Wagner et al. used single-cell sequenc-
ing to demonstrate macrophages and T cells account for 
0.5% of the ovarian cortex [24]. These immune cells can be 
involved in abnormal ovarian functions, such as abnormal 
ovulation [25], reduced oocyte number [26], destruction of 
the ovarian periodic angiogenesis system [27], and increased 
follicular atresia [25]. However, at present, the mechanism 
of ovarian dysfunction caused by immune-related reasons is 
not clear, and there is no specific immune diagnostic index 
for early diagnosis of ovarian failure. Therefore, it is neces-
sary to elucidate the immune mechanisms related to ovarian 
disease. In this study, we first identified DEGs and immune 
checkpoint genes associated with POI. We then analyzed 
their related pathways and biological functions, and used 
WGCNA to select seven core genes. We finally performed a 
series of analyses of core genes to analyze and predict their 
associated potentially pathogenic mechanism.

There are 14 ICRDEGs, according to GO function enrich-
ment analysis, ICRDEGs were mainly involved in the regu-
lation immunity and inflammation biological process. The 
four pathways enriched in KEGG analysis were all involved 
in the T cell receptor signaling pathway. T cell-mediated 
immune responses can be divided into T cell activation, pro-
liferation, and differentiation. T cell activation requires co-
stimulation of dual signals, the first signal comes from the 
antigen and requires the interaction and binding of the major 
histocompatibility complex-antigen peptide complex on the 
antigen-presenting cell surface with T cell receptor, which 
ensures antigen specificity of the immune response. The sec-
ond signal is a costimulatory molecule, which ensures that 
the immune response occurs only under the desired condi-
tions. The dual-signal stimulation mode of T cell activation 
is a fail-safe mechanism, and the second signal ensures the 
correct timing and site of initiating T cell response. The 
lack of a second signal can keep autoreactive T cells in a 
nonresponsive state, which favors autoimmune tolerance and 
prevents the activation of autoreactive T lymphocytes. CD28 
and CTLA-4 are involved in the regulation of T cell activa-
tion. Studies have shown that genetic defects in CTLA-4 lead 
to CD28-mediated severe autoimmunity [28]. Based on our 
analysis, we can suspect POI-related immune checkpoint 
genes are involved in abnormal T cell activation, poten-
tially contributing to the occurrence of disease. This insight 

provides a promising direction for future investigations into 
the relationship between T cell activation and POI.

According to the GSVA results, all genes in the 
GSE39501 datset were significantly enriched in the phos-
phatidylinositol 3-kinase-AKT pathway, MAPK pathway, 
TGFbeta pathway, WNT pathway, NOTCH pathway, HEDE-
GHOG pathway and TP53 pathway. Members of the phos-
phatidylinositol 3-kinase family has important functions 
in the immune system. PI3K is an important downstream 
effector of BCR signaling, further activating the expression 
of other genes involved in B cell proliferation, differentia-
tion, and innate immune [29]. The MAPK pathway is a 
canonical inflammatory pathway and key regulator of the 
inflammatory response and innate immunity. The GSVA 
results showed that the IL-2 pathway isogene set showed 
differences between the POI and Normal groups. IL-2 is 
the result of T cell stimulation and further promotes T cell 
stimulation[30, 31]. The enrichment of the IL-2 pathway 
suggested an adaptive immune component to POI. These 
results indicate that the genes and pathways that were sig-
nificantly different between the disease and normal group 
samples of the GSE39501 dataset involved both innate and 
adaptive immunity, as well as inflammatory responses.

The WGCNA-ICRDEG intersection identified seven 
core genes, Cd200, Cd274, Cd28, Nrp1, Cd276, Cd40lg, 
and Cd47 as well as 112 miRNAs, 101 TFs, and 17 RBPs 
regulatory networks for the core genes. Expression and cor-
relation analyses of core genes in the dataset showed that 
CD200 was differentially expressed in the Normal and POI 
groups, and the correlation between Nrp1 and CD200 was 
significant in the POI dataset.

CD200 (OX-2) belongs to the type I membrane glycopro-
tein and immunoglobulin superfamily [32] and is expressed 
in epithelial cells, endothelial cells, fibroblasts, lymphocytes, 
neurons, ovarian granulosa cells, downregulated myeloid 
cells (neutrophils, macrophages, and dendritic cells). Stud-
ies have shown that CD200 regulates immune and inflam-
matory responses [33] by regulating CD200R to inhibit 
macrophage activation and transmit immunosuppressive 
signals to macrophages. Studies have also shown that mac-
rophages are ubiquitous in the female reproductive system, 
playing physiological roles in the female menstrual cycle 
and participating in the regulation of the pituitary–gonadal 
axis [34]. The proportion of macrophage subsets in old mice 
is significantly increased [26] when compared with that in 
younger mice. Thus, we need conduct further experimental 
studies to verify the mechanism by which CD200-mediated 
POI increases the susceptibility to ovarian immune diseases 
due to disruptions in macrophages physiological function.

The correlation analyses revealed a significant correlation 
between Nrp1 and CD200. Nrp1 is a transmembrane glyco-
protein with important roles in embryonic tissue develop-
ment, angiogenesis, and tumor metastasis [35]. Both Nrp1 
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and CD200 function as negative regulators of the immune 
response. While their roles in reproductive functions are less 
explored, the potential involvement of both in the immune 
pathogenesis of POI requires further research.

The negative regulation of the immune response and 
physiological function by the core genes previously men-
tioned serves to prevent immune damage to body tissue 
and reduce immune activation. Any abnormality in these 
regulatory mechanisms can lead to unpredictable immune 
damage. Although the exact causes of POI are still unclear, 
numerous experiments have demonstrated the involvement 
of immune system disorders in its pathogenesis [36]. The 
immune checkpoint molecules discussed previously could 
serve as focal points for future investigations into immune-
related genes.

The results of the immune infiltration analysis showed 
a strong correlation between the infiltration abundance of 
immature B cells and CD40LG in the ssGSEA algorithm, 
indicating that CD40LG may play an important role in 
regulating or affecting the infiltration abundance of imma-
ture B cells. MCPCounter showed that the NRP1, CD47, 
CD40LG, CD28, CD276, CD274, and CD200 genes were 
positively associated with a variety of immune cells, 
implying that the core gene plays an important role in the 
immune regulation of POI, although the specific regula-
tory mechanism requires further study.

Conclusions

The results of this study indicate that T cell-mediated 
immune and inflammatory responses may be involved in 
the pathogenesis of premature ovarian aging. Furthermore, 
there is a need for future investigation into the effects of the 
T cell receptor signaling pathway and immune checkpoint 
molecules CD200 and NRP1 on the ovarian immune system.
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