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CLASSIFICATION OF CORONAVIRUS SPIKE PROTEINS 
BY DEEP-LEARNING-BASED RAMAN SPECTROSCOPY 
AND ITS INTERPRETATIVE ANALYSIS
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The outbreak of COVID-19 has spread worldwide, causing great damage to the global economy. Raman 
spectroscopy is expected to become a rapid and accurate method for the detection of coronavirus. A classifi cation 
method of coronavirus spike proteins by Raman spectroscopy based on deep learning was implemented. A Raman 
spectra dataset of the spike proteins of fi ve coronaviruses (including MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-
HKU1, and HCoV-OC43) was generated to establish the neural network model for classifi cation. Even for rapidly 
acquired spectra with a low signal-to-noise ratio, the average accuracy exceeded 97%. An interpretive analysis 
of the classifi cation results of the neural network was performed, which indicated that the diff erences in spectral 
characteristics captured by the neural network were consistent with the experimental analysis. The interpretative 
analysis method provided a valuable reference for identifying complex  Raman spectra using deep-learning 
techniques. Our approach exhibited the potential to be applied in clinical practice to identify COVID-19 and other 
coronaviruses, and it can also be applied to other identifi cation problems such as the identifi cation of viruses or 
chemical agents, as well as in industrial areas such as oil and gas exploration.
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Introduction. Since December 2019, coronavirus disease 2019 (COVID-19) has spread rapidly around the world. 
As of 5 March 2022, the global death toll from COVID-19 is approaching six million (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019). The world is at a critical juncture of a pandemic, and there is an urgent need for 
convenient, precise, rapid, and large-scale deployable assay detection methods for coronavirus detection, especially for the 
outbreak control and prevention of COVID-19. As a highly specifi c detection technology, Raman spectroscopy has simple 
pretreatment requirements and a short detection time, providing a new method for the rapid and accurate classifi cation of 
coronaviruses. Related studies confi rmed that the Raman spectra of spike proteins can be used for the classifi cation and 
clinical detection of coronaviruses [1–3]. The whole detection process, including pretreatment, can be controlled within 
20 min in a rapid Raman mapping mode [2]. Compared with the mainstream detection methods (such as nucleic 
acid detection [4–8] and antibody detection [9–11]), Raman methods combine their advantages of high accuracy and 
speed.

The potential of Raman spectroscopy to identify the species of biomacromolecules goes beyond that, including the 
classifi cation of bacteria, pathogens, and cancerous tumors [2, 12, 13], and more importantly, whether Raman spectroscopy 
can distinguish COVID-19 from other viruses. In addition to SARS-CoV-2, which has given rise to this outbreak of 
viral pneumonia, there is a total of six  coronaviruses (HCoV-229E, HCoV-OC43, HCoV-NL63, HCoV-HKU1, SARS-
CoV, and MERS-CoV) that can infect humans [14–20]. Common coronaviruses, including HCoV-229E, HCoV-OC43, 
HCoV-NL63, and HCoV-HKU1, usually cause mild to moderate upper respiratory illness, such as a runny nose, headache, 
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cough, sore throat, and fever [21]. MERS-CoV, SARS-CoV, and SARS-CoV-2 often lead to severe symptoms and even 
develop into pneumonia with a relatively high case fatality rate [22]. The coexistence of various coronaviruses is becoming 
the norm in the context of COVID-19. As the virus with the highest similarity to COVID-19, the accurate classifi cation of 
coronavirus will lay the foundation for the future application of Raman spectroscopy in virus identifi cation.

Owing to the small Raman scattering cross-section of the molecules and the impurity components of the biological 
samples, the typical signal-to-noise ratio (SNR) of Raman spectroscopy in a short measurement time is relatively low, 
which gives traditional classifi cation methods (such as principal component analysis) a low identifi cation accuracy for 
distinguishing samples with high similarity. The development of deep-learning technology makes it possible to extract 
eff ective feature signals from complex spectra, and it has been widely used in the research of various spectral classifi cation 
problems [2, 12, 13].

A neural network model was trained to classify the Raman spectra of spike proteins of fi ve coronaviruses, including 
MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-HKU1, and HCoV-OC43. The average accuracy of the spectra obtained 
in the measurement time of 0.5 s exceeded 97%. The spectral features aff ecting the judgment of the neural network are 
determined in the Discussion section. An interpretive analysis of the classifi cation results of the neural network is presented, 
which indicates that the spectral diff erences captured by the neural network are consistent with structural diff erences in 
the spike proteins of these coronaviruses. Despite being a preliminary result, the experimental results show that Raman 
spectroscopy can be used to classify diff erent kinds of viruses. The process of interpretative analysis proposed in this 
paper will provide inspiration for the classifi cation approach of Raman spectra based on neural networks in the biological, 
chemical, and industrial fi elds.

Materials and Methods. The spike proteins of fi ve diff erent coronaviruses were purchased from Sino Biological Inc. 
(Beijing, China). These proteins were buff ered by PBS or 20 mM PB, 300 mM NaCl, and 10% glycerol with a concentration 
of ~1 mg/mL. An ultrafi ltration centrifuge process was performed to remove the buff er and make a pre-concentration for 
these proteins before the Raman measurement. The ultrafi ltration tubes were purchased from Merck Millipore, with the 
nominal molecular weight limit of 30 kDa. The initial 50-μL protein solutions were centrifuged fi ve times to a fi nal volume 
of ~15 μL for each spike protein. The centrifugal process was implemented by a refrigerated centrifuge with a centrifugal 
force of 14,000×g at 4C for 25 min each time.

The normal Raman spectra of spike proteins were collected on Ag-coated Si substrates. The Ag coatings were 
deposited by direct current magnetron sputtering equipment. The Si slices used in this work were successively cleaned with 
acetone, ethanol, and deionized water (DI, 18.25 MΩ) before Ag deposition. The deposition processes were implemented in 
pure Ar at a working pressure of 0.5 Pa at room temperature under a base pressure of ~3.5 × 10−4 Pa. The Ag target power 
was set constant to 120 W with a deposition time of 333 s. The thickness of the deposited Ag coating was ~300 nm.

The Raman spectra were measured by a portable Raman spectrometer (Renishaw Virsa) equipped with a 532-nm 
laser. A wavenumber calibration was carried out using a Si sample before the measurement. The Raman signal was collected 
by a ×50 objective long focal lens. The mapping data were recorded by a rapid Raman mapping mode with an integration 
time of 0.5 s for a single spot and a laser power of 20 mW. Five 20 × 20 discrete spot maps were taken for the spike proteins 
of each coronavirus with 2-μm spacing between spots to avoid overlap between spectra. The spectral range was selected as 
400–1750 cm−1, which covers the majority of information on proteins. All the spectra were preprocessed with convolution 
fi ltering and background correction and normalized between 0 and 1.

The dataset  consists of 10,000 normal Raman spectra from the spike proteins of fi ve coronaviruses, including 
MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-HKU1, and HCoV-OC43. Then, the dataset was divided into training, 
validation, and testing datasets, with a ratio of 6:2:2, that is, the training set, validation set, and test set contain 6000, 2000, 
and 2000 Raman spectra, respectively. The number of spectra from each coronavirus that make up each subset is the same.

The neural  network model used in this paper was a multilayer perceptron (MLP), in which several fully connected 
hidden layers were added between the output layer and the input layer. The size of the input layer was equal to the spectral 
length of 895. There were three fully connected hidden layers after the input layer, and the number of hidden neurons in 
each layer was 512, 256, and 32. The model ended with a fully connected classifi cation layer, where the number of neurons 
was equal to the number of classes of the coronaviruses. The number of hidden layers and the number of hidden neurons in 
each layer were selected via a grid search using the training set and validation set. The test se t was only used to report fi nal 
accuracy and was not used in the model selection process. The more complex convolutional neural network (CNN) [23] and 
residual neural network (Resnet) [24] architectures were experimented, but found that their performances were almost the 
same, whereas the model complexity of MLP and the computational resources required for training were much smaller. The 
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stochastic gradient descent (SGD) optimizer was used in the training process. The learning rate was set to 0.01, the batch 
size was 100, and the epoch was set as 200.

Results and Discussion. According t o the similarity of the genomic organization of coronaviruses, these seven 
coronaviruses can be divided into four groups. HCoV-229E and HCoV-NL63 genomes belong to the genus Alphacoronavirus, 
which show a higher sequence identity (63%) than other coronaviruses, and they were divided into one group. The other 
fi ve coronaviruses belong to another genus, Betacoronavirus. HCoV-HKU1 and HCoV-OC43 both belong to the subgenus 
Embecovirus and were classifi ed into one group. The SARS-CoV-2 genome shows 79.6% nucleotide sequence similarity 
with SARS-CoV, belonging to the same subgenus Sarbecovirus, and they were put in one group. Although MERS-CoV 
belongs to a single subgenus Merbecovirus, its genome is more analogous to SARS-CoV and SARS-CoV-2 than to other 
coronaviruses [22, 25, 26].

Coronavirus virions are spherical or pleomorphic, with club-like projections of the spike protein decorating the 
surface. The spike protein is distributed widely on the surface of the virus and serves as the key to attacking the human body, 
which can be considered one of the markers for coronavirus detection [27, 28]. Spike proteins of various coronaviruses have 
unique molecular compositional features that result in subtle diff erences in their corresponding Raman spectra. In clinical 
studies [1–3], special lysates were added to the collected samples to destroy the envelope of coronavirus and inactivate and 
release spike proteins. After that, the spike proteins can be detected by Raman spectroscopy for classifi cation.

Fig. 1. Spectra of spike proteins of fi ve coronaviruses: (a) MERS-CoV, (b) SARS-
CoV, (c) SARS-CoV-2, (d) HCoV-HKU1, and (e) HCoV-OC43. In each subgraph, the 
blue line represents raw data, and the red line shows preprocessed data. The solid lines 
show the spectra after averaging all Raman spectra for each coronavirus spike protein. 
The shaded area shows the standard deviation of the measurement. All the spectra are 
normalized between 0 and 1.
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To demonstrate the eff ectiveness of our approach while simplifying the experimental cost, the fi ve coronaviruses 
belonging to Betacoronavirus were selected as the objects of classifi cation. Therefore, the dataset in this study contains the 
normal Raman spectra of the spike proteins of fi ve coronaviruses, namely MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-
HKU1, and HCoV-OC43. The mean spectra of the spike proteins of fi ve coronaviruses are shown in Fig. 1.

Fig. 2. Comparisons of the (a) lower wavenumber region and (b) the amide III and 
(c) amide I bands for fi ve coronaviruses spike proteins. Thr: Threonine, str: stretch 
vibration, β-s/c: β-sheet/coil, β-t: β-turn, : -helix.

Fig. 3. Schematic diagram of the architecture of the multilayer perceptron model for 
the fi ve-class identifi cation task. As there are too many neurons in the actual model, the 
number of neurons shown in the fi gure is only schematic.
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There were some diff erences in Raman bands among the spike proteins of fi ve coronaviruses, especially in a lower 
wavenumber region (400–800 cm−1), amide I (1600–1700 cm−1) band, and amide III (1200–1300 cm−1) band, as shown in 
Fig. 2. In the lower wavenumber regions, the spike proteins of HCoV-HKU1 and HCoV-OC43 showed more intense Raman 
bands than those of MERS-CoV, SARS-CoV, and SARS-CoV-2, which refl ected the diff erence in the Raman bands of the 
side chains. This may be due to the diff erent amino acid sequences of the latter three coronavirus spike proteins, as they 
have higher amino acid homology. According to the Raman band assignment presented in Huang et al. [2], the amide I and 
amide III bands of MERS-CoV, SARS-CoV, and SARS-CoV-2 showed more alpha-helical components than those of beta-
sheets/coils, whereas HCoV-HKU1 and HCoV-OC43 exhibited the opposite trend [2]. These diff erences in the Raman bands 
were caused by the diff erent conformations of spinous process proteins in the gene sequence. The above results showed 
that the spike proteins of diff erent coronaviruses had diverse Raman bands, indicating that Raman spectroscopy is a valid 
technology for identifying coronaviruses. In the next part, deep learning methods were applied to automatically capture 
these diff erences in spectra and implement the classifi cation of coronaviruses.

The process of classifying coronavirus spike proteins from the Raman spectra of the spike proteins using an MLP 
model is illustrated in Fig. 3. The 895-dimensional spectra were input into MLP, and the probability distribution of fi ve 
coronaviruses was fi nally output in the output layer after the nonlinear operation of three hidden layers.

The neural network model was trained to complete the fi ve-class identifi cation task. A one-hot encoded label was 
used when labeling the training data of fi ve coronaviruses, which meant that the character label was expressed as a vector. 
MERS-CoV was expressed as [1 0 0 0 0], SARS-CoV as [0 1 0 0 0], SARS-CoV-2 as [0 0 1 0 0], HCoV-HKU1 as
[0 0 0 1 0], and HCoV-OC43 as [0 0 0 0 1]. The MLP output a probability distribution across the fi ve coronaviruses, and the 
maximum was taken as the predicted class. For instance, when the MLP output of a testing spectrum is [0.1 0.1 0.1 0.6 0.1], 
the spectrum will be considered to come from the fourth coronavirus, namely HCoV-HKU1.

The performance breakdown for individual classes is displayed in the confusion matrix. All values equal to 0 are 
not show.

The average accuracies of MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-HKU1, and HCoV-OC43 were 
98.52 ± 0.74, 99.39 ± 0.49, 98.3 ± 1.63, 96.21 ± 0.69, and 94.17 ± 0.24%, respectively. The overall average accuracy reached 
97.32 ± 0.76%. These fi ve coronaviruses can be divided into two groups: MERS-CoV, SARS-CoV, and SARS-CoV-2 in one 
group, with HCoV-HKU1 and HCoV-OC43 in the other group. There were few misclassifi cations among diff erent groups of 
coronaviruses but more misclassifi cation within groups, confi rming their higher spectral similarity.

The more common classifi cation technique of principal component analysis (PCA) was also implemented. Only 
67.16% accuracy was achieved when two principal components were retained. The accuracy reached 93% when the number 
of retained principal components exceeded 20. However, the improvement in accuracy was not obvious when the number of 
principal components continued to increase, which indicated that the spectra of the fi ve coronaviruses were highly similar and 
could not be distinguished by a few features. In contrast, our neural network comprehensively utilized all the characteristic 
information in the full wavenumber range of the spectra, which is helpful to greatly improve the classifi cation accuracy.
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The interpretation of the output of neural networks has always been the focus of attention. Therefore, it is necessary 
to analyze which characteristics of these spectra of coronavirus spike proteins aff ect the discrimination results of neural 
network output. The normalized intensity of each wavenumber and the four wavenumbers before and after that (a total of 
nine wavenumbers) was set to zero, and then it was inputted into the MLP model again for prediction. When a certain feature 
in the spectrum disappears, the infl uence on the judgment of the neural network was analyzed by the process. The variation 
amplitude of the output was compared to reveal the infl uence of the spectral features in this wavenumber range on the neural 
network prediction. An example of this process is shown in Fig. 4.

Despite some diff erences, the term saliency map [29] in the fi eld of deep learning was employed to call such 
results. In our saliency map, the abscissa is the wavenumber, and the ordinate is the variation amplitude of the MLP output, 
that is, the saliency. The mean saliency map of the spectra  of MERS-CoV, SARS-CoV, SARS-CoV-2, HCoV-HKU1, and 
HCoV-OC43 are shown in Fig. 5.

The shaded area shows the standard deviation of all spectra in the test dataset.

Fig. 4. An example of the process of calculating the saliency of a spectral feature.

Fig. 5. The mean saliency map of the spectra of the fi ve coronaviruses.
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From the characteristics of the saliency distribution, MERS-CoV, SARS-CoV, and SARS-CoV-2 were relatively 
similar, whereas HCoV-HKU1 and HCoV-OC43 were relatively similar. In the saliency map of MERS-CoV, SARS-CoV, 
and SARS-CoV-2, only two or three positions showed very high saliency, and the saliency in most wavenumber ranges was 
almost zero. This illustrates the relatively high degree of similarity among MERS-CoV, SARS-CoV, and SARS-CoV-2, with 
only a few diff erences in the spectra. HCoV-HKU1 and HCoV-OC43 show certain saliency in many positions, but were not 
particularly high, which showed that the spectra of HCoV-HKU1 and HCoV-OC43 were more diff erent from those of the 
other three coronaviruses. Therefore, a single feature alone cannot determine the MLP output, which was consistent with 
the results of the classifi cation accuracy of the neural network above.

This interpretative analysis method is also helpful to explore the specifi c position of spectral diff erences between 
diff erent coronaviruses. The MLP output of the spectra processed as shown in Fig. 4 was directly plotted for each 
coronavirus, as shown in Fig. 6. As mentioned earlier, the output is a fi ve-dimensional vector; hence, there are fi ve curves 
in each subgraph. To some extent, these fi ve components represented the probabilities that the input spectra were derived 
from the fi ve coronaviruses. Therefore, these fi ve components were directly called MERS-CoV, SARS-CoV, SARS-CoV-2, 
HCoV-HKU1, and HCoV-OC43 in the legends. The corresponding output component of coronavirus was always the highest 
in each subgraph. In most wavenumber ranges, the output changed little when the features were erased. However, the 
elimination of some features led to a sharp decrease in the component and an increase in the component corresponding to 
another coronavirus. These features are the main diff erence between the two coronaviruses.

The diff erences in spectral characteristics between the spike proteins of diff erent coronaviruses are demonstrated in 
Table 1. The diff erence at approximately 1003 cm−1 arose from the phenylalanine component in the side chains of the fi ve 
coronavirus spike proteins. Therefore, it will not be discussed separately in the following comparisons.

The diff erences in spectral characteristics between MERS-CoV and SARS-CoV were mainly distributed in 
the regions of wavenumbers 1300, 1460, and 1650 cm−1, which was due to the diff erence in beta-turn components of 

Fig. 6. The mean multilayer perceptron output of the spectra processed as shown in 
Fig. 4 from (a) MERS-CoV, (b) SARS-CoV, (c) SARS-CoV-2, (d) HCoV-HKU1, and 
(e) HCoV-OC43. The shaded area shows the standard deviation of all spectra in the test 
dataset.
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amide I, alanine components in side chains, and alpha-helical components of amide III [2]. The spectral characteristics 
near wavenumber 1650 cm−1 were also the diff erence between MERS-CoV and SARS-CoV-2. Additionally, the spectral 
characteristics near 1440 cm−1 were also one of the diff erences between MERS-CoV and SARS-CoV-2, and was attributed to 
CH2 bending vibrations in the backbone [30]. For SARS-CoV and SARS-CoV-2, their diff erences in spectral characteristics 
were located near the two positions of wavenumbers 1440 and 1650 cm−1.

There were many diff erences in spectral features between HCoV-HKU1 and HCoV-OC43. At a lower wavenumber 
region, the diff erences were mainly concentrated at 490, 560, and 710 cm–1, which was caused by the threonine, glycine, 
amide IV, isoleucine, and C–S stretch vibrations [22]. In the middle and high wavenumber regions, the possible assignments 
of the Raman bands that present diff erences were C–N stretch vibrations, tyrosine, histidine, phenylalanine, amide III, 
tryptophan, CH2 bending vibration, and amide I [30].

The results were in good agreement with the diff erence observed directly in Fig. 2. The peaks at 1003, 1450, 1460, 
and 1650 cm−1 were the main characteristics of the spectra of the spike proteins of these coronaviruses. The intensity 
and shape of these peaks in diff erent coronaviruses intuitively showed some diff erences. Moreover, our approach also 
identifi ed more abundant diff erences that were so small that they drowned in the noise and were diffi  cult to observe directly. 
The results showed that deep-learning methods had a strong ability to extract subtle features in Raman spectroscopy, 
which improved the detection sensitivity. The sample composition is more complex in future clinical applications, and 
only with the help of the method can the eff ective characteristic signal be extracted accurately and the correct classifi cation 
be realized.

It should be noted that the amount of spectral data in this study is relatively limited. However, as a preliminary 
result, the feasibility of this approach was proved to a considerable extent. In further research, it is necessary to obtain 
more Raman spectra of various coronaviruses in diff erent states and environments and build a comprehensive and reliable 
database to make better use of the advantages of deep learning in processing big data.

Conclusions. A deep-le arning method for Raman spectra was applied to identify the spike protein of the coronavirus. 
As shown in our dataset of fi ve coronaviruses, the average classifi cation accuracy exceeded 97%. The classifi cation results 
of our model were consistent with the spectral analysis through the interpretive analysis of saliency maps, which showed 
that this method and the classifi cation results were reliable in biochemical foundations. This interpretative analysis method 
will provide a valuable reference for the future use of deep learning to identify complex Raman spectra.

The approach can easily be transplanted to the detection of COVID-19 by collecting real positive and negative 
samples of throat swabs or saliva to train the neural network model. In clinical applications, surface-enhanced Raman 
scattering can be applied to reduce the measurement time and further accelerate the detection speed [30–33]. Moreover, our 
model can be applied to other identifi cation problems with high requirements for detection speed and accuracy, such as the 
identifi cation of viruses or chemical agents, as well as in industrial areas such as oil and gas exploration. Combined with our 
proposed explanatory analysis method, it is helpful to evaluate the reliability of deep-learning classifi cation results.

Acknowledgments. This work was supported by the National Natural Science Foundation of China (No. 11975214) 
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TABLE 1. Diff erences in Spectral Characteristics between the Spike Proteins of Diff erent Coronaviruses

Wavenumber of characteristic 
diff erences, cm−1 MERS-CoV SARS-CoV SARS-CoV-2 HCoV-HKU1 HCoV-OC43

MERS-CoV – 1300, 1460, 1650 1440 1650 1650

SARS-CoV 1003 – 1450 1650 1450, 1650

SARS-CoV-2 1003, 1660 1660 – 1650 1650

HCoV-HKU1 1003 1340 490 – 560, 710, 1240, 
1450, 1580

HCoV-OC43 1003, 1660 1660 490, 560, 1100, 
1210, 1580, 1610

560, 1170    1210, 
1390, 1560, 1670 –
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