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Abstract
Purpose  The objective of this study was to investigate the key glycolysis-related genes linked to immune cell infiltration in 
endometriosis and to develop a new endometriosis (EMS) predictive model.
Methods  A training set and a test set were created from the Gene Expression Omnibus (GEO) public database. We identified 
five glycolysis-related genes using least absolute shrinkage and selection operator (LASSO) regression and the random 
forest method. Then, we developed and tested a prediction model for EMS diagnosis. The CIBERSORT method was used 
to compare the infiltration of 22 different immune cells. We examined the relationship between key glycolysis-related genes 
and immune factors in the eutopic endometrium of women with endometriosis. In addition, Gene Ontology (GO)-based 
semantic similarity and logistic regression model analyses were used to investigate core genes. Reverse real-time quantitative 
PCR (RT-qPCR) of 5 target genes was analysed.
Results  The five glycolysis-related hub genes (CHPF, CITED2, GPC3, PDK3, ADH6) were used to establish a predictive 
model for EMS. In the training and test sets, the area under the curve (AUC) of the receiver operating characteristic curve 
(ROC) prediction model was 0.777, 0.824, and 0.774. Additionally, there was a remarkable difference in the immune 
environment between the EMS and control groups. Eventually, the five target genes were verified by RT-qPCR.
Conclusion  The glycolysis-immune-based predictive model was established to forecast EMS patients’ diagnosis, and a 
detailed comprehension of the interactions between endometriosis, glycolysis, and the immune system may be vital for the 
recognition of potential novel therapeutic approaches and targets for EMS patients.
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Background

Endometriosis is a chronic inflammatory illness in which 
endometrial tissue outside the uterus causes pelvic pain 
and infertility [1]. Endometriosis is a condition that affects 
5–10% of reproductive-aged women worldwide. Despite its 
prevalence, the rate of misdiagnosis is high. Most women 
have difficulties expressing their symptoms or believing that 

their symptoms are being normalized in an unsuitable way [2]. 
Furthermore, the current requirement for surgical diagnosis—
typically via diagnostic laparoscopy—creates a barrier to early 
detection and treatment [2]. Therefore, an urgent need exists 
to create a reliable prognostic prediction model for patients in 
the early phase through a noninvasive method.

Although there are numerous theories to consider 
explaining the causes of endometriosis, the explanation of 
retrograde menstruation proposed by Sampson is the most 
widely accepted [3]. It claims that fragments of monthly 
endometrial tissue, including viable endometrial glands and 
stroma, are retrogradely expelled into the peritoneal cavity 
via the fallopian tubes, where they cling to and infect the 
underlying mesothelium [3]. Other factors, on the other 
hand, are required to promote endometrial stromal and 
glandular cell invasion and proliferation, including changes 
in the immune environment, reprogramming of glucose 
metabolism, and local complex hormone effects [4].
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It has long been known that cells rely on glycolysis to 
generate energy. From the view of evolution, cells grow in an 
anaerobic environment and can tolerate anaerobic glycolysis, 
so glycolysis is considered to be the oldest ATP production 
pathway [5]. Recent studies have revealed the benefits 
and specific advantages of aerobic glycolysis. Although 
glycolysis produces less ATP than the tricarboxylic acid 
oxidative phosphorylation pathway, proliferative cells prefer 
glycolysis for several reasons [6]. First, glycolysis and the 
conversion of glucose to lactate are increased, resulting in 
faster and greater ATP generation [7, 8]. Glycolytic ATP 
generation could be 100 times faster than the oxidative 
phosphorylation of tricarboxylic acids [9]. Meanwhile, the 
intracellular need is met by the modest synthesis of ATP 
from glycolysis. In conclusion, glycolysis may confer a 
selective growth advantage to proliferative cells [10, 11].

Compared to epithelial cells and stromal cells in the 
normal endometrium, previous studies have indicated that 
both have higher proliferation, adhesion, and invasion 
abilities [12–14]. Elevated levels of glycolysis (the Warburg 
effect) can lead to lactate production and substance synthesis. 
Lactate accumulation promotes tumour cell migration, 
invasion, angiogenesis, and immune escape [15, 16].

Interestingly, all the above cancer-like processes are also 
involved in the survival and invasion of eutopic endometrial 
cells, thus contributing to the development of endometriosis [17].

A growing body of research suggests a link between 
glycolysis and immunological evasion [18]. Whilst EM has 
benign clinical and pathological symptoms, it has cancer-
like features such as spread, invasion, and hyperplasia [19]. 
Cancers with a significant Warburg effect develop a tumour 
microenvironment (TME) deprived of glucose, limiting 
local immune surveillance via nutritional competition 
[20]. Meanwhile, immune cells can promote glycolysis in 
the same way that tumour cells can. Previous research has 
found that the immunological environment of the eutopic 
endometrium in women with endometriosis differs from 
that of the normal endometrium, but in endometriosis, the 
relationship between glycolysis and the immunological 
milieu is poorly understood [21].

In conclusion, we wanted to create a model of 
endometriosis linked to glycolysis and investigate its 

connection with the immune microenvironment. The Gene 
Expression Omnibus database was used to obtain gene 
chips. Least absolute shrinkage and selection operator 
(LASSO) and random forest (RF) were used to identify 
five prognostically related glycolytic genes. Next, the 
association between the eutopic endometrium immune 
environment and key genes was investigated, and a logistic 
regression model was built by ROC and verified by the test 
set. These findings could help researchers and clinicians 
better understand EMS.

Materials and methods

Gene expression data acquisition

GEO was used to download RNA-sequence profiles and 
data with and without endometriosis. The following are 
the eligibility requirements: first, eutopic endometrium 
samples collected from endometriosis patients and healthy 
controls; second, samples having glandular and stromal 
components; and last, the females in the study were in the 
proliferative and early secretory phases of the menstrual 
cycle. GSE25628 (8 eutopic endometria and 6 healthy 
controls), GSE51981 (76 eutopic endometria and 35 
healthy controls), GSE7846 (5 eutopic endometria and 5 
healthy controls), and GSE7305 (10 eutopic endometria 
and 10 healthy controls) were included in the study as 
the training set. Four training datasets from GPL570 were 
analysed by Affymetrix Human Genome U133 Plus 2.0 
Array. The test set comprised GSE120103 (18 eutopic 
endometria and 18 healthy controls) and GSE6364 (21 
eutopic endometria and 16 healthy controls) to confirm our 
predictive model (Table 1). Two datasets from GPL6480 
and GPL570 were used as the validation cohorts. GPL6480 
was analysed by Agilent-014850 Whole Human Genome 
Microarray 4 × 44  K G4112F. For normalization, we 
utilized the “sva” utility in R to remove disparities across 
batches because our datasets came from diverse cohorts 
and array platforms. For further analysis, we obtained 
15,926 common genes (Fig. 1).

Table 1   The RNA-sequence 
profiles used in this study

GEO accession Platform Experiment type EM (N) Normal (N) Tissue Year Dataset

GSE25628 GPL571 mRNA array 8 6 Endometrium 2010 Training
GSE51981 GPL570 mRNA array 76 35 Endometrium 2013 Training
GSE7846 GPL570 mRNA array 5 5 Endometrium 2007 Training
GSE7305 GPL570 mRNA array 10 10 Endometrium 2007 Training
GSE120103 GPL6480 mRNA array 18 18 Endometrium 2019 Test
GSE6364 GPL570 mRNA array 21 16 Endometrium 2007 Test
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Glycolysis‑related gene sets

The Molecular Signatures Database (MSigDB) is a 
library of annotated gene sets for Gene Set Enrichment 
Analysis (GSEA). Five gene sets relevant to glycolysis 
were retrieved, including BIOCARTA_GLYCOLYSIS_
PATHWAY, BIOCARTA_FEEDER_PATHWAY, 
HALLMARK_GLYCOLYSIS, GO_GLYCOLYTIC_
PROCESS, and REACTOME_GLYCOLYSIS. Using the 
“limma” program in R software, we found 262 glycolysis-
related genes in 155 cases.

Identification and validation of predictive gene 
signature

The glycolysis-related diagnostic indicators of EMS were 
classified using LASSO logistic regression and random 
forest. The “glmnet” program was used to conduct the 
LASSO analysis, with the response type set to binomial 
and the alpha set to 1. Random forest is a technique that 
uses recursive partitioning to generate a binary tree. The 
random forest method was given a number of trees of 500. 
Then, we chose the top 20 genes from the RF analysis to 
interact with the LASSO results and used Venn diagram 
to visualize the intersection of gene lists.

Construction of the EMS diagnostic model

Machine algorithm logistic regression (LR), random 
forest (RF), and lasso regression (LASSO) were used 
to construct the diagnostic model of EMS based on the 
glycolysis-related diagnostic markers. The following is 
how a model was created:

The model’s effectiveness and accuracy were assessed 
using ROC curves and AUC values. The nomogram’s 
accuracy was assessed using calibration plots. The best 
predicted value was indicated by the 45° line. The more 
perfect the result, the closer the curve was. The clinical 
utility of this model was examined using decision curve 
analysis (DCA).

Evaluation of immune cell subtype distribution

The CIBERSORT algorithm was used to infer the relative 
proportion of 22 different types of immuno-infiltrating 
cells from RNA-seq data of women with and without 
EMS. Gene expression and immune-cell content were 

Risk score = exp _gene_1 × coef_gene_1 + expr_gene_2

× coef_gene_2 +⋯ + expr_gene_n × coef_gene_n

Fig. 1   Overview of the study workflow
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subjected to Spearman correlation analysis. A statistically 
significant value was defined as p < 0.05.

Gene Set Enrichment Analysis

Based on the expression of the five hub genes, EMS patients 
were categorized into two groups: high and low. GSEA of 
the two groups was accomplished through the use of signal 
pathway differences. The background gene set data were 
obtained from the Molecular Signature Database. Maximum 
(500) and minimum gene sets were used to select the gene 
set. Enriched gene sets were found after 1000 permutations 
with a p < 0.05 cut-off. The significantly enriched gene 
sets were then sorted in order of their significance. GSEA 
was used to investigate the relationships between various 
expression groups and biological processes.

Semantic similarity GO annotations

We used the GO Semsim software package of Wang’s 
method to explore the functional similarity between proteins 
[22]. In terms of molecular function (MF), biological 
processes (BP), and cellular component (CC), we calculated 
the geometric mean of GO semantic similarity. To measure 
functional similarity, the geometric average of semantic 
similarity was utilized.

Coexpression analysis of the hub genes

The “corrplot” and “circlize” tools in R software were used 
to perform correlation analysis. The corrplot tool in R was 
used to plot the Pearson correlation of hub gene expression 
(version 1.64). The circlize package was used to generate 
circos plots. The colours “red” and “green” represent 
correlation coefficients. A positive correlation is indicated 
by the red colour, whereas a negative correlation is indicated 
by the green colour. The stronger the relationship, the darker 
the colour and thicker the cord.

Human subjects and sample collection

Eutopic endometrial tissues (n = 12) were obtained from 
women with ovarian endometriotic cysts undergoing 
laparoscopic surgery at the Tongji Hospital of Tongji 
University from August to December 2021, and control 
endometrial tissues (n = 12) were obtained from patients 
without endometriosis who underwent hysterectomy for 
uterine leiomyoma. All of the tissue samples were confirmed 
through histological examination. Exclusion criteria 
included all women unable to consent, those under the age 
of 18, currently pregnant, malignancy of any kind, acute 
inflammatory disease or infection, and systemic autoimmune 
disease [23]. All of the patients had normal ovulation with 

regular menstrual cycles, and none of the patients had 
received any ovulation-promoting drugs in the 3 months 
before enrolment. The ethics committee of Tongji Hospital 
of Tongji University approved this study, and informed 
consent was obtained from all participants.

RT‑qPCR validation of the hub genes

RNA was extracted using Vazyme RNA Isolater Total 
RNA Extraction Reagent according to the manufacturer’s 
instructions. First-strand cDNA synthesis was performed 
using HiScript II Q RT SuperMix for qPCR (Vazyme). qPCR 
was carried out using the Taq Pro Universal SYBR qPCR 
Master Mix. GAPDH was used as an internal reference. The 
relative expression of target genes was calculated using the 
2−ΔΔCt method. A p value < 0.05 was considered significant. 
Primer sequences are summarized in Table 2. All PCRs were 
conducted in triplicate.

Statistical analysis

For statistical analyses and visualization of results, R 
software (version 4.1.2) was utilized. A p value of less 
than 0.05 was judged statistically significant. Significant 
correlation coefficients were defined as those with an 
absolute value greater than 0.2 and a p value less than 
0.05. To create the predictive model, the logistic regression 
technique was employed.

Results

Identification of five glycolysis‑related hub genes

The training set was obtained from the NCBI GEO public 
database. There were 155 patients in total (EMS group, 99; 

Table 2   Primer information

Target name Primer

GAPDH F AAT​GGG​CAG​CCG​TTA​GGA​AA
GAPDH R GCG​CCC​AAT​ACG​ACC​AAA​TC
CITED2 F GCG​AAG​CTG​GGG​AAT​AAC​AAC​
CITED2 R TCT​GCC​ATT​TCC​AGT​CTT​CAGG​
CHPF F CTT​CCC​CTC​ATC​TTA​GGG​CTG​
CHPF R CAT​CAC​TTT​GGT​CTA​GCC​GAG​
ADH6 F GTG​TGG​TTG​TTG​GGG​TGT​TG
ADH6 R CTG​CTC​TTC​CAG​CCT​CCA​AA
GPC3 F CCT​TTG​AAA​TTG​TTG​TTC​GCCA​
GPC3 R CCT​GGG​TTC​ATT​AGC​TGG​GTA​
PDK3 F CGC​TCT​CCA​TCA​AAC​AAT​TCCT​
PDK3 R CCA​CTG​AAG​GGC​GGT​TAA​GTA​



1151Journal of Assisted Reproduction and Genetics (2023) 40:1147–1161	

1 3

control group, 56). The expression profiles of 262 glycolysis-
related genes were derived using the differential expression 
profile. We used LASSO regression to perform feature 
screening to explore glycolysis-related biomarkers in EMS. 
LASSO regression revealed that 18 genes were signature 
genes. The 262 glycolysis-related DEGs were then fed into 
the random forest classifier. The variable relevance of the 
output results was quantified in terms of decreasing accuracy 
and decreasing mean square error during the construction of 
the random forest model. The top 20 DEGs, ranked in order 
of relevance, were then chosen as candidate genes for further 
investigation. The intersection of random forest genes and 
LASSO regression genes resulted in 5 DEGs (Fig. 2).

Establishment and validation of the diagnostic 
model based on five glycolysis‑related hub genes

We created a predictive model using the five genes below: 
chondroitin polymerizing factor (CHPF), Cbp/p300 interacting 
transactivator with Glu/Asp-rich carboxy-terminal domain 2 
(CITED2), glypican 3 (GPC3), alcohol dehydrogenase 6 (ADH6), 
and pyruvate dehydrogenase kinase 3 (PDK3). The following risk 
model was created using coefficients for the five hub genes:

Risk score = (2.751 × CHPF) + (3.880 × PDK3)

+ (0.631 × CITED2) + (0.502 × GPC3)

− (3.075 × ADH6)

The performance of this model was examined using 
the area under the receiver operating characteristic (ROC) 
curve. In the training set, the area under the ROC curve 
(AUC) for this model was 0.777 (Fig. 3a), and the AUCs 
of the model in the test set were 0.824 and 0.774 (Fig. 3d, 
e). The calibration curve revealed that the model matched 
well with the actual and predicted probability of an 
EMS occurrence (Fig. 3b). The nomogram’s C-index for 
predicting the presence of EMS was 0.777 [95% confidence 
interval (CI): 0.727–0.827]. Furthermore, decision curve 
analysis (DCA) revealed that the anticipated and observed 
values were nearly identical (Fig. 3c). CHPF, CITED2, 
GPC3, ADH6, and PDK3 were used to create a diagnostic 
prediction model for EMS using a multivariable logistic 
regression model and are shown as a nomogram (Fig. 3f). 
The above results indicate the importance and independence 
of the risk score as a diagnostic model of EMS.

The landscape of immune infiltration

We employed the CIBERSORT algorithm to explore the 
difference between eutopic endometrium in endometriosis 
patients and healthy controls after revealing the landscape 
of infiltration of 22 immune cell subpopulations. The 
abundance ratios of 22 immune cells in the 155 samples 
are presented in Fig. 4a. The percentage of immune cells 
in each sample is shown in Fig. 4b. Figure 4c depicts 

Fig. 2   Selection of diagnostic 
biomarkers and identification of 
hub genes. a LASSO coefficient 
profiles of the 18 differentially 
expressed genes. b The misclas-
sification error in the jackknife 
rates analysis. c Venn diagram 
of genes extracted from LASSO 
and RF methods
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the interaction of innate immune cells. Compared with 
the control endometrium, eutopic endometrium from 
women with endometriosis contained a greater number 
of follicular helper T cells, T cell regulators (Tregs), M0 
macrophages, activated NK cells, monocytes, activated 
dendritic cells, and resting mast cells. However, this 
eutopic endometrium contained lower numbers of plasma 
cells, CD8 T cells, CD4 memory resting T cells, resting 

NK cells, M1 macrophages, M2 macrophages, resting 
dendritic cells, activated mast cells, gamma delta T cells, 
and eosinophils (Fig. 4d).

Analysis of core genes and immune infiltration

When we further examined the interaction between hub 
genes and immune cells, the expression of risk hub 

Fig. 3   Establishment and verification of the glycolysis-immune-
related diagnostic model for EMS. a ROC analysis of the glycolysis-
immune-related diagnostic model using the training group. b Nomo-
gram-predicted probability of EMS in the training group. c Decision 

curve analysis of the model in the training group. d and e ROC analy-
sis of the glycolysis-immune-related diagnostic model using the test 
group (GSE120103 and GSE6364, respectively). f Nomogram for 
diagnosis of EMS
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genes (CHPF, CITED2, GPC3, PDK3) was shown to be 
positively connected with plasma cells, M2 macrophages, 
CD8 T cells, activated mast cells, and resting memory 
CD4 T cells. The protective hub gene (ADH6) had a 
positive correlation with naïve CD4 T cells, activated NK 
cells, resting mast cells, regulatory T cells (Tregs), and M0 
macrophages (Fig. 5a–e).

Analysis of core genes and immune factors

The TISIDB database (an integrated repository portal for 
gene–immune system interactions) was then used to find 
associations between these five hub genes and various 
immunological variables, such as chemokines, receptors, 
immunosuppressive factors, and immunostimulatory factors. 

Fig. 4   The landscape of immune infiltration between EMS and nor-
mal controls. a The box-plot diagram indicating the abundance ratio 
of immune cells in 116 samples. b The heatmap indicating the abun-
dance ratio of immune cells in the EMS (n = 71) and control groups 

(n = 45). c The cor-heatmap shows the relationship between the abun-
dance ratios of 22 immune cells. d The difference in immune infiltra-
tion between EMS (red) and normal (blue) controls (p values < 0.05 
indicate statistical significance)
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A correlation graph was created between immunological 
factors and key EMS genes (Fig. 6a–d). We selected immune 
factors associated with core genes (mean correlation 
coefficient > 0.4) and constructed an interaction network 
using Cytoscape and STRING (Fig. 6e, f). These findings 
indicated that key genes contribute significantly to the 
endometrial immune microenvironment.

GSEA analysis of glycolysis‑related hub genes

We used GSEA on these five critical genes to investigate 
their activities and pathways. GSEA of five hub genes 
in the training set demonstrated that samples of these 
highly expressed hub genes (CHPF, CITED2, GPC3) 
were primarily enriched in “regulation of vesicle 
fusion,” “calmodulin-dependent protein kinase activity,” 
“myelin maintenance,” “phosphatidylglycerol metabolic 
process,” and “positive regulation of actin cytoskeleton 
recognition” related pathways. Additionally, samples 

with low expression of ADH6 were mainly enriched in 
“centriole assembly,” “structural constituent of nuclear 
pore,” “regulation of centriole replication,” “intraciliary 
transport,” and “regulation of protein exit from endoplasmic 
reticulum” (Fig.  7a–d). The results suggested that all 
the above genes were involved in biological functions, 
such as energy metabolism, material transport, and cell 
proliferation, which in turn contributed to the progression 
of EMS. Concurrently, the highly expressed PDK3 mainly 
participated in “methyl CPG binding,” “retinal ganglion 
cell axon guidance,” and “lactation”-related pathways 
(Fig. 7e). The molecular regulatory mechanisms of core 
genes are shown in a circle plot (Fig. 8a–e).

GO similarity and coexpression of hub genes

To investigate the hub genes in EMS, we listed the key genes 
based on the average functional similarity links amongst the 
proteins. Amongst those genes, the scores of CITED2 (score: 

Fig. 5   The association between the hub genes and the infiltration level: a CHPF, b CITED2, c GPC3, d PDK3, and e ADH6
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0.324), PDK3 (score: 0.318), and GPC3 (score: 0.306) were 
the highest. The remaining two genes, CHPF (score: 0.285) 
and ADH6 (score: 0.216), were below 0.3 (Fig. 9a). Pearson 
analysis was performed to investigate correlations between 
hub genes. Compared to CHPF, CITED2, GPC3, and PDK3 
were more strongly positively correlated with each other. 
However, only ADH6 remained negatively associated with 
other hub genes (Fig. 9b).

RT‑qPCR validation of the hub genes

We subsequently performed RT-qPCR experiments to 
explore the relative expression levels of the hub genes in 
the EMS and normal control groups. The research data 
demonstrated that the mRNA expression levels of GPC3, 
CHPF, and PDK3 in EMS were in contrast with those of the 
control (CHPF, p < 0.05; GPC3, p < 0.05; PDK3, p < 0.001). 

Fig. 6   Association between the hub genes and immune cell infiltration. a–d Correlation between hub genes and chemokines, immune receptors, 
immunosuppressive factors, and immunostimulatory factors. e and f Protein–protein interaction plot of hub genes and immune-related molecules
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Conversely, the opposite effect was observed for ADH6 
(p < 0.001). In addition, there was no significant difference 
in the levels of CITED2 between the EMS group and the 
control group (Fig. 10a–e). These five hub genes might 
function as potential diagnostic and prognostic biomarkers.

Discussion

Endometriosis (EMS) is a systemic inf lammatory 
disease caused by ectopic endometrium implantation and 
development outside the uterine cavity [2]. Recent studies 
have focused on glycolytic pathways in cancer cell growth 
and invasion. Endometrium cells, like cancer cells, have the 
ability to switch energy metabolism from mitochondrial 
oxidative phosphorylation (OXPHOS) to aerobic glycolysis 
to reduce ROS generation and enhance survival [4]. It 
has been reported that glucose metabolism and energy 
production in ectopic endometriotic cells under hypoxia 
influence the incidence and invasion of endometriosis [24, 
25]. Nevertheless, studies involving the Warburg effect 
in eutopic endometrial cells are still lacking. Increasing 
findings suggest that changes in glycolytic metabolism in 
the endometrial microenvironment may have impacts on 
immune cell infiltration and other anti-immune processes, 
but the specific mechanism remains to be explored.

Early prediction and detection of EMS can lead to early 
interventions and improve treatment outcomes. Therefore, 
the identification of possible biomarkers for predicting 
EMS is crucial. In recent years, advances in machine 
learning techniques and the availability of gene expression 
data in public databases have provided a new approach to 
identifying biomarkers for disease detection.

In this work, we identified five glycolysis-related 
potential genes (CHPF, CITED2, PDK3, GPC3, and ADH6) 
through LASSO regression analysis and the RF method. 
The CIBERSORT algorithm was then used to perform 
a deconvolution study of the immune microenvironment 
to determine the fraction of immune cells in EMS. The 
relationship between core genes and other immunomodulators, 
as well as the majority of chemokines and receptors mentioned 
in TISIDB, was then investigated. The profiles of the five 
hub genes were identified using GO semantic similarity and 
GSEA. The risk score based on the five glycolysis-related 
markers was then used to create a nomogram, and the 
nomogram had good predictive performance.

Chondroitin polymerizing factor (CHPF) is a type II 
transmembrane protein that is essential for chondroitin sulfate 
(CS) production. Many cell biological functions, such as cell 
adhesion, cell differentiation, and neural network creation, 
rely on CS [26]. Li et al. [27] reported that the expression 
of CHPF was linked to immune cells and various immune 

Fig. 7   Enrichment analysis of pathway and Gene Ontology (GO) involved hub genes. a–e Gene Set Enrichment Analysis of CHPF, CITED2, 
GPC3, ADH6, and PDK3



1157Journal of Assisted Reproduction and Genetics (2023) 40:1147–1161	

1 3

factors. At present, most studies focus on the function of 
CHPF in cancers, and little has been studied in endometriosis.

CBP/p300-interacting-transactivator-with-an-ED-rich-
tail 2 (CITED2) is a transcriptional regulator that regulates 
biological functions by coactivating or repressing multiple 
transcription factors [28]. The glycolytic gene CITED2 is also 
a hypoxia-related gene. It has been reported that CITED2 is 
associated with primary ovarian insufficiency [29].

Glypican-3 (GPC3) is a membrane-associated 
proteoglycan involved in cell growth, differentiation, and 
migration. The specific expression of GPC3 in tumour cells 
has received much attention [30]. In a Canadian patient 
cohort, high membranous GPC3 expression was found 
in 20% of endometriosis-associated ovarian clear cell 
carcinomas (OCCCs) [31].

Fig. 8   Molecular regulatory mechanism of core gene-related pathways and GO functional enrichment analyses. a–e GSEA-related ccgraph plot 
of CHPF, CITED2, GPC3, ADH6, and PDK3

Fig. 9   Closeness score of 
semantic similarities between 
GO terms and coexpression 
analysis of hub genes. a GO 
semantic similarity box plot of 
core genes. b The circos dia-
gram depicts Pearson correla-
tions between hub genes
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Pyruvate dehydrogenase kinase 3 (PDK3) is a member 
of the PDK family, which contains PDK1, PDK2, PDK2, 
and PDK4. PDK3 mainly contributes to metabolic switching 
and cell survival under hypoxia, similar to CITED2 [32]. 
Simultaneously, PDK3 plays a crucial role in cancers and 
has been regarded as a promising target for cancers [33]. Our 
results found that PDK3 was overexpressed in the eutopic 
endometrium in women with endometriosis. However, the 
function of PDK3 in endometriosis is unclear.

The serum levels of alcohol dehydrogenase 6 (ADH6) 
have been shown in numerous studies to be a potential 
diagnostic marker in cancers. It has been substantiated 
that ADH6 is involved in the P450-related pathway and 
biological processes linked to the progression and treatment 
of pancreatic cancer [34]. Its involvement in endometriosis 
biology, however, is unknown.

The biological behaviour of endometriosis is similar 
to that of malignant tumours. Glucose is the most readily 
available nutrient for cancer cells, but it is also required for 
T cell activation, differentiation, and function. Proliferating 
tumour cells that consume a large amount of extracellular 
glucose secrete lactic acid into the cancer microenvironment. 
Lactate was later discovered to inhibit monocyte migration 
and cytokine release as well as promote resident macrophage 
polarization to the tumour-associated macrophage 2 (TAM2) 
phenotype, resulting in tumour progression and immune 
escape [35].

Although endometriosis is a benign illness, it exhibits 
neoplastic traits such as inflammation and tissue invasion 
[36]. Therefore, we speculate that the same biological 
process between glycolysis and the immune environment 
occurs in endometriosis [35]. The abundances of follicular 
helper T cells, T cell regulators (Tregs), M0 macrophages, 
activated NK cells, monocytes, activated dendritic cells, 
and resting mast cells (MCs) were higher in the eutopic 
endometria of women with endometriosis than in those of 
normal controls in our study. Tfh cells are a kind of CD4+ 
T cell that plays a critical role in the adaptive immune 
response. The roles of Tfh cells in endometriosis have 
received little attention [37]. T cell regulators (Tregs) are 
increased in the endometrium of women with and without 
disease, according to most research. However, there is 
still debate [38]. Previous research has shown that in the 
proliferative phase of endometriosis, more macrophages 
(Møs) and activated dendritic cells are found in the 
endometrium of women with endometriosis, regardless of 
the hormonal milieu [38]. Currently, it appears that uterine 
natural killer (uNK) cells from women with endometriosis 
are immature and that uNK cytotoxic activity could be an 
indicator of endometriosis-related infertility and recurrent 
miscarriage, although the absolute numbers are the same 
as in normal endometrium [39]. Others have found higher 
mast cell infiltration in the endometrium in women with 
illness, as well as enhanced MC activation in ectopic 

Fig. 10   Expression of CHPF, GPC3, PDK3, ADH6, and CITED2 in eutopic endometrium samples collected from endometriosis patients and 
healthy controls as shown by RT-qPCR (*p < 0.05, **p < 0.01, ***p < 0.001)
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lesions, but activated MCs in eutopic endometrium were 
rarely found [40]. We also found increased monocytes in 
the eutopic endometrium of women with endometriosis, and 
we infer that monocytes are largely recruited as a source of 
monocyte-derived macrophages [41].

Next, we analysed the correlation between hub glycolysis-
related gene expression and infiltration of various immune 
cell types. Likewise, we investigated the relationship 
between five hub genes, various immunomodulators, 
chemokines, and receptors listed in TISIDB. Finally, 
according to GSEA, hub genes are primarily involved in 
biological processes, such as energy metabolism, material 
transport, and cell proliferation, which in turn contribute 
to the progression of EMS. Moreover, compared to CHPF, 
CITED2, GPC3, and PDK3 were more strongly positively 
correlated with each other. ADH6 remained negatively 
associated with other hub genes.

The RT-qPCR results were consistent with bioinformation 
findings. ADH6 levels were significantly lower in the EMS 
group than in the control group, whilst mRNA expression 
levels for GPC3, PDK3, and CHPF were significantly higher 
in the EMS patients than in the control group.

We discovered five glycolysis-related hub genes that 
are closely associated with the molecular mechanism of 
EMS using bioinformatic analysis, verified the biological 
functions and important pathways of the hub genes, and 
performed immune cell infiltration and correlation analysis 
for the target core genes. However, this work has certain 
limitations. It is just a proof of concept, and more in vitro 
and in vivo experiments are needed to confirm our findings 
and investigate the mechanisms by which glycolysis-related 
genes regulate the infiltration of immune cells.

Conclusions

In conclusion, we discovered five glycolysis-related 
genes in endometriosis and developed a model for EMS 
assessment. Based on numerous bioinformatics techniques, 
we discovered hub genes in EMS and their correlation with 
infiltrating immune cells, as well as correlations between 
22 immune cell subpopulations. Meanwhile, GSEA and 
GO similarity analysis revealed more specific mechanisms. 
Selected genes could be candidate predictive markers 
and potential therapeutic targets for EMS, but the exact 
mechanisms of glycolysis-related genes and the immune 
environment (including immune cells and immune factors) 
in EMS should be further explored.
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