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Abstract
The recent paper in JAMA alleging that frozen embryo transfer causes twice the risk of childhood cancer in the offspring is an
excellent example of the erroneous use of statistical tests (and the misinterpretation of p value) that is common in much of the
medical literature, even in very high impact journals. These myths backed by misleading statements of “statistical significance”
can cause far-reaching harm to patients and doctors who might not understand the pitfalls of specious statistical testing.
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On December 10, 2019, the very prestigious and high
impact Journal of American Medical Association (JAMA)
published a study titled “Association Between Fertility
Treatment and Cancer Risk in Children,” authored by
Hargreave et al. [1]. Based on the Danish population-
based registry and the Danish Infertility Cohort, this study
had the appearance of a statistically sound report, and it
stunned the world.

All children born alive in Denmark between 1996 and
2012 were screened for inclusion, with few exclusions due
to missing information or neonatal death. 1,085,172 children
were included in the study, with an accumulated 12.2 million
person-years of follow-up (mean, 11.3 years). In the primary
analysis, 90 sets of comparisons were made with diagnosis of

infertility, utilization of fertility drugs, and assisted reproduc-
tive technology (ART), using fertile women as the reference
group. This gave rise to three “statistically significant” hazard
ratio (HR) estimates based on a 2-sided α of 0.05, pointing to
elevated risks of cancers among children born from pregnan-
cies conceived via frozen embryo transfer (FET). The authors
wrote, “compared with children born to fertile women, the
use of frozen embryo transfer was associated with an elevated
risk of childhood cancer (14 cancer cases; HR 2.43 [95% CI
(confidence interval), 1.44 to 4.11]”, “mainly due to an in-
creased risk of leukemia (five cancer cases, HR 2.87 [95%
CI, 1.19 to 6.93]”.

The media have been in a tumult in response to this
study. Internet articles with alarming titles, such as
“Freezing embryos doubles risk of IVF kids developing
childhood cancer”; “Babies born from IVF using frozen em-
bryos may be more than TWICE as likely to get childhood
cancer”; “Children born from frozen eggs twice as likely to
develop cancer”; have appeared with frightening alarm. In
the methodology and interpretation of this study, there are
profound errors which could devastate infertility patients.
Many physicians, although skeptical, are not criticizing the
paper’s profoundly flawed conclusions, but are merely say-
ing that “the effect is too small to worry about”. This study
by Hargreave et al. represents a prime example of the wide-
spread confusion in statistical testing and scientific infer-
ence. We wish to address these confusions specifically in
regard to this paper, but also for a vast array of similarly
misleading papers which do great harm in the name of “sta-
tistical significance” which is not actually significant.
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Multiple comparisons: “Let’s Go Hunting”

Hargreave et al. made 90 sets of comparisons in their primary
analyses. This is a classic example of “data mining,” also
known as “data fishing,” “data dredging,” or “data snooping”
[2]. To understand what can arise from such a “shotgun” game
with statistics, let us revisit an example we first gave 29 years
ago. Twenty-eight consecutive azoospermic men undergoing
microscopic epididymal sperm aspiration were studied to deter-
mine if having certain letters in their names could “predict”
pregnancy [2]. It is not hard to understand that when a wide
net is cast to include all the 26 letters for comparison, some
dubious findings simply must turn up. Indeed, all the patients
who achieved live births had surnames containing the letters G,
Y, or N (“GYN positive”), whereas only 29% (6/21) of those
who did not achieve live births were “GYN positive”. Fisher’s
exact test gave rise to a p = 0.003. The idea of using alphabetic
letters in the surname to predict pregnancy is so absurd and
implausible that all readers will know it cannot be valid despite
the glittering p value. That is why we did the “study”: to em-
phasize that p values should not be interpreted in isolation. By
studying groupings of any three letters in the surnames of these
patients (as well as single and two letter groups), we had some
3000 combinations for analysis and were virtually certain to
find p = 0.003 somewhere. However, in real life, the same
abuse of statistics is often far less obvious to the statistically
naïve, as in the Hargreave study. It is the uncorrected use of
multiple tests for “statistical significance”which is the problem.

A review of the principles of probability and statistical
testing will aid the understanding of this issue. According to
the American Statistical Association, “a p-value is the proba-
bility under a specified statistical model that a statistical sum-
mary of the data would be equal to or more extreme than its
observed value” [3]. Using the Hargreave study as an exam-
ple, when the incidence rates of childhood cancer were com-
pared, the resulting p value refers to the probability that the
difference would have been at least as large as what they
observed, if the same study were repeated across many differ-
ent populations and settings, and if all the underlying assump-
tions were correct. These include the assumptions underpin-
ning the study design, data collection, statistical models, and
inference, as well as our assumption that the p value was not
selected for presentation because it was < 0.05, and that the
study design had been reported with completeness and trans-
parency [4]. The p value is a parameter that reflects the com-
patibility between the statistical models and the observed data.
A small p value could have arisen from inappropriate model
specification, flaws in the assumptions during study design, or
study bias. In other words, a “significant” p value is neither
necessary nor sufficient for us to determine that there is a
“significant” effect, because the p value itself tells nothing
about the validity of the study methods. Likewise, with regard
to 95% CIs, the 95% refers only to how often 95% CIs

computed from very many studies would contain the true
value if all the assumptions used to compute the intervals were
correct [4, 5]. The p value and the 95% CI rely heavily on the
distribution of the study data.

The concept of a 95% CI can be further illustrated with a
slightly different approach. If we assume that there is no as-
sociation between FET and childhood cancers, the null hy-
pothesis will be HR = 1. Imagine us drawing a study sample
from the whole population of children and then estimating the
HR. We would replace the children back to the population,
and repeat the same random sample drawing and HR estima-
tion process 100 times, generating 100 distinct HR estimates,
and 100 distinct 95% CIs. If the null hypothesis of “HR= 1”
holds, we will be confident that these 95% CIs will cover “1”
95% of the time, and the probability of seeing anything be-
yond this interval will be less than 5%, if all the assumptions
underlying the statistical model hold. However, if we do ob-
serve a value that is beyond this interval, we will know that
either the null hypothesis does not hold, meaning there is an
association between FETand childhood cancer, or at least one
underlying assumption is violated, or we have run into this
finding purely by chance (type 1 error).

“Statistics is the science of learning from data, and of mea-
suring, controlling, and communicating uncertainty” [6].
Uncertainty is inevitable as the “truth” is unknown; however,
it may be estimated with varying levels of accuracy and pre-
cision. “Statistical significance” was originally proposed to
indicate the needs for further scrutiny, but with its widespread
use, it has often been confused with “scientific importance”
[5]. Further, the dichotomous definition of “statistical signifi-
cance”, often known as “p < 0.05”, originated from an arbi-
trary decision driven by tradition and convenience; it may be
used to screen for potentially valid assumptions, but should
not be equated with scientific conclusions [7]. Therefore, as
Greenland commented, the disregard of the underlying scien-
tific principles and “disintegration of p value into ‘significant’
and ‘nonsignificant’ is an especially pernicious scientific prac-
tice” [4]. Compounding the widespread confusion about “p <
0.05” is the question “Is the p actually <0.05?” If we estimate
the HRs for 90 sets of comparisons, then the probability that
all our estimates will cover the “true” values under the null
hypothesis, at the significance level (α) of 0.05 for each com-
parison, will be (0.95)90 = 0.0099. Therefore, assuming there
is no model misspecification or bias, the probability of us
finding something “significant” just by chance (type 1 error),
and hence rejecting at least one null hypothesis, will be 1–
0.0099 = 0.99. In other words, in the study byHargreave et al.,
they would have found some “statistically significant” HR
99% of the time, even if the finding would be as senseless as
predicting pregnancy from the letters in the patients’ names.

Several statistical methods have been proposed to reduce
the risk of type 1 error in the case of multiple comparisons,
assuming the study is otherwise free of bias. Among these
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methods is the Bonferroni correction, which is a more conser-
vative approach that minimizes spurious findings by chance.
Using the Hargreave study as an example, if we were to set
the significance level such that we may reject a null hypothesis
by chance 5% of the time with all the planned comparisons
lumped together, then for each individual comparison, the α
should have been 0.05/90 = 0.00056, instead of 0.05.With such
corrections, what was reported in the Hargreave study would
not have been statistically significant based on the α defined a
priori, unless they could show a p value less than 0.00056.

Similarly, in clinical trials, various methods have been de-
veloped to restrict the α for each interim analysis (α spend-
ing), in order to control the overall type 1 error rate [8].
Without these adjustments, “statistically significant” results
will always arise by chance if enough comparisons are made,
and a trial may very well be incorrectly stopped prematurely
based on simply random findings. Therefore, the fallacy of
multiple comparisons cannot be addressed by simply chang-
ing the design to a prospective one, be it an observational
study or a clinical trial. It is just as easy to make multiple
comparisons prospectively, and only report findings that are
“statistically significant”.

It is thus obvious that even if there is no other bias, the
combination of a “let’s go hunting” approach and the lack of
proper statistical correction in the Hargreave study have given
rise to the dubious p < 0.05, deceiving not only the media and
the lay public, but also many physicians. In their Statistical
Methods section, the authors state “Because no adjustment
was made for multiple comparisons, the findings should be
considered exploratory given the large number of treatment
subgroups that are being compared.” But if readers did not
examine the supplementary tables carefully, it would have
gone unrecognized that the vague statement of “the large num-
ber of subgroups” actually meant 90 tests for statistical signif-
icance.With somany comparisons, it was inevitable that some
“statistically significant” but probably meaningless effect
would be found. Responsible publishing dictates candid dis-
closure of the number of comparisons attempted, transparent
report of the actual statistical adjustment made to address mul-
tiple comparison, honest recognition of the uncertainty in sta-
tistical findings, modest reporting of study results and their
“practical” significance, and open acknowledgement of all
other study limitations.

Association versus causation

In 1950, Richard Doll and Austin Bradford Hill published the
famous study on the causal relationship between smoking and
lung cancer, which has been the prime example of causal
inference in epidemiological studies [9]. However, despite this
breakthrough 70 years ago, misuse of statistics and confusion
between association and causation have persisted to date. In

1965, Bradford Hill addressed these issues in his seminal pa-
per, “The Environment and Disease: Association or
Causation?” [10]. In this paper, Bradford Hill proposed nine
features of an association that are consistent with a causal
relationship, which are relevant in the interpretation of the
Hargreave study and many others.

(1) Strength of the association between the exposure and the
outcome, as measured by statistical parameters, such as
relative risk (RR), odds ratio (OR), incidence rate ratio
(IRR), HR, etc. Bradford Hill considers this to be the
most important feature of a causal association. For ex-
ample, the causal association between female age and
infertility can be demonstrated with the drastic decrease
in the live baby rate per oocyte of 26% in patients youn-
ger than 35, to 1% of those who are older than 42 [11].

(2) Consistency across studies properly performed in differ-
ent scenarios and at different times. For example, the
association between age and infertility was also support-
ed by national ART surveillance data in the U.S. and
Australia/New Zealand [12, 13], among many other re-
gions. Note that bias in the original study cannot be ad-
dressed by simply repeating it, without correcting falla-
cies and errors in its design and interpretation.

Recognizing the importance of the consistency criterion,
Hargreave et al. quoted four previous studies examining the
association between FET and childhood cancer in the
Discussion section. Three of these studies did not support such
association. They then wrote: “one study reported an elevated
HR for any type of cancer (HR, 1.80 [95%CI, 0.65-4.95]) and
another study reported an elevated HR for hepatoblastoma
(HR, 5.24 [95% CI, 0.13-29.21]).” Note that the 95% CIs
for both HRs crossed 1, and therefore neither of these HRs
was statistically significant. It is a blatant error to say that this
represents “an elevated HR”. In other words, while Hargreave
et al. misleadingly claimed that at least one out of four previ-
ous studies supported their FET-childhood cancer theory, in
fact none of them provided such support. We find it surprising
that such a bold misinterpretation went unnoticed during the
review and publication process for JAMA.

The importance of the consistency feature was recently
reiterated by Hubbard, Haig, and Parsa: “Scientific inference
is a far broader concept than statistical inference… A major
focus of scientific inference can be viewed as the pursuit of
significant sameness, meaning replicable and empirically gen-
eralizable results among phenomena. Regrettably, the obses-
sion with users of statistical inference to report significant
differences in data sets actively thwarts cumulative knowledge
development.” [14].

(3) Specificity of the association, such as M. tuberculosis
causing tuberculosis in humans, and human chorionic
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gonadotropin or luteinizing hormone (LH) triggering
ovulation.

(4) Temporality, meaning the cause should precede the out-
come in time. For example, in a spontaneous ovarian
cycle, the LH surge precedes ovulation.

(5) Dose-response relationship. This is corroborated by the
continuous decline in women’s fecundity as they age
[11–13].

(6) Biological plausibility, as is concept of chromosome 21
nondisjunction leading to Down syndrome, has been
plausible for the medical community.

While we acknowledge that this may be limited by the
biological knowledge of the day and can evolve over time,
so far, there is no good evidence supporting an association
between FET and childhood cancer. In the Introduction sec-
tion of the Hargreave study, there was only one study that
seemed to support the biological plausibility of this hypothe-
sis: “It has been suggested that the use of fertility treatment
increases the risk of cancer in children, possibly through epi-
genetic changes brought on by the use of fertility drugs, ART,
or both.” However, this turned out to be a paper Hargreave
et al. published in Fertility and Sterility in 2013 [15]. The lack
of evidence becomes evident when the one and only study the
authors could cite came from themselves.

The effort of Hargreave et al. to rationalize their claims did
not stop there. In the Discussion section, they went on to state
that estrogen was “an established carcinogen”, and progester-
one was “reasonably anticipated to be a human carcinogen”.
Such statements are dangerously misleading, and in fact are
also contradictory to their findings that fertility drugs were not
associated with childhood cancer.

(7) Coherence with generally known facts. For example, the
chromosome 21 nondisjunction phenomenon observed
in genetic studies is coherent with the higher incidence
of Down syndrome among children born to older wom-
en. Likewise, in the Hargreave study, the coherence cri-
terion may be met if epidemiological data do show an
increased risk of childhood cancer associated with FET,
and bench studies also reveal certain pathophysiological
pathways leading from FET to oncogenesis.

(8) Supporting evidence in clinical trials or experiments. For
example, the causal association between the transfer of
multiple embryos and multiple pregnancies is supported
by randomized controlled trial data, where transferring two
embryos in younger women led to drastically more multi-
ple births (33.1% versus 0.8%), without increasing the
overall live birth rates with a comparable magnitude [16].

(9) Analogy found in other relevant areas. Understanding
the association between maternal age and trisomy 21,
we would be ready to accept similar associations be-
tween age and other forms of aneuploidy.

As one may see from the list above, statistical significance
is necessary, yet insufficient, to define causation. The com-
ments by Bradford Hill in 1965 on this matter were as relevant
then as they are today [10]:

“No formal tests of significance can answer those ques-
tions. Such tests can, and should, remind us of the effects
that the play of chance can create, and they will instruct
us in the likely magnitude of those effects. Beyond that
they contribute nothing to the ‘proof ’ of our
hypothesis.”

Awell-contemplated conceptual framework and an a priori
hypothesis are central to the validity of any epidemiological
study. The conceptual framework is represented by all the
epidemiological processes that can give rise to an observed
association, and all the biological processes that can make
such associations reasonable. In constructing the conceptual
framework, one must consider confounding, selection bias,
mediation, effect modification, generalizability, and the con-
trast between clinical versus statistical significance.

Confounding

Confounding is one of the fundamental issues in observational
studies, and it is essentially an issue of non-exchangeability. In
order to prove an association between FET and childhood
cancer, ideally, we would hope to have two groups of children
who are identical (or “exchangeable”) in every feature, except
for the utilization of FET in the index pregnancies. However,
as common sense tells us, this is impossible in human studies.
The next to ideal method to address confounding is random-
ization, which is often unfeasible due to logistical or ethical
reasons. Statistical models that adjust for confounders may
mitigate some of the bias, if factors that contribute to the
non-exchangeability have been adequately accounted for. In
the Hargreave study, the only covariate included in the main
models was the year of birth categorized in 5-year intervals.
To suggest that this represents an adequate control of con-
founding is to assert that the comparison groups were indif-
ferent in all the other aspects. That is manifestly implausible.

Since the comparisons were made between women who
conceived through FET versus those who conceived sponta-
neously, the two groups differed not only in the usage of FET,
but also distributions of parental age, diagnosis of infertility,
use of fertility drugs and ART, embryo cryopreservation,
thawing, and transfer. Even within women who were diag-
nosed with infertility, the etiologies could have been male
factor, pelvic factor, anovulation, endometriosis, uterine
anomalies, just to name a few. The severity of infertility also
differed to some extent among women who eventually con-
ceived spontaneously, versus those who required ART to
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conceive. Couples undergoing ART are, on average, older
than those who have no fertility problems. This is demonstrat-
ed in the Hargreave study where 50.7% of the children of the
fertile couples were born to women aged under 30, and 14.8%
were born to the oldest of the three age groups (> 34). This is
very different from the ART group, where only 27.4% of the
children were born to women younger than 30. The distribu-
tion of paternal ages showed a similar pattern. Since advanced
parental age is associated with pediatric cancers [17, 18], it is
an obvious confounder that has not been accounted for in the
Hargreave study. Moreover, as 35 and 40 are commonly used
cutoffs with important implications in reproductive biology,
the age stratification would have been much more appropriate
had it included two additional age categories, namely 35–39,
and ≥ 40. In addition, parental age should ideally be measured
at the time of embryo creation, rather than the time when the
children were born, as in the Hargreave study. With FET, this
could be several years different.

Along the same line, the children’s age should have been
studied as a confounder with more granularity. First, it has
been shown that the proportional distributions of pediatric
cancer types vary by age [19]. For example, leukemia, which
was a major cancer type studied by Hargreave et al., was the
dominant cancer diagnosis among children under 10, and be-
came less common in the older age groups [19]. Secondly, due
to the improvement in efficiency and popularity of FET over
time, there would have been a higher proportion of children
who were born from FET in the later calendar years. In other
words, the FET group would have had more younger children,
who were at higher risk of developing cancers such as leuke-
mia than the control group. This was supported by the data
presented by Hargreave et al.: the average length of follow-up
since birth was 30,260 person-years/3356 children =
9.02 years in the FET group, and 10,385,749 person-years/
910,291 children = 11.4 years, among children born to fertile
women. Regardless, children’s age was not included in the
main or sensitivity analyses of Hargreave et al.

In addition, donor (egg, sperm, or embryo) ART cycles
should have been accounted for, as the genetic predisposition
of children born from these cycles is strongly related to that of
the donors. The age of the donor should be used in the regres-
sion analysis, but was not used in the Hargreave study. Was
this appropriate? According to the Centers for Disease Control
and Prevention, 9% of the ART cycles in the United States
(U.S.) in 2016 intended to use eggs from a donor [12]. In
2014, donation and recipient cycles accounted for 5.1% of
all treatment cycles in Australia and New Zealand [20]. We
would therefore assume that egg, sperm, or embryo donation
also contributed to a significant proportion of the ART cycles
in Denmark, and therefore should have been accounted for in
the regression analyses. If this were impossible, the donor
cycles should have been excluded altogether, or the authors
should have explained why they remained.

The indications and techniques for FET from 1996 to 2012
have evolved remarkably [21]. During the era of the
Hargreave study, FETs were largely performed after failed
fresh embryo transfers. Due to embryo selection practice, the
genetic features of the frozen-thawed embryos in that era
could be different from those of the embryos selected for fresh
transfers, and embryos that were all frozen for planned em-
bryo banking (“freeze all”). Further, “freeze all” could have
been indicated for cancer fertility preservation, prevention of
ovarian hyperstimulation syndrome (OHSS), etc. It is possible
that any of these indications may confer discrete susceptibility
to cancer in the offspring, and hence lead to non-
exchangeability and confounding. Generalizability of the
study findings to today’s practice is limited by changes in
the landscape, such as the increasing popularity of “freeze
all” cycles, and the wide adoption of vitrification.

It is obvious at this point that spanning from FET to child-
hood cancer is a conceptual framework that is far too complex
for the simple appraisal Hargreave et al. presented. Systematic
evaluation of confounding, mediation, selection bias, and
even effect modification may be facilitated with directed acy-
clic graphs (DAG) [22]. A sample DAG is provided to illus-
trate some of the confounders and mediators that could have
complicated the causal pathway between FET and childhood
cancer (Fig. 1).

Despite these utter biases that are impossible to rationalize,
Hargreave et al. attempted to justify their analyses with purely
statistical claims. “Only year of birth… was included in fur-
ther analyses because none of the other factors changed the
risk estimate by more than 10%.” The magic “10%” cutoff is
completely empirical, and may play a role when there is no
other way to determine if certain factors are indeed con-
founders. However, researchers must first identify con-
founders by carefully reviewing the subject knowledge.
Confounders thus found must be accounted for in statistical
modeling, even if they do not seem to be statistically correlat-
ed with the exposure or the outcome. Consider the association
between diabetes and endometrial cancer as an example. A
systematic review of the subject knowledge will reveal age,
parity, obesity, smoking, polycystic ovary syndrome, etc., as
confounders [23], which must be addressed regardless of the
statistical features of the study population.

Hargreave et al. did perform a post hoc calculation of the E-
value to prove that statistically the effect of residual confound-
ing was negligible. Introduced in 2017 [24], E-value is a rel-
atively new concept even for clinical epidemiologists,
let alone the statistically naïve. Expressed on the risk ratio
scale, E-value represents the minimal strength of association
the unmeasured confounder needs to have with the exposure
and the outcome, in order to explain away the observed asso-
ciation. If the E-value is high, it means it will be difficult to
explain away the observed association, which is therefore ro-
bust. But the validity of the E-value is conditional on
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adjustments for the known confounders, which was not done.
It is therefore not a panacea for the gross confounding bias in
the Hargreave study.

To support their primary findings, Hargreave et al. also
performed a sensitivity analysis by adding sex, birth weight,
gestational length, and multiplicity as the “intermediate fac-
tors”, and changed the reference group to women who con-
ceived with “fertility assistance”. This led to another 99 sets of
comparisons and similar findings as those in the primary anal-
yses. “Intermediate factors”, also known as “mediators”, are
factors that may have mediated the causal pathway leading
from the exposure to the outcome (Fig. 1). For example, the
number and quality of oocytes can mediate the causal pathway
leading from age to live birth. It is not synonymous with
confounding, which, as we discussed above, is the dissimilar-
ity among comparison groups. Therefore, by performing sen-
sitivity analyses as such, Hargreave et al. did not address the
critical issue of confounding in their primary analyses.
Sensitivity analyses that repeat the same errors will not vali-
date the fundamentally spurious findings in the primary
analyses.

As the saying goes, “We don’t want to compare apples to
oranges.” In observational studies, properly designed regres-
sion models may address most of the confounding, such that
even though we have not randomized the study participants
(and therefore non-exchangeability will persist to certain ex-
tent), we will at least be comparing grapefruits to oranges.
Otherwise, we could end up comparing dinosaurs to oranges,

in which case, the conclusion will not be valid no matter how
impressive the p value may be. As Bradford Hill critiqued, test
of significance should only be a guide, rather than a rule, and
one should never let the glitter of the p “divert attention from
the inadequacies of the fare” [10].

Statistical versus clinical significance

As discussed above, the p value is largely driven by the un-
known true value of the population, which we attempt to es-
timate, as well as the distribution of study data. A large sample
size increases the precision of the estimate and the likelihood
of this estimate being statistically significant. This is a com-
mon phenomenon in large registry studies, as in the study by
Hargreave et al., where 14 cancer cases among 3356 children
born from FET pregnancies actually gave rise to statistically
significant estimates. But such a small number of cases could
not have given rise to a p < 0.05, had the authors not taken a
“shotgun” approach of multiple comparisons and ignored the
confounders. Further, when the baseline childhood cancer risk
was 17.5 per 100,000 person-years, a “two-fold” increase in
such risk actually translated into 26.9 additional cancer cases
per 100,000 person-years. The number needed to harm, which
is the inverse of the absolute risk difference, was 3717.5
(100,000/26.9) person-years. Even if the analysis in the orig-
inal study was valid, hundreds or thousands of FETs would
have to be avoided in order to “prevent” one case of childhood

FET vs. spontaneous pregnancy

Child’s age

Genetic parents’ ages

Infertility etiology
FET indication

Family history of cancer

Socioeconomical status

Childhood cancer

Multiplicity

Birth weight
Sex

Gestational length

Confounder

Mediator

Legend

Effect modifier: changes in ART practice over time

Fig. 1 A sample directed acyclic graph (DAG) demonstrating a proposed
causal network spanning from frozen embryo transfer (FET) to childhood
cancers. In general, in a DAG, confounders are common causes of both
the exposure and the outcome. Mediators are effects of the exposure and
causes of the outcome. The arrows illustrate the directions of the causal
relationships. More complex concepts, such as collider stratification bias,
which underlies selection bias, can be readily illustrated on a DAG. A

“collider” is a common effect of both the exposure and the outcome. For
example, birth weight is a “collider” between FET and sex. Therefore, if
one studies the association between FET and sex, and conditions on birth
weight, a spurious connection may emerge between FET and sex. An
effect modifier is the change in ART (assisted reproductive technologies)
practice, which can lead to different associations between FET and child-
hood cancer over time
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cancer. The small magnitude of this dubious “risk” is in con-
trast to the numerous benefits of FET, such as unprecedented
flexibility in ART treatment, drastic reduction in the risk of
OHSS and multiple pregnancies, the opportunity for embryo
banking, and preimplantation genetic testing [21, 25]. The
benefit and risk ratio in this case appears to be self-evident,
and the dubious statistical significance has not translated into
any probable clinical significance. But aside from the obvious
lack of “clinical significance,” in fact the Hargreave study also
lacks the “statistical significance” that it claims.

The devastating ramifications

With data misinterpretation, a speciously sound-appearing
methodology may produce misleading conclusions with devas-
tating results to society [26]. While the misinterpretation might
have been an act of innocence, its ramifications can be profound
and harmful. In 1965, Bradford Hill had warned us, “in passing
from association to causation I believe in ‘real life’ we shall
have to consider what flows from that decision” [10]. While
Hargreave et al. did not exactly equate association with causa-
tion, they seem to have at least implied it to most readers by
phrasing such as “compared with children born to fertile wom-
en, the cancer risk increased among children born after the use
of frozen embryo transfer”, and “children born after the use of
frozen embryo transfer had a statistically significantly higher
risk of leukemia, …and sympathetic nervous system tumors…
than children born to fertile women.” To understand the scale of
damage these unfounded claims can cause, wemay use the U.S.
data as an example. In 2016, there were 263,577 ART cycles
performed in the U.S., 32.7% of which used frozen embryos
from nondonor eggs, 5.1% used frozen donor embryos, and
25% of the cycles were started with the intent to freeze all
resulting eggs or embryos for potential future use [12]. A spu-
rious assertion that connects FET to childhood cancer will likely
cause undue guilt, anxiety, and stress among parents of children
who were conceived via FETand diagnosed with cancer later in
life, as well as millions of patients worldwide who plan to un-
dergo, or have undergone, embryo cryopreservation and trans-
fer. Spurious associations as such may lead to unjustified rejec-
tion of FET, a technology that has transformed infertility treat-
ments and become essential to today’s practice.

The fallacies, errors, and confusions Austin Bradford Hill
started to tackle 70 years ago remain just as outrageous today.
As two of the coauthors stated 29 years ago, “It is not that
statistical methods can be used to prove almost anything, but
rather that gross abuses may deeply mislead the non-statisti-
cian.” [2]. In his 1994 commentary The Scandal of Poor
Medical Research, Douglas Altman observed, “Huge sums
of money are spent annually on research that is seriously
flawed through the use of inappropriate designs, unrepresen-
tative samples, small samples, incorrect methods of analysis,

and faulty interpretation… Responsible medical journals in-
vest considerable effort in getting papers refereed by statisti-
cians…Unfortunately, many journals use little or no statistical
refereeing - bad papers are easy to publish.” [27].

Basic statistical literacy is essential in preventing myths,
just as vaccines are essential in preventing the spread of infec-
tious diseases. We all play a role in rising to the challenge. As
Altman said, journal editors and reviewers should contribute
their due diligence as the “fire fighters” against flawed re-
search studies, balancing potentially important findings with
the knowledge of study limitations, statistical uncertainty,
need for confirmation studies, and the media’s tendency to
omit subtle technical caveats. Clinicians, the second gate-
keepers of research information, “need not be experts in sta-
tistics, but they should understand the principles of sound
methods of research.” [27]. To meet this goal, much remains
to be done to integrate scientific inference with medical
school, residency, and fellowship curriculums.

It is the responsibility of leading medical journals, such as
JAMA, to evaluate and reject statistically unfounded studies,
even though the specious conclusions they generate may draw
headlines and elevate the “impact factor.” When even high im-
pact clinical journals fail us, wemust be vigilant in not accepting
unsound conclusions.
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