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Abstract
Over the past two decades, the importance of fertility preservation has grown not only in the realm of medical and clinical 
patient care, but also in the field of basic and applied research in human reproduction. With advancements in cancer treat-
ments resulting in higher rates of patient survival, it is crucial to consider the quality of life post-cure. Therefore, fertility 
preservation must be taken into account prior to antitumor treatments, as it can significantly impact a patient’s future fertil-
ity. For postpubertal patients, gamete cryopreservation is the most commonly employed preservation strategy. However, 
for prepubertal patients, the situation is more intricate. Presently, ovarian tissue cryopreservation is the standard practice 
for prepubertal girls, but further scientific evidence is required in several aspects. Testicular tissue cryopreservation, on the 
other hand, is still experimental for prepubertal boys. The primary aim of this review is to address the strategies available 
for possible fertility preservation in prepubertal girls and boys, such as ovarian cryopreservation/transplantation, in vitro 
follicle culture and meiotic maturation, artificial ovary, transplantation of cryopreserved spermatogonia, and cryopreserva-
tion/grafting of immature testicular tissue and testicular organoids.

Keywords Fertility preservation · Cryopreservation · Testis · Ovary · Gametes · Pre- and postpubertal patients · Pediatric 
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Introduction

According to estimates provided by the IARC World Cancer 
Observatory  [1], nearly 280,000 children and adolescents 
between the ages of 0 and 19 were diagnosed globally in 
2020, with nearly 110,000 children dying of the disease. 
Leukemia represents the most frequent oncological disease, 
followed by central nervous system tumors and lympho-
mas. Although the actual figures may be higher, as child-
hood cancer is difficult to diagnose in many countries, early 
diagnosis, adequate treatment, and comprehensive patient 
care allow a survival rate between 70 and 80%. These high 
survival rates suggest that the number of childhood can-
cer survivors is on the rise, underscoring the importance of 

considering the quality of life of these patients. This implies 
not only providing medical follow-up for life, as many sur-
vivors suffer serious late effects such as the onset of new 
cancer, but also the possibility of parenthood in the future.

The reproductive capacity of cancer patients may be 
impacted by antitumor treatments, particularly when uti-
lizing alkylating agents such as cyclophosphamide, busul-
fan, and dacarbazine, as noted in previous studies [2–4]. It 
has been observed that chemotherapy and/or radiotherapy 
treatment leads to a decline in fertility in roughly 30% 
of children [4]. The likelihood of gonadotoxicity linked 
to chemotherapy is dependent upon various factors, such 
as the specific drugs employed, treatment protocols, dos-
ages, administration intervals, and the age of the patient. 
Chemotherapeutic medications may be classified as “high 
or medium risk” (alkylating agents, platinum agents, 
antitumor antibiotics, and antimetabolites such as cyta-
rabine) or “low risk” (antimetabolites like methotrexate; 
antitumor antibiotics such as etoposide) with regard to the 
potential risk they pose to male and female fertility [5]. 
Consequently, it is imperative to take into account fertil-
ity conservation measures prior to commencing treatment. 
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Similarly, it is worth contemplating the inclusion of drugs 
that are less cytotoxic in the long run, such as vinca alka-
loids, which may have an immediate impact on fertility 
[6].

During the previous two decades, fertility preservation 
has acquired significance not only in medical and clini-
cal patient care but also in basic and applied research. It 
encompasses multidisciplinary fields, such as reproductive 
medicine, oncology, hematology, andrology, toxicology, 
and psychology, among others, and involves scientific and 
medical researchers, as well as social workers and nurses. 
This joint effort enables the enhancement of cancer survi-
vors´ quality of life, as well as individuals with patholo-
gies whose medical treatments endanger their future 
fertility. Although the oncologist’s and the entire health 
team’s primary objective is to reduce mortality in cancer 
patients, their quality of life and potential fertility must 
also be considered. A survey conducted over two decades 
by Schover et al. [7] revealed that pregnancy and having 
a biological child of one’s own are concerns in female 
cancer survivors. Hence, a comprehensive evaluation and 
advice to the patient by the treating health team is criti-
cal to assess the damage to her fertility and recommend, 
if necessary, the most appropriate option to preserve it. 
Currently, several strategies are available for preserving 
fertility in women and men, whose levels of efficacy are 
different in each case. This mini-review presents a concise 
and succinct summary of the current strategies and ongo-
ing experimental procedures (Table 1) aimed at preserving 
fertility in prepubertal and pubertal girls and boys who are 
undergoing cancer treatment.

Ovarian cryopreservation 
and transplantation

The ovary exhibits a heightened sensitivity towards radio-
therapy or chemotherapy treatments. This is particularly 
noteworthy given the widely held belief in the establish-
ment of a limited and non-regenerative germinal pool of 
primordial follicles upon birth, which must persist for many 
decades prior to eventual maturation, growth, and ovulation 
[8]. Moreover, the germinal reserve of primordial follicles 
is subject to a continuous elimination, primarily governed 
by mechanisms associated with programmed cell death, or 
apoptosis [9–12].

According to the collaborative efforts of the PanCare-
LIFE Consortium and the International Childhood Cancer 
Late Effects Guidelines Harmonization Group (IGHG), 
ovarian tissue cryopreservation (OTC) stands as the sole 
method currently accessible for the preservation of fertil-
ity among prepubertal and peri-pubertal girls, as well as 
postpubertal women who are not eligible for oocyte cryo-
preservation [13]. The American Society for Reproductive 
Medicine (ASRM) ceased the classification of OTC as an 
experimental practice for pubertal patients in 2019 [14], 
as a result of the accumulation of evidence regarding the 
safety of obtaining, freezing, and subsequently performing 
orthotopic transplantation of ovarian tissue. Additionally, the 
American Society of Pediatrics (AAP), in collaboration with 
the Practice Committee of the American Society for Repro-
ductive Medicine [14], advocates for fertility preservation in 
pediatric patients prior to the commencement of treatment 
with gonadotoxic agents.

Table 1  Fertility preservation 
strategies Fertility preservation strategies in the female

Medical/surgical -Use of GnRH analogs
-Ovarian transposition before radiotherapy

ART -Embryo
-Cryopreservation
-Vitrification of human oocytes
-Oocyte donation
-Ovarian cryopreservation and transplantation
-In vitro follicle culture

New research and technologies -Artificial ovary
-Uterus transplantation
-Ovarian allotransplantation
-Allotransplantation of human ovarian tissue

Fertility preservation strategies in the male
ART -Cryopreserved sperm
New research and technologies -Transplantation of cryopreserved spermato-

gonia
-Cryopreservation and grafting of immature 

testicular tissue
-Testicular organoids
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The process of OTC involves the retrieval of ovarian 
cortical tissue through laparoscopy or laparotomy before 
administration of gonadotoxic agents. The PanCareLIFE 
Consortium and the IGHG concur that the technical haz-
ards associated with ovarian tissue resection are minimal and 
are similar to those associated with any laparoscopic tech-
nique, such as infection, bleeding, bowel, bladder, or blood 
vessel perforation, as well as anesthesia. Additionally, the 
risks are mitigated by the fact that ovarian tissue resection 
can be performed concurrently with other surgical proce-
dures [13]. Upon obtaining the tissue, it is fragmented into 
smaller pieces and subjected to cryopreservation. Among 
the techniques available, slow freezing and vitrification, the 
former approach, followed by rapid thawing, has garnered 
widespread usage and has shown to yield the highest number 
of live births. This technique has exhibited a survival rate 
of approximately two-thirds of immature follicles, most of 
which maintain their morphological normality. Notwith-
standing, electron microscopy observations have revealed 
damage in mitochondria, cell membranes, and the formation 
of cytoplasmic vacuoles, thereby highlighting the imperfec-
tion of current methods and their need for further optimiza-
tion to minimize the loss of follicles and ovarian function 
[15, 16]. Vitrification constitutes another cryopreservation 
technique that involves the use of high concentrations of 
cryoprotectants to achieve ultra-fast freezing. This method 
effectively prevents the formation of ice crystals both inside 
and outside the cell, thereby mitigating the risk of mechani-
cal damage and morphological alteration. Shi and colleagues 
[17] conducted a meta-analysis to compare the efficacy of 
ovarian tissue vitrification and slow freezing. Although 
both techniques yielded comparable outcomes with respect 
to primordial follicle density and morphology, vitrifica-
tion exhibited superiority in decreased DNA damage and 
enhanced preservation of ovarian stromal cells. Nonethe-
less, one of the primary constraints of vitrification is the 
use of high concentrations of cryoprotectants, necessitat-
ing a brief exposure time (equilibration time) to avoid cell 
toxicity. The precise calculation of time is crucial in the 
context of cryopreservation, particularly in relation to tissue 
penetration by cryoprotectants, as this process differs from 
that of individual cells. Currently, there are ongoing inves-
tigations into the effectiveness of incorporating antifreeze 
proteins to impede ice-nucleating events, as well as reducing 
the required dosages of cryoprotectants [18]. Although no 
universally accepted protocols have yet been established for 
vitrification of ovarian tissue, studies conducted on bovine 
specimens have demonstrated comparable efficacy between 
vitrification using 5.5 M ethylene glycol for 20 min at room 
temperature and slow freezing [19]. In the present context, 
the two-step equilibration method utilizing 20% dimethyl 
sulfoxide and 20% ethylene glycol as colligative cryopro-
tective agents has been adopted by Donnez’s group for the 

vitrification of ovarian tissue [5]. Despite the accumulation 
of information pertaining to cellular damage incurred during 
the freezing/thawing process, a pressing need exists for fur-
ther investigation into basic scientific principles, particularly 
at the molecular level, to facilitate the development of stable, 
standardized, and optimal tissue cryopreservation protocols 
for clinical application.

Although fertility preservation for prepubertal girls pre-
sents ethical complexities due to the paucity of evidence on 
the efficacy of OTC for this age group, tissue harvesting is 
generally considered to be ethically justifiable, as the ben-
efits are thought to outweigh the potential harm in this popu-
lation, which is at high risk for infertility [13]. It should be 
noted, however, that ovarian cortex grafts have a short half-
life, as approximately two-thirds of the follicular reserve is 
lost due to ischemic damage after transplantation. The first 
live birth from OTC of a 25-year-old woman with grade IV 
Hodgkin lymphoma and subsequent orthotopic autotrans-
plantation was reported in 2004 [20]. Since then, there has 
been an exponential increase of pregnancies and live births, 
with over 200 recorded to date [21]. Orthotopic transplanta-
tion of cryopreserved and thawed ovarian tissue has been the 
most successful method thus far. Worldwide live birth rates 
from OTC in adult patients have been reported as 31% in the 
Danish group in 2015, 25% in the German FertiPROTEKT 
network in 2016, 18.2% in the Spanish group in 2018, and 
41.6% in a Belgian-Israeli-American case series reported in 
2020 [22–25]. In 2021, a study involving 285 patients across 
five leading European centers reported an overall pregnancy 
rate of 38% and a live birth rate of 26% [26]. As for hetero-
topic transplantation, only one live birth has been reported 
in humans [27].

With respect to the prepubertal cohort, a spontaneous 
pregnancy resulting in live birth was reported in 2015, fol-
lowing autotransplantation of thawed ovarian tissue from a 
female who had undergone OTC prior to menarche. Addi-
tionally, it was observed that ovarian function resumed 
between 60 and 240 days post transplantation and persisted 
for up to 7 years. As the efficacy of autotransplanted ovarian 
tissue in maintaining endocrine function over the long-term 
is low, it is recommended to perform the procedure when 
the patient is preparing for conception [28]. After the favora-
ble outcome, an additional 15 patients were documented. 
Of these, nine were diagnosed with a malignant ailment, 
whereas the remaining six were not. Conversely, five of 
the patients had not yet undergone menarche prior to OTC 
treatment, while eight had already undergone chemotherapy. 
Following ovarian tissue removal, all patients underwent 
gonadotoxic treatment. In 80% of the patients, ovarian func-
tion resumed, including 3 girls who were prepubertal at the 
time of OTC. Furthermore, of the 15 patients, 9 conceived 
at least once (60%) and 7 gave birth to at least one child 
(47%), including 2 who were not pubertal at the time of OTC 
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[28–32]. Importantly, of the 15 patients, 9 conceived at least 
once (60%) and 7 delivered at least one child (47%), includ-
ing 2 who were prepubertal at the time of OTC [28–32].

The PanCareLIFE Consortium and the IGHG have 
deemed autotransplantation as the sole means of cryopre-
serving ovarian tissue for fertility restoration that is appro-
priate for postpubertal patients. However, they recommend 
a careful evaluation within the framework of a clinical trial. 
On the other hand, for the prepubertal patients, the trans-
plantation of cryopreserved ovarian tissue must solely be 
proposed only in the context of an experimental procedure 
[13].

In vitro follicle culture and meiotic 
maturation

The potential risk of reintroduction of malignant cells during 
autotransplantation of cryopreserved ovarian tissue, particu-
larly in leukemia, non-Hodgkin lymphoma, and metastatic 
solid tumor survivors, has been established by several studies 
[13, 33, 34]. Various techniques have been employed to detect 
disseminated tumor cells in cryopreserved tissue before trans-
plantation. These methods include standard histopathological 
analysis with hematoxylin-eosin and immunohistochemistry 
and molecular analysis for the detection of chromosomal 
abnormalities (RT–PCR amplification), flow cytometry, fluo-
rescence in situ hybridization, and xenografting to immunode-
ficient mice [5]. Currently, novel and more secure methodolo-
gies are being developed for the acquisition of oocytes suitable 
for assisted reproductive technology (ART), such as in vitro 
follicular growth. This technique is complex as it must repli-
cate all the stages of activation and follicular development that 
occur in vivo. The female reproductive function necessitates 
the cyclical and maturational development of ovarian follicles, 
which originates from the continuous activation of the pri-
mordial follicle mass. The process of follicular development 
involves a sequence of controlled events, which are character-
ized by transition stages that start with the initiation of growth 
of primordial follicles to the secondary follicle stage, forma-
tion of antral follicles leading to the De Graaf follicle stage, 
involving the association of granulosa cells and accumulation 
of antral fluid, and culminating in the acquisition of a mature 
oocyte. Hence, to ensure the adequate follicular growth and 
oocyte maturation to occur in vitro, a multiple-stage culture 
system must be implemented to provide the necessary require-
ments for each developmental stage [35–37]. A four-stage 
culture system is currently proposed. The first stage involves 
the activation and initial growth of the primordial follicles up 
to the secondary follicle stage, followed by the second stage 
which entails growing secondary follicles to the antral fol-
licle stage. The third stage involves complete oocyte growth, 
and the final fourth stage encompasses oocyte maturation 

in vitro [38]. Successfully carrying out the first stage of cul-
tivation is noted to be one of the most complex processes. 
This is because the quiescent primordial follicle reserve in 
ovarian cortex fragments must initiate an activation process 
that allows follicle growth. Although not well understood in 
humans, primordial follicle activation is a necessary step to 
develop an optimal follicular growth system in vitro. Several 
culture systems that support the activation of human primor-
dial follicles have been developed [35, 37–45]. However, the 
variable outcomes observed suggest the significance of the 
individual cellular components and the signaling pathways 
that regulate follicular activation [46]. Among these pathways, 
the phosphatidylinositol-3′-kinase (PI3K-AKT) path has been 
studied in knockout mouse models [47] and in human ovarian 
cortex cultured in vitro [48–50] and plays a crucial role in this 
process. Growth factors such as follicle stimulating hormone 
(FSH) stimulate PI3K, which activates a phosphoinositide-
dependent protein kinase-1 (PDK1). This, in turn, phospho-
rylates Akt and downstream transcription factors, such as 
FOXO1 (forkhead winged helix box O1) and FOXO3 (fork-
head winged helix box O3), leading to follicular activation 
and growth [51, 52]. Conversely, deletion of the PTEN (phos-
phatase and tensin homolog) gene has been found to stimu-
late the growth of primordial follicles in neonatal and adult 
animals [47, 53, 54]. This gene encodes a phosphatase that is 
responsible for negatively regulating the PI3K-AKT signaling 
pathway. It has been observed that the deletion of PTEN leads 
to an increase in AKT phosphorylation and nuclear export 
of the transcription factor FOXO3 (forkhead box O3) [53, 
55, 56]. In addition, it has been observed that the effects of 
PTEN can be inhibited pharmacologically in a reversible man-
ner by vanadate (bisperoxovanadium) derivatives that act as 
tyrosine phosphatase inhibitory proteins, thereby promoting 
downstream AKT phosphorylation and stimulating in vitro 
activation and growth of primordial follicles [48, 57–59]. 
Despite the fact that primordial follicle activation increases, 
the quality of secondary follicles is poor due to DNA damage 
and insufficient DNA repair mechanisms [60]. Information 
on the expression of PTEN and FOXO3 in human ovaries is 
sparse. The examination of PTEN and FOXO3 of different 
developmental stages in human ovaries revealed the presence 
of two distinct populations of primordial follicles during the 
postnatal period, one expressing nuclear FOXO3 and the other 
not [61]. Conversely, in mice, all primordial follicles express 
nuclear FOXO3, which translocates to the cytoplasm during 
activation using an “all or nothing” mechanism. It is possible 
that FOXO3-expressing primordial follicles in humans fol-
low a similar pattern to ensure long-term fertility. However, 
the dynamics of FOXO3 expression among non-FOXO3- and 
FOXO3-expressing primordial follicle populations in humans 
require further elucidation. Another player involved in the 
PI3K-AKT pathway is mTORC1 (mammalian target of rapa-
mycin complex 1), a serine/threonine kinase that regulates 
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cell growth and proliferation in response to growth factors 
and nutrients, which plays a role in the activation of primor-
dial follicles [62]. As demonstrated in mTORC1 knockout 
mice, the activation of primordial follicles is increased [63]. 
Furthermore, the Hippo pathway, which regulates organ size 
by controlling cell proliferation and death processes [64], also 
contributes to primordial follicle activation. In vitro interrup-
tion of the Hippo pathway causes the activation of primordial 
follicles in cortices of ovarian tissue [50, 65].

Once primordial follicles in the ovarian cortex fragment are 
activated, the second culture stage involves mechanical and/or 
enzymatic removal of multilaminar follicles. The mechanical 
removal allows for the preservation of follicle integrity by con-
serving the basal lamina and the thecal cell layer. However, this 
method is laborious and operator dependent, resulting in a low 
yield [36, 66]. Isolated follicles are individually cultured in the 
presence of FSH and activin until they mature into antral fol-
licles. Subsequently, the cumulus-oocyte complexes undergo a 
third stage of culture with activin-A and rhFSH until the oocyte 
attains a size of around 100 μm [35, 36]. The final stage of cul-
ture involves the maturation of the oocytes to the MII stage. 
Despite showing variable results in humans, in vitro meiotic 
maturation resulted in the first live birth from an in vitro matured 
oocyte in 1991 [67–70]. However, Revel et al. [71] reported 
the ex vivo maturation of oocytes obtained from small antral 
follicles removed from the ovary of adult patients. Since then, 
several publications have reported different maturation strategies 
for oocytes collected from patients spanning between birth and 
44 years of age [71].

In conclusion, it must be noted that in vitro follicle culture 
and meiotic maturation remain experimental procedures, 
lacking sufficient scientific evidence. Further research is 
required to deepen our knowledge regarding the activation of 
the primordial follicles, the maintenance and development of 
follicles in vitro, the maturation of the oocyte, and their qual-
ity to be used in ART. Likewise, it must be considered that 
prepubertal patients contain five times more abnormal fol-
licles that do not mature compared to postpubertal patients. 
In addition, it was observed that fewer cultured primordial 
follicles advance to the secondary stage, and some even con-
tain oocytes that lack the membrane of the germinal vesicle 
(GV) or the nucleolus [38].

Artificial ovary

Ovarian follicles, isolated from ovarian tissue fragments and 
cultivated in a scaffold, are capable of producing a synthetic 
organ that can be transplanted to either an orthotopic or het-
erotopic location. The resulting artificial ovary serves both 
the reproductive and endocrine function, i.e., the production 
of gametes and the release of steroid hormones, respectively 
[72–77]. Following the mechanical or enzymatic isolation with 

collagenase [78], the type and number of follicles that will 
grow in the scaffold must be determined. Chiti et al. [79] dem-
onstrated that secondary follicles respond better in terms of 
survival and growth rate than primordial and primary follicles. 
Additionally, the number of follicles in the scaffold has to be 
adjusted appropriately to maintain a small size of the delivery 
matrix [71]. The scaffold design is critical for the adequate 
growth of the follicles and for the safety of the patient after 
transplantation. Furthermore, it must allow neoangiogenesis 
to supply oxygen and nutrients to the cells [80–82]. Since the 
1990s, various biomaterials, including collagen, fibrin, algi-
nate, alginate-matrigel, poly (ethylene glycol) vinyl-sulfone 
(PEG-VS), fibrin-VEGF, fibrin-alginate, fibrin-collagen, 
plasma clot, and fibrin-hyaluronic acid, have been tested in 
mice to construct the artificial ovary [81–91]. The last two 
materials have been tested with human ovarian tissue [86, 
92]. Notwithstanding the array of biomaterials that have been 
examined, a great deal of research remains to be conducted 
to ascertain the most suitable one for follicular development. 
Rajabzadeh et al. [90] demonstrated a follicular recovery rate 
of 48.31% over a period of 14 days following transplantation, 
utilizing a scaffold composed of fibrin gel and platelet lysate. It 
is possible to transplant artificial ovaries into orthotopic sites, 
such as the ovary, pelvic cavity, and peritoneal window, as 
well as heterotopic sites, like the rectus muscle, forearm, and 
neck. However, the latter approach does not allow for natural 
conception and necessitates consideration of factors such as 
differences in body temperature, pressure, paracrine factors, 
and blood supply [73, 77, 89]. Immune rejection and ischemic 
injury must both be taken into account in the transplantation of 
the artificial ovary. Despite the autologous origin of the ovar-
ian cells, it is vital to consider the biomaterials employed in 
the scaffold, as these could trigger an immune response; thus, 
their design is of paramount importance [93–95]. Besides, to 
prevent ischemic injury, appropriate neovascularization is nec-
essary after transplantation [20, 96, 97].

Although there is still much ambiguity surrounding the 
most effective approach to developing an artificial ovary, it 
is worth noting that there have been few reported cases of 
successful pregnancies in animals [81, 89]. However, advance-
ments in tissue and organ engineering have opened up a new 
avenue for exploration in the pursuit of fertility preservation.

Transplantation of cryopreserved 
spermatogonia and cryopreservation/
grafting of immature testicular tissue

Cytotoxic treatments have been observed to inflict harm 
to the male gonads. The testes have a considerable low 
tolerance for radiation, and even exposure to small doses 
can have gonadotoxic implications. In the case of puber-
tal males, semen can be recovered before the initiation of 
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gonadotoxic therapy, thereby allowing the cryopreserva-
tion of sperm for future use. The method of intracytoplas-
mic sperm injection (ICSI) has proven to be successful 
even when the number of cryopreserved sperm is limited 
[98, 99]. However, prepubertal boys present a significant 
challenge to fertility preservation due to their inability to 
produce mature sperm for cryopreservation. Differentiat-
ing spermatogonia have a high rate of proliferation, ren-
dering them highly vulnerable to cytotoxic agents [100]. 
Consequently, while the prepubertal testis does not com-
plete spermatogenesis, scientific evidence suggests that 
such treatments can have an impact on the future fertility 
of prepubertal boys [101–103]. The recovery of sperm pro-
duction after gonadotoxic treatment is dependent on the 
survival and ability of mitotically quiescent spermatogo-
nial stem cells (SSCs) (type A dark), which should trans-
form into actively proliferating cells and differentiate into 
spermatogonia (type A pale) [104].

Over the past 30 years, a variety of methodologies 
have surfaced, which have expanded the available treat-
ment alternatives for males who are infertile due to non-
production of sperm. These methodologies include, but are 
not limited to, spermatogonial stem cell (SSC) transplanta-
tion, SSC culture, testicular tissue graft, testicular tissue 
culture, stem cell induction, genome sequencing, and pre-
cision medicine, as well as gene therapy. Nonetheless, the 
majority of these novel options are still in the investigative 
and developmental stages and solely accessible within an 
experimental context. Since prepubertal testicular tissue 
harbors SSCs, these cells can be cryopreserved either in 
cell suspension [105] or directly in the tissue [106–108]. 
Furthermore, it is worth noting that in 20% of Tanner stage 
II boys, spermiation has already commenced [109], thus 
enabling the cryopreservation of sperm in these instances.

Currently, there exists a dearth of information regarding 
the optimal cryoprotectant for preserving human testicular 
cells with minimal damage. Nonetheless, dimethyl sulfox-
ide (DMSO) has emerged as the predominant choice in 
samples taken from prepubertal boys [110, 111]. To date, 
only two trials have been conducted to evaluate the viabil-
ity of immature testicular tissue following vitrification. 
These trials have demonstrated that a low concentration of 
cryoprotectant can mitigate organelle and cell membrane 
damage, leading to improved sperm survival rates [112]. 
Currently, numerous strategies for storing SSCs are being 
actively explored.

Testicular cell suspension

The suspension of testicular cells involves the mechani-
cal and/or enzymatic breakdown of testicular tissue, which 
has an impact on cell survival and cell-to-cell interactions 
that are essential for cell proliferation and differentiation, 

as highlighted by Brook et al. [105] and Griswold et al. 
[113]. Studies conducted on numerous animal models 
have revealed that post-thaw cell viability ranges from 29 
to 82%, as noted by Geens et al. [114]. Although there are 
fewer studies conducted on humans, Brook et al. [105], Pac-
chiarotti et al. [115], Unni et al. [116], and Sa et al. [117] 
have reported up to 60% viability. However, only Yango 
et al. [118] have demonstrated that the viability of fetal SSCs 
is comparable in both cell suspension cryopreservation and 
testicular tissue. Consequently, the primary disadvantages of 
this approach are the loss of seminiferous tubule integrity 
due to enzymatic digestion of the tissue and the loss of SSCs 
during their extraction.

Cryopreservation of immature testicular tissue

The process of cryopreserving immature testicular tissue 
involves obtaining tissue through an open biopsy prior to 
gonadotoxic therapy, followed by cutting tissue fragments 
between 1 and 25  mm3 for cryopreservation through a slow 
freezing method. Despite the invasive nature of testicular 
biopsy in young patients, it is generally considered safe with 
no long-term impact on testicular anatomy, growth, or hor-
monal function, as evidenced by several studies [107, 110, 
119–122]. Minimal adverse effects have been observed up 
to 12 months after surgery [120]. Currently, there are three 
protocols available for cryopreservation of immature human 
testicular tissue that utilize different cryoprotective agents, 
including ethylene glycol, HSA, sucrose, and DMSO, for 
slow freezing [106–108, 123]. It is worth to mention that 
fetal and prepubertal testicular tissue retain their structural 
integrity and functional capacity after cryopreservation, 
making testicular tissue cryobanks advantageous over sus-
pension SSCs in preserving cellular interactions, epithelial 
barriers, extracellular matrix, and basal membrane [106, 
107]. However, the assessment of reproductive potential 
after thawing requires further validation, and current strate-
gies are considered experimental. Furthermore, none of the 
protocols used for freezing testicular tissue in boys and pre-
pubertals has proven to be more efficient than others.

The techniques of spermatogonial stem cell transplanta-
tion and testicular tissue grafting have facilitated the gen-
eration of sperm and embryos or offspring across various 
mammalian species, including non-human primates, as 
demonstrated by several studies [124–133]. However, it is 
important to note that in oncological conditions, particularly 
in hematological cancers like leukemias, there is a poten-
tial risk of reintroducing malignant cells, since the testicles 
can serve as reservoirs for such cells. Studies in mice have 
shown that even transplanting as few as 20 leukemic cells 
can result in malignant relapse [134]. Therefore, it is cru-
cial to ensure that there is no infiltration of tumor cells in 
SSC transplantations at the clinical stage, which can only be 
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achieved by eliminating malignant cell contamination from 
testicular cell suspensions. Various methodologies have 
been proposed by different groups to remove malignant cell 
contamination from such suspensions, such as using flow 
cytometry to separate CD45-negative SSCs, as observed in 
mice [135–137]. Hematological cancers, particularly acute 
leukemias, are more common among children, highlighting 
the need for developing appropriate technologies to obtain 
mature sperm in vitro from SSCs to address this issue.

Restoration of spermatogonial function

The seminal work by Brinster and Zimmermann [138] rep-
resents the pioneering successful transplantation of sper-
matogonial stem cells (SSCs) into the seminiferous tubules 
of mice that had undergone busulfan treatment to eradicate 
endogenous spermatogenesis. Since then, various method-
ologies have been developed to restore fertility in several 
mammalian species. For instance, Hermann et al. [130] 
reported the recuperation of spermatogenesis following 
transplantation of autologous or allogeneic SSCs in non-
human primates rendered infertile by gonadotoxic therapy. 
Currently, diverse ongoing investigations in infertile animal 
models are being conducted, wherein SSCs are being trans-
planted to obtain mature and fertilization-competent sperm. 
While autotransplantation remains the most widely accepted 
method, allogeneic or xenotransplantation has been success-
fully employed in mice, dogs, farm animals, and macaques 
[124, 139–141]. In humans, only one study has reported on 
autologous frozen-thawed testicular cell transplantation fol-
lowing gonadotoxic treatment, wherein seven patients had 
their SSCs re-injected into their testicles post completion of 
the antitumor treatment. However, no follow-up data have 
been published for these patients [142].

The cultivation of in vitro SSCs in mice was first conducted 
by Kanatsu-Shinohara et al. [143]. These in vitro-grown SSCs 
exhibited the ability to restore spermatogenesis in infertile 
mice and produced competent spermatozoa capable of fer-
tilization and successful production of offspring [143]. This 
culture system served as a foundation for rat and human SSCs. 
Sadri-Ardekani et al. [144, 145] were the first to report on 
the culture of adult SSCs and long-term human prepubertal. 
Numerous investigations have since been published in which 
human SSCs were cultivated following the Kanatsu-Shinohara 
model. However, not all reports indicate a substantial expan-
sion of spermatogonia during the culture period. Some studies 
report a decrease during the culture period [146–149]. There-
fore, further investigation is necessary to identify appropriate 
requirements for achieving successful conditions for in vitro 
proliferation of SSCs.

Since 2002, successful results have been obtained through 
the ectopic and orthotopic transplantation of testicular tissue 
from a variety of species, including mice, goats, and pigs, as 

reported by Honaramooz et al. [150] and Schlatt et al. [131]. 
On the other hand, Luetjens et al. [151] have reported the 
recovery of spermatogenesis through the autotransplantation 
of prepubertal testicular tissue from non-human primates, 
whether fresh or cryopreserved, into the scrotum.

Regarding xenotransplantation, prepubertal mouse testicu-
lar tissue has been successfully transplanted into rats, pigs, 
goats, and non-human primates, resulting in the production 
of viable sperm for fertilization [128]. Similar experiments 
involving the transplantation of human testicular tissue into 
mice did not yield complete spermatogenesis, possibly due to 
phylogenetic disparities between the two species [123]. As pre-
viously mentioned, it should be noted that the autotransplanta-
tion of cryopreserved testicular cells or tissues carries the risk 
of reintroducing malignant cells, particularly in patients with 
hematological or testicular cancers. As such, the methodolo-
gies of testicular cell/tissue xenotransplantation and testicular 
tissue culture are currently being developed and studied, with 
promising results.

Animal studies have exhibited the practicability and safety 
of reproductive technologies which employ frozen and thawed 
testicular tissues. However, to date, there has been no docu-
mentation of live human births resulting from the utilization 
of these technologies. Therefore, it is recommended that cryo-
preservation of immature testicular tissue be deemed experi-
mental and offered exclusively to prepubertal patients who 
face significant infertility risks due to their medical condition 
or treatment, and only as part of a clinical trial. Prepuber-
tal boys lack the option to preserve a semen sample prior to 
gonadotoxic therapy; however, their testes contain A dark and 
A pale SSC [152], which permits the initiation of spermato-
genesis during puberty. Numerous centers across the globe, 
including the USA, undertake cryopreservation of testicular 
tissue or cells in anticipation and with the expectation that 
experimental therapies based on SSCs will become available 
shortly [107, 110, 119, 121, 145, 153].

Testicular organoids (TOs)

Gonadotoxic therapies have the potential to obliterate not 
only germ cells but also the somatic layer, specifically Ley-
dig and Sertoli cells [154, 155]. In recent years, testicular 
organoids (TOs) have been fabricated from isolated cells 
derived from immature testicular tissue for future trans-
plantation into patients. This innovative approach has the 
potential to conserve and reinstate fertility in cancer patients. 
Matrigel and collagen were among the different types of 
cell matrices tested in 3D cultures of mice and rats. The 
resulting organoids demonstrated a comparable structure and 
functionality to those observed in vivo [156–160]. Vermeu-
len et al. [161] created TOs using hydrogels derived from 
decellularized immature porcine testicular tissue, observing 
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the assembly of Sertoli cells and germ cells into seminifer-
ous tubule-like structures that were contained by a basement 
membrane. Leydig cells (LCs) and peritubular cells were 
located outside of the tubules. Furthermore, the culture was 
maintained for 45 days, and the secretion of stem cell factor 
and testosterone was observed. Baert et al. [162] generated 
organotypic testicular tissue (OTs) from adult patients and 
a pubertal patient (15 years old) using a human decellu-
larized testicular matrix as the scaffold. Although the OTs 
exhibited functionality throughout the culture, they did not 
demonstrate the typical tissue architecture of the testicle. 
This could be attributed to the degradation of the scaffold 
matrix by enzymes secreted by the cells.

To date, the available 3D farming systems only enable 
short-term follow-ups [163, 164]. Further research in this 
area is essential because it may provide a useful fertility 
preservation strategy for prepubertal or adult patients with 
non-obstructive azoospermia.

Conclusions

The present state of methods currently in existence and undergo-
ing experimental development for the preservation of fertility in 
boys and girls who have been diagnosed with cancer has been 
briefly reviewed. The awareness of potential avenues for preserv-
ing fertility in the pediatric population must be considered by 
the various stakeholders in healthcare in order to furnish patients 
facing cancer with comprehensive and precise information.

In 2019, the American Society for Reproductive Medi-
cine (ASRM) determined that ovarian tissue banking is a 
permissible technique for fertility preservation and is no 
longer deemed experimental. This decision was based on 
the safety of ovarian tissue procurement for patients and 
the effectiveness of both tissue cryopreservation and ortho-
topic transplantation. However, certain aspects, such as the 
standardization of surgical techniques for procurement and 
subsequent transplantation, as well as the limited live birth 
rate reported to date, require clarification. Consequently, 
ovarian tissue banking is not the preferred fertility preser-
vation strategy in pubertal patients when compared to oocyte 
cryopreservation. Nonetheless, it is crucial to evaluate each 
patient, regardless of their pre-, peri-, or pubertal status 
comprehensively. This includes assessments of pathology, 
treatment, sexual and psychological maturity, and potential 
damage to fertility. This practice will enable the medical 
team to recommend the most appropriate option.

For pubertal male patients, sperm cryopreservation is 
the recommended option. However, in prepubertal boys, 
the situation is still quite complex since fertility preserva-
tion strategies are still experimental, and scientific evidence 
is lacking. Some clinics in the USA and other parts of the 
world offer freezing of testicular tissue or cells as a backup 

option in case strategies for obtaining mature sperm from 
testicular tissue become available in the near future [107, 
110, 119, 121, 145, 153].
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