Skip to main content

Advertisement

Log in

Derivation of human triploid trophoblast stem cells

  • Genetics
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose

Human trophoblast stem cells (hTSCs) are counterparts of the precursor cells of the placenta and are valuable cell models for the study of placental development and the pathogenesis of placental diseases. The aim of this work was to establish a triploid human TSC (hTSC3PN) derived from the tripronuclear embryos, which are clinically discarded but readily available, for potential applications in basic placental research and disease modeling.

Methods

Eighteen tripronuclear human zygotes from IVF were collected and cultured for 5–6 days. Five high-quality blastocysts were harvested and were individually cultured in hTSC medium. Finally, two hTSC lines were established after 10 days and could be passaged stably.

Results

The karyotyping analysis showed that hTSC3PN contained three sets of chromosomes. And the hTSC3PN exhibited typical features of hTSCs, with the ability to differentiate into two trophoblast lineages: extravillous cytotrophoblasts (EVTs) and syncytiotrophoblasts (STs). In addition, the hTSC3PN can mimic some vital features of trophoblast, including hormone secretion and invasion. Further studies showed that the proliferation and differentiation of hTSC3PN were reduced compared with normal hTSCs, which may be related to the disturbed metabolic signaling in hTSC3PN.

Conclusions

We established the triploid hTSC lines derived from tripronuclear embryos, which provides a potentially useful research model in vitro to study human placental biology and diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zaragoza MV, Surti U, Redline RW, Millie E, Chakravarti A, Hassold TJ. Parental origin and phenotype of triploidy in spontaneous abortions: predominance of diandry and association with the partial hydatidiform mole. Am J Hum Genet. 2000;66(6):1807–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hassold T, Chen N, Funkhouser J, Jooss T, Manuel B, Matsuura J, Matsuyama A, Wilson C, Yamane JA, Jacobs PA. A cytogenetic study of 1000 spontaneous abortions. Ann Hum Genet. 1980;44(2):151–78.

    Article  CAS  PubMed  Google Scholar 

  3. Szulman AE, Philippe E, Boue JG, Boue A. Human triploidy association with partial hydatidiform moles and nonmolar conceptuses. Hum Pathol. 1981;12(11):1016–21.

    Article  CAS  PubMed  Google Scholar 

  4. Hui P, Buza N, Murphy KM, Ronnett BM. Hydatidiform moles: genetic basis and precision diagnosis. Annu Rev Pathol. 2017;12:449–85.

    Article  CAS  PubMed  Google Scholar 

  5. Genest DR. Partial hydatidiform mole: clinicopathological features, differential diagnosis, ploidy and molecular studies, and gold standards for diagnosis. Int J Gynecol Pathol. 2001;20(4):315–22.

    Article  CAS  PubMed  Google Scholar 

  6. Tanaka S, Kunath T, Hadjantonakis AK, Nagy A, Rossant J. Promotion of trophoblast stem cell proliferation by FGF4. Science. 1998;282(5396):2072–5.

    Article  CAS  PubMed  Google Scholar 

  7. Asanoma K, Rumi MA, Kent LN, Chakraborty D, Renaud SJ, Wake N, Lee DS, Kubota K, Soares MJ. FGF4-dependent stem cells derived from rat blastocysts differentiate along the trophoblast lineage. Dev Biol. 2011;351(1):110–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Vandevoort CA, Thirkill TL, Douglas GC. Blastocyst-derived trophoblast stem cells from the rhesus monkey. Stem Cells Dev. 2007;16(5):779–88.

    Article  CAS  PubMed  Google Scholar 

  9. Okae H, Toh H, Sato T, Hiura H, Takahashi S, Shirane K, Kabayama Y, Suyama M, Sasaki H, Arima T. Derivation of human trophoblast stem cells. cell stem cell. 2018;22(1):50–63 e56.

    Article  CAS  PubMed  Google Scholar 

  10. Cui T, Jiang L, Li T, Teng F, Feng G, Wang X, He Z, Guo L, Xu K, Mao Y, et al. Derivation of mouse haploid trophoblast stem cells. Cell Rep. 2019;26(2):407–414 e405.

    Article  CAS  PubMed  Google Scholar 

  11. Peng K, Li X, Wu C, Wang Y, Yu J, Zhang J, Gao Q, Zhang W, Zhang Q, Fan Y, et al. Derivation of haploid trophoblast stem cells via conversion in vitro. iScience. 2019;11:508–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Mutia K, Wiweko B, Iffanolida PA, Febri RR, Muna N, Riayati O, Jasirwan SO, Yuningsih T, Mansyur E, Hestiantoro A. The frequency of chromosomal euploidy among 3PN embryos. J Reprod Infertil. 2019;20(3):127–31.

    PubMed  PubMed Central  Google Scholar 

  13. Alpha Scientists in Reproductive M, Embryology ESIGo. The Istanbul consensus workshop on embryo assessment: proceedings of an expert meeting. Hum Reprod. 2011;26(6):1270–83.

  14. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL. Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol. 2019;37(8):907–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (N Y). 2021; 2(3):100141.

  16. King JR, Wilson ML, Hetey S, Kiraly P, Matsuo K, Castaneda AV, Toth E, Krenacs T, Hupuczi P, Mhawech-Fauceglia P, et al. Dysregulation of placental functions and immune pathways in complete hydatidiform moles. Int J Mol Sci. 2019;20(20).

  17. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26(1):139–40.

    Article  CAS  PubMed  Google Scholar 

  18. Rungsiwiwut R, Numchaisrika P, Ahnonkitpanit V, Virutamasen P, Pruksananonda K. Triploid human embryonic stem cells derived from tripronuclear zygotes displayed pluripotency and trophoblast differentiation ability similar to the diploid human embryonic stem cells. J Reprod Dev. 2016;62(2):167–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen X, Luo Y, Fan Y, Yue L, Wu X, Chen Y, Sun X. Triploid and diploid embryonic stem cell lines derived from tripronuclear human zygotes. J Assist Reprod Genet. 2012;29(8):713–21.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Saha SK, Jeong Y, Cho S, Cho SG. Systematic expression alteration analysis of master reprogramming factor OCT4 and its three pseudogenes in human cancer and their prognostic outcomes. Sci Rep. 2018;8(1):14806.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Maynard RD, Godfrey DA, Medina-Gomez C, Ackert-Bicknell CL. Characterization of expression and alternative splicing of the gene cadherin-like and PC esterase domain containing 1 (Cped1). Gene. 2018;674:127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Suthon S, Perkins RS, Bryja V, Miranda-Carboni GA, Krum SA. WNT5B in physiology and disease. Front Cell Dev Biol. 2021;9:667581.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Harada T, Yamamoto H, Kishida S, Kishida M, Awada C, Takao T, Kikuchi A. Wnt5b-associated exosomes promote cancer cell migration and proliferation. Cancer Sci. 2017;108(1):42–52.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang S, Zhang M, Zhang Y, Zhou W, Zhu T, Ruan Q, Chen H, Fang J, Zhou F, Sun J, et al. WNT5B governs the phenotype of basal-like breast cancer by activating WNT signaling. Cell Commun Signal. 2019;17(1):109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Mahdessian D, Cesnik AJ, Gnann C, Danielsson F, Stenstrom L, Arif M, Zhang C, Le T, Johansson F, Shutten R, et al. Spatiotemporal dissection of the cell cycle with single-cell proteogenomics. Nature. 2021;590(7847):649–54.

    Article  CAS  PubMed  Google Scholar 

  26. Liu Y, Fan X, Wang R, Lu X, Dang YL, Wang H, Lin HY, Zhu C, Ge H, Cross JC, et al. Single-cell RNA-seq reveals the diversity of trophoblast subtypes and patterns of differentiation in the human placenta. Cell Res. 2018;28(8):819–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gupta M, Vang R, Yemelyanova AV, Kurman RJ, Li FR, Maambo EC, Murphy KM, DeScipio C, Thompson CB, Ronnett BM. Diagnostic reproducibility of hydatidiform moles: ancillary techniques (p57 immunohistochemistry and molecular genotyping) improve morphologic diagnosis for both recently trained and experienced gynecologic pathologists. Am J Surg Pathol. 2012;36(12):1747–60.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Hoffner L, Dunn J, Esposito N, Macpherson T, Surti U. P57KIP2 immunostaining and molecular cytogenetics: combined approach aids in diagnosis of morphologically challenging cases with molar phenotype and in detecting androgenetic cell lines in mosaic/chimeric conceptions. Hum Pathol. 2008;39(1):63–72.

    Article  CAS  PubMed  Google Scholar 

  29. Hoffner L, Parks WT, Swerdlow SH, Carson JC, Surti U. Simultaneous detection of imprinted gene expression (p57(KIP2)) and molecular cytogenetics (FICTION) in the evaluation of molar pregnancies. J Reprod Med. 2010;55(5-6):219–28.

    CAS  PubMed  Google Scholar 

  30. Buza N, Hui P. Partial hydatidiform mole: histologic parameters in correlation with DNA genotyping. Int J Gynecol Pathol. 2013;32(3):307–15.

    Article  PubMed  Google Scholar 

  31. Sun T, Song Y, Dai J, Mao D, Ma M, Ni JQ, Liang X, Pastor-Pareja JC. Spectraplakin shot maintains perinuclear microtubule organization in drosophila polyploid cells. Dev Cell. 2019;49(5):731–747 e737.

    Article  CAS  PubMed  Google Scholar 

  32. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009;324(5930):1029–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell. 2015;162(3):540–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu H, Zheng C. The race between host antiviral innate immunity and the immune evasion strategies of Herpes simplex virus 1. Microbiol Mol Biol Rev. 2020;84(4).

  35. Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sanchez R, Diaz L, Zaga-Clavellina V. Innate immune cells and Toll-like receptor-dependent responses at the maternal-fetal interface. Int J Mol Sci. 2019;20(15).

  36. Racicot K, Kwon JY, Aldo P, Silasi M, Mor G. Understanding the complexity of the immune system during pregnancy. Am J Reprod Immunol. 2014;72(2):107–16.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ji J, Chen L, Zhuang Y, Han Y, Tang W, Xia F. Fibronectin 1 inhibits the apoptosis of human trophoblasts by activating the PI3K/Akt signaling pathway. Int J Mol Med. 2020;46(5):1908–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Xu Y, Sui L, Qiu B, Yin X, Liu J, Zhang X. ANXA4 promotes trophoblast invasion via the PI3K/Akt/eNOS pathway in preeclampsia. Am J Physiol Cell Physiol. 2019;316(4):C481–91.

    Article  CAS  PubMed  Google Scholar 

  39. Kalousek DK, Dill FJ. Chromosomal mosaicism confined to the placenta in human conceptions. Science. 1983;221(4611):665–7.

    Article  CAS  PubMed  Google Scholar 

  40. Starostik MR, Sosina OA, McCoy RC. Single-cell analysis of human embryos reveals diverse patterns of aneuploidy and mosaicism. Genome Res. 2020;30(6):814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coorens THH, Oliver TRW, Sanghvi R, Sovio U, Cook E, Vento-Tormo R, Haniffa M, Young MD, Rahbari R, Sebire N, et al. Inherent mosaicism and extensive mutation of human placentas. Nature. 2021;592(7852):80–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Bolton H, Graham SJL, Van der Aa N, Kumar P, Theunis K, Fernandez Gallardo E, Voet T, Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat Commun. 2016;7:11165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Singla S, Iwamoto-Stohl LK, Zhu M, Zernicka-Goetz M. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020;11(1):2958.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A. Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Dev Growth Differ. 2006;48(2):117–28.

    Article  PubMed  Google Scholar 

  45. Weatherbee BAT, Cui T, Zernicka-Goetz M. Modeling human embryo development with embryonic and extra-embryonic stem cells. Dev Biol. 2021;474:91–9.

    Article  CAS  PubMed  Google Scholar 

  46. Yamamoto E, Niimi K, Kiyono T, Yamamoto T, Nishino K, Nakamura K, Kotani T, Kajiyama H, Shibata K, Kikkawa F. Establishment and characterization of cell lines derived from complete hydatidiform mole. Int J Mol Med. 2017;40(3):614–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wenjun Wang or Ruiqi Li.

Ethics declarations

Ethics approval and consent to participate

The study protocol and all subjects who participated in this study were approved by the Ethics Committee of Sun Yat-sen Memorial Hospital of Sun Yat-sen University (2020 Reproductive Ethics No. 15), and informed consent was obtained from all patients prior to their participation in accordance with institutional and national guidelines.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplement 1

Establishment of normal hTSCs. (A) Immunofluorescence staining of GATA3, GATA2, and ITGA6 in hTSCs (The scale bars indicate 100 μm). (B) Similarities in RNA-seq among hTSCs and the hTSCs of Okae et al.’s [9] study. TSC1 and TSC2 are the cells we established in this study. (C) Immunofluorescence staining of HLA-G in EVT cells induced by hTSCs. (Scale bar, 100 μm.) (D) Immunofluorescence staining of hCG and SDC1 in ST cells induced by hTSCs. (Scale bar, 100 μm.) (E) The expression levels of EVT-specific marker gene (HLA-G) in ST cells induced by hTSCs. Data were presented as mean ± SD (n = 3). (F) The expression levels of ST-specific marker genes (SDC1, INHA, CGA, CGB) in ST cells induced by hTSCs. Data were presented as mean ± SD (n = 3). *p < 0.05, **p<0.01, ***p<0.001, ****p < 0.0001. (PNG 1538 kb)

High Resolution Image (TIF 14749 kb)

Supplement 2

Establishment of the other 3PN hTSCs, hTSC3PN-2. (A) Human tripronuclear zygote (The scale bars indicate 50 μm). (B) P0 of hTSC3PN-2 (The scale bars indicate 100 μm). (C) P3 of hTSC3PN-2 (The scale bars indicate 100 μm). (D–F) Immunofluorescence staining of GATA3, GATA2, and ITGA6 in hTSC3PN-2 cells (The scale bars indicate 100 μm). (PNG 2342 kb)

High Resolution Image (TIF 19485 kb)

Supplement 3.

Comparison of the similarity between HM and hTSC3PN (A) The flow chart of the comparison between the HM and hTSC3PN. The expression matrix of the GSE138250 dattableaset (HM) [16] was downloaded from the GEO database. The edgeR package [17] was used to analyze the differentially expressed genes of the sample counts. p-value < 0.05 with change ≥ twofold were set to filter the expressed genes based on statistically significant differences. (B) Using the DEGs of HM to draw the heat map of hTSCs and hTSC3PN. The DEGs divided the cells into two clusters. (C) Bubble plot of GO enrichment analysis. The size of the circle represents the number of genes enriched in the signal pathway, and the intensity of the color represents statistical significance. (D) The relative expression of PSG1-6, PSG9, PSG11 in HM. logFC: log(Foldchange). p-value<0.05. (E) The Volcano map of DEGs in hTSCs and hTSC3PN. Red dots and letters mark the PSG family genes. The genes on the left of X-axis 0 are the genes with lower expression in hTSC3PN and the ones on the right are the genes with higher expression in hTSC3PN. (F) The RT-QPCR of PSG1-6, PSG9, PSG11 in ST were derived from hTSC and ST derived from hTSC3PN. Data were presented as mean ± SD (n = 3) (*p < 0.05, **p<0.01, ***p<0.001, ****p < 0.0001) (G) TPM of P57 in hTSC3PN1 and hTSC3PN2. TPM: Transcripts Per Kilobase of exon model per Million mapped reads. (PNG 124 kb)

High Resolution Image (TIF 22131 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, X., Chen, X., Ou, S. et al. Derivation of human triploid trophoblast stem cells. J Assist Reprod Genet 39, 1183–1193 (2022). https://doi.org/10.1007/s10815-022-02436-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10815-022-02436-w

Keywords

Navigation