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Abstract
Purpose AI and its machine learning algorithms have proven useful in several fields of medicine, including medically assisted
reproduction. The purpose of the study was to construct several predictive models based on clinical data and select the best
models to predict IUI procedure outcomes.
Methods Clinical data (patient baseline characteristics, sperm quality, hormonal status, and cycle data) from 1029 IUI procedures
performed in 413 couples stimulated by clomiphene citrate, letrozole, or gonadotropins were used to build several models to
predict clinical pregnancy. The models included ANN, random forest, PLS, SVM, and linear models using the caret package in
R. The models were evaluated using ROC analysis by means of random CV on test data.
Results Out of the best performing models, the random forest model achieved an AUC of 0.66, a sensitivity of 0.432, and a
specificity of 0.756. This performance was followed by the PLS model, which achieved a sensitivity of 0.459 and specificity of
0.734. The other models achieved significantly lower AUCs. When adjusting the predictive cutoff value, confusion matrices
show that clinical pregnancy is twice as likely in the case of positive prediction.
Conclusion Among the compared methods, the random forest and PLS models demonstrated superior performance in predicting
the clinical outcome of IUI. With additional research and clinical validation, AI methods may be successfully used in improving
patient selection and consequently lead to better clinical results.
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Introduction

Infertility is a common medical issue, defined as the inability to
achieve clinical pregnancy after 1 year of regular, unprotected
intercourse. It is estimated to affect 8–12% of reproductive-
aged couples worldwide [1]. Although several treatment op-
tions exist, only up to 57% of patients seek help [2].

Artificial intrauterine insemination (IUI) is often used as a
method of choice for subfertile couples, especially couples
with ovulatory dysfunction, unexplained infertility, or mild
male factor [3]. Despite lower success rates than in vitro

fertilization (IVF), it is still favored by many clinicians be-
cause it is more affordable and less invasive than other
methods [4]. There is no general consensus on when IUI
should be performed. While some experts, e.g., the National
Institute for Health and Care Excellence (NICE), oppose the
use of IUI for unexplained infertility, studies have shown no
difference between 3 IUI cycles and a single IVF cycle.
Furthermore, significantly higher live birth rates (LBRs) were
found in IUI than in expectant management [5, 6]. If IUI is to
be used efficiently, patient selection is critical. Several studies
have already investigated prognostic factors with a basic gen-
eral consensus around the importance of age, duration of in-
fertility, and type of infertility. Many authors have confirmed
the importance of sperm quality, exposing a total motile sperm
count above 5 × 106 to be suitable for the procedure.
Nevertheless, in addition to all known prognostic factors, we
still lack methods to optimally select suitable patients and are
therefore unable to significantly improve the outcomes [7–9].

In the field of assisted reproductive techniques, artificial
intelligence (AI) methods were first employed back in 1997,
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when artificial neural networks (ANNs) were first used to
predict IVF outcomes based on clinical information [10].
Later attempts employed the use of support vector machine
(SVM), ANN, and random forest models that included both
patient-level clinical characteristics and embryo morphologi-
cal data. These attempts were far superior to conventional
statistical methods in predicting clinical outcomes but were
usually of limited clinical value due to lack of external vali-
dation [11–14]. The field of AI in medically assisted repro-
duction has attracted much interest in recent years. At the
annual congresses of the two most influential reproductive
medicine societies, the American Society for Reproductive
Medicine (ASRM) and the European Society for Human
Reproduction and Embryology (ESHRE), as many as
18 abstracts on the topic were presented, mostly cover-
ing the assessment and embryo selection [15]. However,
to the best of our knowledge, no studies are currently
investigating the use of AI in IUI.

The aim of this study was to build several machine learning
models and select models with the best predictive value to
identify couples who may benefit the most from IUI
procedures.

Materials and methods

Patients

This retrospective observational study included 1029 cycles of
IUI performed in 413 couples between 2017 and
2020 at a single tertiary infertility center. Prior to the
study, institutional review board (IRB) approval (UKC-
MB-KME-44/19) was obtained.

Medical documentation, consisting of medical history, hor-
monal status, transvaginal ultrasound examination, and sperm
analysis, of all the couples was obtained.

Chlamydia trachomatis serology and endoscopic confirma-
tion of tubal patency were performed by either laparoscopy or
transvaginal hydrolaparoscopy under local or general anesthe-
sia. The type of procedure was selected at the discretion of the
physician. Sperm quality analysis was performed according to
strict Kruger criteria.

A set of recorded variables together with patient character-
istics and comparisons between pregnant and nonpregnant
women is shown in Tables 1 and 2.

Intrauterine insemination

The standard course of treatment for couples with either un-
explained infertility, anovulatory infertility, mild endometri-
osis, or mild male factor consisted of 1–4 cycles of IUI with
either gonadotropin stimulation, clomiphene citrate, or, in
some cases, even letrozole or natural cycles.

In all the stimulated cycles, clomiphene citrate (N = 356),
letrozole (N = 43), or gonadotropins (N = 613) were screened
using vaginal ultrasonography before stimulation and follow-
ed up during stimulation.

For controlled ovarian hyperstimulation (COH), clomi-
phene citrate was used at dosages from 50 to 150 mg daily
(Clomid, Pantheon France SAS, France) from the 5th to the
9th day of the menstrual cycle. In the case of stimulation with
gonadotropins, we began stimulation using recombinant
follicle-stimulating hormone (rFSH) (Gonal, Merck Serono,
Switzerland) with an initial dose of 37.5 IE daily in the form of
subcutaneous injection beginning on the 5th day of the men-
strual cycle. In total, 250 mcg of choriogonadotropin alpha
(Ovitrelle, Merck Serono, Switzerland) was applied when
the size of the follicles increased up to 17 mm in the case of
gonadotropin stimulation and up to 20 mm in the case of
clomiphene citrate.

There was strict control of the number of follicles. We
allowed a maximum of 3 follicles measuring more than 14
mm. Where more follicles were counted, the IUI procedure
was not performed, and women were discouraged from
having unprotected sexual intercourse in the following
days. After a few cycles (N = 16), IUI was performed
during their natural cycles.

Sperm samples were collected from the male partners 4 h
prior to the IUI procedure following 2–3 days of sexual absti-
nence. Spermatozoa were concentrated using the swim-up
method and evaluated based on the number of progressively
motile specimens.

IUI was performed either 24 or 36 h after human chorionic
gonadotropin (hCG) injection in the lithotomy position using
a Kitazato IUI catheter (Kitazato Medical Co., Ltd., Japan).
The women were encouraged to rest in the same position for
another 15 min after the procedure was completed.

All the women were instructed to conduct urine pregnancy
tests 14 days after the IUI procedure, and those with positive
results were invited for examination during which the quanti-
tative level of hCG was measured. Clinical pregnancy was
defined as a positive hCG test with an ultrasonically con-
firmed gestational sac and a confirmed fetal heartbeat.

In all the women, the following data were collected using a
standardized data collection form: the age of both partners,
duration of infertility, semen parameters, cause of infertility,
type of ovarian stimulation, and ultrasonic status prior to hCG
injection.

Patient population

A database was created based on the demographics of both
partners, previous treatment, and infertility workup, including
the cause of infertility, BMI, and hormonal analysis.
Respective IUI cycles were also recorded with respect to the
stimulation type and dosage, type of trigger, follicle
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measurements, and detailed sperm analysis. The exclusion
criteria were women > 42 years old and FSH> 15 IU/L, severe
endometriosis, severe male factor infertility, and cycles with
no or overresponse to ovarian stimulation. Therefore, the pop-
ulation consisted mainly of younger women with expected
good ovarian reserve, which is consistent with indications
for the IUI procedure. Out of the 1029 IUI cycles, 528 were

in couples with unexplained infertility, 331 were in isolated
female factor infertility, and 89 were in isolated male factor
infertility. In the women’s group, 617 IUI cycles were per-
formed for unexplained infertility, 147 for anovulatory infer-
tility, 53 for unilateral tubal damage, 53 for endometriosis, 63
for a combination of different causes, and 69 for other reasons.
In the ma l e pa r tne r s , 864 IUI case s t e s t ed a s

Table 1 Comparison of the
baseline patient characteristics
between pregnant and
nonpregnant women

Variable Pregnant (n = 124) Nonpregnant (n = 905) p

Age – female (years, IQR) 31.27 (5.0) 31.11 (5.0) 0.26

Age – male (years, IQR) 33.93 (7.25) 34.16 (7.0) 0.70

Duration of infertility (years, IQR) 2.45 (1.5) 2.45 (1.0) 0.47

FSH (IU/L, IQR) 5.66 (1.7) 5.45 (1.9) 0.26

AMH (μg/L, IQR) 5.24 (4.8) 4.79 (3.68) 0.81

BMI (kg/m2, IQR) 26.41 (9.0) 24.62 (7.0) 0.57

No. of previous IUI cycles (n, IQR) 0.77 (1.0) 0.95 (1.0) < 0.01

Primary infertility (n, %) 80 (65) 595 (66) 0.67

Cause of infertility 0.17

Unexplained (n, %) 61 (49) 467 (52)

Female factor (n, %) 40 (32) 291 (32)

Male factor (n, %) 7 (6) 84 (9)

Mixed (n, %) 16 (13) 63 (7)

Table 2 Comparison of cycle-
specific characteristics between
pregnant and nonpregnant
women

Variable Pregnant (n = 124) Nonpregnant (n = p

FSH dosage (IU, IQR) 246.0 (381.25) 227.0 (300.0) 0.26

Day of trigger (days, IQR) 14.06 (3.0) 13.27 (4.0) 0.01

Max follicle size (mm, IQR) 18.07 (2.85) 17.89 (3.0) 0.98

Avg follicle size (mm, IQR) 18.09 (2.7) 17.94 (3.0) 0.39

No. of follicles > 17 mm (n, IQR) 0.87 (1.0) 0.76 (1.0) 0.24

No. of follicles 14 <> 17 mm (n, IQR) 0.64 (1.0) 0.58 (1.0) 0.32

No. of follicles > 14 mm (n, IQR) 0.78 (1.0) 0.68 (1.0) 0.69

Endometrial thickness (mm, IQR) 8.06 (2.9) 8.40 (3.0) 0.54

Ejaculate volume (mL, IQR) 3.54 (2.1) 3.22 (1.7) 0.31

Sperm concentration (no./mL, IQR) 54.02 (49.1) 45.29 (44.5) 0.28

Motile sperm. concentration (no./mL, IQR) 22.98 (26.7) 17.54 (20.9) 0.01

Total sperm count (n, IQR) 16.73 (19.73) 13.21 (15.98) 0.356

Sperm injection volume (mL, IQR) 0.73 (0.2) 0.72 (0.18) 0.316

Stimulation type 0.04

Gonadotropins (n, %) 59 (48) 554 (61)

Clomiphene citrate (n, %) 55 (44 301 (33)

Letrozole (n, %) 7 (6) 36 (4)

Natural cycle (n, %) 3 (2) 13 (1)

Sperm quality grade 0.04

Appropriate 94 (76) 590 (65)

Less appropriate 24 (19) 230 (25)

Inappropriate 6 (5) 85 (9)
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normozoospermia. All 32 variables were statistically analyzed
to determine the individual correlation values. A sample size
calculation was performed using pmsampsize by calculating
the R-squared value. The calculation estimated 1142 IUI cy-
cles to be the optimal number for desired model building [16].

Statistical analysis and AI methods

All the analyses were performed using RStudio with R version
4.0.2. For the statistical analysis, base R functions were used
with generalized linear models (GLMs) for the continuous
variables and Cochran-Mantel-Haenszel tests for the continu-
ous variables. For the machine learning calculations, the caret
package version 6.0-86 and caretEnsemble version 2.0.1 were
used with appropriate package dependencies. Additionally,
the MLeval package was used for model testing, and
pmsampsize was used for sample size estimation.
Based on our own unpublished results, random forest,
PLS, linear and polynomial SVM, ANN, and naïve
Bayes models were selected.

Data preprocessing

Prior to model building, the data were carefully inspected and
preprocessed for analysis. Missing values were filled using the
down-up principle. Overall, 2.9% of values were recognized
as missing. Testing for zero and near-zero variance predictors
revealed a single variable, which was removed from the
dataset. All the categorical variables underwent one-hot
encoding. Scaling and centering were performed on 21 vari-
ables, and 20 variables were further processed by Yeo-
Johnson power transformation. This type of transformation
was selected for its superior results when empirically com-
pared to Box-Cox or exponential transformations.
Altogether, 10 variables were left unchanged [17].

Model training and evaluation

Prior to model building, the data were split into training and
testing sets by randomly allocating 70% of cases to the train-
ing set. Furthermore, after empirical testing, the following
models were selected: SVM models, a PLS model, a GLM,
a random forest model, and a multilayer perceptron model.
Repeated k-fold cross-validation (CV) was used with k = 10
and 10 repeats. Due to highly imbalanced data, the synthetic
minority oversampling technique (SMOTE) algorithm was
used to mitigate data inequality. Balancing was performed
only on the training set, while the testing set underwent only
scaling, centering, and power transformation. Receiver oper-
ating characteristic (ROC) curve analysis was selected as the
method for calculating the evaluation metrics [18]. An AI
system consists of multiple models built upon a unified
preprocessed data frame.

Validation of the system was performed by random data
allocation into training and test sets and by k-fold CV with 10
iterations. The performance indices for the construction and
validation of the models were the area under the ROC curve
(AUC), the sensitivity, and the specificity. After individual
model assessment, confusion matrices were built and ana-
lyzed based on the testing set predictions. Variable importance
calculations were performed on applicable models. A subset
analysis was performed separately with models built using
only baseline characteristics (only the first successive proce-
dures included the data on age, type of infertility, cause of
infertility, hormonal status, duration of infertility, and sperm
quality). Additionally, the same subset analysis was also per-
formed on respective stimulation protocols with gonadotro-
pins and clomiphene citrate.

Results

Statistical analysis

Univariate analyses were performed to test individual vari-
ables. Continuous variables were tested by building a GLM
for each variable with the patient ID as the blocking variable to
adjust for the effect of repeated measures. Categorical vari-
ables were tested using the Cochran-Mantel-Haenszel test.
The results of the comparison together with the clinical char-
acteristics are shown in Tables 1 and 2. The mean age of the
women was 31.2 years old (21–42 years old) and the mean
BMIwas 25.2 kg/m2 (18–53 kg/m2). The overall clinical preg-
nancy rate was 12.1%, with a 10.4% multiple pregnancy rate.
The statistical analysis demonstrated that the age of the fe-
males, BMI, day of the trigger, number of follicles > 17
mm, sperm concentration, motile spermatozoa concentration,
total sperm count, number of successive IUI procedures, and
stimulation type were statistically significant (p < 0.05).

Model evaluation

After data preprocessing, 1029 procedures in 413 couples and
37 variables were used to build the respective models using a
0.7 train/test split ratio. Several models were built using the
caretList function to provide a comparable set of models. The
model set consisted of a GLM, a random forest model, a PLS
model, a naïve Bayes model, a linear SVM model, a polyno-
mial SVM model, and a multilayer perceptron model (using
three layers with 6, 4, and 2 nodes, which was found to be
superior by our empirical trials). There was only a slight dif-
ference in the performance of the different models, with the
highest accuracy seen in the random forest and PLS models.
The best performing model was the random forest model with
mtry = 2, built with the randomForest R library, using 36
predictors and 2 classes, a random 0.7 split, and 10-fold CV
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with 10 iterations. The model achieved an AUC of 0.66.
Additionally, a high AUCwas also achieved by the PLS mod-
el (AUC = 0.62). The PLS model was built with the same split
ratio and CV parameters. The best results were achieved with
ncomp = 2. The rest of the models, including the ANNs,
appeared inferior with respect to the AUC, as shown in Fig. 1.

Variable evaluation

The univariate analysis revealed the statistical significance of
some of the sperm parameters, including the motile sperm
concentration and sperm quality grade. Additionally, next to
the sperm parameters, the day of the trigger, type of stimula-
tion, and successive IUI procedures were found to be signifi-
cant with p < 0.05. The models were built with all the vari-
ables, irrespective of their statistical significance. When ana-
lyzing the variable importance of the two best performing
models, the results were generally similar to those of the uni-
variate analysis, where the sperm parameters proved to
be most significant. The top 10 variables with their
respective importance levels (scaled between 0 and
100) are shown in Table 3.

Model performance on the test set

The built models were tested on a randomly allocated, imbal-
anced test set. The default random forest model produced a
confusion matrix with 93% correctly predicted negative out-
comes and only 5% correctly predicted positive outcomes. As
this result is of little use in clinical practice, the cutoff value
was adjusted to 0.4, which yielded a model with a lower over-
all accuracy (0.712), but with a higher clinical value, as shown
in Table 4. Similar results were seen in the case of the PLS
model. In both models, the positively classified cases were
twice as likely to actually achieve clinical pregnancy.

Model performance on different stimulation
protocols

A subset analysis was performed on different stimulation pro-
tocols to evaluate the importance of separate analyses. The
performance of the models differed only slightly between
stimulation with gonadotropin or clomiphene citrate. The ran-
dom forest model achieved an AUC of 0.63 in the gonadotro-
pin group and 0.61 in the clomiphene citrate group. Similar
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Fig. 1 ROC analysis of different ML models
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results with AUCs of 0.61 for gonadotropins and 0.59 for
clomiphene citrate were achieved by the PLS model.

Model performance on baseline characteristics

Another attempt was made to build the previously best
performing model on a newly prepared dataset, consisting
only of the couples’ baseline characteristics. Only the first
successive procedures were selected along with age, type of
infertility, cause of infertility, duration of infertility, and se-
men quality. Both the random forest and PLS models
achieved a lower performance with AUCs of 0.6.

Final results

The best model was the random forest model, which achieved
an AUC of 0.66, a sensitivity of 0.432, and a specificity of
0.756. It was closely followed by the PLS model, which
achieved a sensitivity of 0.459 and a specificity of 0.734.
The other models achieved significantly lower AUC values.
After optimizing the cutoff value, the confusion matrices

showed that clinical pregnancy was twice as likely to occur
in the case of positive prediction.

Discussion

With the rise and accessibility of technology, AI has benefited
many aspects of our lives. As it can be applied to medicine, we
might witness many improvements in the field of personalized
medicine. To what extent AI may affect future infertility treat-
ment can be seen from the number of topics presented at the
recent ASRM/ESHRE meetings, where 16 different AI ap-
proaches were presented in a single year [15].

As AI applications grow extensively, there are currently no
data on the use of AI approaches in the field of IUI. However,
several studies have been performed on IVF [19–22].

Although there are no AI studies on IUI procedures, some
studies have evaluated the predictive value of different clinical
parameters to improve procedure outcomes. Lemmens et al.
concentrated on the effect of sperm parameters on IUI out-
comes. As expected, a study confirmed a positive relationship
between normal sperm morphology and the number of pro-
gressively motile spermatozoa, with odds ratios (ORs) of 1.39
and 0.42 for < 1 million motile spermatozoa [23]. In contrast,
a meta-analysis by Kohn et al. concluded that sperm morphol-
ogy had no effect on IUI success rates [24]. In our findings,
spermatozoa count and motility were found to be the most
important variables. Michau et al. evaluated the effect of the
clinical characteristics of both male and female partners. They
demonstrated the best LBR in patients with anovulatory infer-
tility compared to other indications, such as endometriosis,
unexplained infertility, and unilateral tubal factor [25].
Additionally, female partner age and number of preovulatory
follicles had important predictive value in addition to sperm
parameters, all confirming the validity of our models. The
effect of IUI timing has also been described by Lee et al.,

Table 3 Variable importance
Random forest Partial least squares

Variable Importance Variable Importance

Total sperm count 100.00 Motile sperm. concentration 100.00

Motile sperm. concentration 84.23 No. of follicles > 17 mm 96.83

Motile sperm. count 78.62 Total sperm count 93.49

Duration of infertility 77.24 Motile sperm. count 84.99

BMI 76.40 Clomiphene dosage 76.02

Max follicle size 72.49 Type of stimulation 74.25

Sperm concentration 71.40 Sperm quality grade 71.11

No. of follicles > 17 mm 69.35 Sperm concentration 67.91

Day of trigger 67.42 Day of trigger 67.28

Ejaculate volume 66.65 Max follicle size 66.56

Table 4 Confusion matrix of the random forest and PLS models on the
test set

Random forest Partial least squares

Pred/obs Negative Positive Negative Positive

Negative 205 21 219 20

Positive 66 16 72 17

Accuracy 0.712 0.701

95% CI 0.6637, 0.7671 0.6705, 0.7732

Sensitivity 0.43243 0.45946

Specificity 0.75646 0.73432
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where IUI performedmore than 36 h after ovulation triggering
yielded superior results [26].

Other studies investigating AI application in infertility
mostly focused on IVF procedures using ANNs. Apart from
clinical data investigations, much focus has been placed on
ascertaining efficient embryo selection, where convolutional
neural networks have recently played a major role [27].
Important work in the field was performed by Khosravi
et al., where Google’s Inception model was used for embryo
image analysis in conjunction with decision trees incorporat-
ing visual and clinical data. A study showed that AI algo-
rithms outperform embryologists in predicting blastocyst
quality and IVF outcomes [28].

Our study shows the potential of different predictive
models in predicting IUI procedure outcomes and identifies
variables with the highest predictive values. Since AI and
machine learning cover a wide array of methods, we believe
it is very important to also study other models apart from
ANNs since no superior model exists. In our study, we found
different results with various models related to their respective
strengths and limitations. The AUCs of the best two models
(up to 0.66) show only modest performance, which is signif-
icantly lower than other studies predicting the outcome of
other procedures, such as IVF, with a sensitivity and specific-
ity of 76.7% and 73.4%, respectively [14]. As IUI procedures
have overall low success rates that have not significantly im-
proved in recent decades, one cannot expect predictions to
mirror those from superior IVF procedures. However, with
an optimized cutoff value, a significant positive predictive
value may be noted, with positively classified cases achieving
clinical pregnancy in 19% of cases. Nevertheless, such high
pregnancy rates can hardly be expected in clinical practice due
to the very strict selection required for achieving such results,
meaning that only a small fraction of couples would actually
be selected for the procedure, leaving out a significant number
of those who would otherwise also achieve pregnancy.
Attempts were made to increase the negative predictive value
(NPV) of the models by modifying the cutoff value to identify
couples who should avoid IUI treatment. Nevertheless, the
NPV could reach as high as 0.91, and further modification
led to a great loss of true positive predictions.

Regardingmethod selection, model performances followed
closely. Interestingly, the ANN, employedwith different num-
bers of layers and nodes, proved to be inferior to many other
studies where ANN achieved promising results [19–22]. In
our case, the random forest algorithm was superior, with
PLS following closely. Both random forest and PLS models
are known to perform well with strongly intercorrelated data,
especially PLS models, which are generally used in chemistry
and chemometrics [29]. Multicollinearity in our database was
probably one of the reasons for the good performance of those
models. On the one hand, random forest models are known to
be very efficient in highly complex data and tend to be less

prone to overfitting, but they may change significantly due to
minor changes in the data. On the other hand, PLS is a statis-
tical method and applies entirely different methodologies.
According to the model performances, both models, regard-
less of the mechanics, perform similarly with both having a
very similar sensitivity and specificity and therefore clinical
implications. Nevertheless, variable importance selection gen-
erally outlines similar variables to other studies. Among the
highly intercorrelated variables, the importance may be prone
to changes even among iterations of a single model.

A subgroup analysis was performed on the two most fre-
quent stimulation protocols. The built models performed sim-
ilarly, therefore eliminating potential selection bias. The mod-
el could be used regardless of the stimulation type, which
could lead to increased robustness and wider clinical applica-
tion. Nevertheless, the stimulation type was found to be an
important predictive factor in the overall models.
Additionally, a subgroup analysis was also performed on only
the first successive cycles with baseline characteristics, includ-
ing sperm quality. The models also achieved similar
performances, therefore reducing the effect of repeated
measures, since no standardized procedures exist for re-
peated measures in AI.

The main limitation of the study is the selection of vari-
ables, since cycle characteristics were included rather than
relying only on basal clinical characteristics. Some of these
variables are not known prior to the procedure, which is the
case with the most important variables, namely, the sperm
parameters. Samples are collected and analyzed at the time
of insemination. However, sperm are also analyzed prior to
the procedure to select suitable patients. The literature states
that sperm quality fluctuation is negligible considering clinical
significance, although the effect on AImodel performance has
yet to be tested. On the one hand, analysis of cycle data rather
than baseline characteristics may limit the predictive value for
initial patient selection, while on the other hand, such models
may provide valuable predictions for future procedure out-
comes in patients who have already initiated IUI treatment.

Additionally, the study consisted of non-homogeneous
group of patients regarding different stimulation protocols,
drug usage, timing of procedure after HCG injection, etc.
This non-homogeneity was partially addressed by performing
several different subgroup analyses. Nevertheless, potential
selection bias cannot be completely excluded. Further studies
should be performed using strict inclusion criteria and evalu-
ate different groups of patients separately.

Another limitation is the use of multiple predictive models
that may render the entire study a bit perplexing though we
believe it is of paramount importance to highlight different
performances of the models used. The models were built on
a uniformly preprocessed dataset which may present another
downside. Different models perform better with different pre-
processing methods; therefore, targeted and optimized data
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preparation may lead to improved individual model perfor-
mance. Further studies are therefore required with individual
fine tuning to optimize the best models. Furthermore, a model’s
performance has to be tested with well-selected clinical data to
ensure robustness and to truly evaluate its effect if used in
adjunction to select optimal couples for IUI procedures.

Conclusions

IUI is a well-known procedure that is still commonly used due
to its low cost and relative noninvasiveness. The procedure
has not been significantly changed during the years, even with
many new predictive factors evaluated. The key to successful
IUI procedures is therefore proper patient selection rather than
improving the procedure itself. While certain knowledge
about the predictive value of clinical data can guide patient
selection, AI methods may take a step further, elegantly com-
bining the predictive values of respective variables into one
singular prediction. The confusion matrix calculations re-
vealed a twofold difference in the clinical pregnancy rate in
the test group based on model prediction. Since patients un-
dergoing IUI are already carefully selected, AI models may be
of great assistance in re-evaluating patient selection criteria
and classifying borderline cases in particular.
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