Skip to main content
Log in

The effect of MicroRNAs variants on idiopathic recurrent pregnancy loss

  • Reproductive physiology and disease.
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Background

Although the importance of miRNA variants in female reproductive disorders has been frequently reported, the association between miRNA polymorphisms and recurrent pregnancy loss (RPL) has been poorly studied. In this study, we aimed to assess the correlation of four different miRNA variants to unexplained RPL.

Methods and results

The prevalence of four SNPs including miR-21 rs1292037, miR-155-5p rs767649, miR-218–2 rs11134527, and miR-605 rs2043556 in 280 cases with iRPL and 280 controls was performed. The DNA was extracted from all subjects and the SNPs were genotyped using RFLP-PCR methods. The data revealed that rs1292037 and rs767649 were significantly associated with higher rates of iRPL in patients compared with controls while rs11134527 and rs2043556 showed no association with increased rates of iRPL among patients. The haplotypes T-A-G-G and T-A-G-A were the most frequent in both cases and controls. Three haplotypes including T-T-G-A, C-T-G-G, and T-A-A-A showed significantly different frequencies in patients in comparison to healthy females.

Conclusion

This study suggests that rs1292037 and rs767649 could be risk factors for increased rates of iRPL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The original contributions presented in the study are included in the article, further inquiries can be directed to the corresponding author.

References

  1. Dimitriadis E, et al. Recurrent pregnancy loss. Nat Rev Dis Primers. 2020;6(1):1–19.

    Google Scholar 

  2. Farsimadan M, et al. The effects of hepatitis B virus infection on natural and IVF pregnancy: A meta-analysis study. J Viral Hepatitis. 2021;28(9):1234–45.

    Google Scholar 

  3. Siahpoosh Z, et al. KISS1R polymorphism rs587777844 (Tyr313His) is linked to female infertility. Br J Biomed Sci. 2021;78(2):98–100.

    CAS  PubMed  Google Scholar 

  4. Tara SS, et al. Methylenetetrahydrofolate Reductase C677T and A1298C polymorphisms in male partners of recurrent miscarriage couples. J Reprod Infertil. 2015;16(4):193–8.

    PubMed  PubMed Central  Google Scholar 

  5. Meng F, et al. KISS1 gene variations and susceptibility to idiopathic recurrent pregnancy loss. Reprod Sci. 2023;30:1–7.

  6. Liu D-Y, et al. SNP rs12794714 of CYP2R1 is associated with serum vitamin D levels and recurrent spontaneous abortion (RSA): a case–control study. Arch Gynecol Obstet. 2021;304:179–90.

    CAS  PubMed  Google Scholar 

  7. Rai S, et al. Correlation of follicle-stimulating hormone receptor gene Asn 680 Ser (rs6166) polymorphism with female infertility. J Family Med Prim Care. 2019;8(10):3356–61.

    PubMed  PubMed Central  Google Scholar 

  8. Farsimadan M, et al. Association analysis of KISS1 polymorphisms and haplotypes with polycystic ovary syndrome. Br J Biomed Sci. 2021;78(4):201–5.

    CAS  PubMed  Google Scholar 

  9. Haqiqi H, et al. Association of FSHR missense mutations with female infertility, in silico investigation of their molecular significance and exploration of possible treatments using virtual screening and molecular dynamics. Anal Biochem. 2019;586:113433.

    CAS  PubMed  Google Scholar 

  10. Jodeiryzaer S, et al. Association of oestrogen receptor alpha gene SNPs Arg157Ter C> T and Val364Glu T> A with female infertility. Br J Biomed Sci. 2020;77(4):216–8.

    CAS  PubMed  Google Scholar 

  11. Wang XQ, et al. Haplotype-based association of two SNPs in miR-423 with unexplained recurrent pregnancy loss in a Chinese Han population. Exp Cell Res. 2019;374(1):210–20.

    CAS  PubMed  Google Scholar 

  12. Jairajpuri DS, et al. Differentially expressed circulating microRNAs associated with idiopathic recurrent pregnancy loss. Gene. 2021;768:145334.

    CAS  PubMed  Google Scholar 

  13. Ezat SA, Haji AI. Study of association between different microRNA variants and the risk of idiopathic recurrent pregnancy loss. Arch Gynecol Obstet. 2022;306(4):1281–6.

    CAS  PubMed  Google Scholar 

  14. Cho SH, et al. Genetic polymorphisms in miR-604A>G, miR-938G>A, miR-1302–3C>T and the risk of idiopathic recurrent pregnancy loss. Int J Mol Sci. 2021;22(11).6127.

  15. Tersigni C, et al. Recurrent pregnancy loss is associated to leaky gut: a novel pathogenic model of endometrium inflammation? J Transl Med. 2018;16:1–9.

    Google Scholar 

  16. Li R, et al. Genetic variants miR-126, miR-146a, miR-196a2, and miR-499 in polycystic ovary syndrome. Br J Biomed Sci. 2022;79:7.

  17. Gomari MM, et al. CD44 polymorphisms and its variants, as an inconsistent marker in cancer investigations. Mutat Res/Rev Mutat Res. 2021;787:108374.

    CAS  PubMed  Google Scholar 

  18. Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101(6):1545–51.

    CAS  PubMed  Google Scholar 

  19. Tsai E-M, et al. A microRNA-520 mirSNP at the MMP2 gene influences susceptibility to endometriosis in Chinese women. J Hum Genet. 2013;58(4):202–9.

    CAS  PubMed  Google Scholar 

  20. Jaafar S, et al. MicroRNA variants miR-27a rs895819 and miR-423 rs6505162, but not miR-124–1 rs531564, are linked to endometriosis and its severity. Br J Biomed Sci. 2022;79:9.

  21. Definitions of infertility and recurrent pregnancy loss: a committee opinion. Fertil Steril. 2020;113(3):533–5.

  22. Antoine D, et al. Rapid, Point-of-Care scFv-SERS assay for Femtogram level detection of SARS-CoV-2. ACS Sensors. 2022;7(3):866–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Hocaoglu M, et al. Identification of miR-16-5p and miR-155-5p microRNAs differentially expressed in circulating leukocytes of pregnant women with polycystic ovary syndrome and gestational diabetes. Gynecol Endocrinol. 2021;37(3):216–20.

    CAS  PubMed  Google Scholar 

  24. Park JH, et al. Saponin extracts induced apoptosis of endometrial cells from women with endometriosis through modulation of miR-21-5p. Reprod Sci. 2018;25:292–301.

    CAS  PubMed  Google Scholar 

  25. Lee HA, et al. Association between miR-605A>G, miR-608G>C, miR-631I>D, miR-938C>T, and miR-1302-3C>T polymorphisms and risk of recurrent implantation failure. Reprod Sci. 2019;26(4):469–75.

    CAS  PubMed  Google Scholar 

  26. You W, Wang Y, Zheng J. Plasma miR-127 and miR-218 might serve as potential biomarkers for cervical cancer. Reprod Sci. 2015;22(8):1037–41.

    CAS  PubMed  Google Scholar 

  27. Dezfuli NK, et al. The miR-146a SNP Rs2910164 and miR-155 SNP rs767649 are risk factors for non-small cell lung cancer in the iranian population. Can Respir J. 2020;2020:8179415.

    PubMed  PubMed Central  Google Scholar 

  28. Yang J, et al. Association study of relationships of polymorphisms in the miR-21, miR-26b, miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer. BMC Cancer. 2021;21:1–9.

    Google Scholar 

  29. Wu Y, et al. Predictive value of miR-219–1, miR-938, miR-34b/c, and miR-218 polymorphisms for gastric cancer susceptibility and prognosis. Dis Markers. 2017;2017:4731891.

  30. Barchitta M, et al. The role of miRNAs as biomarkers for pregnancy outcomes: a comprehensive review. Int J Genom. 2017;2017:8067972.

  31. Yang H, et al. Clinical application of exosomes and circulating microRNAs in the diagnosis of pregnancy complications and foetal abnormalities. J Transl Med. 2020;18(1):1–9.

    CAS  Google Scholar 

  32. Ali A, et al. MicroRNA–mRNA networks in pregnancy complications: A comprehensive downstream analysis of potential biomarkers. Int J Mol Sci. 2021;22(5):2313.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Xu P, et al. Placenta-derived microRNAs in the pathophysiology of human pregnancy. Front Cell Dev Biol. 2021;9:646326.

    PubMed  PubMed Central  Google Scholar 

  34. Fu G, et al. MicroRNAs in human placental development and pregnancy complications. Int J Mol Sci. 2013;14(3):5519–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsochandaridis M, et al. Circulating microRNAs as clinical biomarkers in the predictions of pregnancy complications. BioMed Res Int. 2015;2015:294954.

  36. Kamalidehghan B, et al. The importance of small non-coding RNAs in human reproduction: a review article. Appl Clin Genet. 2020;13:1–11.

  37. Li L, et al. miRNA-210-3p regulates trophoblast proliferation and invasiveness through fibroblast growth factor 1 in selective intrauterine growth restriction. J Cell Mol Med. 2019;23(6):4422–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Siddiqui ZH, et al. The role of miRNA in somatic embryogenesis. Genomics. 2019;111(5):1026–33.

    CAS  PubMed  Google Scholar 

  39. Lv Y, et al. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234(2):1052–61.

    CAS  PubMed  Google Scholar 

  40. Liu S, et al. Identification of key circRNAs/lncRNAs/miRNAs/mRNAs and pathways in preeclampsia using bioinformatics analysis. Med Sci Monit Int Med J Exp Clin Res. 2019;25:1679.

    CAS  Google Scholar 

  41. Hornakova A, et al. Diagnostic potential of microRNAs as biomarkers in the detection of preeclampsia. Genet Test Mol Biomarkers. 2020;24(6):321–7.

    CAS  PubMed  Google Scholar 

  42. Tian QX, et al. Comprehensive analysis of the differential expression profile of microRNAs in missed abortion. Kaohsiung J Med Sci. 2020;36(2):114–21.

    CAS  PubMed  Google Scholar 

  43. Shahidi M, et al. miR-146b-5p and miR-520h Expressions Are Upregulated in Serum of Women with Recurrent Spontaneous Abortion. Biochem Genet. 2022;60(5):1716–32.

    CAS  PubMed  Google Scholar 

  44. Cook J, et al. First trimester circulating MicroRNA biomarkers predictive of subsequent preterm delivery and cervical shortening. Sci Rep. 2019;9(1):5861.

    PubMed  PubMed Central  Google Scholar 

  45. Winger EE, et al. MicroRNAs isolated from peripheral blood in the first trimester predict spontaneous preterm birth. PLoS ONE. 2020;15(8):e0236805.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Garcia-Beltran C, et al. microRNAs in newborns with low birth weight: relation to birth size and body composition. Pediatr Res. 2022;92(3):829–37.

    CAS  PubMed  Google Scholar 

  47. Wang D, et al. Altered expression of miR-518b and miR-519a in the placenta is associated with low fetal birth weight. Am J Perinatol. 2014;31(9):729–34.

    PubMed  Google Scholar 

  48. Sun J, et al. Exosomal MicroRNAs in serum as potential biomarkers for ectopic pregnancy. Biomed Res Int. 2020;2020:3521859.

    PubMed  PubMed Central  Google Scholar 

  49. Kontomanolis EN, Kalagasidou S, Fasoulakis Z. MicroRNAs as potential serum biomarkers for early detection of ectopic pregnancy. Cureus. 2018;10(3):e2344.

    PubMed  PubMed Central  Google Scholar 

  50. Juchnicka I, et al. miRNAs as predictive factors in early diagnosis of gestational diabetes mellitus. Front Endocrinol (Lausanne). 2022;13:839344.

    PubMed  Google Scholar 

  51. Zhang Z, et al. The possible role of visceral fat in early pregnancy as a predictor of gestational diabetes mellitus by regulating adipose-derived exosomes miRNA-148 family: protocol for a nested case-control study in a cohort study. BMC Pregnancy Childbirth. 2021;21(1):262.

    PubMed  PubMed Central  Google Scholar 

  52. Légaré C, et al. First trimester plasma MicroRNA levels predict risk of developing gestational diabetes mellitus. Front Endocrinol (Lausanne). 2022;13:928508.

    PubMed  Google Scholar 

  53. Arias-Sosa LA, et al. Genetic and epigenetic variations associated with idiopathic recurrent pregnancy loss. J Assist Reprod Genet. 2018;35(3):355–66.

    PubMed  PubMed Central  Google Scholar 

  54. Ng S-W, et al. Endometrial decidualization: the primary driver of pregnancy health. Int J Mol Sci. 2020;21(11):4092.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Légaré C, et al. Human plasma pregnancy-associated miRNAs and their temporal variation within the first trimester of pregnancy. Reprod Biol Endocrinol. 2022;20(1):1–13.

    Google Scholar 

  56. Hosseini MK, et al. MicroRNA expression profiling in placenta and maternal plasma in early pregnancy loss. Mol Med Rep. 2018;17(4):4941–52.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Hayder H, et al. MicroRNAs: crucial regulators of placental development. Reproduction. 2018;155(6):R259-r271.

    CAS  PubMed  Google Scholar 

  58. Xue P, et al. miR-155* mediates suppressive effect of PTEN 3′-untranslated region on AP-1/NF-κB pathway in HTR-8/SVneo cells. Placenta. 2013;34(8):650–6.

    CAS  PubMed  Google Scholar 

  59. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLoS ONE. 2011;6(6):e21210.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kochhar P, et al. Placental expression of miR-21-5p, miR-210-3p and miR-141-3p: relation to human fetoplacental growth. Eur J Clin Nutr. 2022;76(5):730–8.

    CAS  PubMed  Google Scholar 

  61. Zhang JT, et al. Decreased miR-143 and increased miR-21 placental expression levels are associated with macrosomia. Mol Med Rep. 2016;13(4):3273–80.

    CAS  PubMed  Google Scholar 

  62. Guan C-Y, et al. Down-regulated miR-21 in gestational diabetes mellitus placenta induces PPAR-α to inhibit cell proliferation and infiltration. Diabetes Metab Syndr Obes Targets Ther. 2020;13:3009.

    CAS  Google Scholar 

  63. El-Shorafa HM, Sharif FA. Levels of miR-21and miR-182 in unexplained recurrent spontaneous abortion. Int J Chem Lifesciences. 2019;2(6):1185–8.

    Google Scholar 

  64. Dong K, et al. Downregulations of circulating miR-31 and miR-21 are associated with preeclampsia. Pregnancy Hypertens. 2019;17:59–63.

    PubMed  Google Scholar 

  65. Zhou F, et al. microRNA-21 regulates the proliferation of placental cells via FOXM1 in preeclampsia. Exp Ther Med. 2020;20(3):1871–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Dong K, et al. Down-regulated placental miR-21 contributes to preeclampsia through targeting RASA1. Hypertens Pregnancy. 2021;40(3):236–45.

    CAS  PubMed  Google Scholar 

  67. Zhang Y, et al. MicroRNA-155 contributes to preeclampsia by down-regulating CYR61. Am J Obstet Gynecol. 2010;202(5):466.e1-7.

    PubMed  Google Scholar 

  68. Li X, et al. MicroRNA-155 inhibits migration of trophoblast cells and contributes to the pathogenesis of severe preeclampsia by regulating endothelial nitric oxide synthase. Mol Med Rep. 2014;10(1):550–4.

    CAS  PubMed  Google Scholar 

  69. Xu P, et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension. 2014;63(6):1276–84.

    CAS  PubMed  Google Scholar 

  70. Brkić J, et al. MicroRNA-218-5p promotes endovascular trophoblast differentiation and spiral artery remodeling. Mol Ther. 2018;26(9):2189–205.

    PubMed  PubMed Central  Google Scholar 

  71. Fang M, et al. Hypoxia-inducible microRNA-218 inhibits trophoblast invasion by targeting LASP1: Implications for preeclampsia development. Int J Biochem Cell Biol. 2017;87:95–103.

    CAS  PubMed  Google Scholar 

  72. Yu Z, et al. LncRNA SNHG16 regulates trophoblast functions by the miR-218-5p/LASP1 axis. J Mol Histol. 2021;52(5):1021–33.

    CAS  PubMed  Google Scholar 

  73. Farsimadan M, et al. MicroRNA variants in endometriosis and its severity. Br J Biomed Sci. 2021;78(4):206–10.

    CAS  PubMed  Google Scholar 

  74. Alipour M, et al. Association between miR-146a C > G, miR-149 T > C, miR-196a2 T > C, and miR-499 A > G polymorphisms and susceptibility to idiopathic recurrent pregnancy loss. J Assist Reprod Genet. 2019;36(11):2237–44.

    PubMed  PubMed Central  Google Scholar 

  75. Hu Y, et al. Functional study of one nucleotide mutation in pri-miR-125a coding region which related to recurrent pregnancy loss. PLoS ONE. 2014;9(12):e114781.

    PubMed  PubMed Central  Google Scholar 

  76. Poltronieri-Oliveira AB, et al. Polymorphisms of miR-196a2 (rs11614913) and miR-605 (rs2043556) confer susceptibility to gastric cancer. Gene Rep. 2017;7:154–63.

    Google Scholar 

  77. Zhang J, et al. Correlations of MicroRNA-21 gene polymorphisms with chemosensitivity and prognosis of cervical cancer. Am J Med Sci. 2018;356(6):544–51.

    PubMed  Google Scholar 

  78. Yang J, et al. Association study of relationships of polymorphisms in the miR-21, miR-26b, miR-221/222 and miR-126 genes with cervical intraepithelial neoplasia and cervical cancer. BMC Cancer. 2021;21(1):997.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Xiang Y, et al. Association of miR-21, miR-126 and miR-605 gene polymorphisms with ischemic stroke risk. Oncotarget. 2017;8(56):95755–63.

    PubMed  PubMed Central  Google Scholar 

  80. Li H, et al. Association of genetic variants in lncRNA GAS5/miR-21/mTOR axis with risk and prognosis of coronary artery disease among a Chinese population. J Clin Lab Anal. 2020;34(10):e23430.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Ayoub SE, et al. Association of MicroRNA-155rs767649 Polymorphism with Susceptibility to Preeclampsia. Int J Mol Cell Med. 2019;8(4):247–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Wang S, et al. The rs767649 polymorphism in the promoter of miR-155 contributes to the decreased risk for cervical cancer in a Chinese population. Gene. 2016;595(1):109–14.

    CAS  PubMed  Google Scholar 

  83. Ahmed Ali M, et al. Relationship between miR-155 and miR-146a polymorphisms and susceptibility to multiple sclerosis in an Egyptian cohort. Biomed Rep. 2020;12(5):276–84.

    PubMed  PubMed Central  Google Scholar 

  84. Assmann TS, et al. Polymorphisms in genes encoding miR-155 and miR-146a are associated with protection to type 1 diabetes mellitus. Acta Diabetol. 2017;54(5):433–41.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiping Yao.

Ethics declarations

Ethics approval

This study was performed in line with the principles of the Declaration of Helsinki. This study was confirmed by the ethics review board of the Department of Obstetrics, Hengshui People’s Hospital with a full ethical code (2020–0041-25).

Consent to publish

All the women were asked to read and sign the consent form.

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Yin, X. & Yao, S. The effect of MicroRNAs variants on idiopathic recurrent pregnancy loss. J Assist Reprod Genet 40, 1589–1595 (2023). https://doi.org/10.1007/s10815-023-02827-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-023-02827-7

Keywords

Navigation