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Abstract
Purpose MTHFR, one of the major enzymes in the folate cycle, is known to acquire single-nucleotide polymorphisms that
significantly reduce its activity, resulting in an increase in circulating homocysteine. Methylation processes are of crucial
importance in gametogenesis, involved in the regulation of imprinting and epigenetic tags on DNA and histones. We have
retrospectively assessed the prevalence of MTHFR SNPs in a population consulting for infertility according to gender and
studied the impact of the mutations on circulating homocysteine levels.
Methods More than 2900 patients having suffered at least two miscarriages (2 to 9) or two failed IVF/ICSI (2 to 10) attempts
were included for analysis of MTHFR SNPs C677T and A1298C. Serum homocysteine levels were measured simultaneously.
Results We observed no difference in the prevalence of different genetic backgrounds betweenmen and women; only 15% of the
patients were found to be wild type. More than 40% of the patients are either homozygous for one SNP or compound hetero-
zygous carriers. As expected, the C677T SNP shows the greatest adverse effect on homocysteine accumulation. The impact of
MTHFR SNPs on circulating homocysteine is different in men than in women.
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Conclusions Determination of MTHFR SNPs in both men and women must be seriously advocated in the presence of long-
standing infertility; male gametes, from MTHFR SNPs carriers, are not exempted from exerting a hazardous impact on fertility.
Patients should be informed of the pleiotropic medical implications of these SNPs for their own health, as well as for the health of
future children.
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Introduction

It is now generally accepted that human fertility is on a de-
creasing trajectory, with an increasing time to reach pregnancy
(TPP) [1, 2] that is not related to couples’ intent. A drop in
sperm quality and male fertility is no longer a matter for de-
bate, and this is widely attributed to environmental factors
such as endocrine disruptor chemicals (EDCs) and a variety
of pesticides, “the exposome,” known to affect (DNA) meth-
ylation process and alter epigenesis [3]. Technical and scien-
tific improvements in assisted reproductive technology (ART)
do not provide solutions for all problems related to fertility.
EDCs induce oxidative stress, which generates errors in meth-
ylation that affect the methylome. Sperm methylome anoma-
lies clearly induce infertility, notably via effects on chromatin
structure that interfere with the correct timing of crucial events
during preimplantation embryo development. The integrity of
the sperm methylome is a major factor necessary for the es-
tablishment of full-term pregnancies. The requirement for fo-
late throughout pregnancy and its impact on maternal, fetal,
and neonatal health is also widely acknowledged .The process
of methylation requires methionine (Met) after adenosylation
to S-adenosyl methionine (SAM), the universal methylation
cofactor. Target methylation results in formation and release
of S-adenosyl homocysteine (SAH) (Fig. 1), which is hydro-
lyzed to homocysteine (Hcy). Homocysteine is toxic to cells,
as it competes with methionine for the same transporter and
thus inhibits methylation [4]: it must be regenerated to methi-
onine via the one-carbon cycle (1-CC), supported by the folate
cycle. Hcy can also be regenerated via the cystathionine beta
synthase pathway (CBS), which is active mainly in the liver
but is absent in the human oocyte and early embryo (Fig. 2).

A critical problem in the regeneration of Hcy is linked to
the folate cycle: the presence of single-nucleotide

polymorphisms (SNPs) that affect the methylene tetrahydro-
folate reductase (MTHFR) enzyme prevent formation of 5-
MTHF, the active compound, with an optimum yield. This
is due to a significant decrease in MTHFR enzymatic activity,
particularly in the presence of C677T (Ala222Val) and
A1298C (Glu429Ala) SNPs. These mutations have been
shown to decrease the metabolic capacity of the enzyme by
70% [5]. Methylation is required for the formation of thymine
from uracil; defects may lead to DNA repair and genomic
instability [6, 7]. It is a mandatory process in transmission of
life: it is a major regulator in gametogenesis, embryo devel-
opment, and growth via, but only, its role in epigenesis and
imprinting mechanisms [8]. Since excess Hcy and the pres-
ence of MTHFR SNPs increase pathology risks in general
[9–12], the risk of infertility at all stages pre- and post-
conception [13–18], the frequency of miscarriage [6, 19,
20], and compromised infant health [21–23], we have deter-
mined retrospectively the prevalence of the twomainMTHFR
SNPs in our population of 2970 male and female patients
consulting for infertility; serum homocysteine levels were
assessed in parallel.

Materials and methods

The population tested

A total of 2970 patients were tested for the two SNPs: 1588
women and 1262 men; they were referred by certified
andrologists, gynecologists, or endocrinologists. All of the
patients had suffered at least 2 miscarriages (range 2 to 9)
and/or at least 2 failed ART attempts (range 2 to 10). The
patients were given the option of refusing a blood test for
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homocysteine assessment. Most of the patients (> 90%) were
Caucasian.

Biochemical tests

For the tests, similar protocols were used in all the units in all
the units. The testing laboratories are licensed.

Homocysteine [24, 25]: fasting blood samples were collect-
ed in the morning and serum Hcy measured using the
VYTROS kit, which allows determination of homocysteine
and homocysteine. Homocysteine is reduced to homocysteine
with tris(2-carboxyethyl), and total homocysteine is then
transformed into cystathionine in the presence of cystathio-
nine beta synthase (CBS). The cystathionine is hydrolyzed
by cystathionine lyase to form Hcy, ammonia, and pyruvate.
After reduction with lactic dehydrogenase and NADH to form
lactate, the amount of NAD + produced, proportional to all the
homocysteine present in the sample, was measured at 340 nm.
The assay is linear from 1 to 90 μmoles/L homocysteine. Cut-

off values for dementia and cardiovascular diseases indicate
that a level of 10 μmoles/L appears to be a baseline level for
healthy patients [10, 11]. A 2.5-μM rise in plasma Hcy con-
centrations is considered to increase the risk by 10%. We
choose a level of 15 μmoles/L as a cut-off for increased risk,
and defined three groups according to Hcy concentration:
ranges of < 10 moles/L, 10>X<15 and > 15 moles/L

Genetic testing [25]: The LAMP human MTHFR mutation
kit based on a hybridization technique was used, which re-
quires a 5-μl blood sample. Amplification is performed at 65
°C, using several sets of primers simultaneously. Six specific
primers covering the locus of the mutation are used for the
677CT SNP. The same protocol was applied for 1298AC
SNP, with 6 specific primers covering the region of the muta-
tion. Two loop primers are used in both, and the probes used
simultaneously amplify the wild type gene. The results were
evaluated by comparing the curves obtained by fluorescence.

Statistical analysis was carried out by comparing Chi-
square percentages.

Results

Table 1: Gender prevalence of C677T and A1298C MTHFR
SNPs. No significant association was observed between sex
and the prevalence of mutation type (Chi-square, p = 0.056).
Mutation was absent in only 16.3 % of the women and 14.6%
of the men (15.5% of the total population). Of the population,
21.3% was found to be compound heterozygous C677T/
A1298C. Fifty-six percent of the population (55% of the
women, 57.5% of the men) was affected (at different degrees)
with the 677CT mutation, which is considered to be the most
concerning. A few individuals carry 3 mutated alleles (0.4%).
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Table 1 Distribution of the MTHFR 677CT and 1298AC SNPS. The
sex difference in the distribution is not significant (p = 0.056). * patients
carrying 3 mutations. WT, wild type

Mutation type Women (%) Men (%) Total (%)

677CC/1298AA (WT) 259(16.3) 202(14.6) 461(15.3)

677TT/1298AA 181(11.4) 158(11.4) 339(11.4)

677CC/1298CC 148(9.3) 111(8.) 259(8.7)

677CT/1298AC 308(19.4) 326(23.6) 634(21.3)

677CT/1298AA 381(24) 311(22.5) 692(23.3)

677CC/1298AC 307(19.3) 265(19.2) 572(19.3)

3 allele mutations* 4 (0.0025) 9(0.007) 13(0. 4)
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Serum Hcy levels between 3.5 and 110.6 μmoles/L were
observed in our overall population. In the total population of
2614 patients tested for Hcy, 1219 patients were found to have
Hcy > 10 μmoles/L (46.6% of the patients); 72.8% of the men
and 23.5% of the women are included in this range (Fig. 3). Of
the men, 17.2 % and only 3.4% of the women had levels over
the critical value of 15 μmoles/L (259 patients, 9.9% of the
whole population). MTHFR SNPs have a more significant
impact on circulating homocysteine levels in men than in
women (Chi-square = 594, p = 9.8 e-130). Thirty one patients
had a Hcy >30 μmoles/L (twice the critical value of 15
μmoles/L) 30 men (twenty seven 677TT, one 677CT and
two 677CT/1298AC) and one woman (Hcy = 97.3 μmoles/
L) carrying no MTHFR mutation.

Homocysteinemia > 15 μmoles/L and genetic status in the
overall population (Fig. 4). As expected, a large majority
(more than 2/3) of the elevated homocysteinemia levels were
found in individuals carrying the 677CT isoform: 42.6%

homozygous (677TT/1298AA) and 26.4% heterozygous
composite 677CT/1298AC. If we add to this 20.3% corre-
sponding to the heterozygous 677CT/WT, the 677 isoform
is responsible for more than 80% of the cases with elevated
Hcy. Two men and one woman carrying a triple allele muta-
tion, 677TT/1298AC had an elevated homocysteine of > 15
μmoles/L. Fourteen patients (0.5%: 12 men and 2 women)
had elevated serum Hcy in the absence of an associated
MTHFR variant: this can be due to a “folate trap” syndrome
or anomalies/mutations in the CBS/MS pathway.

Discussion and conclusions

Only 15.5% of our population was completely free of C677T
and A1298C SNPs MTHFR isoform. More than 50% carry
the 677CT SNP at different levels: this mutation is considered
to be the most concerning, whatever the health problem.
Meta-analyses have already proved the increased risk for car-
riers of these SNPs to be affected by infertility. In women,
these SNPs are considered as a source of “unexplained” infer-
tility [18]. According to Tara et al. [20], men and women
carriers of 677TT/WT, 677CT/1298AC, or 1298CC SNPs
are most affected. In their study, the SNP distribution and
prevalence is by far different from the control group having
no problem of conception. In our study, considering their
evaluation, 43% of the men and 40 % of the women are in
this “at-risk” group as well as 75.6% of the patients with Hcy
> 15 μmoles/L. MTHFR isoforms and elevated Hcy levels are
negatively associated with the integrity of gametogenesis in
both males and females [13–18, 26–35], independently, or
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not, of the risks of damages affecting the early embryos im-
mediately post conception [23, 26]. In the bovine, MTHFR
has been shown to regulate blastocyst development and via-
bility, with an influence on cell number in both the inner cell
mass and the trophoblast [27]. This confirms the role of meth-
ylation in blastocyst development and fetal development all
along pregnancy [8]. Although determination of the 677CT
isoform might be sufficient for screening, the 1298AC iso-
form, also associated with early human developmental anom-
alies [20, 23, 26] is also well represented. A correct
methylome in both gametes is crucial for successful pregnan-
cy [28–35]. A high level of Hcy (97.3 micromolar) was ob-
served in a woman, and to a lesser extent in a marginal number
of patients the absence ofMTHFR variants: this is probably to
the CBS and theMS pathways known to be affected by SNPs .
A problem in absorption of vitamin B12 (folate trap) which
inhibits methionine synthase activity may also increase Hcy.

Elevated homocysteine is found mainly in the presence of
the 677CT isoform: men are significantly more likely to have
elevated Hcy than women. This has been previously described
in a smaller cohort and attributed to a better capacity for re-
methylation in women [36]. The association betweenMTHFR
and elevated homocysteine is obviously different between
men and women. However, in the perspective of fertility in
general, an active/efficient methylation process is far more
important for a gamete genesis process that is continuous,
i.e., spermatogenesis, than for one that is not continuous,
i.e., oocyte maturation. On a cell and a daily basis, sperm
production requires more methyl group than the final steps
of maturation of one oocyte. Homocysteine is at the epicenter
of oxidative stress and methylation errors [3, 9].

Prior to any ART attempt, dietary supplementation with 5-
MTHF (5-methyl tetra hydrofolate: ImprylR, MetafolinR,
TetrafolicR), the compound that lies immediately downstream
from MTHFR, should be recommended for both members of
the couple, instead of folic acid. This strategy has yielded
good results in patients with a lengthy duration of infertility
[17]: it decreases serum homocysteine [24, 37], and its safety
and efficacy are proven [37–39]. Synthetic folic acid has a low
capacity for entering the folate cycle [40, 41] and is very
poorly effective and transformed into 5-MTHF in carriers of
MTHFR SNPs [28, 29];Moreover, treatment with folic acid at
high doses (5 to 15 mG/day) is known to cause an un-
metabolized folic acid (UMFA) accumulation, a source of
health questioning [42–47].

Clearly MTHFR SNP determination is not a first-line diag-
nostic strategy, but it should be recommended for patients
with severe infertility of long duration, including repeat mis-
carriages [17, 19, 20, 23]. A further significant observation
merits attention: medical and family histories taken by our
geneticists from patients carrying the MTHFR SNPs revealed
that some of their relatives suffered cardiovascular or neuro-
logical (Alzheimer and other neuropsychiatric) disease.

Patients should be informed of these pleiotropic medical im-
plications for their own health, as well as for the health of
future children (especially boys).
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