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Abstract
Epigenetics is the branch of genetics that studies the different mechanisms that influence gene expression without direct modi-
fication of the DNA sequence. An ever-increasing amount of evidence suggests that such regulatory processes may play a 
pivotal role both in the initiation of pregnancy and in the later processes of embryonic and fetal development, thus determining 
long-term effects even in adult life. In this narrative review, we summarize the current knowledge on the role of epigenetics in 
pregnancy, from its most studied and well-known mechanisms to the new frontiers of epigenetic regulation, such as the role 
of ncRNAs and the effects of the gestational environment on fetal brain development. Epigenetic mechanisms in pregnancy 
are a dynamic phenomenon that responds both to maternal–fetal and environmental factors, which can influence and modify 
the embryo-fetal development during the various gestational phases. Therefore, we also recapitulate the effects of the most 
notable environmental factors that can affect pregnancy and prenatal development, such as maternal nutrition, stress hormones, 
microbiome, and teratogens, focusing on their ability to cause epigenetic modifications in the gestational environment and 
ultimately in the fetus. Despite the promising advancements in the knowledge of epigenetics in pregnancy, more experience 
and data on this topic are still needed. A better understanding of epigenetic regulation in pregnancy could in fact prove valuable 
towards a better management of both physiological pregnancies and assisted reproduction treatments, other than allowing to 
better comprehend the origin of multifactorial pathological conditions such as neurodevelopmental disorders.
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Introduction

The British epidemiologist David Barker first introduced the 
concept that “the womb may be more important than the 
home”, emphasizing the role of the gestational environment 
as a regulatory staple in the development of the embryo, of 
the fetus and, ultimately, of the adult [1].

After fertilization, oviductal and endometrial fluids nur-
ture the embryo and regulate its development, before being 
replaced in this role by the placenta in the further stages of 
the pregnancy, while the embryo, and later the fetus, interact 
with the maternal environment in order to further its own 
implantation and development. This embryo-maternal and 
fetus-maternal crosstalk [2–6] is finely regulated by numer-
ous cellular pathways, including epigenetic mechanisms.

Epigenetics is defined as the study of heritable changes 
in gene expression that do not involve modifications to the 
underlying DNA sequence. Knowledge of the phenom-
ena related to such regulatory mechanisms carries a huge 
relevance in both physiology and pathophysiology. Both 
parental and environmental factors (such as nutrition, stress, 
socioeconomic status and exposure to teratogens and other 
environmental drivers) have been demonstrated to modulate 
prenatal development both in the preconception phase and 
afterwards during the pregnancy, via changes to the DNA 
methylation patterns (also known as methylome), histone 
modifications, and/or non-coding RNA (ncRNA) system.
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Extensive evidence has progressively emerged that the 
gestational environment determines a remarkable impact on 
an epigenetic level, at least with two different mechanisms: 
by directly regulating the stages of implantation and pla-
centation; and widely remodeling epigenetic patterns during 
prenatal development, thus determining long-term outcomes 
in the offspring [4, 5, 7–10].

This narrative review aims to recapitulate both the 
already established and the newly emerging environmental 
and parental factors that regulate pregnancy through epige-
netic mechanisms.

Main epigenetics mechanisms

The epigenetic modulation of gene expression begins in the 
gametes and zygote through genomic imprinting and then 
continues throughout the whole gestation with changes to the 
fetal and maternal methyloma and the specific action of the 

ncRNA system. The main processes involved in the epigenetic 
regulation of pregnancy, namely the DNA methylation, the 
histone post-translational modifications, the non-coding RNA 
and the genomic imprinting, are summarized in Table 1.

DNA methylation

DNA methylation is the most widespread epigenetic modifi-
cation of the human genome. The addition of a methyl group 
to the fifth carbon of the pyrimidine cytosine ring determines 
long-term silencing in processes such as genomic imprinting, 
tissue-specific regulation of gene expression, X-chromosome 
inactivation, and silencing of repetitive DNA elements. Correct 
patterns of DNA methylation, both prenatally and postnatally, 
are required for normal human development [11–14].

In multicellular eukaryotes, DNA methylation mostly 
occurs at cytosines of CpG (C–phosphate–G) dinucleotides; 
highly methylated sequences can also be found in satellite 
DNAs, repetitive element and non-repetitive intergenic 

Table 1  Main epigenetic processes involved in the regulation of pregnancy

DNMT, DNA methyltransferase; TET, ten-eleven translocation methylcytosine dioxygenases; MBD4, methyl-CpG binding protein 4; TDG, thy-
mine DNAglycosylase; (A), acetylation; (M), methylation; (P), phosphorylation; (U), ubiquitination; HATs, histone acetyltransferases; HDACs, 
histone deacetylases; HMTs, histone methyltransferases; HDMs, histone demethylases; DUBs, deubiquitinating enzymes; ncRNAs, non-coding 
RNAs; sncRNAs, short ncRNAs; siRNAs, short interfering RNAs; miRNAs, microRNAs; piRNAs, piwi interacting RNAs; lncRNAs, long ncR-
NAs; lincRNAs, long intergenic ncRNAs; ilncRNAs, intronic long ncRNAs; eRNAs, enhancer long ncRNAs; DMRs, differentially methylated 
regions; ICRs, imprinting control regions

Processes Mechanisms Enzymes/molecules Effect

DNA methylation Methylation of CpG and CGIs -DNMT1
-DNMT3A
-DNMT3B
-TET family
-MBD4
-TDG

-Transcription silencing (sporadically 
transcription permissive)

-Chromatin remodeling

Histone post-transla-
tional modification

Histones’:
Acetylation (A)
Methylation (M)
Phosphorylation (P)
Ubiquitination (U)

-HATs (6 groups)
-HDACs (4 classes, 18 enzymes)
-HMTs
-HDMs
-DUBs (2 classes)

-A: ↑ gene expression
-M: 1. regulation of imprinting
2. ↓or ↑ gene expression
-P: 1. DNA damage repair
2. Chromatin compaction
3. Transcription modulation
-U: 1. DNA damage signalling
2. Protein translocation
3. Transcription regulation
4. Cellular signaling modulation

ncRNAs system -RNA–DNA interaction
-RNA-RNA interaction
-RNA–protein interaction
-Protein recruitment (scaffolding 

&/or sponging)

1. sncRNAs:
-siRNAs
-miRNAs
-piRNAs
2. lncRNAs:
-lincRNAs
-ilncRNAs
-eRNAs (including promoter/UTR/
telomere-associated lncRNAs)

-Gene expression regulation
-Promoter silencing/enhancing
-RNA interference
-mRNA splicing regulation
-Histone-modifying complexes driver
-Methylation processes involving
-Post-transcriptional regulation

Imprinting Methylation of:
-X-Chromosome
-DMRs/ICRs
-Histones

DNMT3A
DNMT3B
DNMT3L

-X- Inactivation
-Parental/genomic imprinting control
-Imprinting maintenance
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DNA. When established on promoters or enhancers, meth-
ylation can repress transcription either directly, by inhibition 
of transcription factor binding, or indirectly, through recruit-
ment of methyl-binding proteins and chromatin modifiers 
[11–15]. Even though the most widespread and well-known 
effect of DNA methylation is long-term silencing of tran-
scription, it should be noted that recent works suggested that 
in some instances, hypermethylated promoters and enhanc-
ers could be permissive to transcription instead [16].

While most of the CpG sites in human DNA are meth-
ylated, the CpG-rich regions named CpG islands, that are 
located in approximately 60% of the promoters of human 
genes, display a baseline unmethylated pattern. Methylation 
of CpG islands located in the promoter region of a gene 
usually inhibits the transcription of that gene due to binding 
of methyl-CpG binding proteins, as they recruit chromatin 
remodelers, histone deacetylases, and methylases to the pro-
moter of the gene, thereby blocking transcription [17, 18].

Histone post‑translational modifications

Gene expression is also influenced by a variety of post-trans-
lational modifications to histones. Acetylating, methylating, 
phosphorylating, and ubiquitinating enzymes act alone or in 
combination to control chromatin compaction [19–22]. His-
tone acetylation generally results in higher gene expression, 
with rare exceptions [23–25]. Histone methylation has both 
permissive or repressive effect on transcription, depending on 
the location of target amino acid residues in the histone tail or 
on the number of methyl groups attached [9, 26, 27]. Histone 
phosphorylation is regulated by kinases (that bind phosphate 
groups) and phosphatases (which detach the phosphates) and 
has at least three activities: DNA damage repair, control of 
chromatin compaction connected with mitosis and meiosis, 
and modulation of transcriptional function [28, 29]. Histone 
mono-ubiquitination has a crucial role in protein translocation, 
DNA damage signaling, and regulation of transcription. On 
the other hand, poly-ubiquitination flags proteins as a mark for 
degradation or activation in some signaling pathways [22, 30].

Several studies and evidences report that precise chroma-
tin modification patterns occur in the fetal membrane and 
decidua cells, changing dynamically during normal and 
pathological pregnancies [31].

Non‑coding RNAs system

While it is known that most human transcripts are not 
translated, many of them actively participate in essential 
cellular functions nonetheless. Specifically, ncRNAs are a 
family of RNAs that do not encode functional proteins but 
are involved in pivotal regulatory and housekeeping mecha-
nisms [32, 33].

The regulatory ncRNAs are divided into two main catego-
ries, based on size: short-chain non-coding RNAs (sncRNAs, 
including siRNAs, miRNAs, and piRNAs) when shorter than 
200 nucleotides; long-chain non-coding RNA (lncRNAs, 
including lincRNAs, ilncRNAs, and eRNAs) when longer than 
200 nucleotides. ncRNAs were originally thought to be only 
involved in gene expression at the post-transcriptional level, 
while nowadays it has been largely established that non-coding 
RNAs function as the most common regulatory RNAs, both at 
pre and post transcriptional level (e.g., by promoter silencing 
or RNA interference mechanisms), and are also involved in 
epigenetic control. Many of these transcripts are in fact nec-
essary for proper targeting of histone modifying complexes 
or participate in the DNA methylation process and genomic 
imprinting. For such reasons, it has been proposed that a con-
temporary definition of epigenetics should also include the 
gene silencing or upregulation mediated by ncRNAs [34–36].

In particular, the study of miRNAs expression and trans-
port appears to be the next frontier in terms of improving 
the understanding of epigenetic mechanisms in fetal devel-
opment and fetal-maternal crosstalk. Their role in broader 
effects on fetal and long-term human development is yet 
to be fully investigated and could represent a promising 
research field for future studies, which could even expand 
to the optimization of in vitro fertilization [37, 38].

Imprinting

During gametogenesis and then again in the early moments after 
fertilization, mammals undergo a two-step DNA methylation 
reprogramming that affects more than 80% of the genome. Two 
events of extensive erasure occur in the primordial germ cells and 
pre-implantation embryo, followed by de novo DNA methylation, 
with differential kinetics and patterns during male and female game-
togenesis and within cell lineage specification in post-implantation 
development. [37–41]. Additionally, the process of X-chromosome 
inactivation will occur in female embryos, leaving only one copy of 
almost all of the X-linked genes to be expressed [39].

However, specific differentially methylated regions 
(DMRs), in which DNA is methylated on one specific paren-
tal allele, escape the reprogramming process that happens 
in the pre-implantation embryo [37]. This phenomenon, that 
allows parent-of–origin specific gene expression, is defined 
as genomic imprinting. Most imprinted genes are gathered 
in distinct clusters of the size of about 1 Mb and contain 
both maternally and paternally expressed genes. In addi-
tion to protein-coding genes, these clusters typically contain 
lncRNA, which can regulate the imprinting of the nearby 
genes. Regulation of the clustered genes is coordinated 
through short DNA sequences called imprinting control 
regions (ICRs). Also, recent evidence is starting to highlight 
the contribution of post-translational histone modifications 
to the regulation of imprinting [42, 43].
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The disruption of genomic imprinting leads to largely estab-
lished human diseases with recognizable clinical features such as 
Beckwith-Wiedemann syndrome (MIM 130,650), Silver-Russell 
syndrome (MIM 180,860), Prader-Willi syndrome (MIM 176,270), 
and Angelman syndrome (MIM 105,830), but less dramatic and 
more subtle changes in the imprinted patterns, especially concern-
ing multi-locus imprinting disturbances (MLID), can instead modu-
late fetal growth, resource acquisition, and organogenesis [44–46].

There are many epigenetic action’s hot spots along the entire 
pregnancy process, and it would have been too long and purely 
didactic to analyze them all in detail. We have therefore chosen 
the most significant steps and those for which there is already 
literature data that allow a reasoned review of the causative 
mechanism. Figure 1 details the main hot spots, divided into 
stage 1 (from gametes to embryo-endometrium cross-talk) and 
stage 2 (from placenta-fetus cross-talk to brain development, 
with an overview on environmental factors as well).

Hot spots of epigenetic action in gametes 
and embryo stage

Oocytes and spermatozoa

In addition to determining parent-of-origin specific gene expres-
sion by genomic imprinting, the epigenetic reprogramming that 

happens during gametogenesis regulates gametes development, 
and its disruption can also reverberate in the zygote, embryo, 
and postnatal life.

Fertile sperm production requires effective epigenetic reg-
ulation. In male gametes, epigenetic patterns are established 
soon after the demethylation event has occurred in the pri-
mordial germ cells. The sperm epigenome is well specialized 
because of its particular requirements in terms of motility 
and protection against the female reproductive tract’s hostile 
environment, exhibiting a unique pattern of histone modi-
fications that includes both activating and silencing marks 
in the promoters of genes associated with development [47, 
48]; sperm chromatin is highly compacted and organized, 
and spermatogenesis has been associated with fluctuating 
level of ncRNAs, particularly endo-siRNAs [49].

Sperm epigenetic abnormalities are associated with infertil-
ity, reduced embryogenesis capability, and alterations in early 
embryo development [50, 51], and the study of sperm epi-
genome is being evaluated as a potential diagnostic tool for 
idiopathic recurrent pregnancy loss and infertility [47, 50–55].

In the oocytes, de novo DNA methylation does not start 
as immediately as in their male counterparts and appears to 
be largely dispensable for the early oocyte development [56]. 
DNA methylation establishment in the oocyte is dynami-
cally controlled during oocyte growth and it is proximally 
regulated by transcription events. As a result, DNA methyla-
tion is mainly restricted to the transcribed gene bodies, while 

Fig. 1  Hot spots of epigenetic action. Stage 1: from gametes to 
embryo-endometrium cross-talk; Stage 2: from placenta-fetus cross-
talk to brain development, with an overview on environmental factors 

as well (nutrition and teratogens). Modified from Cerrizuela S et al, 
Birth Defects Res. 2020; other pictures obtained by Vecte ezy. com

http://www.Vecteezy.com
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intergenic regions are hypomethylated [57–59], as non-CpG 
hypermethylation plays an active role in gene expression 
regulation during oocyte maturation, potentially through the 
incorporation with transcription factors [57]. Any adverse fac-
tor altering the normal transcription program could therefore 
perturb the correct methylation patterns [60, 61]. Numerous 
studies also managed to identify maternal effect genes (MEGs) 
which encode factors that are present in the oocyte and are 
required for embryonic development. Pathogenic variants in 
MEGs or the absence of MEG factors are correlated to adverse 
outcomes, like zygotic cleavage failure, imprinting disorders, 
and structural birth defects [62–64]. There is also growing 
evidence that variants in the maternal genome affecting the 
imprinting status of the oocyte could cause MLID [44].

Fertilization and early embryo development

Fertilization is defined as the event when terminally differ-
entiated gametes combine into a totipotent zygote, ultimately 
giving rise to the embryo. The earliest stages of embryonic 
development are characterized by major epigenetic remod-
eling events that include parental DNA methylation erasure 
and reprogramming (with the exception of DMRs), chro-
matin folding establishment, and spatial reorganization of 
the genome [65–67]. The precision and the timing of such 
processes are pivotal for avoiding developmental defects 
or embryonic lethality, as an incorrect establishment of 
the embryonic epigenome would cause a defective zygotic 
genome activation (ZGA). Such a brief but crucial phase rep-
resents a window of vulnerability towards interfering mater-
nal and environmental factors (such as chronic metabolic 
disorders, polycystic ovary syndrome, diet, and teratogen 
exposure), as highlighted by an ever-increasing number of 
studies [68–71]. In particular, it has been suggested that the 
association between assisted reproductive treatment (ART) 
procedures and slightly higher frequences of imprinting syn-
dromes may be due to ART causing an abnormal epigenome 
in the offspring [71]. Also, animal models suggested that 
chromatin changes occurring in the pluripotent embryo could 
determine regulatory information whose effects would rever-
berate in the adult life in terms of growth and brain devel-
opment [72]. A better comprehension of the underlying 
mechanisms and their consequences could therefore improve 
diagnosis and treatment of human infertility and diseases.

Pre‑receptive and receptive endometrium

Embryonal implantation is a crucial step of pregnancy estab-
lishment in mammals. The sensitivity of the endometrium 
to implanting embryos is commonly categorized into pre-
receptive, receptive, and refractory phases. This period of 
receptivity, called “window of implantation” [73], is short 
and results from the programmed sequence of the action of 

estrogen and progesterone on the endometrium via multiple 
paracrine, juxtacrine, and autocrine signaling [26, 74].

High levels of progesterone in the post-ovulatory phase 
modulate the endometrial gene expression required for 
implantation by regulating DNA methylation [75–77], and 
alterations in the DNA methylation of 448 sites have been 
associated with defective endometrial receptivity and con-
sequently in recurrent pregnancy failure [75, 78]. Moreover, 
different non-coding transcripts like lncRNAs and miRNAs 
are involved in endometrial receptivity regulation [79].

Several association studies have evaluated miRNA expres-
sion levels in the receptive and pre-receptive endometrium in 
fertile women [80–83]. The miR-30 family members (primarily 
miR-30b and miR-30d) were demonstrated to be significantly 
upregulated [84], while miR-494 and miR-923 were downregu-
lated during the receptive phase. miR-30b and miR-30d were 
also consistently found to be elevated in the mid-secretory as 
compared with the proliferative phase. Expression arrays dem-
onstrated that embryos treated with miR-30d exhibited increased 
expression of ten genes, including those encoding adhesion mol-
ecules such as ITGB3 (Integrin Subunit Beta 3), ITGA7 (Integ-
rin Subunit Alpha 7), and CDH5 (Cadherin 5) [85].

A significant inverse association has been found between 
miR-31 and both FOXP3, a transcription factor for T reg-
ulatory cells, and CXCL12, a chemoattractant for uterine 
natural killer cells, which participates in the creation of an 
immune-tolerant environment in the secretory phase [86]. 
The modulation of immune response is considered an impor-
tant target for miRNAs, because major histocompatibility 
complexes such as HLA-G appear to be extensively regu-
lated by noncoding RNAs such as miR-133a [87, 88].

Also, members of the miR-17–92 cluster (including 
miR-17, miR-18a, miR-19a, miR-20a, miR-19b-1, and 
miR-92a-1) are upregulated at the implantation sites of the 
receptive uterus in humans. The functions of endometrial 
miR-17–92 during implantation are unclear. The cluster is 
known to target TGF-b signalling, which modulates events 
in decidualization and implantation [89].

Moreover, the miRNA-200 family (miR-200a, miR-200b, 
miR200c, miR-141, and miR-429) showed a differential 
expression in the receptive phase as well, when they appear 
to be downregulated [89].

Finally, by suppressing Dicer, miRNAs from the Lethal-7 
family can regulate the expression of other miRNAs. It has 
been suggested that high levels of let-7 in the receptive 
uterus could be important for differentiation of a receptive 
endometrium [87].

Interestingly, histone acetylation is also involved in the 
early endometrial processes, being implicated in the vas-
cular endothelial growth factor pathway during angiogen-
esis. Studies using histone deacetylase inhibitors suggest an 
involvement in endometrial proliferation and differentiation 
as well [77].
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Decidualization

The term decidualization defines the functional and mor-
phological transition of the endometrial cells to form the 
cellular environment into which the blastocyst is able to 
implant itself. Defects in decidualization can lead to recur-
rent implantation failure and recurrent spontaneous abor-
tion [90, 91]. Human endometrial stem cells (hESC) have 
been decidualized in vitro to explore the effects of decidu-
alization on miRNA expression. Studies found that miRNA 
expression profiles of decidualized hESC and control hESC 
departed from each other. According to Tochigi et al. [92], 
hESC transfection of miR-542-3p suppressed IGFBP-1 
(insulin-like growth factor-binding protein) expression, 
leading to PRL (prolactin) and WNT4 suppression and thus 
to the inhibition of decidualization in human endometrial 
stroma cells. This suggests an important role of miR-542-3p 
in regulation of endometrial decidualization. Estrella et al. 
[93] found a total of 26 upregulated and 17 downregulated 
miRNAs following in vitro decidualization of hESC. Inter-
estingly, only miR-155 was commonly downregulated in 
both studies, and no change was found in the expression of 
miR-542-3p in the study of Estrella et al. Despite several 
differences and significant variability, probably attributable 
to decidualization in vitro, these studies have nonetheless 
shown that the miRNA profiles of the proliferative versus 
secretory endometrium are significantly different, and there-
fore deserving of further research.

Endometrial fluid

Endometrial fluid is the medium where the most part of 
the exchanges between the embryo and the endometrium 
occur, allowing for a tight bidirectional regulation [94–96]. 
Among the substances conveyed in the endometrial fluid, 
extracellular vesicles (EVs) are emerging as one of the most 
important mediators, particularly in relation to their capa-
bility of transporting ncRNAs [2, 97–99]. The secretion of 
exosomes from the apical surface of endometrial glands, 
which was confirmed by electron microscopy, is consistent 
with the existence of endosomes in epithelial cells and of 
embryo-derived extracellular vesicles [100]. Furthermore, 
primary human endometrial endothelial cells (hEECs) 
were found to actively secrete large quantities of exosomes 
into the conditioned media, and labelling experiments with 
miR30-d revealed that miRNAs are internalized in vesicles 
and secreted in exosomes. Several experiments showed that 
exosomes loaded with miR-30d were secreted from hEECs 
and could be internalized by trophoblastic cells of murine 
embryos adhered to hEECs [96]. Also, hEECs have been 
demonstrated to be able to uptake embryo-derived miR-
NAs, such as the embryo–endometrial adhesion inhibitor 
miR-661 [101]. Recent literature revealed the presence, in 

the endometrial fluid of both fertile and infertile women, of 
12 sncRNAs strongly associated with biological functions 
related to immune response, extracellular matrix and cell 
junction, highlighting the different expression patterns in the 
two subpopulations and suggesting that sncRNA could be 
used as biomarkers of endometrial receptivity and implanta-
tion success [102].

Even though the capability of numerous noncoding RNAs 
(both maternal and embryo-derived) of being transmitted 
through endometrial fluid has been clearly established, the 
role of such molecules in the regulation of pivotal phases of 
implantation and early embryonic development still requires 
much needed investigation [98].

Hot spots of epigenetic action at the fetal 
stage

Further processes of vascular remodeling, trophoblastic cel-
lular migration, and immune regulation allow the formation 
of the placenta, a transient organ that connects the fetus to 
the mother [103]. The placenta supports fetus development 
supplying oxygen and nutrition, protects the semi-allogeneic 
fetus from immune rejection, and secretes hormones that 
affect maternal organs in order to promote the maintenance 
of pregnancy [104–107]. Many maternal influences, such 
as over and under-nutrition, drug and alcohol intake, smok-
ing, infection, stress, and hormones activity (for example 
glucocorticoids [GCs] or thyroid hormones), can induce 
transformations in placental physiology. These placental 
modifications can range from alterations in aspects of mac-
roscopic placental morphology to more subtle changes in 
placental gene expression which may have long-term effect 
on offspring health. However, many mechanisms of transi-
tory prenatal insults that result in postnatal dysregulation 
remain unclear [108].

A pivotal role in the fetal stage of pregnancy is played 
by the amniochorionic membranes, which act as the feto-
maternal interface, as they exhibit characteristic chromatin  
modification patterns, DNA (CpG) methylation, histone 
modifications, and non-coding RNA transcriptomes, 
whose dynamic changes during normal and pathological 
pregnancies are an important contributor to gene regulation 
throughout pregnancy [31]. Alterations in DNA methylation  
patterns and ncRNAs in amniochorionic membranes have 
also been detected in association with preterm birth and 
pathological conditions such as acute chorioamnionitis 
[109].

Numerous miRNAs are predominantly or exclusively 
expressed by the placenta and can be found clustered in 
specific chromosomal regions; they may be also controlled 
by the same promoters, have similar seed regions and tar-
gets, and work synergistically. Placental miRNome studies 
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have also demonstrated its importance towards the coordi-
nation and modulation of the placental transcriptome [110, 
111]. The three most relevant clusters are the chromosome 
19 miRNA cluster (C19MC), the chromosome 14 miRNA 
cluster (C14MC), and the miR-371–3 cluster, which is local-
ized on chromosome 19 as well. These miRNAs primarily 
regulate placental processes such as the migration of the 
trophoblast and the placental morphogenesis, but evidence 
has emerged that they are transported to the fetal and mater-
nal compartments as well, even though their role in such 
districts is still unclear [80, 82, 83].

Epigenetic processes within the placenta are powerful 
mediators of maternal and environmental signals to the 
developing fetus. Furthermore, alterations of placental gene 
expression and signaling during fetal development can dra-
matically change the developmental program, particularly 
concerning brain development [110].

Placental metabolism and brain development

Among the organogenetic processes that occur during fetal 
development, one of the most critically affected by mater-
nal, environmental, and epigenetic factors is brain devel-
opment. The initial steps of nervous system development 
start as early as 2–3 weeks post fertilization in humans; 
however, neuronal proliferation begins later in the first tri-
mester and synaptogenesis and neural migration mainly 
occur in the later stages of pregnancy, during the second 
and third trimesters. In the early pregnancy, the brain is 
extraordinarily plastic, but also exposed to environmental 
fluctuations which can influence long-term programming. 
The developing brain tissue requires considerable nutri-
tional intake and it is particularly susceptible to overabun-
dance or insufficiency of specific nutrients and growth fac-
tors [108, 110, 111].

Both maternal and fetal factors contribute to neurodevel-
opment during gestation [112], and the placenta is specifi-
cally believed to play a pivotal role [108, 113, 114].

The brain is an organ that consumes a lot of energy and 
absorbs a massive quantity of maternal resources during 
its growth and evolution. It is also specifically vulnerable 
to modifications in placental activity. Many signals regu-
late chromatin activation or repression; among these, those 
related to nutrient availability are relevant for epigenetic 
programming in the placenta.

In this scenario, the X-linked enzyme O-linked-N-
acetylglucosamine transferase (OGT) seems to have a fun-
damental role in neurodevelopmental organization [108, 
110, 115–118]. In fact, OGT represents a link between 
nutritional signals and chromatin regulation. It works as a 
nutrient sensor which modifies various proteins in order to 
change numerous cellular processes, like major epigenetic 
changes (such as methylation) [110].

The signaling of insulin, IGF-1 (insulin-like growth fac-
tor-1), and leptin receptors located at the maternal–fetal 
interface promotes amino acid transporter activity in tropho-
blast cells, combining maternal nutritional state to placenta 
function and, consequently, invalidating the accessibility of 
nutrients diffusing into the fetal circulation [119].

Some authors have reported that increased methylation of 
the leptin receptor gene in the human placenta is associated 
with increased lethargy and hypotonicity in male but not in 
female newborns [120]. This hypothesis supports both a con-
nection between epigenetic regulation of the leptin receptor 
and the communication of fundamental information to the 
fetal brain and also a certain sex-specificity in these results.

To date, the relationship between placental metabolism 
and epigenetic programming has been especially studied in 
animals (and only marginally in humans) with particular 
attention to sex development, as sex differences in epigenetic 
mechanisms such as DNA methylation have been described 
across placental development. In mice, female placental tis-
sue has higher amounts of global DNA methylation com-
pared to male placentas, which may confer females addi-
tional protection from constant alterations in gene expression 
due to environmental insults [108, 120–122].

Therefore, the recognition of relevant placental biomark-
ers, such as OGT and leptin, that,  in response to maternal 
nutrition and stress hormones levels, produce epigenetic 
modifications which sensibly affect the neurodevelopmental 
programming, may allow in the future for a better under-
standing and prevention of neurodevelopmental disorders 
in the offspring [123].

Placental neurotransmitters and neurobehavioral 
outcomes

The placenta is known to be involved in the transfer of nutri-
ents, hormones, and metabolites, but it is important to remem-
ber that it also produces neurotransmitters, including serotonin 
(5-HT), dopamine (DA), norepinephrine/epinephrine, which 
enter the maternal–fetal circulation and interact with the devel-
opment of the fetal brain. Therefore, it is reasonable to assume 
that some neurobehavioral disorders (such as autism spectrum 
disorders, ASD) may originate from placental changes in the 
production of these metabolites. For instance, 5-HT promotes 
various processes during fetal brain growth: neuronal migra-
tion, cell division, and differentiation and synaptogenesis. 
While placental hyperserotonaemia can disrupt early neural 
development, hyposerotonaemia too appears to impair cogni-
tive, motor, or sensory capacities [118, 124].

Recently, DNA methylation and miRNA expression pat-
terns within the placenta have been also studied for poten-
tial associations with later neurobehavioral disruptions in 
the offspring [118]. Although the exact mechanisms are 
still unclear, here, we summarize the literature about the 
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connection between epigenetic modifications and neurobe-
havioral disorders.

Some authors reported, in a prospective study of high-risk 
pregnancies, that 400 DMRs discriminate placentas from off-
spring later diagnosed with ASD compared to those not diag-
nosed with such disorders [124].

Besides placental 5-HT affecting neurobehavioral develop-
ment, methylation of placental HTR2A (the receptor which 
mediates the effects of 5-HT) may also be implicated. HTR2A 
methylation correlates inversely with infant quality of move-
ment, but positively with infant attention [125].

Altered methylation patterns of 10 imprinted genes (DLX5, 
DHCR24, VTRNA2-1, PHLDA2, NPA1, FAM50B, GNAS-
AS1, PAX8-AS1, SHANK2, and COPG2IT1) have been also 
associated with reduced quality of movement, elevated indices 
of asymmetrical and non-optimal reflexes, and increased likeli-
hood of physiological stress [126].

Another type of epigenetic modification that can occur in 
the placenta and may regulate infant neurobehavioral patterns 
is represented by the alterations in miRNA expression profiles. 
Increased placental miR-16 expression is negatively associ-
ated with attention score. In contrast, miR-146a and miR-182 
are positively related to quality of movement score [118]. In 
conclusion, even if the placenta is a temporary organ, there is 
no doubt that its alterations can strongly influence the devel-
opment of the fetus, and in particular of the fetal brain. Bio-
medical research is currently focused on identifying placental 
biomarkers useful for identifying fetuses at risk of developing 
neurodevelopmental disorders, for starting an early clinical 
management [118, 125–129].

Role of maternal and environmental factors 
during pregnancy

Stress hormones

Several data suggest a direct association between prenatal 
early-life stress (i.e., maternal depression, chronic stress, 
abuse) and the incidence of psychopathology and cogni-
tive impairments in the baby. Early life stress acts in dif-
ferent ways in different tissues, altering gene expression 
and inducing epigenetic modifications (e.g., increased or 
reduced DNA methylation or histone acetylation in many 
brain regions at the same time) [96].

In animals, stress during pregnancy and increased gluco-
corticoids (GCs) levels cause alteration in stress hormones 
receptors and impair the feedback regulation of the hypo-
thalamic-pituitary adrenal axis in infancy and adulthood. 
Stress acts also on the amygdala and increases the incidence 
of anxiogenic and depressive-like behaviors [130].

In humans, excess amounts of corticotropin releasing hor-
mones (CRH) and cortisol reaching the fetal brain can alter 

personality and predispose to attention deficits and depres-
sive illness through changes in neurotransmitter activity [9, 
73]. In fact, neurobehavioral alterations have been related 
to pre-gestational stress. In vitro studies showed that stress 
hormones can increase excitability hippocampal cells [131].

However, a recent review concluded that most of the pub-
lished papers on this topic did not reveal a significant asso-
ciation between maternal cortisol in pregnancy and poorer 
offspring birth outcomes, lower cognitive outcomes, lower 
cognitive/motor development, or more behavioral problems 
in infancy and childhood. This result probably reflects the 
numerous confounding factors that act synergistically during 
pregnancy and in the postnatal period [132].

Nutrition and environment

The first 1000 days, which start from pre-conception until 
approximately two years of age, are considered the period 
during which early nutrition, thanks to its influence on epi-
genetic changes [133], can play a key role in developmental 
programming and can influence the individual susceptibil-
ity to diseases later in the life (cardiovascular diseases, 
obesity, diabetes, and other chronic condition). Patients 
with eating disorders show adverse pregnancy outcomes 
such as miscarriage, preterm delivery, or fetal anomalies as 
poor fetal growth or malformations. Altered levels of many 
nutrients (i.e., vitamin B, folic acid, zinc) can increase the 
risk of developing fetal disorders [134, 135].

Early life nutrition can modulate the epigenome through 
different mechanisms: the change in the structure of 
chromatin through histone modifications and the supply 
of methyl donors (i.e., methionine, choline, folate), the 
activity of DNA methyltransferases, and of specific tran-
scription factors. In this way, altered maternal nutrition may 
induce epigenetic changes in the global expression pattern 
of the fetus, which will trigger biological and psychologi-
cal alterations in offspring’s lifelong outcomes [136–139].

Moreover, some nutrients, such as vitamin B and 
polyphenols, can modulate the function of the methyla-
tion enzymes [140]. In particular, Vitamin B12 is associ-
ated with one carbon metabolic pathway and to substrate 
metabolism, as well as to the synthesis and stability of 
nucleic acids and methylation of DNA [137, 141]. High 
levels of vitamin B12 in the maternal blood was correlated 
with the reduction in the total level of DNA methylation 
of the neonate, while the elevated concentration of serum 
vitamin B12 in the new-born correlated with decrease 
methylation levels of the insulin-like growth factor-bind-
ing protein3 (IGFBP-3) gene, which is one of the candi-
date genes for intrauterine growth [142].

The lack of nutrients during pregnancy has been asso-
ciated with various later-life consequences. Famine during 
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fetal life, for example, can increase the risk of developing 
glucose intolerance or coronary artery disease in adulthood, 
creating persistent changes in DNA methylation that depend 
on the sex of the exposed individual and the gestational tim-
ing of the exposure [143, 144]. On the other hand, maternal 
obesity and a high fat diet can create not only metabolic 
disorders but also neurodevelopmental morbidity in the off-
spring. Maternal overeating and low protein consumption 
during pregnancy is associated with significant miRNA dys-
regulation in the offspring tissue, which may be associated 
with chronic inflammation status and metabolic health in off-
spring as early as the weaning age [145, 146]. As suggested 
in the recent literature, modifications to the offspring’s epig-
enome could even be influenced by paternal nutrition, medi-
ated by epigenetic modifications in sperm [147].

One of the most  common pregnancy complications 
worldwide correlated to nutrition is gestational diabetes 
(GDM). Unhealthy nutritional habits and excessive ges-
tational weight gain during pregnancy can predispose to 
maternal GDM [148, 149].

GDM increases the incidence of short-term (i.e., large 
for gestational age, shoulder dystocia, higher body fat) and 
long-term complications (i.e., obesity, metabolic syndrome, 
diabetes mellitus type 2, attention problems, and depres-
sion) observed in the offspring [150, 151]. These effects 
are regulated by alteration in the epigenetic programming. 
Maternal GDM can create different effects like global DNA 
hypermethylation or alteration of miRNA expressions. A 
recent study shows that the effect of diabetic environment on 
miRNA regulated endothelial dysfunction is sex dependent, 
as females are more susceptible to metabolic derangements 
of GDM than males [151, 152].

GDM changes also placental microbiota: for example, in 
women with GDM, there are less bacteria belonging to the 
Pseudomonadales order and Acinetobacter genus associated 
with a more adverse metabolic and inflammatory pheno-
type. In this way, GDM could represent a state of placental 
microbiota-driven altered immunologic tolerance that can 
be the target of a new therapy [153].

Interestingly, epigenetic markers of the GDM offspring 
could become a tool for early detection and prognosis of 
adverse phenotypic outcomes [154].

Beyond food, there are many substances which influence 
epigenetic programming. Endocrine disruptors (EDs), for 
example, are environmental pollutants that mimic endoge-
nous hormonal signals. The EDs most commonly associated 
with reproductive abnormalities are the xenoestrogens such 
as Bisphenol-A (BPA), polychlorinated biphenyls (PCBs), 
and antiandrogens such as phthalates. These compounds 
exhibit weak steroid-like activity and therefore can affect 
reproductive development along multiple points including the 
hypothalamus and the gonad. Exposure to EDs starts during 
fetal life and continues after birth: the link between prenatal 

exposures and latent health outcomes suggests that these 
exposures may result in long-term epigenetic reprogramming.

The epigenomic changes, due to prenatal exposure to ED, 
include altered global DNA methylation, gene specific CpG 
methylation, and microRNA expression [155]. In human cell 
lines, PCB exposure has been shown to modulate the activ-
ity of histone demethylases via androgen receptor binding 
[156]. Moreover, other EDs have been shown to interact with 
DNMTs and TETs enzymes, altering their activity in in vitro 
experiments [157]. Additionally, some EDs are known to 
interact with one-carbon metabolism, which produces 
methyl donors used for DNA methylation [158]. Finally, it 
is probable that EDs alter the transcription factors’ activity, 
changing the availability of DNA to epigenetic machinery 
and giving rise to gene-specific patterning of epigenomic 
markers [159]. Therefore, these epigenetic changes represent 
a critical mechanism essential to understand the changes of 
fetal epigenome causing adverse outcomes at birth and later 
in life, warranting further study.

Teratogens

In addition to stress, nutrients, and endocrine disruptors, 
other environmental factors, such as medications, alcohol 
or substances of abuse, produce changes in the global pat-
tern of gene expression as well as hormonal imbalance, and 
ultimately adverse effects on embryonic development.

One of the best known and most studied teratogens is eth-
anol, for it can cause a wide range of developmental abnor-
malities. Alcohol-related neonatal abnormalities are com-
monly referred to as fetal alcohol spectrum disorder (FASD) 
[160]. The most severe form of FASD is called fetal alcohol 
syndrome (FAS) and manifests as growth retardation, facial 
abnormalities, and central nervous system deficiencies. Even 
if there is no specific time point during gestation when alco-
hol exposure is not accompanied by harmful consequences, 
the exposure during early embryonic stage is correlated with 
most severe birth defects [161]. Many researches have also 
found that alcohol interferes with gene expression levels 
and epigenetic processes by altering DNA methylation (par-
ticularly the expression of two methyltransferase enzymes, 
DNMT1 and DNMT3A), histone regulation, and non-coding 
RNAs [162]. Alcohol also induces alterations in the DNA 
methylome of the hypothalamus, including several differen-
tially methylated regions (DMRs) that could underlie some 
of the deficits observed in FASD. DNA methylation profiles 
may not persist into adulthood but could alter developmental 
trajectories and induce lasting alterations in brain structure, 
connectivity, and function [163].

Children prenatally exposed to moderate-high levels 
of alcohol showed increased DNA methylation of stress 
regulatory genes proopiomelanocortin (POMC) and period 
2 (PER2) resulting in increased levels of stress hormone 
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cortisol and adrenocorticotropic hormone (ACTH), com-
pared to controls. These results suggest the possibility that 
measuring DNA methylation levels of PER2 and POMC in 
biological samples from pregnant women or from children 
can serve as a biomarker of alcohol-related disorders [164].

Further studies are definitely needed to understand the 
correlation in detail between fetal alcohol spectrum disorder 
and epigenetic changes [165].

Unfortunately, smoking during pregnancy is still very 
widespread, especially in some populations where the level 
of attention to this teratogen is not so high. Maternal tobacco 
smoking is associated with smaller birth weight and head 
circumference, as well as reduced length for gestational age 
[166, 167]. Moreover, maternal tobacco smoking is asso-
ciated with an increased risk of obesity [168], respiratory 
infection [169], and cardiovascular [170], psychiatric, and 
behavioral disorders [171–173].

In addition to maternal smoking, exposure to air par-
ticulate matter, polycyclic aromatic hydrocarbons, arsenic, 
heavy metals, cannabinoids, and persistent organic pollut-
ants during pregnancy has been associated with epigenetic 
changes [174, 175]. Cigarette smoke creates alterations in 
DNA methylation of cord blood and placenta, histone modi-
fications, and miRNA expression. In utero tobacco exposure, 
even in the absence of fetal growth restriction, may alter the 
epigenome, contributing to global DNA hypomethylation. 
Investigation towards miRNA and downstream transcrip-
tional regulation are growing, while studies investigating 
histone modifications are still sparse [176].

Even second-hand smoke exposure among non-smoking 
women may alter DNA methylation in regions involved in 
development, carcinogenesis, and neuronal functioning. 
These novel findings suggest that even low levels of smoke 
exposure during pregnancy may be sufficient to alter DNA 
methylation of the fetus [177]. Hopefully, in the future, DNA 
methylation status could be used as a biomarker of prenatal 
insults for tobacco exposure as well.

Regarding substances universally recognized as terato-
gens, one of the most widespread is valproic acid (VPA). 
VPA is a well-tolerated antiepileptic drug and mood stabi-
lizer that is used for the treatment of epilepsy and other non-
psychiatric diseases like Alzheimer, HIV, and cancer [178]. 
VPA interacts with the inhibitory neurotransmitter gamma-
Aminobutyric acid (GABA) and blocks voltage-gated ion 
channels. Several authors demonstrated on murine models 
that early increases in histone acetylation occur within the 
embryo and in murine decidua following gestational VPA 
exposure [179, 180]. This mechanism of action is known to 
result in teratogenicity and cell toxicity, causing a wide range 
of fetal alterations, both malformative and neurological.

Some other commonly used drugs have specific fetal 
body effects: a recent study, for example, has demonstrated 
that cyclophosphamide induces limb dysmorphogenesis by 

alterations in some miRNA expression (i.e., miRNA-34, 
miRNA-125b, and miRNA-155). These miRNAs, in fact, 
act in different ways: some miRNAs act to protect embryos, 
whereas other miRNAs boost a teratogen-induced process 
of maldevelopment to induce embryonic death. The analysis 
of correlations between the expression pattern of the miR-
NAs tested in the study and cyclophosphamide induced limb 
phenotypes implies that miRNAs regulating apoptosis may 
differ from each other with respect to their functional role 
in teratogenesis [181].

Finally, regarding another known teratogen inducing limb 
reduction anomalies (5-aza-2’-deoxycytidin or 5-aza), recent 
animal study focused the attention on miR-34 family, con-
cluding that 5-aza and cyclophosphamide are able to activate 
miR-34 family in p53-independent fashion. This observation 
implies a scenario in which miR-34 family plays a regula-
tory role in the response to embryopathic stresses not activat-
ing the p53 pathway, but more studies are needed to explore 
these mechanisms. It is also undoubtedly important to reveal 
whether other teratogens can affect offspring in this way [182].

Conclusions

The knowledge regarding the feto-maternal cross talk is 
rapidly expanding and an ever-increasing amount of evi-
dence has been highlighting the importance of epigenetic 
regulation both in determining the effectiveness of early 
impregnation processes and in influencing fetal develop-
ment. While many of the epigenetic mechanisms affecting 
early and late embryo development have long been known 
and studied, a promising new frontier comprising ncR-
NAs and neurodevelopmental factors has yet to be fully 
explored and understood, especially regarding the human 
species. Determining the precise mechanisms underlying 
such phenomena could prove extremely valuable towards a 
better management of both physiological pregnancies and 
assisted reproduction treatments. A better understanding 
of the role of epigenetic agents in embryonic development 
may ultimately improve counselling in infertile couples, 
provide new pharmacological treatments to favor the early 
phases of the pregnancy, and allow a better recognition 
and management of potentially harmful or even beneficial 
environmental factors with regards to fetal development.
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